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ABSTRACT 
D3.1 Visual analysis for real sensing [lead: CERTH; due: M24]. Deliverable D3.1 
consolidates the progress achieved inT3.1 task. The main purpose of the document 
is to report all the algorithms that have been deployed for extracting features of the 
constructions and comprise the baseline for the higher level of implementations. 
The report is divided into three distinct sections. First, it presents the developments 
made with respect to the 3D representation pipeline that were deployed and applied 
to demo sites #1, #4, #6 and #7, which included bridges and industrial buildings. 
These include tools for Structure from Motion and Dense 3D point cloud generation 
on images captured in ASHVIN demo sites. Furthermore, a single image 3D depth 
prediction pipeline is presented. 
Secondly, the approach and implementation carried out to develop an AI-based 
defect detection service with pixel segmentation is presented. The aim was to detect 
and pixel segment different types of defects that are present in realistic inspection 
scenarios in demonstration site #3, which included airport operational areas. 
Convolutional neural network architectures were trained and validated. 
Finally, the report presents the results of the training and implementation of a state-
of-the-art object detection algorithm to detect objects at construction sites for 
monitoring the construction progress. The implemented model was applied to 
images obtained from demo site #4 (construction of industrial building) and is based 
on YOLO v5 detector. 

 

KEYWORDS 
Image-based 3D representation, Defect Detection, Object Detection, Semantic 
Segmentation. 
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ACRONYMS & DEFINITIONS 
2D Two-dimensional 

3D Three-dimensional 

DT Digital Twin 

DoA Description of Action 

CV Computer Vision 

DSP Domain-Size Pooling 

SfM Structure From Motion 

SLAM Simultaneous Localisation and Mapping 

MVS Multi-View Stereo 

RGB Red Green Blue 

ROI Region Of Interest 

SIFT Scale-Invariant Feature Transform 

UAV Unmanned Aerial Vehicle 

3DRI 3D representation from Images 

FLANN Fast Library for Approximate Nearest Neighbors 

ANN Approximate Nearest Neighbors 

RANSAC RANdom SAmple Consensus  

BA Bundle Adjustment 

mAP Mean Average Precision 
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ASHVIN PROJECT 
ASHVIN aims at enabling the European construction industry to significantly 
improve its productivity, while reducing cost and ensuring absolutely safe work 
conditions, by providing a proposal for a European wide digital twin standard, an 
open-source digital twin platform integrating IoT and image technologies, and a set 
of tools and demonstrated procedures to apply the platform and the standard proven 
to guarantee specified productivity, cost, and safety improvements. The envisioned 
platform will provide a digital representation of the construction product at hand and 
allow to collect real-time digital data before, during, and after production of the 
product to continuously monitor changes in the environment and within the 
production process. Based on the platform, ASHVIN will develop and demonstrate 
applications that use the digital twin data. These applications will allow it to fully 
leverage the potential of the IoT based digital twin platform to reach the expected 
impacts (better scheduling forecast by 20%; better allocation of resources and 
optimization of equipment usage; reduced number of accidents; reduction of 
construction costs). The ASHVIN solutions will overcome worker protection and 
privacy issues that come with the tracking of construction activities, provide means 
to fuse video data and sensor data, integrate geo-monitoring data, provide multi-
physics simulation methods for digital representing the behaviour of a product (not 
only its shape), provide evidence-based engineering methods to design for 
productivity and safety, provide 4D simulation and visualization methods of 
construction processes, and develop a lean planning process supported by real-
time data. All innovations will be demonstrated on real-world construction projects 
across Europe. The ASHVIN consortium combines strong R&I players from 9 EU 
member states with strong expertise in construction and engineering management, 
digital twin technology, IoT, and data security / privacy. 
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1 INTRODUCTION 
With the advent of affordable and high-quality smartphone cameras, fixed cameras, 
unmanned aerial and ground vehicles, there is a unique opportunity to massively 
record digitally and analyse the entire life cycle of construction environments. 
Computer vision is an interdisciplinary scientific field that deals with how computers 
interpret and understand visual data. Examples of such applications range from self-
driving cars, safety monitoring, to automating quality control and increasing production 
efficiency. 
As a result of its growth (Chai, Zeng, Li, & Ngai, 2021) (Feng, Jiang, Yang, Du, & Li, 
2019), computer vision has attracted research interest in construction in recent years 
on monitoring construction work, improving time-consuming and repetitive tasks and 
bringing the physical labor in digital twin technologies for construction. A variety of 
applications using computer vision were emerged in the field, such as automated 
progress monitoring and resource allocation by detecting progress deviation through 
a comparison to a BIM model, optimising equipment usage, improving quality 
assessment and granting safety monitoring, for instance, by examining the condition 
of concrete through a video or photographic images. The rapid growth of deep learning 
is opening a new era in digital applications for scaling-up and automating existing 
solutions as well as developing new ones based on the capabilities of automatically 
discovering and formulating features needed for classification (LeCun, Bengio, & 
Hinton, 2015). 
In ASHVIN Task 3.1 the goal is to deploy computer-vision based algorithms for 
processing the collected visual data (images or/and videos) from demonstration 
construction sites and provide a higher level of understanding to feed specific tools of 
the ASHVIN toolkit. There are 3 main methods deployed in the framework of this task: 

The first work aims to the deployment of the 3DRI method. As quoted in D7.1 “This 
method will introduce a pipeline for estimating 3D structures from 2D imagery. The 
depth information is calculated from 2D data using common information that is present 
in overlapping parts between different images or videos”. 

The second task developed under T3.1 is a defect detection approach to be applied to 
images recorded on runways, which refers to the DDCV method. “The AI-powered 
solution is used to detect damages, anomalies and objects on the runway surface and 
green areas around the runway. The aim is to integrate the automated damage 
detection into inspection and maintenance planning process”1. The deployed service 
processes the visual input, acquired via UAV camera, and produces an annotated 
mask where the detected defects are segmented accordingly.   

The third task related to computer vision and implemented under T3.1 concerns the 
monitoring of construction activities. An object detection algorithm was implemented 
to detect the mounting precast columns at the demonstration site #4. The service 
processes time lapse images to detect the duration of installation activities during the 
construction phase. 

 
1 D7.1 “ ASHVIN technology demonstration plan” 
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1.1 Purpose and document structure 
This deliverable report all the work and the algorithms deployed for extracting features 
and using visual data from demonstration sites within ASHVIN project to support as 
methods the higher-level tool components of ASHVIN project.  
The document is structured into 3 main sections. Section 2 is about the 3D point cloud 
generation from images which refers to the main corpus of the work described in T3.1 
of the DoA. Two additional sections derived from the interaction with the ASHVIN end 
users, to cover the needed requirements set by the implementation of the demo cases. 
Therefore Section 3 is describing the work around the deployment of the DDCV 
method, which aims to enable the condition monitoring of airport infrastructure in Zadar 
airport. Finally, Section 0 elaborates on the object detection algorithms that were 
applied to detect pile installation for demonstration site #4. The main objective of this 
work was to automate the process through a sequence of time-lapse images to extract 
the duration of pile mounting and feed the DES tool developed in T4.2. 

1.2 Sensors 
The quality of the collected visual data has the most impact on the performance of the 
system. For example, an efficiently designed and trained object detection module may 
significantly underperform if the input images are of poor quality (e.g., blurred or 
collected from awkward angles). Blurred images cause problems not only in scene 
recognition and spatio-temporal building and object techniques but also in 
photogrammetric 3D reconstruction, mainly because the amount of matched or tracked 
features drops dramatically during the feature matching process.  
A visual sensor is a device composed of at least an RGB camera, a storage unit, an 
energy supply and a communication interface. Image resolution, brightness, contrast, 
compression factor and colour scheme are some of the characteristics that impact the 
performance of visual sensors, but such impact depends on the applications 
monitoring requirements. In the context of ASHVIN there were considered the below 
options to cover the needs of the data collection process in the programme demo sites. 
In addition, an evaluation of this sensing equipment is provided and their 
characteristics are listed and discussed in the following subsections. 

1.2.1 Hand-held cameras (GoPro) 
GoPro cameras have been considered as a candidate sensing element, see Figure 1, 
since it has a fish-eye lens which can capture a wide field of view and, in record mode, 
it has a high frequency rate (above 60Hz), allowing to record videos without blur. 
Therefore, some frames can be extracted as post-processing from these videos 
instead of continuously take pictures that can be time consuming. Generally, the 
following should be considered: 
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Figure 1: GoPro camera 

 Capture images with good texture. Good texture provides unique features on the 
object surface, which are necessary for matching them to different images and 
estimating their 3D position. 

 Capture images in similar lighting conditions. By avoiding high dynamic range 
scenes (e.g., pictures against the sun with shadows or pictures through 
doors/windows). Avoid specularities on shiny surfaces. The feature matching 
across images becomes significantly harder with strongly varying illumination and 
correspondences might not been found.  

 Capture images with high visual overlap. Videos and image sequencing ensure 
that each object is shown in multiple frames – the more images the better. Overlap 
ensures that many visual features are available for matching features and 
subsequently estimating the relative camera motion. 

 Capture images from different viewpoints. Do not take images from the same 
location by only rotating the camera, e.g., make a few steps after each shot. At the 
same time, try to have enough images from a relatively similar viewpoint. Different 
viewpoints are important to see the same surface several times to estimate feature 
locations in 3D and to reduce the number of unobserved areas due to occlusions.  

1.2.2 Aerial Cameras as Drone payload 
Drone recordings allows to apply incremental techniques for the 3D representation of 
the external geometry of the construction by post-processing of the acquired pictures. 
The advantages of this technology are listed below: 

• High quality and low-cost data: one can obtain recording of an area within a 
few minutes of flight, allowing the acquisition of high value information and high 
precision images. 

• Metadata such as GPS location and IMU sensor recordings are also made 
available, improving the camera localization and speeding up the 3D 
representation process. 

• Safety: Drone recordings and associated image data post-processing 
technology has brought to the construction industry a very powerful tool for data 
capturing and site survey, reducing the time spent collecting accurate data. By 
acquiring aerial imagery, it become easier to collect millions of high accuracy 
data points per flight also improving safety since there is no need to deploy 
personnel directly to hazardous or inapproachable areas. 
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Data collection process: the key element for a successful 3D representation from 2D 
input is the collection of the data set. A guidance document was delivered early in the 
project to the WP7 partners to guide them on how to collect image data. These 
guidelines for data collection include the following key points: 

• High overlap between images; 
• Image acquisition plan, which depends on the type of object to be reconstructed, 

which in turn depends on: Path planning, Flight height, Camera angle(s) 
•  Ground Control Points (GCPs) to improve and/or validate the accuracy of the 

georeferencing. 
One type of drone that was considered for aerial scanning and could be useful for the 
construction industry is the Skydio drone 2 followed by the 3D scan toolkit. This drone 
offers adaptive scanning capabilities that allows for automated data capture tailored to 
the needs of 3D generation processes. 
For demo sites #1,6,7 the drone used for the data capturing was the DJI Mavic Air 2.  

Table 1: Air Mavic 2 Camera characteristics 

Sensor 
1/2" CMOS 
Effective Pixels: 12 MP and 48 MP 

Lens 

FOV: 84° 
Equivalent Focal Length: 24 mm 
Aperture: f/2.8 
Focus Range: 1 m to ∞ 

ISO 
Video:100-6400 
Photo (12 MP): 100-3200 (Auto) 

Max Resolution 48 MP 8000×6000 pixel 

Photo Models 
Single: 12 MP and 48 MP 
Burst: 12 MP, 3/5/7 frames 

 

The instructions followed for camera settings have an impact on image quality and by 
extension lead to quality post-processing. For processing, the images should be sharp 
and have the least amount of noise. As a thumb rule, the following should be respected: 

• Shutter speed should be fixed and set to medium speed (between 1/300 
second and 1/800 second), but fast enough to not produce blurry images. 

• ISO should be set as low as possible (minimum 100). High ISO settings 
introduce noise and reduce the quality of the results. 

• Aperture depends on the lens and it is better to leave it on automatic. 
The instructions given to end-users are set out on project’s repository. Typical overlap 
percentage in such applications is around 80% in both directions (sometimes even 
higher percentage up to 90% may be applied) to ensure that all object points are 
depicted in multiple photos. This leads to better triangulation accuracies in 3D 
reconstruction. At the same time occlusions and hidden areas should be avoided. 

1.2.3 Hi-Res Webcam. 
Timelapse is probably one of the most used and efficient ways to immortalize several 
months of work on a construction site and to showcase the final result. Using timelapse 

 
2 https://www.skydio.com/ 
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video, construction project monitoring becomes a powerful communication tool that 
can be shared on social media or broadcast. For Demo site #4 a timelapse video from 
a fixed camera is the only input of visual content information that is provided, 
constituting an important value for construction documentation. Moreover, one of the 
objectives in demo site #4 is to capture time-lapse high-resolution images from a fixed 
position to record the evolution of the construction process. And this was the only 
element to motivate our work for image processing to allow the 3D representation of 
the space and for real-time project progress tracking. 
The estimation of 3D geometry from a single image is a special case of image-based 
3D representation from several images, but is considerably more difficult since depth 
cannot be estimated from pixel correspondences due to great information loss from 3D 
to 2D. With the rise of neural networks and deep learning, neural networks have been 
deployed that could be trained to learn the three-dimensional structure of objects in a 
single image. There are no specific requirements set for this type of collected dataset 
other than the provision of high-quality images and their provision at regular time 
intervals.  

Table 2: Camera characteristics options for the TimeLapse fixed camera installed in Demo site #4 
Resolution Image Quality Reliability Connections 
23 Megapixel  Color reproduction  Self-sufficient  Cellular 

Broadband 
UMTS|LTE  

35 Megapixel  Contrast  Maintenance-free  LAN / Wi-Fi  

+60 Megapixel Day + Night Function 
monitoring 

DSL / VDSL 

 

 
Figure 2: Type of Hi-Res Webcam installed in demo site #4 3 

  

 
3 https://www.hi-res-cam.com/de/ 
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2 3D POINT CLOUD GENERATION FROM VISUAL CONTENT 
This section contains information about the solutions, workflows and algorithms used 
and developed in ASHVIN for the 3D representation of project demo cases using visual 
data. Details about the generation of 3D representations for the Pilot Demo Sites (PDS 
1, 4, 6 & 7) are also given. 3D representation is performed on relevant visual data of 
the environment such as raw video footage, time lapse images, georeferenced 
imagery gathered by drones, that are collected during the data collection process 
performed by demo site leaders and still in process for some demo cases. The 
collection of data is described in the corresponding deliverables related to the Demo 
Sites. The main objective is the production of 3D point clouds of variant resolutions in 
“.ply” format depending on the needs of the 4DV-C construction monitoring tool (Figure 
3). The generated 3D point clouds of outdoor and indoor spaces via imagery content 
will be one of the building elements of the Construction Monitoring tool needed for the 
Continuous monitoring of the as-build process. The 3D models (and the raw data) will 
be available: 
During the last years, there has been a growing interest around the use of three-
dimensional representation in various fields ranging from autonomous driving to 
augmented reality, which rely heavily upon accurate 3D reconstructions of the 
surrounding environment. The 3D reconstruction process captures the geometry and 
appearance of a single object or an entire scene.  
Automated 3D point cloud generation from images has been one of the key problems 
of computer vision for years (Furukawa, 2014); for construction sites, it might be just 
the beginning to make use of these digital information. The goal of image-based 3D 
representations is to infer the 3D geometry and spatial relationship from 2D 
images. This long standing ill-posed problem is fundamental to many applications 
such as robot navigation, object recognition, scene understanding, 3D modelling and 
industrial control etc (Han, Laga, & Bennamoun, 2019). 

 
Figure 3:Schematic overview of the 3D representation method. 
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2.1 Objectives 
The objectives of T3.1 (M1-M24) are aligned with the main goals that are described in 
the DoA and summarised as follows: 
 Analyze and evaluate the main equipment that will be utilized as a means of 

acquisition. Digital Cameras, time lapse Hi-Res webcam, UAVs and GoPro 
cameras (that would be installed on the robot dog for Demo Site #5) were 
assessed to be integrated with the main system and comprise the basic means of 
sensing the real world. Moreover, a document with basic instructions related to 
data collection have been prepared early in the project and handed to WP7 leader 
to guide the data collection process. 

 Identify the computer vision algorithms to be deployed for extracting accurate 
features from the 2D representations of the captured scenes. Descriptors well as 
higher level local descriptors were deployed to initially extract the required features.  

 Image enhancement algorithms were evaluated as a pre-processing stage for 
optimal feature extraction and mitigating visual inaccuracies in any image/video 
caption.  

 Cameras’ calibration is needed as a prerequisite for optimal depth estimation. 
 The objective of the task is to translate 2D images into their 3D reflectances. 
 The process aims at achieving high accuracy initial data that will be forwarded to 

a higher level of implementations for producing the “Digital Twin” of the interested 
object.  

 All image processing methods developed in this task will be integrated with the 
ASHVIN platform in close collaboration with T1.1. 

As described in D7.1 “Ashvin technology demonstration plan”, the 3DRI method will 
perform the following task: 

Table 3: Plan for 3DRI method as described in D7.1. 
ASHVIN 
tool/method Name How the method will be used on the project 

3DRI 
(method) 

3D 
Representation 
from Images  

This method will introduce a pipeline for estimating 3D 
structures from 2D imagery. The depth information is 
calculated from 2D data using common information that 
is present in overlapping parts between different images 
or videos. 

Data Input Data output 

Image files from photo captures. 

3D point clouds in .PLY format 
Geotagged Image sequences and Video 
from drones. 

Time lapsed images 
 

As can be derived from Figure 4, the first step in a generic flow that involves the 3DRI 
method consists of new visual data being sent into to the 3D representation service. 
The new data can originate ideally from the IoT platform (T1.1) from recordings 
performed on demo sites by end-users.  
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Once a new piece of data is successfully ingested to the 3DRI service, the data is 
analysed using the Image-Based 3D representation pipeline that will be discussed in 
more detail on a following section. The inferred 3D point cloud in “.ply” format is the 
ready to be handed to the final receptor, the 4DV-C tool. 

 
Figure 4: High level view of visual data acquisition and data processing and the position of 3DRI method in 

ASHVIN project. 

2.2 Related Technologies  
The problem of reconstructing the 3D representations of the environment has drawn 
significant attention from many researchers over the past few decades. Reconstruction 
techniques are often consisted by algorithms that are fusing depth measurements from 
special sensors, such as LiDAR, RGB-D or structured light into 3D models. While these 
sensors can be extremely effective, they require special hardware making them more 
cumbersome and costly than systems that rely only on RGB cameras. 
Most commonly found is the use of LiDAR scanners to reconstruct the 3D 
representation. The development of such devices has allowed the fast and accurate 
3D recording of complex environments. However, 3D scanning is time consuming and 
the captured point clouds often contain noise due to failures of reflection of the laser 
beams, for example on shiny, metal or glass surfaces which presence is common in 
construction sites. Additionally, 3D scanning is still considered expensive due to the 
high cost of using and maintaining 3D laser scanner devices.  
The image-based approach, which is the subject of the work developed under T3.1 
and reported in this deliverable, is generally considered as a low-cost method, flexible, 
portable and capable of reconstructing 3D representations simply using images. In the 
last decades different solutions have become available for the automated processing 
of images and the derivation of 3D information and models. The processing mainly 
includes image orientation and dense 3D reconstruction with a large level of 
automation.  
ASHVIN project integrates most of the above-mentioned capturing methodologies to 
create 3D representations. These include: (a) laser scanning suitable for detailed 
reconstruction of large-scale objects and (b) photogrammetry and computer vision 
techniques that exploit visual information using Simultaneous Localization and 
Mapping (SLAM) and Structure from Motion (SfM) techniques. The use of unmanned 
aerial vehicles (UAVs) was also foreseen for the 3D reconstruction of large-scale 
building environments (Demo site #6) and bridges infrastructures (Demo site #1 &#7). 
Techniques for solving image-based problem come from both computer vision and 
robotic research communities by means of Structure from Motion (SfM) and visual 
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Simultaneous Localisation and Mapping (VSLAM). Standard SfM and VSLAM aim to 
simultaneously estimate the camera pose and 3D structure of the scene through a set 
of feature correspondences detected from multiple images. 
Popular pipelines providing 3D image reconstruction are COLMAP (Schonberger & 
Frahm, 2016) , MeshRoom (MR) (Meshroom), OpenSfM, ODM and Capturing Reality 
(CR). The cornerstones of these pipelines are SfM and MVS, where the latter builds 
on the results of SfM. Moreover, many commercial solutions exist for undertaken this 
process: ArcGIS by ESRI, ContextCapture by Bentley Systems, Correlator3d by 
Simactive, Inpho by Trimble, iWitnessPRO by Photometrix, Metashape by Agisoft, 
Pix4DMapper by Pix4D, PFTrack by ThePixelFarm, RealityCapture by Epic Games, 
ReCap by Autodesk and Zephyr by 3DFlow and many more. 
Despite the plethora of the existing frameworks for 3D representation, the majority of 
the current methods doesn’t provide a complete pipeline including data pre-processing, 
image enhancement and an integrated process from video/image sequences to the 
creation of the final point cloud output. 
In the following subsections we analyse in brief the open-source pipelines used to 
support the work deployed under T3.1 and act as a research basis: 

2.2.1 COLMAP (ETH)  
COLMAP (Schonberger & Frahm, 2016) is a general-purpose Structure-from-Motion 
(SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line 
interface. It offers a wide range of features for reconstruction of ordered and unordered 
image collections. The software is licensed under the GNU General Public License 
(open-source), and is maintained by a member of ETH. 
Related to the theories, Colmap detects keypoints in each image whose appearance 
is described by numerical descriptors. Pure appearance-based correspondences 
between keypoints/descriptors are defined by matches, while inlier matches are 
geometrically verified and used for the reconstruction procedure. 

 
Figure 5: COLMAP interface 
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Colmap provides a command-line Interface, where more available options can be 
given by delivering diverse flags. Also, a scripting language interface for python is 
available to alter parameter or running additional custom fitting and matching 
algorithms. 

2.2.2 Hloc - the hierarchical localization toolbox 
Hloc is a modular toolbox for state-of-the-art 6-DoF visual localization. It implements 
Hierarchical Localization (Sarlin, Cadena, Siegwart, & Dymczyk, 2019), leveraging 
image retrieval and feature matching, and is fast, accurate, and scalable. Hloc is 
working with learned SuperPoint features and SuperGlue (Sarlin, DeTone, Malisiewicz, 
& Rabinovich, 2020) to establish 2D-3D matches with a SfM model. The hloc toolbox 
also provides D2-Net (Dusmanu, et al., 2019) single CNN technique for feature 
detection and description.  
The use of hloc was for running Structure-from-Motion with SuperPoint+SuperGlue 
and employing in the pipeline more updated feature matching techniques, more 
oriented to the challenging environments that are captured in construction sites, with 
low illumination, dynamic conditions for indoor and outdoor visual data collection. 
As a basis, the hloc toolbox include multiple pipelines: one pipeline called 
pipeline_Aachen.ipynb, applied to the Aachen Day-Night dataset  (Sattler, et al., 
2018)and one called pipeline_InLoc.ipynb, applied to the InLoc dataset (Taira, et al., 
2018). Both serve as examples of an application of the hloc pipeline, and to show its 
performance. The third pipeline is called SfM_pipeline. In the example, it is applied to 
the South_Building dataset 4,but it can easily be applied to another set of images. All 
three pipelines share some "backend" scripts, but the first two utilize some scripts 
specific to their respective datasets. 

2.2.3 CloudCompare 

 
Figure 6: The interface of CloudCompare 

CloudCompare is an open-source 3D point cloud processing software, which can 
display large dense point-cloud smoothly and even perform comparison between two 

 
4 https://colmap.github.io/datasets.html 

https://arxiv.org/abs/1812.03506
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point-clouds. In this study, we mainly use this software to check the fused output from 
Colmap. Compared with another software MeshLab is CloudCompare in this study 
apparently faster and its optional rotation centre is very handy since the main content 
of point cloud locates usually not in the centre of the coordination due to some big 
outliers. 
CloudCompare provides a set of basic tools for manually editing and rendering 3D 
points clouds. It also offers various advanced processing algorithms, among which 
methods for performing:  

• projections (axis-based, cylinder or a cone unrolling) 
• point cloud registration. 
• distance computation (cloud-cloud or cloud-mesh the nearest neighbor 

distance) 
• statistics computation (spatial Chi-squared test, etc., 

2.2.4 ODM 
Web-ODM is a commercial-grade open-source software for drone image processing. 
Based on the open-source command line toolkit Open Drone Map (OpenDroneMap 
Authors, 2020), it can also be used across Linux, macOS, and Windows OS. The 3D 
representation of the area is saved in the server. The user can view the 3D model via 
the web-odm application. ODM software was used as a viable solution for processing 
visual datasets captured from demo site #3 (Section 3) and translating them into 
orthomosaics. 

 
Figure 7 Offline 3D map on web application 

2.3 Relation to ASHVIN demonstrations and motivation 
ASHVIN project aims at the digitalisation of the construction industry. To achieve this 
goal, digital twin technology is one means to this end. One of the core developments 
of ASHVIN is to introduce important innovations in the process, enabling the ability to 
closely match the as-built information with the as-designed information. 
Due to the simplicity and flexibility the image-based reconstruction can bring benefits 
to ASHVIN’s goals. The 3D representation is considered as a core element for the 
digital twin since it offers an efficient and affordable way to bring the geometry of the 
physical world in a digital representation. Using images a dense point cloud can be 
calculated, which is similar to the point cloud measured directly using laser scanners  
The following subsections outline the demonstration sites where the 3DRI method is 
currently engaged, as well as a description of the available data and the scope of the 

https://en.wikipedia.org/wiki/Hausdorff_distance
https://en.wikipedia.org/wiki/Hausdorff_distance
https://en.wikipedia.org/wiki/Chi-squared_test
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analysis performed. In the use cases below only monocular images/videos are 
recorded as source of visual information and there is also one case of time lapse 
images recorder (Demo Site #4) for which we follow a different strategy to develop the 
3D representation workflow. 

2.3.1 Demo Sites #1 & #7 
High-definition cameras attached to drones can scan the construction sites and create 
a digital 3D model with real-time updates. This way construction project managers can 
have more visibility over the project without the hassle and risk of physical inspection. 
The demonstration sites #1 & #7 are particularly focused on maintenance and 
monitoring activities of bridges infrastructures. The challenge is to develop a Digital-
twin enabled reproduction of the assets that generate an impact on cost reduction and 
safety at operational stages. In both demo sites, among other data, were also collected 
images and video footages from drone flights. 

 
Figure 8: Demo site #1 : Underpass located at the 3 + 93 PK. 

With respect to the 3DRI method developed under T3.1 the aspect examined in the 
context of Demo Site #1 is the use of drones to scan bridges autonomously or with 
either reduced human supervision to produce and deliver digital 3D representations 
for the ASHVIN digital twin environment. An important drawback around the bridges of 
Demo Site #1 is that plans are only available in pdf format and assets is not easy to 
be digitalised and brought into a digital twin platform. Image-Based 3D representation 
could provide an affordable solution to this problem, although usually cannot generate 
the millimetre-level dense detail of a laser survey. It can also be more versatile than 
laser scanning. Unlike tripod-based laser scanners, digital cameras are compact and 
can be capture data easily in outdoor environments where laser scanners is difficult to 
be carried. 
In Demo site #7 the objective is the monitoring of the PR-04-B015 bridge which is 
located within the Metropolitan Area of Barcelona (Spain). The bridge connects two 
main road axes: the AP-7 Highway (heading North) and the A-2 Road (Heading West) 
and is consisting of two separated viaducts. Both viaducts are supported by 12 piers 
with varying span. In the context of ASHVIN we examine the aspect of using drones 
and photogrammetry methods to capture and reconstruct the 3D representation of the 
piers and introducing a cost affordable method for translating the constructed 
infrastructure into a digital format. 
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Figure 9:  Bridge of Demo Site #7 construction.  

With the mature of the Unmanned Aerial Vehicle (UAV), the cost of a drone reduces 
significantly, and real-time monitoring thus becomes much easier. Using drone to 
monitor construction site is a flexible approach with low manpower costs, and it can 
easily reach the site that is sometimes too hard for human. This working mode might 
replace even more traditional manpower with the development of technique and 
computation. The image-based reconstruction, as one of the various techniques, 
keeps updating by improving its accuracy and efficiency to help realize a more reliable 
digital construction.  

2.3.2 Demo Sites #6 
The demonstration site #6 is focused on the monitoring of the construction activities. 
Demonstration buildings #6 are located in Barcelona (Spain) and they are part of 
project 22@, also known as 22@Barcelona and “Innovation district” (“Districte de la 
innovació”). The challenge is to develop and to propose digital solutions and digital 
twin implementations through the life cycle of the construction processes mainly 
around the concrete maturity based on readings from sensors. 
Moreover, in the context of this demo is examined the aspect of replacing the traditional 
mapping and surveying methods by digital approaches and rely more on modern 
technology and digital solutions. Despite recent advances, the prevailing monitoring 
and management systems in the construction industry are still dominated by traditional 
approaches, including manual paper- based collection and recoding of on-site 
activities. With the use of photogrammetry and fully digitized data, less time can be 
spent in the field and highly representative data along with 3D visualization for the 
generation of interior and exterior representations. 

  
Figure 10: Demo Site #6 construction site a) indoor and b) outdoor drone recordings. 
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2.3.3 Demo Site 4 
The demo site #4 is an industrial building located in Rinteln, Germany. Overall, the 
building has a size of nearly 30,000 m², while halls 1 and 2 utilise one third. The 
structure of the building consists mainly of prefabricated components such as precast 
concrete pillars, steel walls, and steel roof panels. A fixed Hi-res camera was installed 
on site to capture images of the construction progress every 10 minutes, 
Again, the motivation for T3.1 and the 3DRI method was the 3D representation from 
the given visual input. In contrast to multi-view algorithm, single-image 3D 
representation algorithms are not as accurate, since it is impossible to produce an 
accurate 3D reconstruction from a single 2D image due to the loss of information that 
occurs by projecting a 3D scene onto a 2D plane. Therefore, the problem of 3D 
reconstruction of a single view can be more accurately described as a 3D estimation 
or 3D prediction problem. A single image 3D depth prediction service was deployed 
integrating state-of-the-art neural network architectures. 

2.4 Methodology 
This section will introduce the key concepts that will help in understanding the 
technologies behind the 3D reconstruction methodology used to obtain the data 
described in this document. In task 3.1, CERTH is responsible to exploit visual data 
from different sources that are provided by the data collection performed by Demo Site 
leaders, in order to translate 2D images into their 3D reflectance. 
Recovering the lost dimension from 2D images has been the goal of multiview stereo 
and Structure-from-X methods (Laga, 2019). The objective in these methods is to 
require matching features across images captured from slightly different viewing 
angles, and then use the triangulation principle to recover the 3D coordinates of the 
image pixels.  
According to the publications, the process of generating point clouds from monocular 
images generally consists of seven steps, i.e., feature extraction, feature matching, 
camera localisation, sparse 3D reconstruction, model parameters correction, absolute 
scale recovery and dense 3D reconstruction. The combination of the above steps is 
called Structure from Motion (SfM) (Yang, Chao, Huang, Lu, & Chen, 2013). Each step 
needs to use the result obtained from the previous steps as the input.  
Classical SfM pipelines (Sweeney, 2016) (Fuhrmann, Langguth, & Goesele, 2014) first 
extract and match sparse features. Usually, an initial transformation between pairs of 
cameras (essential matrix) is estimated with RANSAC. Given the initial camera 
transformations, a geometric verification stage evaluates photometric consistency 
between re-projected sparse features and excludes outliers. Starting from an initial 
two-view reconstruction, an incremental reconstruction is performed based on best 
view selection, triangulation, and bundle adjustment. Simultaneous Localization and 
Mapping (SLAM) methods also address the problem of joint camera estimation (ego-
motion) and 3D scene reconstruction. However, SLAM techniques focus primarily on 
accurate egomotion estimation and real-time performance, typically sacrificing 
geometric accuracy. 
Schonberger and Frahm (Schonberger & Frahm, 2016) proposed a structure-from-
motion pipeline with better completeness and accuracy while better reducing drift in 
comparison to previous methods. They further propose a more robust best view 
selection and triangulation method, producing more complete structures. Finally, an 
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iterative Bundle Adjustment, retriangulation, and outlier filtering step lead to 
significantly more complete and accurate 3D models. 
The methodology used under the scope of T3.1 is based on the above technique. The 
aim is to estimate the camera positions corresponding to a set of input images and 
simultaneously recover a sparse 3D representation of the captured scene. Finally, the 
dense reconstruction step aims to recover the details of the scene, by using the images 
of a certain scene, the intrinsic and extrinsic parameters of cameras for each image 
and the sparse point cloud obtained from the previous step to generate a dense point 
cloud. 
The reconstruction challenges arise in the presence of weakly textured areas, 
uniformly colored areas, scene transitions from dark to light (e.g., the light turns on or 
off or the camera aperture changes in the dark corridor), or reflective and repetitive 
surfaces. The mentioned problematic properties of the scene often directly lead to a 
low number of generated image matches. In addition, they cause poor match 
distribution in the image, as most of the challenging areas are almost matchless using 
methods such as a combination of SIFT and geometric verification using RANSAC-
based model estimator. This lack of matches then negatively affects the accuracy of 
position estimates of registered cameras. The camera position inaccuracies then also 
decrease 3D point positions’ precisions. 
The inputs of the techniques for image-based 3D reconstruction usually are monocular 
images, stereo images or video frames, corresponding to monocular cameras, 
binocular cameras, video cameras respectively. Monocular images, stereo images and 
video frames have different characteristics from each other. Stereo images contain 
monocular images in pair, while video images contain a series of monocular images, 
or a series of stereo images depending on the recording setup. In our work, based on 
the visual data captured from the construction sites the process deployed regarded 
only input from monocular images. As stated in the previous section and is materialized 
for the deployment process, there are two different pipelines supporting the needs of 
the ASHVIN use cases. The first is dedicated to the visual data input coming from 
monocular videos and images sequences captured in most cases by drone assets and 
the second is a CNN technique deployed for the prediction of the depth dimension and 
eventually the point cloud generation based on single view images from a time-lapse 
fixed camera. 

2.4.1 Monocular Images 3D representation pipeline 
Below is presented a common framework for 3D representation from monocular 
images sequences or videos: 

 
Figure 11: Generic Framework for 3D representation from monocular images or videos 

 

The aim of this work is to create an automatic pipeline that can be used by practitioners 
on the construction sites to extract 3D representations from captured images that 
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overcome the challenges that arise in construction sites. The basis of this work Is to 
explore the mechanism of classic algorithms in CV, such as Scale-Invariant Feature 
Transform (SIFT), Structure-from-Motion (SfM) and Multi-View Stereo (MVS).  
In the section 2.6 is explained the work performed for each of the nodes indicated in 
the above workflow. 

2.4.2 Single-View depth prediction pipeline 
Complementary to the main 3D representation service described above another one 
was deployed as a means to generate quickly 3D content from single images, mainly 
of outdoor environments. This is separate branch of the 3DRI pipeline where a depth 
map and 3D coloured pointcloud can be obtained of an image. This is presented as a 
separate service and not as part of the main pipeline since it is not an accurate 
deterministic 3D representation method, but rather a way to “estimate” by using a 
trained network the underlying geometry depicted in an image. Further details for the 
work performed to exploit on different approaches published and the resulting of the 
final outcome is reported in more detail on a following section 2.7. 

 
Figure 12: Overview of the single view depth map prediction workflow 

2.5 Camera Calibration 
Photogrammetric 3D representation is built on the principle of resection, in which the 
intersection between the projected rays from different viewpoints, depicted on 2D 
images, is computed. To implement these two pieces of information is needed, the 
camera parameters. The camera parameters are composed of extrinsic and intrinsic 
and the process to find them is called camera calibration. 
Camera calibration is the analytical procedure of determining the camera’s internal 
parameters including the principal distance, format size, principal point, and lens 
distortion coefficients. Camera calibration is generally performed by means of coded 
targets or checker-boards, in order to achieve higher accuracy in the tie point 
identification and camera parameters estimation. 
Typically, this means recovering two kinds of parameters  

1. Internal parameters of the camera/lens system. E.g., focal length, optical center, 
and radial distortion coefficients of the lens.  

2. External parameters: This refers to the orientation (rotation and translation) of 
the camera with respect to some world coordinate system.  

The goal of the calibration process is to find the 3×3 matrix , the 3×3 rotation matrix 

, and the 3×1 translation vector using a set of known 3D points 

and their corresponding image coordinates . When we get the values of intrinsic 
and extrinsic parameters the camera is said to be calibrated. 
2.5.1.1 Method 
For the calibration step a simultaneous estimation of camera and projector calibration 
along with their relative orientation is performed. The implemented algorithm includes: 
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• The projection of a chessboard pattern onto a planar object and the recording 
of these projections by the camera. This is repeated for different successive 
orientations of the planar surface. 

• Automatic detection of corners on the imaged chessboard patterns. 
• Having determined image-to-pattern point correspondences and initial 

parameter values, an iterative bundle adjustment is carried out for 
estimating camera intrinsic matrix. 

This process is a prerequisite for both pipelines that follows in sections 2.6 & 2.7. in 
the SfM approach we use the camera parameters for better results of the final product 
when this information is known. Otherwise, the process is based on focal guess. 

2.6 Monocular Images pipeline 
As discussed at the introductory section our strategy for this pipeline to optimize 
existing workflows adding automatic Image enhancement capabilities, filtering and 
masking of non-relevant classes, and exploit custom learning-based methods for 
feature extraction to deploy a pipeline using Colmap. The framework adopted to build 
our approach is the open-source software — Colmap. We perform the reconstruction 
separately in mainly two stages, i.e., sparse model and dense model, as divided by 
Colmap.  Figure 13 shows the workflow followed in our study 

 
Figure 13: Overview of the image-based 3D representation process followed by 3DRI method in ASHVIN. 

The visual content is introduced into the stream as a set of images or videos and the 
method sequentially analyses these videos or images into a complete set of frame 
instances. A script was written the ingestion process that also searches whether the 
corresponding videos, typically from drone shots are followed by metadata to parse 
them into corresponding EXIF fields of each analysed image. 
Then each image is subjected to an image enhancement pre-processing which is 
detailed in the following section: 

2.6.1 Image Pre-processing. 
In T3.1 of ASHVIN project we focus on the 3D representation from various sources of 
visual data, videos and images. The photogrammetric pipeline is targeted towards the 
processing of images of the same scene. Optionally, these images should be taken 
from different viewpoints and should adhere to several important constraints that were 
listed and described in previous sections. Photogrammetric pipelines typically don’t 
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focus on processing video, or preprocessing the images or video frames. In video 
cases, the user is typically instructed to extract separate frames from the video and 
feed these to the photogrammetric package. There are some important issues with this 
strategy. The most important relates to the quality of the extracted frames, especially 
those taken in indoor spaces or with bad weather conditions. Also, the extraction of 
optimal frames (keyframes) for the photogrammetric processing is standing problem.  
2.6.1.1 Image Enhancement 
When video sequences are recorded, even using high-end drone technology and the 
aforementioned guidelines for image and video capturing, the possibility of blurred or 
under-illuminated frames cannot totally be excluded. Also, the dark construction 
environments lead to image color distortion and reduce the resolution and the contrast 
of the observed object in outdoor scene acquisition. Image enhancement can be 
defined as conversion of the image quality to a better and more understandable level 
for feature extraction or image interpretation. 
2.6.1.1.1 Related work 
In the deep learning era, several approaches have been introduced for image 
enhancement. In (Wang, et al., 2019), a convolutional neural network has been 
proposed where the authors introduce an illumination layer in their end-to-end neural 
network for under-exposed image enhancement, with the estimation of an image-to-
illumination mapping for modeling multiple lighting conditions. The work of (Li, Guo, 
Porikli, & Pang, 2018) has proposed a trainable CNN for weak illumination image 
enhancement, called LightenNet, which learns to predict the relationship between 
illuminated image and the corresponding illumination map. A feature spatial pyramid 
model has been proposed in (Song, Huang, Cao, & Song, 2022) with a low-light 
enhancement network, in which the image is decomposed into a reflection and an 
illumination image and then are fused to obtain the enhanced image. A GLobal 
illumination-Aware and Detail-preserving Network (GLADNet) has been proposed in 
(Wang, Wei, Yang, & Liu, 2018). The architecture of the proposed network is split into 
two stages. For the global illumination prediction, the image is first downsampled to a 
fixed size and passes through an encoder-decoder network. The second step is a 
reconstruction stage, which helps to recover the detail that has been lost in the 
rescaling procedure. In contrast, the proposed approach is an end-to-end process and 
it is able to preserve the structure and texture information through a wavelet pooling 
transformation. 
2.6.1.1.2 Method 
In the framework of ASHVIN a novel method has been integrated deployed by CERTH 
to remove the noise from such images, sharpen edges and reveal details in textured 
regions. To achieve photorealism of the synthetic image, a model is expected to 
recover the structural information of a given image and enhance it effectively. To 
achieve this, a U-Net-based network is combined with wavelet transformations and 
Adaptive Instance Normalization (AdaIN). More specifically, the image recovery is 
addressed by employing wavelet pooling and unpooling, in parallel preserving the 
information of the content to the transfer network. Dense blocks are used to enhance 
the quality of feature transferring and skip connections in the transferring process. 
Intending to a natural stylization effect, the stylized features are inserted into the image 
reconstruction process.  
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Figure 14: Example results of the enhancement method on a pair sample of the test set data.. 

The proposed under-exposed images enhancement achieves a natural stylization 
effect and similar numbers with SoA but with less resources. This work is under 
submission process, therefore specific details for the network architecture and the 
pipeline deployed cannot be reported in this deliverable. 

  
Figure 15: Image enhancement example on ASHVIN data recorded on Demo Site #6 by the use of Mavic Air 2 - 

Drone. 

2.6.2 Image (not) Masking 
In photogrammetry software there is the option to mask in or out the areas of interest 
or the non-relevant areas. The masking process is usually done manually by drawing 
the object area and saving the binary mask in TIF format. Masks define the areas to 
be processed in white and shorten the processing time by processing only the areas 
of interest. In ASHVIN we explore an automatic way of masking out the non-relevant 
classes, which usually cause noise in the generated final product. 
2.6.2.1.1 Related work 
Deep learning techniques have enormous success solving both image classification 
and segmentation problems. Image semantic segmentation has the goal to assign 
semantic labels to every pixel in the analysed image. Fully Convolutional Networks for 
Semantic Segmentation, presented by (Long, 2015), popularized the use of end-to-
end convolutional networks and introduced skip connections from higher resolution 
feature maps. Another encoder-decoder architecture was proposed by (Peng, 2017) 
which includes very large kernels convolutions, but these large kernels convolutions 
are computationally expensive and they are adopted because networks tend to gather 
information from a smaller region. DeepLabV2 network (Chen L.-C. a., 2017) is an 
architecture for semantic segmentation that builds on DeepLab (Chen L.-C. , 2014) 
with an atrous spatial pyramid pooling scheme. New versions of it have been proposed, 
DeepLabV3 (Chen L.-C. e., 2017), which improves upon DeepLabv2 with several 
modifications, and DeepLabV3+ (Chen et al, 2018), which, in turn, extends the 
previous one.  
2.6.2.2 Method 
Based on DeepLabV3 architecture CERTH has deployed an algorithm to remove 
unwanted elements, such as “sky”, “people”, “electric poles”, from the collected 
datasets as a pre-processing step to facilitate the 3D reconstruction process that 
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follows. To achieve this, we have deployed a semantic segmentation model pre-trained 
on the ADE20K dataset 5. Each analysed image or video frame is properly masked to 
keep only the information needed." , see example in Figure 17. 

  

  
Figure 16: Masking results of the DeepLabV CNN algorithm: initial images, people and sky masks. The example 

is taken from the UPC building dataset which was captured for testing purposes. 

The output masks can serve various purposes. First, they can be used to speed up the 
reconstruction since they limit the number of features used for the solving of the 3D 
representation problem. Secondly, they can be used to enhance the sparse and dense 
reconstruction by filtering outliers in the point clouds. For instance, the removal of 
faraway points on moving clouds, humans or electric poles can aid in the production 
of proper point cloud data. This in turn results in significantly better dense point clouds 
with less noise. Finally, the masking of people offer an extra level of security of people 
private info that may be present in the construction sites operating their daily tasks 

2.6.3 Feature Descriptors from 2-D images 
In this step, a structure from motion scheme was deployed which operates on 
successive image scales, to facilitate the use of a large number of high-resolution 
images. For the implementation COLMAP software libraries were used. Initially, stereo 
pairs are identified among the unordered set of images (either aerial from the drone or 
unstructured coming from raw photographic images). For this purpose, all images are 
subsampled to a low resolution; features are extracted and a matching scheme with 
outlier detection (RANSAC using fundamental matrix) is applied to all possible stereo 
image combinations. Valid stereopairs are defined based on the number of inliers, as 
well as the percentage of estimated outliers after RANSAC. In case the interior 
orientation of the camera is unknown, an initial estimation of a common camera 
constant may be computed as the median of all camera constant values extracted from 
the fundamental matrices of all valid stereopairs (assuming that the principal point 
coincides with the image centre) (Sturm, 2001). 

 
5 https://github.com/ayoolaolafenwa/PixelLib 
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Once stereopairs have been selected features are extracted at a higher image scale 
and matched via RANSAC based on the five point algorithm (Nistér, 2004) for the 
estimation of the essential matrix. Image matches are thus established across different 
stereopairs leading to multi-image point correspondences. A bucketing algorithm is 
then performed to reduce the number of tie points, without affecting their distribution 
on images. 
For the initialization of all image exterior orientations, a stereopair is selected as 
reference; for every new stereopair, relative orientation is estimated from the essential 
matrix, tie points are reconstructed in 3D space through triangulation and a 3D 
similarity transformation allows inserting the current stereopair into the reference 
system. Local bundle adjustment solutions are held for every N successive images to 
ameliorate the exterior orientation accuracy, and a full self-calibrating bundle 
adjustment is performed among all available images. 
Following the hierarchical scheme, new feature points are collected at successively 
higher image scales. Matching is restricted by the known image orientations (epipolar 
constraint) and by a rough 3D reconstruction of the object surface that is obtained from 
the tie points of previous image scale. This approach is repeated up to the full image 
resolution, leading to final bundle adjustment. 
After image orientation, dense point clouds are generated by means of dense stereo 
(Hirschmüller, 2005) and multi-image matching algorithms (Multiple View Stereo - 
MVS), followed by a triangulation in object space. These methods take advantage of 
the epipolar geometry derived from the exterior orientation information and determine 
a pixel-to-pixel correspondence between images for every image pixel, instead of 
distinct features only. Each pixel corresponds to a viewing ray to the object. By 
intersecting all viewing rays for a common, matched object point, a 3D point can be 
determined. By increasing the number of rays, the accuracy and reliability of the point 
cloud is increased. To achieve this, acquired stereo depth maps are combined with 
respect to their spatial resolution and their distribution in space.  
In order to apply image-based 3D reconstruction techniques, the computer processes 
an image by analysing its mathematical features and captures all the features as a 
result of its understanding.  Feature extraction has a great influence on the 
performance and success of the image-based 3D reconstruction pipeline. The feature 
extraction process refers to image feature detection and matching, which aims to 
identify the same features across images and then build feature tracks.  
Within T3.1 of WP3, we defined, implemented and conducted a study of the state-of-
the-art local descriptors, descriptor compression schemes and local binary descriptors. 
The feature descriptors are an important element in the 3D representation from images 
process to track optical features across several images or image frames. In this 
process, a single camera can be used or multiple cameras with a known baseline 
difference to achieve the required accuracy of the depth triangulation process. Feature 
extraction, description, and matching are being regularly improved (Miksik & 
Mikolajczyk, 2012). Besides new hand-crafted feature extractors and matchers, in 
recent years, these updates also include learnable neural networks (NN) (DeTone, 
Malisiewicz, & Rabinovich, 2018) (Sarlin, DeTone, Malisiewicz, & Rabinovich, 2020) 
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1. SIFT: Scale-Invariant Feature Transform 

SIFT, proposed by David Lowe in (Low, 2004), has four main steps which are feature 
point detection, localization, orientation assignment, and feature descriptor generation. 

2. SURF: Speeded Up Robust features 
A major disadvantage of SIFT is that it is slow. SURF added a lot of features to improve 
the speed of the SIFT algorithm in every step. SURF is good at handling images with 
blurring and rotation but not good at handling viewpoint change and illumination 
change. SURF is better than SIFT in rotation invariant, blur, and warp transform. SIFT 
is better than SURF in different scale images. SURF is three times faster than SIFT 
because of the use of integral image and box filters. 

3.  AKAZE: Accelerated KAZE 

The feature description performed by AKAZE is based on a Modified Local Difference 
Binary that uses a gradient to intensity information. This makes the descriptors robust 
to changes in scale. ORB is faster to compute than AKAZE and the processing time of 
AKAZE quickly rises with increasing image resolution. However, after filtering the 
matches and removing outliers, AKAZE presents a more significant number of correct 
matches when compared with ORB. AKAZE shows a better compromise between 
speed and performance than ORB for images with low resolution. 

4. D2-Net 
Traditional feature extractors can be replaced by a convolutional neural network (CNN), 
since CNN’s have a strong ability to extract complex features that express the image 
in much more detail, learn the task specific features and are much more efficient. D2-
Net is deep learning approach based on a single convolutional neural network that is 
both a dense feature descriptor and a feature detector. 

 
Figure 17: In D2-Net approach a feature extraction CNN is used to extract feature maps and plays a dual role, 
to extract both the local descriptors by traversing all the feature maps at a spatial position and the detections 
are obtained by performing a non-local-maximum suppression on a feature map followed by a non-maximum 

suppression across each descriptor 

D2-Net avoids the explicit definition of interest points by training a CNN to jointly 
describe and detect local features. The network computes a feature map of dimension 
D with a resolution of ¼ of the image resolution. Interest points are defined as local 
maxima in the feature space. The final keypoint position is then refined comparably to 
SIFT and descriptors are linearly interpolated at these positions. 
In our work we included the integration of D2-Net features (Dusmanu, et al., 2019) with 
predefined parameters including the pre-calibration of the principal distance (camera 
constant) into the open-source SfM-routine COLMAP.  
In structured datasets captured in good lighting conditions D2-Net obtains a 
comparable performance with respect to SIFT. However, in indoor datasets, with bad 
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lighting conditions or unstructured datasets, D2-Net outperforms SIFM while requiring 
less memory in pose estimation process. 

Table 4: Evaluation on the Local Feature Evaluation Bench- 
mark 

Dataset Method #Images Sparse 
Points 

Dense 
points 

Madrid Metropolis (datasets, 
n.d.) 

SIFT 

D2-Net 

500 

500 

116K 

84K 

1.82M 

1.46M 

Tower of London (datasets, 
n.d.) 

SIFT 

D2-Net 

804 

785 

239K 

180K 

3.05M 

2.73M 

 

 

 
Figure 18: Example of SIFT and D2-Net feature matching in two images with poor overlap from Demo 
Site #6 indoor dataset a) at the top is presented the SIFT matching with 314 raw matches and 9 inliers 
detected for the matching, b) at the bottom image the D2-Net performs better with 1627 raw matches and 
23 inliers for the matching. 

The features are matched between image pairs added incrementally to the 
reconstructed scene. A sparse point cloud is created using bundle adjustment, 
following the COLMAP pipeline. 

2.6.4 Feature Matching and triangulation 
Feature matching stage provides a comparison of descriptors across given images. 
Feature matching is closely aligned to the feature extraction and involves as process 
the correct correspondence for as many detected features as possible. Features are 
matched between images and the fundamental matrix for each image is obtained 
through the multi-view geometry solution. The relative camera motion between a set 
of images will be determined with the use of corresponding features. Therefore, the 
matching strategy should be selected carefully according to the data collection process. 
For example, standard exhaustive matching approaches attempt to match every image 
against every other image and is appropriate to be applied to image sets that are 
randomly collected from a scene. Since in this approach the number of matching 
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candidates increases quadratically with the image count, exhaustive matching is only 
viable with a relatively low number of images and yet these images should be carefully 
selected so as to include all the needed information for the final reconstruction product. 
In any case it is beneficial to create a feature space database and apply approximate 
nearest neighbour search algorithms to speed up feature matching in this space. For 
ordered images sets with consecutively captured images, sequential incremental 
approaches are used. Prior knowledge when metadata is provided, is also used, such 
as GPS coordinates in EXIF data. 

2.6.5 Dense Matching  
The result of the previous steps consists of the camera calibration and a sparse 
point cloud, containing the 3D reconstruction of the matched feature points. This 
point set is limited by design and is not a detailed or convincing representation of 
the filmed scene. Once a sparse representation of the scene has been completed, 
however, denser scene geometry may be recovered by matching as many pixels 
between images as possible. This process, called dense matching, is the most 
time-consuming part of the entire photogrammetric pipeline but can be sped-up by 
employing graphical processing hardware and parallel processing. Typical dense 
reconstruction pipelines produce depth maps from stereo pairs for all registered 
images. This relies on accurate exterior and interior camera parameters and 
epipolar geometry between images to constrain the search for matches. Depth 
maps are subsequently fused into a dense point cloud. It is important to note that 
the information contained in the depth maps is often redundant, as SfM-compliant 
images are usually taken with large overlap. 
In sequence, fusion of the depth and normal maps of multiple images in 3D 
produces a dense point cloud of the scene. The method performs Multi-View Stereo 
(MVS) with pixelwise view selection for depth/normal estimation and fusion. As Colmap 
infers the best depth and normal based on both photometric and geometric consistency 
in multiple views, it generates `image_name.photometric.bin` and 
image_name.geometric.bin` under `stereo/depth_maps` corresponding to each image 
by default. 

2.7 Single-View Depth Estimation 
The previous described method focusses on understanding and formalizing the 3D to 
2D projection process, with the aim to devise solutions to the ill-posed inverse problem. 
Quality results typically require multiple images, captured using accurately calibrated 
cameras. Although the SfM based techniques can achieve remarkable results, they 
are still limited in many aspects. For instance, they are not suitable when dealing with 
occlusions, featureless regions, or highly textured regions with repetitive features. The 
avenue of deep learning techniques, and more importantly, the increasing availability 
of large training data sets, have led to a new generation of methods that are able to 
recover the lost dimension even from a single image. 
As mentioned on a previous section, the reconstruction of the 3D space from a single 
image is an ill posed problem since there are geometrically, infinite different 3D spaces 
that could have generated any specific image. The prediction of 3D information is 
based on state-of-the-art neural network pre-trained models, such as MegaDepth, 
AdaBins and MiDas combined with image filtering, 2D semantic segmentation to 
identify and remove the sky from images (as described in section 2.6.2) and 3D 
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projection to convert depth predictions to 3D pointclouds. A variety of publicly available 
datasets for learning single image depth prediction, such as MegaDepth and KITT 
were exploited. The results of the service are presented in Section 2.8.1.4 
Deep Learning (DL) based depth map extraction approaches refer to techniques that 
aim to extract 2D depth maps from input images using a data-driven learning approach. 
The main advantage of these methods is that they operate under a level of technical 
abstraction, in which heuristics are minimized and low-level technical details are left to 
the underlying algorithm to figure out. However, most learning-based algorithms 
require a significant amount of data relevant to the problem at hand to reach a 
satisfactory level of understanding that will lead to a robust and highly general solution.  
For the depth map prediction task in particular, extracting a significant amount of 
tagged training data can prove to be a resource-intensive task, requiring a huge 
investment of time and expensive equipment (e.g. 3D scanners) as a minimum for the 
collection process. In ASHVIN, in order to be able to implement a personalized 
learning-based approach, we had to create a custom dataset containing RGB and 
depth image pairs. Unfortunately, we didn’t have the possibility to scan and create such 
datasets with depth and 2D visual information from the same point of view, therefore 
we were limited in using pre-trained datasets for our deployment. 
Furthermore, depending on the nature of the dataset (e.g., indoor or outdoor scene 
dataset), the data collection process can easily lead to immensely noisy results. Due 
to the complex nature of the depth estimation problem, it is essential to pay attention 
to these data-specific limitations and handle them efficiently. 

2.7.1 Datasets 
To address the problem of predicting the depth map through machine learning, publicly 
available datasets were explored based on the needs of the project. These datasets 
are presented below: 
MegaDepth (Li & Snavely 2018) is a large-scale dataset providing depth information 
for 196 locations worldwide, reconstructed using the COLMAP Sfm/MVS software 
(Sayab et al. 2017). The dataset contains more than 128 thousand unique frame-depth 
pairs and is the largest publicly available dataset for the depth estimation task. The 
depth maps provided in this dataset contain non-normalized values spanning over a 
wide variety of ranges.  
KITTI dataset contains street-view (outdoor) depth estimation data pairs captured by 
a 3D scanner mounted on a moving car. It contains over 93 thousand depth maps 
along with their corresponding raw LiDaR scans and RGB images. The depth maps 
contain information up to 80 meters. 

2.7.2 Pre-trained models 
In an attempt to explore and get a deeper understanding of the state-of-art approaches 
we performed tests with publicly available pre-trained models. Details about these 
models are presented below: 
MegaDepth pre-trained model follows the guidelines and research approach 
introduced in the dataset’s original paper. Due to the dataset's non-normalized nature, 
the training algorithm is designed very carefully and huge attention is paid to the loss 
function. In particular, a composite loss function is developed that contains various 
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components aiming to preserve object ordinality, smooth depth transitions and sky 
separation from the scene objects. 
The AdaBins (Bhat et al. 2021) pre-trained model focuses on object continuity and 
aims to extract gradual depth values for each object by first calculating the depth value 
of each object's centre and then interpolating all other values using the calculated 
centre. The algorithm uses a learnable bucketing system in which depth buckets are 
extracted dynamically for each input image, clustering and guiding the depth 
distribution around the bucket centres. Pre-trained checkpoints exist for both NYU and 
KITTI datasets. 

The MiDas (Rantfl et al. 2019) pre-trained model aims to achieve high generalization 
by using ten different datasets as its learning base. The algorithm focuses on utilizing 
learning objectives that are invariant to specific dataset peculiarities. Thus, the training 
procedure can process various training data and learn meaningful information from 
them. 

The final deployed method is based on MegaDepth which presented better results for 
images of outdoor spaces. 

2.8 3D point cloud demonstration capabilities 
This subsection presents the final results of the 3DRI service in respect to the data 
collected from the demo sites until M23. The processing pipeline of visual material 
consists of the following steps: 

• Shot detection 
• Keyframe extraction 
• Sparse alignment 
• Dense alignment 

2.8.1.1 Demo Site 1 
During the course of ASHVIN, 3 corresponding sets of videos from drone recordings 
were collected for demonstration site #1, for the 1) Underpass bridge, 2) Valdelinares 
and 3) PlataBridge. The purpose, as discussed in Section 2.3.1,  was to record and 
digitize the infrastructure of the bridges. This is achieved by taking highly overlapping 
images and videos that are then processed by means of photogrammetry and 3D 
computer vision algorithms. Images need to be clean, in focus and sharp. Typical 
overlap percentage in such applications is around 80% in both directions (sometimes 
even higher percentage up to 90% may be applied) to ensure that all object points are 
depicted in multiple photos. This leads to better triangulation accuracies in 3D 
reconstruction. At the same time occlusions and hidden areas should be avoided. 
Usually, to perform such recordings an autopilot software is used that allows the 
planning of the drone mission by setting the basic parameters such as the area that 
needs to be captured, the flight elevation, the camera direction, the overlap percentage, 
the take-off and landing points. However, the flights in this use case were performed 
manually and the capturing is arbitrary due to the operator’s training exercise. In 
the following images are presented the results for the underpass bridge. 
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Figure 19: Sample of images extracted by the recording reffered to the Underpass Bridge in Demo Site #1. 

  

 
 

Figure 20: Results of the image-based 3D representation performed by 3DRI method. 

2.8.1.2 Demo Site 6 
The dataset collected consists of two sets of videos obtained from the air mavic drone, 
namely the sets DJI_067 and DJI_0270. Two more videos were captured but with main 
focus on the dissemination activities, therefore the coverage is irregular and mainly 
targets the people participants and not to the construction structure. The captured 
videos were followed. The SRT file contains the flight trajectory metadata information 
including gps location, size (in pixels), aperture value, exposure speed, ISO value etc., 
that are used for the pairing of matches and the extraction of the camera intrinsic 
matrix.  

DJI_067 is a 1.01-minute drone flight at 25fps recorded indoors on the 2nd floor of 
site #6 by the UPC team who is the partner responsible for the managing of the 
Demo Site. 149 frames were extracted from this video. Although it is provided an 
SRT file with the metadata, the recorded GPS positions are empty since the gps 
signal didn’t localise in the indoor environment. 
DJI_0270 is 3.14 minute in length captured again at 25fps from the ourdoors of site 
#6. 299 frames were extracted from it.  
In both cases, the overlap is inherently high. No flightpath is followed for the data 
capturing since the flight performed manually in both cases. 
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The results of the reconstruction are presented in the figures below. 
Outdoor 

   

   

   

   
Figure 21 Sample of images extracted by the outdoor drone recording at Demo Site #6. 

  

  
Figure 22 Resulting pointcloud from the image-based 3D representation technique performed using the 3DRI 

method for the outdoor dataset at Demo Site #6. 
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Indoor 

   

   

   
Figure 23 Sample of sequential images extracted from indoor drone recording at demonstration site #6. 

 

  

  
Figure 24: Point cloud resulting from the image-based 3D imaging technique performed with the 3DRI method 

for the indoor dataset at Demo Site #6. 

2.8.1.3 Demo Site 7 
For demo site #7 only one single shot video was recorded until the reporting period 
that served as a sample to identify the limitation of the method and schedule more 
carefully the collection procedure. In the specific shot the camera rotates away from 
the pile and performs a panorama motion, unsuitable for 3D reconstruction. 
Moreover, scene exhibits symmetries and duplicated structures. To overcome the 
issue, we performed a filtering process by reimplementing the ideas from 
Distinguishing the indistinguishable: Exploring structural ambiguities via geodesic 
context by (Yan, Yang, Zhang, & Xiao, 2017). (CVPR 2017).  

https://yanqingan.github.io/docs/cvpr17_distinguishing.pdf
https://yanqingan.github.io/docs/cvpr17_distinguishing.pdf
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Figure 25: Sample of sequential images from drone recording at demonstration site #7. 

  
Figure 26: Unfiltered sparce point cloud and camera localisation around the bridge pile. 

The data collection process for this demonstration site will take place over the next few 
months, where based on the findings and limitations of the method developed, new 
instructions were communicated to the demonstration site manager to perform the data 
collection. 

2.8.1.4 Demo Site 4 
The data obtained from Demo Site #4 consisted of a set of time lapse images taken 
from a fixed camera at a defined position. Since the images were taken using a camera 
from a fixed position, it caused occlusion of certain regions of the site. 
For this set of images, the single image 3D depth prediction approach was applied to 
predict the depth maps from single images. The original size of the images acquired 
was 6000×4000 pixels, the images were reduced close to the training resolution.  
Semantic sky segmentation was used to remove the inconsistencies in predicted sky 
regions, boosting the edges of the appearing objects. As detailed in section 2.6.2, the 
sky segmentation detects the sky pixels on the input image and nullifies their predicted 
depth values, minimizing unnecessary noise and prediction. An example of the sky 
segmentation post-processing technique, applied in the MegaDepth pre-trained model, 
are presented below: 
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original image 

 
without sky segmentation 
filtering 

 
with sky segmentation 
filtering 

 
Sky segmentation masking proved to aid the most in sharpening the edges of the 
depicted objects. Moreover, the sky segmentation technique is a robust method to crop 
out the sky pixels when projecting the image into a 3D format. Thus, the resulting 3D 
objects appear more realistic without cluttered sky information. 
After extracting the estimated depth maps, the next step in the 3D estimation pipeline 
is to project the input image in three dimensions. Various mathematical techniques 
exist to solve the projection problem, all of which revolve around generating three-
dimensional points by grouping input image coordinates with the corresponding values 
of the depth map. 
A variant of the LeRes 3D projection algorithm was used to extract three-dimensional 
points from the input image and project them into a coloured point cloud. Point cloud 
format was chosen against other three-dimensional structures due to its simple 
representation, which aids in reducing visual noise generated by view occlusion. 

Examples of the resulting 3D projection are depicted below: 



D3.1 Visual analysis for real sensing 
 

41 

 

 
 

Figure 27: Examples of the 3D projection algorithm for single view depth estimation for Demo site #4. 

 

2.9 Additional Work 
Image matching and the data association are still open research areas in the fields of 
computer vision and robotic vision respectively. The detector and the descriptor 
chosen directly affect the performance of the system to track the salient features, 
recognize areas previously seen, build a consistent model of the environment, and 
work in real time.  
To date, there are no standards for evaluating and comparing the general efficiency 
and effectiveness of a complete visual 3D representation systems based on SfM or 
VSLAM. Nonetheless, there are several indicators that may characterize their 
performance, such as the degree of human intervention, accuracy of location, 
reconstruction consistency, and the control of computational cost that arises among 
others.  
As future work within ASHVIN there are still some steps to be taken with a main focus 
on the application of 3D reconstruction techniques for the new collection to be carried 
out for demonstration site #7 and the integration of the method into the ASHVIN 
platform. We are also targeting to explore the potential of using neural radiance fields 
that recently proposed by (Mildenhall, et al., 2021) for accurate depth estimation. 
Therefore, our future work includes optimization for reconstruction based on the 
improved geometric structure in the learned neural radiance fields. 
Finally, further effort will be devoted for the integration of the 3RDI method into the 
digital twin platform and link it to the 4DV-C tool. The results will be reported in D4.6 
“Visualizing and dashboard construction activities based on digital twin data” 
deliverable due on M30. 
 
  



D3.1 Visual analysis for real sensing 
 

42 

 

3 DEFECT DETECTION  
Demonstration site #3 refers to Zadar airport, one of nine airports located in Republic 
Croatia. Although extending and reconstructing the airport is planned, due to COVID 
crisis the expansion is currently postponed. Thus, in the context of ASHVIN the demo 
project objective was changed from construction monitoring to maintenance of the 
existing operational areas. Through the discussions with end-users arose the 
requirement for a tool to monitor the condition and support the maintenance of the 
airport’s runway. CERTH, committed to the consortium, supported this task by 
deploying a framework for quality control via defect detection on visual data. 
Quality control is a crucial aspect in the construction industry. Depending on the 
method employed to identify a defect on a structure a surface or a component, quality 
control strategies can be classified as destructive or non-destructive. Non-destructive 
testing methods (NDT) are intended to monitor and evaluate the integrity of a 
component or structure to detect defects without extracting samples from it, destroying 
it or removing ts suitability for service (Czimmermann, et al., 2020). 
Among them, the visual-based approach for defect detection is one of the most 
common procedures. Currently, with the aforementioned advances in the field of 
computer vision, many researchers have dedicated their efforts to develop image-
based automatic NDT methods for contactless or even remote defect detection 
systems. Furthermore, in the last decade, numerous research and practice efforts have 
been made to implement computer-vision approaches combined with UAV technology 
to monitor and inspect infrastructure (Bukhsh, Anžlin, & Stipanović, 2021), (Žnidarič, 
Kreslin, Anžlin, & Krivic, 2020). Drone-enabled inspections coupled with computer 
vision technology has the potential to serve as a more economical and safer alternative 
to conventional inspection and monitoring practices. 

3.1 Related Technologies 
Research community has been significantly active in the task of automating the defect 
detection process. Computer vision researchers have also been enabled in this field 
aiming to provide image-based solutions. The main objective in this case is processing 
the acquired visual data and identifying the depicted surface crack instances. Visual 
recognition of surface cracks is a quite challenging task due to their irregular shape 
and size, as well as, their essential similarity to the background texture. Furthermore, 
the background texture can vary significantly case-to-case, adding further limitations 
into the effort of deriving a solution that can be generalized in most structures and 
construction materials. 
The majority of the initial approaches were based on mature image processing 
techniques in order to detect the depicted crack and discriminate it from the 
background. Tree structures (Zou, Cao, Li, Mao, & Wang, 2012) and genetic 
algorithms (Nishikawa, Yoshida, Sugiyama, & Fujino, 2012) have been utilized towards 
this direction. A significant number of presented methods have been focused on image 
filtering, aiming to enhance the distinction of the crack instance from the background. 
Salman et al. (Salman, Mathavan, Kamal, & Rahman, 2013) proposed a method 
utilizing Gabon filters to detect cracks on varying-texture images of pavements. 
Authors in (Fujita & Hamamoto, 2011) proposed a method combining image filtering to 
reduce noise and enhance crack-related features, with a probabilistic model to detect 
the depicted cracks in the processed image. In (Yeum & Dyke, 2015) an edge 



D3.1 Visual analysis for real sensing 
 

43 

 

detection-oriented method was presented, aiming to identify crack-like edges through 
Hessian matrix–based filtering of the image.  
The advent of machine learning and Convolutional Neural Networks (CNNs) was also 
reflected in the research field of crack detection. Deep learning architecture, named 
GoogleNet, was utilized in (Ni, Zhang, & Chen, 2019) to classify surface crack in high-
resolution images. Similarly, authors in (Zhang, Nateghinia, Miranda-Moreno, & Sun, 
2022) exploited a custom-built dataset to train a CNN model capable to detect cracks 
on pavement images. CrackNet was proposed in (Zhang, Yang, Zhang, & Zhu, 2016), 
a CNN network capable to preserve the spatial dimensions of the input image in order 
to detect in pixel-level the depicted cracks. Liu et al. (Liu, Yao, Lu, Xie, & Li, 2019) 
presented DeepCrack, a deep leaning architecture based on SegNet (Badrinarayanan, 
Kendall, & Cipolla, 2017), which semantically segments the input image to crack and 
background. Similar approaches based on semantic segmentation were also followed 
in (Yang, et al., 2018), (Bang, Park, Kim, & Kim, 2019) in order to detect crack 
instances in road and pavement surfaces. 
A set of works has been presented focused on detection techniques utilizing UAV-
based visual data. Authors in (Lei, Wang, Xu, & Song, 2018) deployed a crack 
detection method for bridge inspection via UAVs. The approach was based on a 
sophisticated image processing framework in order to enhance the contrast among 
crack and background, leading to efficient detections. A decision-making tool for UAV 
building inspection was presented in (Kucuksubasi & Sorguc, 2018), where CNNs 
were fine-tuned to the task of crack detection. Choi et al. (Choi, Bell, Kim, & Kim, 2021) 
developed a CNN-based framework that processes images acquired via UAV and 
classifies them as crack or not, while by employing other sensing modalities it provided 
information regarding the location of the detected cracks. 
Despite the interesting results reported in the literature, the majority of the presented 
methods is focused only on a specific type of defect, such as cracks. Furthermore, the 
evaluation process is usually based on simplified cases, where the crack instances are 
captured from a close distance with a homogenous background. Realistic inspection 
scenarios imply the existence of different types of defects, usually mixed in varying 
and changing background, under different illumination conditions and textures. Thus, 
providing a robust method capable to meet these challenging requirements remains 
an active field of research. 

3.2 Relation to User Requirements and ASHVIN demonstrations 
Under the scope of ASHVIN platform, a module is required enabling the condition 
monitoring of airport infrastructure and specifically runway. According to D7.1: “Ashvin 
technology demonstration plan” the required method, titled Defect Detection using 
Computer Vision (DDCV), should perform the following task: 
Towards this direction, Zadar airport is selected as the demo site #3 to implement its 
digital twin. Zadar runway is exposed to high load and due to the defined high safety 
standards, condition monitoring of runway and other operational areas is required. 
Runway surface defects such as cracks or accumulated tyre marks are considered as 
the main deterioration threats, since they may critically affect the surface friction and 
thus, comprise a significant safety threat. 
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Table 5: Plan for DDCV method as described in D7.1. 
ASHVIN 
tool/method Name How the method will be used on the project 

DDCV 
(method) 

Defect Detection 
using Computer 
Vision 

The AI-powered solution is used to detect 
damages, anomalies and objects on the 
runway surface and green areas around the 
runway. The aim is to integrate the automated 
damage detection into inspection and 
maintenance planning process, as part of 
RISA tool. 

 
The main vision in this case is to employ Unmanned Aerial Vehicles (UAVs) in order 
to automate and improve the inspection and monitoring process, by collecting, storing 
and analysing structural features (i.e. cracks, joints, tyre marks) in an objective, 
repetitive and efficient way, which is currently conducted in non-digital way. 
Furthermore, a machine-based inspection can enable the ability to detect defects on 
their early stage, which cannot be possible through visual inspection conducted by 
humans. Thus, the employment of the specific module for automatic inspection will 
decrease the overall required time and workload, while improving its efficiency and 
objectivity. Moreover, the collected UAV data can be assessed by the corresponding 
GIS model to improve the overall inspection and maintenance decision making 
process.  
Based on the aforementioned user requirements and defined KPIs for maintenance, 
an AI-based defect detection module has been deployed for the ASHVIN platform. The 
main objective in this case is to process UAV images acquired from airport runway and 
provide crucial information regarding the runway’s condition and the detected defect 
types.  

3.3 Methodology 
In this section is described the designed and deployed solution, named DDCV 
according to D7.1. In specific, an AI-powered approach has been developed focused 
on image semantic segmentation. The deployed module processes the visual input, 
acquired via UAV camera, and produces an annotated mask where the detected 
defects are segmented accordingly. The core element of the specific framework is a 
deep-learning model based on UNet architecture, which semantically segments the 
RGB input images. The model was trained and evaluated on data collected from Zadar 
airport demo site #3, where different types of defects are depicted. 
In Figure 29 the overall pipeline of the developed DDCV module is presented. The 
deployed CNN model, trained and evaluated on the collected data from the Zadar 
airport, is enclosed in the overall framework, capable to provide a set of valuable 
results in order to enhance the inspection process. In specific, apart from detecting 
defect instances, the collected visual data can be exploited to create the orthomosaic 
representation of the scanned runway, which will be used for development of the digital 
model of the infrastructure. Furthermore, information regarding the location, the 
number and the type of detected defects can be extracted and combined in order to 
estimate the severity level of the inspected damages, which enables objective and 
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digitally tracked evolution of damages over time. This will provide the information for 
the development of performance prediction model and optimization of the maintenance 
planning, implemented in RISA model. Overall, the designed framework enables the 
automation of the inspection process and operates as a decision support system to 
schedule targeted maintenance operations, which will reduce costs and environmental 
impacts for airports. 

 
Figure 28 Operational pipeline of the deployed DDCV module 

 

3.3.1 Custom-built Dataset 
The developed dataset contains RGB images collected through two different phases. 
In the first phase, hand-held cameras were utilized to capture a wide variety of defect 
instances observed on the surface on the surface of the airport’s runway. The collected 
data were annotated accordingly, using Make Sense tool, by the partners and field-
experts of Infraplan, leading to a set of 301 images. The specific set contains 4 different 
classes, namely crack, joint (repaired cracks), tire marks and background. In the 
second phase, a camera mounted on a UAV was exploited to collect visual data from 
a wider area of the runway. Following a similar approach, the collected images were 
annotated accordingly for the semantic segmentation task. Based on some initial 
results derived the necessity to discriminate joints of repaired cracks from the 
construction joints. Thus, an extra class was added containing the construction joints 
leading to a set of 5 classes. In total, 386 high resolution images were collected yet, 
since labelling is a time-consuming process that requires a heavy amount of workforce, 
a smaller part of 100 images is currently annotated. Nevertheless, the images collected 
through the two aforementioned phases were joint into a pluralistic dataset containing 
401 images enclosing a wide range of defect instances under varying capturing 
conditions. The deployed dataset was utilized to train and test the designed model. In 
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specific, 20% of the drone images was utilized for testing while the rest 80%, combined 
with the data of the first phase, were employed for training. 

3.3.2  Detection Model 
The developed AI model is based on UNet (Ronneberger, Fischer, & Brox, 2015) 
architecture, a well-known network for image semantic segmentation. The specific 
architecture is based on two main components, the encoder and the decoder. The aim 
of the encoder is to enclose the input image in a compact representation yet containing 
high-level information. To achieve that, a set of consecutive convolutional layers is 
utilized to gradually decrease the spatial dimensions of the input while increasing its 
number of channels (depth) in order to increase the information content of the encoded 
vector. The objective of decoder is to extract the segmented outcome from the 
encoded representation. Towards this direction, the encoded vector is upsampled by 
combining interpolation with convolutional layers, in order to meet the original spatial 
dimensions while its depth is gradually decreased. The aforementioned operation 
leads to the segmented outcome, where each one of the image pixels is assigned to 
one of the defined classes. Aiming to increase the model efficiency, skip connections 
are employed among the layers of the encoder and the decoder. This design secures 
seamless backpropagation of the information to the initial layers of the network, while 
feeding the latest layers with crucial low-level features. 
For the encoding stage it was utilized EfficientNet (Tan & Le, 2019), a state-of-the-art 
architecture, pretrained on ImageNet (Deng, et al., 2009), aiming to extract robust high-
level features. In the decoding stage, attention blocks were added before the 
upsampling layers in order to allow to the model to focus on parts of the images with 
high semantic content and thus, enhance its efficiency. The model was trained for 2000 
epochs with batch size 16. A set of image processing techniques was employed for 
data augmentation. In specific, input images are randomly (with probability 50%) 
flipped horizontal and vertical, rescaled and modified in terms of brightness. Finally, a 
patch of 256 X 256 pixels is randomly cropped from the processed image. Training 
was conducted with Adam solver and learning rate equal to 10-3. 

3.4 Evaluation 
In order to validate the efficiency of the deployed defect detection method, the 
segmentation accuracy is measures in terms of Intersection-over-Union (IoU). IoU is a 
well-known, sophisticated, metric extensively employed in evaluating semantic 
segmentation methods. Since the original resolution of testing images is quite high, 
tiles of 512 X 512 pixels are fed to the trained model and recomposed to the segmented 
outcome. IoU is measured for the whole testing dataset of the segmented images and 
reported for each class in Table 6. The mean IoU (mIoU) averaged over the 5 classes 
is also reported. 

Table 6: Evaluation results for each of the classes 
Crack Joint Construction Joint Tyre Marks Background mIoU 

18.72% 35.00% 49.80% 68.22% 96.68%  

 
Although the developed model can effectively detect the majority of classes, results 
imply the challenging nature of the problem. Regarding classes crack and joints the 
developed can detect the depicted instances yet, it presents lower accuracy into 
identifying in pixel-level their exact shape and size. This remains a challenging task, 
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due to their complex shape and the ambiguity of their outlines of these classes. 
Regarding the rest classes, the model reports higher performance due to the higher 
number of samples, especially in case of tyre marks and background. Especially in 
case of construction joints, the model can effectively distinguish them from joint 
instances, although these two classes differ only in shape (construction joints are 
usually straight long lines), while texture characteristics are the same for both of them. 
In total, it should be noted that the developed model can provide adequate information 
regarding the detected defects, since its main objective is fullfield by to identify the 
main “skeleton” of the captured defects. The above analysis is also reflected in the 
qualitative results provided in the following section.  

3.5 Defect Detection examples 
A set of qualitative results extracted via the deployed method is presented in Figure 
27. 
 

  

  

  
Figure 27 : Results of the deployed DDCV method. Cracks are highlighted with red, joints with blue, 

construction joints with yellow and tyre marks with green color, respectively. 

Results imply that in most cases the deployed model can efficiently detect the captured 
defects. Segmentation is more accurate for classes such tyre marks and construction 
joints, since there are plenty training samples due to their natural shape and size. 
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Regarding joints class, the model can efficiently detect relevant instances, especially 
in cases where it clearly distinct from the background. Yet there are cases where 
construction joints are mislabelled as joints and vice versa. Note that the texture of 
these two classes is identical, yet they differ in terms of shape and size. Thus, it leads 
to a challenging issue that cannot be fully tackled by the developed model. Considering 
cracks class, although the depicted instances are adequately recognized, yet there is 
some room for improvement.  

3.6 Disscusion 
In the context of the specific task, a robust AI-based method, named DCCV, for defect 
detection was employed. Its core element is an efficient CNN model, trained and 
evaluated on real-world data collected from the demonstration site #3 of Zadar airpot. 
Evaluation results implied that the deployed module is capable to detect 4 different 
type of defects adequately, yet highlighted the challenging nature of the defect 
detection task. More specifically, although the deployed method can detect the 
depicted crack instances, their shape cannot be perceived in its full complexity. The 
efficiency of the deployed model is expected to be increased significantly by employing 
higher number of training data. Towards in this direction, the remaining collected data 
will be annotated accordingly to create an extended dataset, covering more defect 
cases. Furthermore, possessing a dataset with higher number of samples, will enable 
the ability to train deeper architectures which can lead to performance improvements. 
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4 CONSTRUCTION SITE OBJECT RECOGNITION 
4.1 Introduction: 
Site progress monitoring is a vital aspect for the successful completion of a 
construction project since it offers critical information for management to make timely 
and informed decisions (Son, 2010). Conventional construction monitoring practices 
are manual, time-consuming, and prone to human error. Inadequate dynamic progress 
monitoring results in losing control of the project’s success, resulting in time and cost 
overruns (Varun Kumar Reja, 2022). Therefore, automation of the progress can highly 
improve the efficacy of the process, making it easier and error-free. 
Several studies have pointed out that a systematic and regular inspection of the sites 
can help identify the deficiencies at the site in an early stage to prevent any impending 
losses. This (McCulloch) study also shows that construction managers, on average, 
spend 30 to 50 percent of their working hours recording and analyzing the data 
manually. Eventually, this leads to distraction from other important tasks.  
The construction industry faces many challenges, including lower productivity, safety, 
and cost overruns. However, as a result of the fast advancements in computer vision 
technology, it is now feasible to dynamically monitor tasks at construction sites that 
cannot be accomplished by a human vision system thereby effectively enhancing the 
safety management, productivity tracking, quality, and cost control of the projects 
(Aritra Pal) (Suman Paneru, 2021). The recent development in the field of deep 
learning object detection algorithms has enabled the application of computer vision 
technologies to different use cases in construction to be more effective and expedient 
in terms of speed, accuracy, and feature extraction (Zhang Y. , 2021) (Shrey 
Srivastava, 2021). A critical aspect of applying these DL object detection algorithms is 
the availability of sufficient image data for training the algorithms.  

 
Figure 29 Rinteln demo site 

Images are usually collected in different ways. The camera could either be monocular 
or stereo. In this subtask, the main objective is to monitor the site activities at the 
Rinteln demo site and asses the productivity rates. The first step towards achieving 
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this objective is the recognition of objects at the site. The demo site at Rinteln adopted 
a modular construction methodology with precast structural elements largely being 
used for construction. To achieve the objective, the image data set was collected from 
the Rinteln site which consists of the images of the site taken by a camera at a fixed 
position. Figure 30 shows one of the raw images taken using the camera. 
Around 300 images were handpicked from the dataset, pre-processed, and annotated. 
The dataset was then tested on two object detection algorithms. Moreover, the study 
also aims to suggest researchers select appropriate algorithms for various applications 
in the field of construction site monitoring. 

4.2 Related Technologies: 
4.2.1 Computer vision in construction site monitoring: 
There have been several studies and demonstrations on applying deep learning-based 
computer vision techniques in the construction industry, specifically in construction 
safety or risk management, production control, and personnel management (W. 
Fang).In his study, Kong et al. (Ting Kong, 2021)  combined computer vision with 
LSTM to predict unsafe behaviour on construction sites. In their research, Nath et al. 
(Nipun D. Nath, 2020) also presented three DL models built on YOLO architecture to 
detect the PPE compliance of workers.  Braun et al. (Alex Braun, 2020) proposed a 
DL-based object detection approach that supports construction progress monitoring 
by verifying element categories compared to expected data from the BIM model. Also, 
Fang et al. (Weili Fang, 2019) in his study developed a Mask R-CNN model that can 
detect people that traverse concrete/ steel supports during construction which can be 
used for identifying unsafe behaviour in construction sites.  Furthermore, Koch et al. 
(Christian Koch, 2015) presented a review study on state-of-the-art computer vision-
based defect detection and condition assessment related to concrete and asphalt civil 
infrastructure. Beckman et al. (G.H. Beckman, 2019) also proposed a method that can 
be used for automatic volumetric quantification of concrete spalling employing a depth 
camera and faster region-based CNN.  
There have been several studies and demonstrations on applying deep learning-based 
computer vision techniques in the construction industry, specifically in construction 
safety or risk management, production control, and personnel management (W. 
Fang).In his study, Kong et al. (Ting Kong, 2021)  combined computer vision with 
LSTM to predict unsafe behaviour on construction sites. In their research, Nath et al. 
(Nipun D. Nath, 2020) also presented three DL models built on YOLO architecture to 
detect the PPE compliance of workers.  Braun et al. (Alex Braun, 2020) proposed a 
DL-based object detection approach that supports construction progress monitoring 
by verifying element categories compared to expected data from the BIM model. Also, 
Fang et al. (Weili Fang, 2019) in his study developed a Mask R-CNN model that can 
detect people that traverse concrete/ steel supports during construction which can be 
used for identifying unsafe behaviour in construction sites.  Furthermore, Koch et al. 
(Christian Koch, 2015) presented a review study on state-of-the-art computer vision-
based defect detection and condition assessment related to concrete and asphalt civil 
infrastructure. Beckman et al. (G.H. Beckman, 2019) also proposed a method that can 
be used for automatic volumetric quantification of concrete spalling employing a depth 
camera and faster region-based CNN.   
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In the field of activity recognition, Luo et al. (Xiaochun Luo & Dongping Cao) he 
proposed a two-step method to recognize diverse construction activities from the site 
images in a fully automatic way. Also, Pan et al. developed a DL-based -prediction 
model to estimate tunnel boring machine performance during deep excavation 
operations under complex underground environments. From the literature review, it 
has been found that several studies have successfully applied DL-based object 
detection algorithms to enhance construction safety, productivity and to, asses the 
workforce, and monitor progress at sites. Also, this emphasizes the need for 
developing and enriching a data set focuses more on construction site objects.  

4.2.2 Deep learning-based object detection algorithms: 
Object detection entails both recognition (e.g., "object categorization") and localization 
(e.g., "location regression") tasks. An object detector must accurately localize each 
object instance and correctly predict the category label for each object to identify 
objects of certain target classes from backgrounds in the picture. These target object 
instances are intended to be localized using bounding boxes or pixel masks (Xiongwei 
Wua) .  
The state-of-the-art object detectors based on deep learning are divided into two main 
categories two stage detection algorithms and one stage detection algorithms. The 
detection task is divided into two steps by two-stage detectors: (i) generating proposals, 
and (ii) creating predictions for these proposals. The detector will look for regions in 
the picture during the proposal generation stage that might possibly represent object 
regions. The purpose is to propose regions with a high recall, such that at least one of 
these regions comprises all of the objects in the image. In the second stage, these 
proposals are classified with the right category labels using a deep-learning-based 
model (Xiongwei Wua). Either a background or an object from one of the predefined 
class labels could form up this region. However, the proposal generation stage is not 
a separate phase in one-stage detectors. Usually, they treat each region on the picture 
as any potential object and categorize each area of interest as either the backdrop or 
the intended target (Xiongwei Wua).  
R-CNN is the first implemented two stage object detectors. SPP-net, Fast R-CNN, 
Faster R-CNN, and Mask R-CNN are some most commonly used improvised R-CNN-
based algorithms. A typical and most commonly used one-stage detector is YOLO 
owing to its high accuracy and the ability to run real-time (Xiongwei Wua). In recent 
years, several versions of YOLO have been released namely YOLO V2, YOLO V3, 
YOLO v4, and YOLO V5 including some revised limited versions (Peiyuan Jiang, 2021).  

4.3 Relation to User Requirements and ASHVIN demonstration: 
The object detection algorithm implemented in this task would enable object detection 
at the Rinteln demo site. Recognition of objects at the site is the first step towards 
implementing a tool for activity recognition at the site which in turn can help calculate 
the productivity of any construction project; which is one of the KPIs of ASHVIN. 
This tool can be further extended to predict the time required for each activity at the 
site for example in the case of Rinteln demo site, it would help predict the time taken 
for mounting precast columns at the site, the time taken for unloading columns from 
the transportation trucks etc. Object detection lays the foundation stone to achieve this 
goal. Furthermore, as the demo case at Rinteln had adopted a modular construction 
method, measurement of productivity rates and cost is of utmost importance in 
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assessing the project success. Moreover, the enrichment of the dataset made to 
support the object detection also makes it possible to use it in future tasks that requires 
labelled data from the sites. 

4.4 Methodology: 
The following Figure 31 shows the methodology adopted in this study. The study 
consists of four main stages namely data preparation, pre-processing the image data, 
selection of appropriate algorithms for object detection, training, testing and 
comparison between the two implemented models. 

 

 
Figure 30 Methodology 

4.4.1 Target Selection: 
The target objects intended for detection at the Rinteln demo are persons, precast 
columns, cranes and transportation trucks. 
The following table shows the categories and label for each of the intended targets. 

Table 7: Categories and label for each of the intended targets 
Category Label 
Machine crane, truck 

Person person 

Structural elements precast_column 

 

4.4.2 Data Acquisition: 
The data obtained from Goldbeck consisted of 39539 images taken over 11 months. 
The images were taken using a single camera fixed at a defined position. From the 
pool of images, around 300 images were chosen. The selection of images was made 
in such a way that, it consisted of images taken during when column mounting for the 
Rinteln demo site was carried out.  Since the images were taken from quite high point, 
the images can be considered as a panoramic view of the construction site. This had 
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both advantages and disadvantages. Panoramic view can be regarded as good for 
capturing large machinery, however smaller objects like person were quite hard to label. 
Since the images were taken using a camera from a fixed position, it caused occlusion 
of certain regions of the site. 

4.4.3 Data Pre-processing 
Before annotation of images, the images were pre-processed for getting optimal 
detection accuracy from the data. The main objectives for pre-processing the images 
are as follows: 

• Removal of objects that are not intended for detection to a certain extend from 
the frame. 

• Elimination of vague data; images that are blurred or are anomalous due to 
some extreme weather condition. This is quite an important step, as it can have 
significant impact on the training (Rui Duan, 2022). 

• Reduction of original image size in terms of file size and dimensions in order to 
make further processing of the task easier and reduce the need for high 
computational power. The main objective here would be to choose an optimal 
size so as to get the maximum possible accurate predictions. 

The original size of the images acquired was 6000×4000 pixels, the images were 
initially cropped to remove the non-target objects and were further reduced to 416×416, 
and 1280×1280. 

4.4.4 Data annotation 
The pre-processed data was annotated for the target objects using a data labelling 
platform Label box (Labelbox, n.d.). Figure 32 shows the percentage share of each 
target object in the annotated images. 

 
Figure 31: Percentage share of target objects 

 

The annotated data was exported from the platform in JSON format. 

84.02

9.28

4.23 2.47

%Share of Target Objects

Precast Colum Person Crane Truck
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4.4.5 Algorithms, Training and Testing 
For object detection, two different algorithms were chosen so as to suggest an 
appropriate algorithm for similar tasks in the project and to extend it to activity 
recognition. One algorithm was chosen from family of one stage detectors and the 
other one from two-stage detectors. 
Among two-stage detectors, Faster RCNN is chosen and among the one stage 
detectors, YOLO v5 is used owing to its high speed of detection and accuracy. 
However, no one architecture can be suggested as the best one, it is highly dependent 
on the use cases and data available (Shrey Srivastava, 2021). YOLO v5 was 
implemented using PyTorch framework and Faster R-CNN TensorFlow 2.0 API in 
python language. 
The dataset for both the cases were divided into 70% training set, 20% validation set 
and 10% testing set. Mean average precision (mAP) is the metric chosen to assess 
the two models. mAP encapsulates submatrices including confusion matrix, 
Intersection over Union, recall and precision. 
For YOLO v5 600 epochs for chosen for training, but after 476 epochs the model failed 
to show any improvement. The weights were initialized using the pretrained weights 
on MS COCO dataset. The model achieved an overall mAP of 83.5%. 
Fig. 4 shows the training results. 

 
Figure 32: Results- YOLO v5 

 
Table 8: Performance of YOLO v5 on Goldbeck data set 

Class Precision Recall mAP 
Overall 0.868 0.824 0.835 

Crane 0.968 0.92 0.959 

Person 0.705 .552 .517 

Precast Column 0.967 .936 .984 

Truck 0.833 .889 .881 
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Figure 33 : F1(YOLO v5) 

 

 
Figure 34: Confusion matrix(YOLO v5) 

For Faster R-CNN 50000 steps were chosen for training. The model achieved an 
overall mAP of 58.0%. And the final loss was logged as 0.512. The training time was 
quite high as compared to YOLO v5. 

4.5 Object Recognition Examples: 
The following images shows object recognition examples at Rinteln demo case using 
YOLO v5 architecture. 
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Figure 35: Site object detection example 1 

 
Figure 36: Site object detection example 2 

4.6 Discussion 
This study was able to successfully employ the state-of-the-art object detection 
algorithms to detect objects at construction sites. The implemented model was 
successfully applied to images obtained from Rinteln demo site. From the experiments 
conducted on the data set, it can be concluded the YOLO v5 architecture outperforms 
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Faster R-CNN in terms of both detection speed and accuracy and requires less 
computational resources. However, one particular model cannot be considered as the 
best, as it largely depends on the use cases. 
It can also be observed from the results that, it was quite hard to detect persons in the 
site owing to the fact that they were constituted of comparatively small number of pixels 
than other target objects. The model could benefit from employing multiple shooting 
methods for photography. Also, the data set used is for training is quite small, 
enrichment of the data set is necessary for better results. YOLO v5 based detector 
could make predictions in comparatively shorter time than Faster R-CNN. Therefore, 
YOLO v5 based architecture can be used to extend the current work for activity 
recognition in future 

5 CONCLUSION  
This deliverable presents the progress attained in the scope of the ASHVIN project 
with regard to the task T3.1. The aim of the work performed within this task was to 
analyse and develop algorithms that will be deployed for extracting features, identified 
as KPIs, of the constructions and comprise the base data for the higher level of 
implementations. 
Construction site images, as instant records of the state of the construction site, 
contain rich information, which makes them natural spaces for automatic construction 
process monitoring. On the one hand, the popularity of built-in camera equipment 
makes it feasible to obtain massive free images from the construction site. On the other 
hand, advanced software techniques provide powerful tools for extracting useful 
information from daily images.  
In D3.1 we have presented three different approaches for visual data processing on 
construction sites, a 3D representation for digital twin augmentation, an AI-based 
drone-based defect detection approach with pixel segmentation, and a mixture of 
object detection for activity recognition. In practice, monitoring the progress of a 
construction project may require a combination of multiple methods. Therefore, this 
report combines different relevant technologies and methods into a comprehensive 
technology path, always in regards to ASHVIN demonstration cases. 
The report provides a set of methodologies and solutions using several image-based 
technologies for monitoring and inspection of different types of structures at different 
stages of their life cycle. Using digital technologies, we have proposed methods that 
include performance indicators which could be adopted for construction and 
maintenance processes of structures and implemented in digital twins. The usage of 
proposed methodologies will may contribute to result in less resources (human, 
material and machine), lower costs for performing construction monitoring tasks and 
more energy efficient practices. 
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