CMAQv5.3 Developer Guide

1 Developers’ Guide for the Community Multiscale Air Quality
(CMAQ) Modeling System

Consistent with CMAQ model version 5.3 (2019 Release)

Prepared in cooperation with the:
Community Modeling and Analysis System
Institute for the Environment
University of North Carolina at Chapel Hill
Chapel Hill, NC

1.1 Disclaimer

The information in this Developer Guide has been funded wholly or in part by the United States Environmen-
tal Protection Agency. The draft version of this document has not been subjected to the Agency’s peer and
administrative review, nor has it been approved for publication as an EPA document. The draft document
is currently being edited and reviewed by the Community Modeling and Analysis System Center. Mention
of trade names or commercial products does not constitute endorsement or recommendation for use.

2 Motivation

The evolution and robustness of CMAQ depends on contributions from the vibrant CMAS community.
The development team at EPA is excited to work with potential contributors and integrate community
submissions into the CMAQ code base. In order to facilitate this process, we describe in this document our
development process and how external developers may submit new code features.

The information contained here should be read prior to starting a project within the CMAQ framework.
Instructions are tailored for external developers but can also be used by developers in the CMAS-Center or
within EPA.

3 Summary of Developer Workflow

The public CMAQ release repository is located on GitHub (https://github.com/USEPA/CMAQ). Users
should refer to this repository for bug fixes, issues, documentation and major releases for CMAQ. Users
can use the watch and star buttons on the public CMAQ release repository page to be notified of updates
and changes. Developers interested in submitting code changes should read this Developer Guide and then
contact the EPA CMAQ development team as soon as possible to discuss their motivation and plans for
submitting a code change (CMAQ_ Team@epa.gov).

In order to facilitate incorporation of a contribution, developers should follow the instructions on code
requirements and repository layout as described in the code management instructions. Documentation of

https://github.com/USEPA/CMAQ
Code_Management.md

the assumptions and results of the new code is a very important part of a meaningful code submission. If
the submission involves a detailed new feature, developers are encouraged to publish the use of their feature
in a peer-reviewed journal before submission.

To begin, the developer should fork the public CMAQ release repository within GitHub. This will create a
copy of the public CMAQ release repository under your name (https://github.com/{user_name}/CMAQ).
Developers should use standard git commands to clone the appropriate version branch (5.3, 5.2.1, 5.2, ..) from
your forked repository to your local machine and then to create a new feature or bug fix branch. Developers
will add, commit and push changes to their new feature or bug fix branch on their forked repository, not to
the public release version of the repository.

Once a feature or bug fix branch meets requirements for code consistency, benchmark testing, model output
evaluation, and documentation including release notes, the developer may submit a pull request from their
local feature or bug fix branch of their fork of the CMAQ repository on Github to the CMAQ public repository.
This process is described in the Nuts and Bolts section below, and in the following tutorial, which also provides
instructions on how to keep a fork up to date with changes on the public release repository.

Contributions will undergo a thorough code review within EPA before being incorporated in the next model
release. Depending on the size, scope, and importance of the contribution, the CMAQ development team
may or may not agree to support the update through future releases. Decisions regarding ongoing support
will be made on a case-by-case basis with input from the developer who submits the contribution. The
following sections outline the CMAQ code development and review process in greater detail.

4 Development Life-cycle

4.1 Public Release Versions

CMAQ uses a number versioning system for each release version branch, with major and minor increments.
For example, in the case of hypothetical version 14.0 the first number (major version) and second number
(minor version) refer to a stable release version. The minor version (second number) of CMAQ increments
when one or many new science developments have been adopted. Although these changes may significantly
affect model results, the model will still be generally compatible with inputs developed for versions of the
same major number. The major version (first number) of CMAQ increments when significant development
changes to the code base have been adopted such that backward compatibility or comparability is no longer
expected. Modifications to the publically released version without increment are prohibited in order to
ensure consistency among published literature referring to a particular model version. In between published
releases the development team may publish solutions to model bugs and issues in the public repository under
the folder DOCS/Known_ Issues. The README located in this folder describes existing known issues, their
scope and impact, and how they may be solved.

4.2 Development Versions

Prior to the public release of each major CMAQ version, the unofficial source code is released to the public
as a development version that is not intended for regulatory or research application use. The purpose of
releasing the development version to the public is to give community members:

e a reasonable amount of time to complete any pending feature submissions they would like to submit
for the stable release.

e a role in helping to test, troubleshoot, and debug the unofficial code before the stable release.

e an opportunity to comment on the code improvements made in the new version.

o the ability to take advantage of improvements for preliminary studies of their own interest.

e a reasonable amount of time to ensure the new version is compatible with any features the member
may have submitted in the past.

https://www.digitalocean.com/community/tutorials/how-to-create-a-pull-request-on-github
https://github.com/lizadams/CMAQ/tree/master/DOCS/Known_Issues

The unofficial (or beta) version of the code will first be vetted internally and then released generally 6
months in advance of the corresponding stable CMAQ release; this period is known as the beta-phase. At
this time, EPA will announce the deadline for community contributions. This deadline will be chosen in
order to balance both the time needed by developers to submit their contributions and the time needed by
EPA to incorporate submissions before public release. Version numbering for the beta series will append the
letter ‘b’ and an incrementing number to the expected version number of the stable release. The number of
beta versions is variable among releases. For example, before the hypothetical release of CMAQv14.3 the
following series of version numbers could be expected:

v14.3.b0 (First tested internal EPA version)

v14.3.b1 (Release to public after minor changes)
v14.3.b2 (....incremental testing,)
v14.3.b3 (....bug squashing, and ...)

v14.3.b4 (....documentation updates...)

v14.3 (Stable Public Release)

As stated previously, the “Known Issues” section of the documentation will be continually updated as
problems are identified in the released code-base. These updates will not be implemented in the default
model code and so the version numbering will in general, not increment between public releases. The
instrumented versions of the code (e.g. DDM, ISAM, STM, etc) should be released with the stable version.

5 Making Contributions

5.1 Get in touch

Community members with an idea for a code contribution are encouraged to contact the EPA development
team well before the beta-phase in order to plan appropriately for the testing and inclusion of the contribution.
The EPA team may be interested in knowing information including but not limited to the following:

e What science module or bug do you intend to address? What work do you intend to contribute to
CMAQ?

e Are you comfortable with the development strategy including code consistency, benchmarking, config-
uration testing, compiler testing, model output validation, documentation and merging?

e Are you able to provide ongoing support and technical guidance for your proposed contribution?

5.2 Nuts and Bolts

As described above, the CMAQ development process follows a “Forking Workflow.” Atlassian has provided
a helpful explanation. Developers should follow the guidance at GitHub Help and Atlassian in order to:

o fork the CMAQ repo: https://help.github.com/articles/fork-a-repo/#platform-linux
o clone their newly-created fork: https://help.github.com/articles/cloning-a-repository/#platform-linux
o create a feature branch: https://www.atlassian.com/git/tutorials/using-branches

o add and commit changes to the new feature branch: https://www.atlassian.com/git/tutorials/saving-
changes

o push the feature branch to the forked repo: https://help.github.com/articles/pushing-to-a-remote/

o submit a pull request to the public CMAQ repo: https://help.github.com/articles/creating-a-pull-
request-from-a-fork/

https://www.atlassian.com/git/tutorials/comparing-workflows#forking-workflow
https://help.github.com/
https://www.atlassian.com/git/tutorials/what-is-version-control

Developers should run and test their contribution before submitting the pull request so that the results of
the test can be included in the documentation of the pull request.

5.3 Code Review

CMAQ Developers at EPA will review all code submissions in order to ensure code stability and consistency,
and prevent degradation of model performance. After review, the EPA team will either accept the submission,
recommend specific improvements to the submission, or in some cases reject the submission. To avoid outright
rejection, we urge developers to contact the EPA team early in the development process and maintain contact
throughout to help ensure the submission is compatible with the CMAQ code base and is a robust addition.

5.3.1 Code Consistency

Please refer to the code management instructions. Examples of small, but important guidelines include:

« Eliminate global memory references (across modules). In other words, no common blocks across mod-
ules, no hidden data paths, and no “back doors.”

o All subroutines should be named in a manner which prevents namespace conflicts.

o In general, variable names should be self-descriptive (e.g. NCELLS rather than N).

e Use the Fortran declaration IMPLICIT NONE to maintain some control on typographic errors and
undefined variables. The use of IMPLICIT NONE forces the developer to declare all internal variables.
This is standard in Fortran 90.

e In general, it is expected that MKS units are used for input and output variables, as these units have
been standardized throughout the CMAQ system. If you use alternative units, please document this
exhaustively.

5.3.2 Benchmark Testing

Dataset: The U.S. EPA Southeast US 12km domain July 1-14, 2011 testing dataset is provided with the
CMAQv5.3 Release. This dataset is distributed for benchmarking and testing the model installation. It is
available from CMAS; please go to https://www.epa.gov/cmaq/cmag-inputs-and-test-case-data for instruc-
tions on how to download the test dataset.

Before making code changes, developers should test multiple compilers (if they have access to them; see the
following section on Compiler Tests), multiple processor configurations, and single processor configuration
runs for a single simulation day to verify their results match the previous stable release, and/or that their
results are computationally and physically reasonable. After implementing their code changes, developers
should repeat these tests and share the results as part of the pull request documentation.

5.3.2.1 Compiler Tests

Compiler tests use the default benchmark configuration with different compilers and MPI configurations.
It is important for the user community that CMAQ always compile with Intel Fortran, Gnu Fortran and
Portland Group Fortran compilers. If a developer has access to more than one compiler, it is critical that
they test all of them. Some errors will cause different behaviors depending on the choice of compiler and
may not be detectable with all of the compilers. See appendix 1 for an example of a Compiler Test.

5.3.2.2 Model Performance Tests

Configuration tests use one compiler to test the impact of a model change on results. See appendix 2 for
an example of important information to collect when testing science options. The developer should consider
submitting similar information with their pull request.

Code_Management.md

Several tools exist to document the effects of compiler choice and code change on model results. Examples
include: m3diff - Quantify min, max, mean differences between two different model runs VERDI - Create
absolute difference plots for multiple variables, timesteps, layers (see spatial differences)

In addition, we recommend utilizing 1:1 Scatter Plots to demonstrate the differences between two model
runs in a concise layout.

5.3.3 Documentation Requirements

Documentation is of course an integral part of the integration of any contribution into the CMAQ code
base. The following documentation products are helpful for expediting the review and integration process:
- A Release Note written by the developer which describes the motivation, algorithm and impacts of the
contribution is required to ensure proper documentation of CMAQ.

- If the contribution is a new feature, developers are encouraged to publish its use in a peer-reviewed journal
before submitting it to the CMAQ Public Repository.

CMAQ Documentation Resources:

Documentation for CMAQv5.3 is available at https://github.com/USEPA/CMAQ)/tree/master/DOCS. Ma-
terials include: - User Guide which describes code structure and regular operation of the model. - Release
Notes describing code improvements relevant for this model release. - Tutorials that give specific instructions
for common tasks like running CMAQ or adding chemical tracers.

5.4 Ongoing Support

Depending on the size, scope, and importance of the contribution, the CMAQ development team may or may
not have the resources to support it through future releases. For example, bug fixes and minor, but helpful,
changes to the existing code will likely be incorporated into the general code base and supported. Large
code additions, like a new process module or an instrumented version of CMAQ may require more effort to
support than can be provided by resources of the EPA Office of Research and Development. However, if the
feature is particularly of interest for the CMAQ user community, it may be supported. Decisions regarding
ongoing support will be made on a case-by-case basis.

6 Copyright Information

Contact EPA (CMAQ_ Team@epa.gov) with questions and concerns.
CMAQ Developer Guide (c) 2019

7 Appendix

7.1 Appendix 1: Compiler Tests

Compiler flags:

e PGI: -Mfixed -O3 -Mextend

o GCC: -ffixed-form -flixed-line-length-132 -O3 -funroll-loops -finit-character=32

e Intel: -fixed -132 -O3 -override-limits -fno-alias -mp1 -fp-model precise -fp-model source -shared-intel
-openmp

7.1.1 Compilation Testing Manifest Table (Example)

MPI CMAQv5.1 CMAQv5.2
I/0 YN Timing Timing
Scenario Compiler netCDF API (#P) MPI (hh:mm:ss) (hh:mm:ss) Notes
Gfortran Gfort 4.3.3 3.1 N N/A 8:19:51 7:35:30 UNC
Serial version module
4.8.1 gee/4.8.1
Gfortran Gfort 4.3.2 3.1 Y mvapich2 0:45:55 0:42:40
mvapich version (16) 1.7
4.8.1
Intel Intel 4.3.2 3.1 N N/A 6:01:42 5:10:16 UNC
Serial Fortran module
version intel/16.2
16.2.0
Intel Intel 4.3.2 3.1 Y openMPI 0:34:27 UNC
Open- Fortran (16) 1.42 module
MPI v15.0.0 openmpi__intel/15.0
(EPA
Config)
Intel Intel 4.3.2 3.1 Y openMPI 0:35:29 UNC
OpenMPI Fortran (16) 1.4.2 module
v16.2.0 openmpi__ intel /16.2
Intel Intel 4.3.2 3.1 Y mvapich2 0:36:34 UNC
mvapich2 Fortran (16) 1.7 module
v16.2.0 mvapich2__intel/16.2
Portland PGI 4.3.2 3.1 N N/A 7:33:36 6:26:31 UNC
Serial Fortran module
v16.1 pgi/16.1
Portland PGI 4.3.2 3.1 Y openMPI 0:40:20 0:36:16 UNC
OpenMPI Fortran (16) 1.4.2 module
v15.7 openmpi_ pgi/15.7
7.2 Appendix 2: Model Performance Test Metadata
Timing (16PE)
Scenario Description Mechanism Notes hh:mm:ss
Benchmark Online emissions cb05e51_ae6_aq Done; LTNGNO 0:40:20
Case processing, inline InLine,
photolysis, inline LTNGPARM =
lightning from N, LOG_START
MCIP RC, no = 2.0
windblown dust,
surface HONO,
bidirectional
NH3 and Hg, no
potential
vorticity scaling
MOSAIC Benchmark case cb05e51__ae6_aq Done. set 0:44:02
with MOSAIC CTM__MOSAIC
and additional =Y, set

stomatal flux
files activated

CTM_FST =Y

Timing (16PE)

Scenario Description Mechanism Notes hh:mm:ss
Dust Benchmark case cb05e51__aeb6_aq Done. setenv 0:38:28
with dust, CTM_WB_DUST
including new Y; setenv
MODIS FP CTM_ERODE__AGLAND
input Y; setenv
CTM_WBDUST_BELD
BELD3
Hourly Benchmark with ¢b05e51__ae6_aq Done; LTNGNO 0:40:18
NLDN lightning NOx InLine,
calculated using LTNGPARM =
hourly bNLDN Y, USE_NLDN Y
strikes
POA Benchmark with ~ ¢b05e51 _ae6nvPOA_aq Done 0:34:42
Sensitivity new POA
mechanism

8 Code Management and Development

As a public domain model, CMAQ is the product of contributions from many developers, whose numbers are
only expected to increase with the number of users worldwide. Some degree of standardization is necessary
for management and archiving of these development versions, as well as to compile and execute the code once
it is ready for use, and to submit it to the CMAS Center for archiving and benchmark testing. This chapter
provides guidance on source code management, coding guidelines for new code development, the compilation
of new source code using the build scripts, and guidelines for writing shell scripts usable by CMAQ. Much of
this information is derived from Chapter 18 (Young, 1999) in Byun and Ching (1999), with updates where
appropriate, particularly for new versions of the model code and for the Fortran 90 standard. The chapter
also includes the procedure that is in place for distributing code versions other than the operational CMAQ
that are submitted to the development code archives.

8.1 Source Code Management
8.1.1 The need for a configuration-management tool

Faced with a large and growing community that uses and develops a wide variety of programs, modules,
and codes, it is imperative to systematically manage the cross-community access to this software. Typically,
successful management of software involves the following:

e A repository — a place where all of the public code resides.

e The concept of archived code — codes that have been deposited into the repository in such a manner
that anyone can extract the exact code at a later time. This involves some kind of transformation
program to maintain master copies of the codes with embedded change tables.

e The concept of revision control — archiving codes results in modifying the tags or unique revision
identifiers in the change tables in the master copies in order to recover the exact code at a later date.

e The concept of released code — codes that have reached some state of maturity and have been designated
with some kind of “released” status. They can be used with reasonable expectation of reliability. The
paradigm used employs the following scenario:

1. A user modifies or develops code. The code may be one subroutine or many, possibly constituting
whole science modules. The code may originate from “scratch,” or be extracted from the repository
and modified.

2. After testing or reaching a point of being satisfied with his/her results, he/she decides to save it
in the repository so that others can have access to it.

3. Some archived codes may still be in an experimental, or development, state, while others may
be reasonably stable and more completely tested. The latter may be designated as “released.”
There is no enforceable means to control access based on an experimental or released state. The
community will have, and should have, access indiscriminately, well aware that using development-
state code is risky.

4. As the user continues to work with the codes, he/she may make enhancements or discover and
fix errors. The upgrades are then installed in the repository, which automatically assigns unique
revision identifiers.

5. The repository is located where it is conveniently accessible to all users, and is maintained by an
administrator who sets and enforces general access rules.

8.1.2 Choice of a configuration-management tool

Prior to CMAQ version 5.0.2, CMAQ developers used CVS for versioning, and distributed tarballs included
CVS artifacts (e.g., files with names ending with ‘,v’). Starting with version 5.0.2, CMAQ developers switched
to git.

8.1.3 git Explained

git is a version control system that supports distributed workflows. Every Git directory is a full repository
with complete history and version tracking.

e It works on virtually all UNIX and Linux platforms and on many PCs.
e It is publicly available and free and is distributed under the terms of the GNU General Public License.
e If you would like to contribute changes to the EPA CMAQ repository, use the following steps
1. Create a github account https://github.com/
2. Go to the EPA github site and Fork your own copy of the EPA CMAQ to your github account
3. create a directory called CMAQv5.3 on the machine where you would like to obtain a copy of the
code
4. git clone -b master https://github.com/<your github name>/CMAQ.git CMAQ_REPO - Get
a clone or copy of the master branch of the CMAQ repository from your github site.
5. This will place a copy of the files from the master branch into the CMAQv5.3/CMAQ_REPO
directory
6. cd CMAQv5.3/CMAQ_REPO go into the CMAQv5.3/CMAQ_REPO directory
7. git status To confirm the status of the files in the repository and the branch that is currently
checked out
8. git checkout -b 5.3_update To copy the 5.3 branch into a new branch called 5.3__update
9. To edit the config_ cmaq.csh file take the following steps: vi config_cmaq.csh - or use the Atom,
TextWrangler or other Editor
10. To see what changes you made use the following command git diff config_cmaq.csh
11. To stage the change use the following command. git add config_cmaq.csh
12. To commit changes to the local repostitory use the command: git commit -m "changed
config _cmaq.csh to fix issue X"
13. To commit changes to your Github repository on the branch 5.3__update use the command: git

push
14. If you get a message that the push was rejected similar to the following:
I [rejected] 5.3_update -> 5.3_update (fetch first)

error: failed to push some refs to 'https://github.com/CEMPD/CMAQ.git'

hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes

https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://en.wikipedia.org/wiki/Git_%28software%29

hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

15. This means the files have been changed on your Github repository since you last did a clone. Use
the following command to get the changes that have been made to the remote git repository: git
pull

16. You will be asked to merge the files if there are no changes that conflict with your file changes. IF
successful you will see a message similar to the following, that indicates what files were changed.
Merge made by the 'recursive' strategy.
config_cmaq.csh | 4 ++--

1 file changed, 2 insertions(+), 2 deletions(-)

17. Retry the push command to place the changes that you committed to the local repository on your
Github repository: git push

18. Go to your github page and use the Compare link to the right of the Pull Request link to
see what changes you are proposing to make as compared to what is on the base repository:
USEPA/CMAQ.

19. Submit a pull request to ask that the changes that you have made be incorporated into the EPA
github site.

8.2 Guidelines for Developing New CMAQ Source Code
8.2.1 Object-oriented concepts

To make the CMAQ system robust and flexible, object-oriented concepts were incorporated into the design of
the system. The incorporation of these ideas helps developers avoid introducing errors when code modifica-
tions are needed. Additionally, the system can easily and efficiently be modified, allowing the user to quickly
create models for different applications. The implementation language for CMAQ is Fortran 90, which im-
poses limits on how far one can go in terms of object-oriented design. In particular, because Fortran is a
static language, objects cannot be instantiated dynamically; they must be declared explicitly in the source
code to be created at compile time. However, to encourage a user community that will be contributing code
for future enhancements, every attempt has been made to adhere to the Fortran 90 standard.

8.2.2 Global name data table

To implement modularity and data independence, we have employed design ideas that draw heavily from
the object-oriented concept of “’inheritance”and code re-use. The data structures in the codes that deal
with the chemical mechanism, I/O API, logical file names, general constants, and pointers are determined
by Fortran declarations in data and parameter statements in the CMAQ system. These data structures
pertain to a particular application and are meant to apply globally—not just to one particular CCTM
through all its subroutines, but also to all the models that supply data to CCTM for that application. These
data structures are contained in Fortran INCLUDE files, which are essentially header files, included in the
declaration sections near the top of the Fortran code source files. The inclusion of these source files is made
automatic by using a generic string that represents the INCLUDE file and that is parsed and expanded to
the actual INCLUDE file during a preprocessing stage in the compilation. The Fortran global INCLUDE
files contain name tables that define:

1. The chemical mechanism;

2. The I/O API interface, including logical file names;

3. The global modeling constants; and

4. Other constants or parameters that apply across the model.

To effect the implementation of the INCLUDE files into the code, a special compiling system, Bldmake, was
developed (Fine et al., 1998), which reads a configuration file that, based on the application, completely
determines the model executable to be built. The ASCII configuration file can be generated either by the

CMAQ system or by the users following a few, simple syntactical rules. In addition to the global INCLUDE
files, the configuration file contains module commands that tell Bldmake to extract the codes for that module
from the model code repository for compilation.

8.2.3 Thin Interface

As mentioned in Chapter 4, CMAQ is designed to be robust and flexible with respect to the interchange
of modules and the elimination of cross-module data dependencies. Consequently, the concept of a “thin
interface” has been employed in the design, which applies principally to the class-drivers (i.e. the top level call
to a science module). At a minimum, the thin interface implementation implies the following requirements:

 Eliminate global memory references (across modules). This implies no common blocks across modules,
no hidden data paths, and no “back doors.”

o Each module reads and interpolates its required data independently. The I/O APT helps to ensure this
kind of data independence.

o Standardized argument list (CGRID, Date, Time, TimeStep) for calling the class-driver. See the
example in Section 9.2.6. These requirements attempt to incorporate the object-oriented idea of encap-
sulation in the CMAQ design. Rumbaugh et al. (1991) suggest that “Encapsulation (also information
hiding) consists of separating the external aspects of an object, which are accessible to other objects,
from the internal implementation details of the object, which are hidden from other objects. Encap-
sulation prevents a program from becoming so interdependent that a small change has massive ripple
effects. The implementation” ”of an object can be changed without affecting the applications that use
it.”

The encapsulation design makes the CMAQ system safer and enables the transaction processing, plug-

and-play capability. This design also makes it easier for a user to trace data and usage within a module,
particularly at the class-driver level.

8.2.4 Coding guidelines

To maintain the object-oriented concepts implemented in the CMAQ system design, we have established
a small set of coding guidelines that apply to those who develop CMAQ science modules and affect the
low-level design of the models. We have developed standards to control data dependencies at the class-driver
level, but we have not propagated these coding standards to the submodule level.

1. The models are generally coded in Fortran (both Fortran 90 and Fortran 77 conventions are used by
various developers). It is possible to link in subroutines written in the C language, although this has
not been done within the current CMAQ implementation. While the Fortran 90 compiler will compile
Fortran 77 code, the reverse is not true. Thus the Makefiles are set up to invoke the Fortran 90
compiler.

2. To enable code compatibility between the Fortran 77 compiler and Fortran 90 code, the following guid-
ance is provided: Line length beyond 72 characters is permissible in Fortran 90 (with line continuation
indicated by an ending ‘&’), but not in Fortran 77; therefore, insertion of the ‘&’ in column 73 of the
first line and in column 6 of the next line of the Fortran 90 code will ensure compatibility with both
compilers (the ‘&’ at the beginning of a line is “in principle” ignored by the Fortran 90 compiler, but
interpreted as a continuation character by the Fortran 77 compiler if it appears in column 6).

3. The modules must be controlled by a top-level class-driver routine, whose calling arguments must be
the computational concentration grid array (CGRID), the current scenario date (Date), scenario time
(Time), and the controlling time step vector (TimeStep). (See Section 9.2.3 above.)

4. The class-driver is also responsible for any temporal integration required within the module. (The
time steps for process integration at the module level are usually shorter than those of the CCTM
synchronization time step.)

5. Any reads and writes for the module should be done at the level of the class-driver routine. Although
not absolutely necessary, this is strongly suggested because it is usually much easier to control the

10

CMAQ_OGD_ch04_science.md#modular-flexibility

timing of the data accesses at the highest level of the module where the current scenario date and time
are known.

6. Use the Fortran declaration IMPLICIT NONE to maintain some control on typographic errors and
undefined variables. The use of IMPLICIT NONE forces the developer to declare all internal variables.
This is standard in Fortran 90.

7. Use the global INCLUDE files for chemical mechanism data, and other data where available.

8. Use the I/O API for external data references where appropriate. For an illustration of these rules, see
the code template provided in Section 9.2.6.

At the submodule level, there are no strict I/O or coding standards. Here it is envisioned that individual
researchers/programmers use their own coding styles for their algorithms. However, the following suggestions
are offered to facilitate the potential incorporation of a module into the CMAQ system:

e In general, it is expected that MKS units are used for input and output variables, as these units have
been standardized throughout the CMAQ system. Within a submodule subroutine, whatever units are
most convenient can be used. However, the developer must be responsible for any unit conversions to
MKS for input and output, and thus avoid potential errors.

o For efficiency and performance considerations, operations may need to be done on groups of grid cells
(a block of cells) at a time. If there are N cells in the block and the entire domain contains M cells,
then the entire domain can be decomposed into M/N blocks. The default value of N is set to 500.
For operations in the horizontal (x,y), the cell constraint becomes XxY N, where X = number of cells
in the x-direction, and Y = number of cells in the y-direction. For operations in both the horizontal
and vertical, the constraint becomes XxY xZ N, where Z = number of cells in the z-direction. There
may be some operations, such as for some horizontal advection schemes, where this decomposition into
blocks becomes more difficult or impossible.

8.2.5 Documentation guidelines

Appropriate documentation is critical to the ease of use and maintainability of code developed for CMAQ.
The official released version of CMAQ contains extensive in-line documentation and references to pertinent
technical information whenever possible. Given the increasing number of new developers and code modules,
the following guidelines are provided for new code developed for CMAQ:

e The code revision history should be initiated or updated as appropriate for new and modified code,
indicating the author, date, and nature of the revision. The revision history appears at the top of the
subroutine.

e Complete references to the pertinent technical documents should be provided whenever possible, and
listed in comment lines immediately following the revision history notes. They should be cited in
comments preceding, or embedded in-line with, the relevant code segments.

¢ In-line documentation of the variable definitions indicating units is highly recommended in both sub-
routines and INCLUDE files, to facilitate the correct implementation of any code modifications in the
future. This information is generally included in comments embedded in-line with the declaration of
each variable.

8.2.6 Science process code template

The following example from CMAQ v4.7 illustrates a science process class-driver Fortran 90 subroutine.
Code developers should follow this template, where appropriate, to maximize the benefit from the design
concepts implemented in CMAQ. This template is generic and demonstrates many of the available features.
Some class drivers and most other subprograms within a module may not have, nor require, most or any of
these features. (The numbers at the left-hand margin refer to footnotes and are not part of the code, and
the text within “< >” indicates code removed from the example for brevity in this section)

Example of Science Process Class-Driver

11

C Asymmetric Convective Model v2 (ACM2) -- Pleim(2006)
C Function:

C calculates and writes dry deposition.

C calculates vertical diffusion

C Subroutines and Functions Called:

C INIT3, SEC2TIME, TIME2SEC, WRITE3, NEXTIME,

C M3EXIT, EDDYX, TRI, MATRIX, PA_UPDATE_EMIS, PA_UPDATE_DDEP
C Reviston History:

C Analogous to VDIFFIM (Eddy diffusion PBL scheme)

C 03 Mar 16 G.Sarwar: updated for halogen emissions

C 16 Sep 16 J.Young: update for inline procan (IPR)

USE CGRID_SPCS ! CGRID mechanism specties
USE GRID_CONF

USE EMIS_DEFN

USE DEPV_DEFN

USE ASX_DATA_MQD

USE VDIFF_MAP

USE UTILIO_DEFN

USE BIDI_MOD

USE HGSIM

USE LSM_MOD, Only: n_lufrac

USE SEDIMENTATION

USE VDIFF_DIAG

USE PA_DEFN, Only: LIPR ! Process Anaylsis control and data variables

IMPLICIT NONE
INCLUDE SUBST_FILES_ID !/ file name parameters
CHARACTER(120) :: XMSG = '

C Arguments:

REAL, POINTER :: CGRID(C :,:,:,:) ! concentrations
INTEGER JDATE current model date, coded YYYYDDD
INTEGER JTIME current model time, coded HHMMSS
INTEGER TSTEP(3) time step vector (HHMMSS)

= local output step
TSTEP(2) = sciproc sync. step (chem)
TSTEP(3) = twoway model time step w.r.t. wrf time

/
/
!
! TSTEP(1)
!
!
/

step and wrf/cmaq call frequency
C Parameters:

C External Functions: None

12

C Local Variables:
CHARACTER(16), SAVE :: PNAME = 'VDIFFPROC'
CHARACTER(16), SAVE :: AERO_GRAV_SETL = 'CTM_GRAV_SETL'
CHARACTER(80) :: VARDESC ! env variable description
LOGICAL, SAVE :: GRAV_SETL
LOGICAL, SAVE :: FIRSTIME = .TRUE.
LOGICAL, SAVE :: WRITE_FIRSTIME = .TRUE.

INTEGER, SAVE :: WSTEP = 0 ! local write counter

INTEGER STATUS ! ENV... status

REAL :: FCJACMF(NCOLS,NROWS,NLAYS) /! 1/ mid-full layer wert Jac factor
REAL LRDX3M ! loop local RDX3M(L)

REAL FCMSF ! loop local RMSFX4(C,R)

REAL, ALLOCATABLE, SAVE :: CNGRD(:,:,:,:) ! cgrid aero in mizing ratio

REAL, ALLOCATABLE, SAVE :: DDEP (H ! ddep accumulator

REAL, ALLOCATABLE, SAVE :: ICMP (e, ! component fluzxz accumlator

REAL, ALLOCATABLE, SAVE :: DDEPJ (:,:,:,:) ! ddep for mosaic

REAL, ALLOCATABLE, SAVE :: DDEPJ_FST(:,:,:,:) !/ ddep for stomtal/cuticular pathway

REAL :: WRDD(NCOLS,NROWS) ! ddep write buffer

REAL :: WRDDJ(NCOLS,NROWS,N_LUFRAC+1) ! mosaic ddep write buffer

REAL :: WRDDJ_FST(NCOLS,NROWS,N_LUFRAC+1) ! mosaic stomatal fluz write buffer
REAL, ALLOCATABLE, SAVE :: DDEP_PA (:,:,:) ! ddep for process analysts

REAL, ALLOCATABLE, SAVE :: EMIS_PA(:,:,:,:) ! emis for process analysts
INTEGER, SAVE :: N_SPC_CGRID ! mo. of CGRID species

REAL :: EDDYV (NCOLS,NROWS,NLAYS) ! from EDYINTB

REAL :: SEDDY (NLAYS,NCOLS,NROWS) ! flipped EDDYV

REAL DTSEC ! model time step in seconds

REAL, ALLOCATABLE, SAVE :: VSED_AE(:,:,:,:)

C Local Variables

INTEGER, SAVE :: LOGDEV

INTEGER ASTAT
INTEGER Cc, R, L, S, VvV, I, J, OFF ! loop induction wvariables
INTEGER MDATE, MTIME, MSTEP I i4nternal simulation dateédtime
INTERFACE
SUBROUTINE PA_UPDATE_EMIS (PNAME, VDEMIS, JDATE, JTIME, TSTEP)
CHARACTER(*), INTENT(IN) :: PNAME
REAL, INTENT(C IN) :: VDEMIS(C :,:,:,:)
INTEGER, INTENT(IN) :: JDATE, JTIME
INTEGER, INTENT(IN) :: TSTEP(3)

END SUBROUTINE PA_UPDATE_EMIS

SUBROUTINE PA_UPDATE_DDEP (PNAME, DDEP, JDATE, JTIME, TSTEP)
CHARACTER(*), INTENT(IN) :: PNAME
REAL, INTENT(IN) :: DDEP(C :,:,:)

13

INTEGER, INTENT(IN) :: JDATE, JTIME
INTEGER, INTENT(IN) :: TSTEP(3)

END SUBROUTINE PA_UPDATE_DDEP

SUBROUTINE CONV_CGRID (CGRID, JDATE, JTIME, CNGRD)

REAL, POINTER :: CGRID(:,:,:,:)
INTEGER, INTENT(IN) :: JDATE, JTIME
REAL, INTENT(INOUT) :: CNGRD(:,:,:,:)

END SUBROUTINE CONV_CGRID
SUBROUTINE REV_CGRID (CNGRD, JDATE, JTIME, CGRID)

REAL, INTENT(INOUT) :: CNGRD(:,:,:,:)
INTEGER, INTENT(IN) :: JDATE, JTIME
REAL, POINTER :: CGRID(C :,:,:,:)

END SUBROUTINE REV_CGRID

SUBROUTINE EDDYX (EDDYV)
REAL, INTENT(OUT) :: EDDYV(:,:,:)

END SUBROUTINE EDDYX

SUBROUTINE VDIFFACMX(dtsec, seddy, ddep, icmp, ddepj, ddepj_fst, cngrd)
REAL, INTENT(IN) 11 dtsec

REAL, INTENT(INOUT) :: seddy(:,:,:)

REAL, INTENT(INOUT) :: ddep (:,:,:)

REAL, INTENT(INOUT) icmp (:,:,:)

REAL, INTENT(INOUT), OPTIONAL :: ddepj Ciyryiyt)
REAL, INTENT(INOUT), OPTIONAL :: ddepj_fst(:,:,:,:)
REAL, INTENT(INOUT) :: cngrd(:,:,:,:)

END SUBROUTINE VDIFFACMX
END INTERFACE
IF (FIRSTIME) THEN

FIRSTIME = .FALSE.
LOGDEV = INIT3()

IF (.NOT. DEPV_INIT (JDATE, JTIME, TSTEP, CGRID)) THEN

XMSG = 'Failure initializing deposition velocities module'
CALL M3EXIT (PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF

C create global maps
IF (.NOT. VDIFF_MAP_INIT(N_SPC_DEPV)) THEN

XMSG = 'Failure initializing index mapping module'
CALL M3EXIT (PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF

C Initialize the met data
CALL INIT_MET(JDATE, JTIME, MOSAIC, ABFLUX, HGBIDI)

IF (HGBIDI) THEN !/ Initialize HGSIM module
CALL INIT_HGSIM(JDATE, JTIME)
END IF

C Get gravitational settling (sedi) flag.

GRAV_SETL = .TRUE. ! default
VARDESC = 'Using J-,K-mode aerosols gravitational settling'

14

GRAV_SETL = ENVYN(AERO_GRAV_SETL, VARDESC, GRAV_SETL, STATUS)
IF (STATUS .EQ. 0) WRITE(LOGDEV, '(5X, A)') VARDESC

C Get dtagnostic files flag.
VDIFFDIAG = .FALSE. ! default
VARDESC = 'Writing the VDIFF diagnostic files'
VDIFFDIAG = ENVYN(VDIFF_DIAG_FILE, VARDESC, VDIFFDIAG, STATUS)
IF (STATUS .EQ. O) WRITE(LOGDEV, '(5X, A)') VARDESC

C Set output file characteristics based on COORD.EXT and open the dry dep file
IF (IO_PE_INCLUSIVE) THEN
CALL OPDDEP (JDATE, JTIME, TSTEP(1), N_SPC_DDEP, ABFLUX)
IF (ABFLUX .0OR. HGBIDI) CALL OPASX_MEDIA(JDATE, JTIME, TSTEP(1), ABFLUX)
END IF

C Open vdiff diagnostics file (toapti header from cgrd)
IF (VDIFFDIAG) THEN
IF (.NOT. VDIFF_DIAG_INIT (JDATE, JTIME, TSTEP(1), GRAV_SETL)) THEN

XMSG = 'Failure initializing vdiff diagnostics module'
CALL M3EXIT (PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF
END IF

C Allocate and initialize dry deposition array

ALLOCATE (DDEP(N_SPC_DEPV,NCOLS,NROWS), STAT = ASTAT)
IF (ASTAT .NE. O) THEN
XMSG = 'Failure allocating DDEP'
CALL M3EXIT(PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF
DDEP = 0.0 ! array assignment

ALLOCATE (ICMP(LCMP,NCOLS,NROWS), STAT = ASTAT)
IF (ASTAT .NE. O) THEN

XMSG = 'Failure allocating ICMP'

CALL M3EXIT(PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF
ICMP = 0.0 ! array assignment

IF (.NOT. EMIS_INIT (JDATE, JTIME, TSTEP(1))) THEN

XMSG = 'Failure initializing emissions module'
CALL M3EXIT (PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF

C Set up for process analysis
IF (LIPR) THEN
ALLOCATE (EMIS_PA(NCOLS,NROWS,EMLAYS,N_SPC_EMIS+1), STAT = ASTAT)
IF (ASTAT .NE. O) THEN
XMSG = 'EMIS_PA memory allocation failed'
CALL M3EXIT (PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF
ALLOCATE (DDEP_PA(NCOLS,NROWS,N_SPC_DEPV), STAT
IF (ASTAT .NE. O) THEN
XMSG = 'DDEP_PA memory allocation failed'
CALL M3EXIT (PNAME, JDATE, JTIME, XMSG, XSTAT1)

ASTAT)

15

END IF
END IF
C Set up for grav. settling
IF (GRAV_SETL) THEN
ALLOCATE (VSED_AE(N_AE_SPC,NLAYS,NCOLS,NROWS), STAT = ASTAT)
IF (ASTAT .NE. O) THEN
XMSG = 'Failure allocating VSED_AE'
CALL M3EXIT(PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF
END IF

N_SPC_CGRID = SIZE (CGRID,4)

ALLOCATE (CNGRD(N_SPC_CGRID,NLAYS,NCOLS,NROWS), STAT = ASTAT)
IF (ASTAT .NE. O) THEN
XMSG = 'Failure allocating CNGRD'
CALL M3EXIT(PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF
CNGRD = 0.0 ! array assignment

IF (MOSAIC) THEN
ALLOCATE (DDEPJ(N_LUFRAC,N_SPC_DEPV,NCOLS,NROWS), STAT = ASTAT)
IF (ASTAT .NE. O) THEN
XMSG = 'Failure allocating DDEPJ'
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
END IF
DDEPJ = 0.0 ! array assignment
IF (IO_PE_INCLUSIVE)
& CALL OPDDEP_MOS (JDATE, JTIME, TSTEP(1), N_SPC_DDEP)
IF (FST) THEN
ALLOCATE (DDEPJ_FST(N_LUFRAC,N_SPC_DEPV,NCOLS,NROWS), STAT = ASTAT)
IF (ASTAT .NE. O) THEN
XMSG = 'Failure allocating DDEPJ_FST'
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)

END IF
DDEPJ_FST = 0.0 ! array assignment
IF (IO_PE_INCLUSIVE)
& CALL OPDDEP_FST (JDATE, JTIME, TSTEP(1), N_SPC_DDEP)
END IF ! 3f Fst
END IF ! if Mosatc
END IF !' 4f Firstime
MDATE = JDATE
MTIME = JTIME
MSTEP = TIME2SEC(TSTEP(2))
DTSEC = FLOAT(MSTEP)

CALL NEXTIME (MDATE, MTIME, SEC2TIME(MSTEP / 2))

C Convert mnon-molar mixzing ratio species and re-order CGRID
CALL CONV_CGRID (CGRID, MDATE, MTIME, CNGRD)
C read & interpolate met data
CALL GET_MET (MDATE, MTIME, MSTEP, MOSAIC, ABFLUX, HGBIDI)

16

C read & interpolate deposition velocities
CALL GET_DEPV (MDATE, MTIME, TSTEP, CGRID)

IF (GRAV_SETL) THEN
C Get gravitational settling veloctity for the vsed aero species:
C AERO_SEDV assumes that every aero species ts dry deposited and is diffused (trns)
C Calculate the changes in the layer J-,K-mode aerosol concentrations
CALL SEDI(MDATE, MTIME, DTSEC, VSED_AE, CGRID, CNGRD)
END IF

C read & interpolate emissions data => VDEMIS from EMIS DEFN module
CALL GET_EMIS (MDATE, MTIME, TSTEP, CONVPA, CGRID)

IF (LIPR) THEN
DO S = 1, N_SPC_EMIS+1
DO L = 1, EMLAYS
DO R = 1, MY_NROWS
DO C = 1, MY_NCOLS
EMIS_PA(C,R,L,S) = VDEMIS(S,L,C,R)
END DO
END DO
END DO
END DO
CALL PA_UPDATE_EMIS ('VDIF', EMIS PA, JDATE, JTIME, TSTEP)
END IF

CALL EDDYX (EDDYV)
C EDDYV returned = Kz, where Kz is in m**2/sec

DO L = 1, NLAYS
LRDX3M = Grid_Data%RDX3M(L)
DO R = 1, MY_NROWS
DO C = 1, MY_NCOLS
FCJACMF(C,R,L) = LRDX3M * Met Data%RJACM(C,R,L) * Met_Data%RJACF(C,R,L)
END DO
END DO
END DO
DO R = 1, MY_NROWS
DO C = 1, MY _NCOLS
FCMSF = Grid_Data%RMSFX4(C,R)
DO L = 1, NLAYS
SEDDY(L,C,R) = FCMSF % FCJACMF(C,R,L) * EDDYV(C,R,L)
END DO
END DO
END DO

IF (WSTEP .EQ. O) THEN

DDEP = 0.0 ! array assignment
ICMP = 0.0 ! array assignment
IF (MOSAIC) THEN
DDEPJ = 0.0 ! array assignment
IF (FST) DDEPJ_FST = 0.0 ! array assignment
END IF

17

END IF

C Calculate the change in concentration and dry dep from wvertical diffusion and vsed
C Note: cngrd is the argument keyword (from the INTERFACE); CNGRD is the actual argument
IF (.NOT. MOSAIC) THEN
CALL VDIFFACMX(DTSEC, SEDDY, DDEP, ICMP,
& cngrd = CNGRD)
ELSE
IF (.NOT. FST) THEN
CALL VDIFFACMX(DTSEC, SEDDY, DDEP, ICMP,

& ddepj = DDEPJ, cngrd = CNGRD)
ELSE
CALL VDIFFACMX(DTSEC, SEDDY, DDEP, ICMP,
& ddepj = DDEPJ, ddepj_fst = DDEPJ_FST, cngrd = CNGRD)
END IF
END IF

IF (VDIFFDIAG) THEN
NTICS = NTICS + 1
NLPCR_SUM = NLPCR_SUM + NLPCR_MEAN ! array assignment
DO R = 1, MY_NROWS

DO C = 1, MY_NCOLS
NLPCR_MAX(C,R)
NLPCR_MIN(C,R)

MAX(NLPCR_MEAN(C,R), NLPCR_MAX(C,R))
MIN(NLPCR_MEAN(C,R), NLPCR_MIN(C,R))

END DO
END DO
IF (GRAV_SETL) THEN
DTCCR_SUM = DTCCR_SUM + DTCCR_MEAN ! array assignment

DO R = 1, MY_NROWS
DO C = 1, MY _NCOLS

DTCCR_MAX(C,R) = MAX(DTCCR_MEAN(C,R), DTCCR_MAX(C,R))
DTCCR_MIN(C,R) = MIN(DTCCR_MEAN(C,R), DTCCR_MIN(C,R))
END DO
END DO
END IF

END IF
C Revert nmnon-molar mizing ratio species and re-order CGRID
CALL REV_CGRID (CNGRD, MDATE, MTIME, CGRID)

C If last call this hour: write accumulated depositions:

WSTEP = WSTEP + TIME2SEC(TSTEP(2
IF (WSTEP .GE. TIME2SEC(TSTEP(1
MDATE = JDATE
MTIME = JTIME
CALL NEXTIME(MDATE, MTIME, TSTEP(2))
WSTEP = O

))
))) THEN

#ifdef parallel_io
IF (WRITE_FIRSTIME) THEN
WRITE_FIRSTIME = .FALSE.

IF (.NOT. IO_PE_INCLUSIVE) THEN
IF (.NOT. OPEN3(CTM_DRY_DEP_1i, FSREAD3, PNAME)) THEN

18

XMSG = 'Could not open ' // TRIM(CTM_DRY_DEP_1)
CALL M3EXIT(PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF
IF (MOSAIC) THEN
IF (.NOT. OPEN3(CTM_DRY_DEP_MOS, FSREAD3, PNAME)) THEN
XMSG = 'Could not open ' // TRIM(CTM_DRY_DEP_MOS)
CALL M3EXIT(PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF
IF (FST) THEN
IF (.NOT. OPEN3(CTM_DRY_DEP_FST, FSREAD3, PNAME)) THEN
XMSG = 'Could not open ' // TRIM(CTM_DRY_DEP_FST)
CALL M3EXIT(PNAME, JDATE, JTIME, XMSG, XSTAT1)
END IF
END IF
END IF
END IF ! .NOT. I0 PE INCLUSIVE
END IF
#endif

DO V = 1, N_SPC_DDEP
S = DD2DV(V)
DO R = 1, MY_NROWS
DO C = 1, MY _NCOLS
WRDD(C,R) = DDEP(S,C,R)
END DO
END DO

IF (.NOT. WRITE3(CTM_DRY_DEP_1, DDEP_SPC(V),
& MDATE, MTIME, WRDD)) THEN
XMSG = 'Could not write ' // CTM_DRY_DEP_1 // ' file'
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
END IF

IF (ABFLUX .AND. TRIM(DDEP_SPC(V)) .EQ. 'NH3') THEN
DO I = 1, LCMP
DO R = 1, MY _NROWS
DO C = 1, MY_NCOLS
WRDD(C,R) = ICMP(I,C,R)

END DO

END DO

IF (.NOT. WRITE3(CTM_DRY_DEP_i, CMPSPC(I),
& MDATE, MTIME, WRDD)) THEN

XMSG = 'Could not write ' // CTM_DRY_DEP_1 // ' file'
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)

END IF
END DO
ENDIF
END DO
WRITE(LOGDEV, '(/5X, 3(C A, :, 1X), I8, ":", 16.6)')
& 'Timestep written to', CTM_DRY_DEP_1,
& 'for date and time', MDATE, MTIME

19

C Write vdiff diagnostics
IF (VDIFFDIAG) THEN
IF (GRAV_SETL) THEN !/ Write vsed diagnostics

DO V = 1, N_VSED
S = VSED_MAP(V)
DO L = 1, NLAYS
DO R = 1, MY_NROWS
DO C = 1, MY_NCOLS
VSED_BUF(C,R,L,V) = VSED_AE(S,L,C,R)

END DO
END DO
END DO
IF (.NOT. WRITE3(CTM_VSED_DIAG, VSED_NAME(V),
& MDATE, MTIME, VSED_BUF(1,1,1,V))) THEN
XMSG = 'Could not write ' // TRIM(VSED_NAME(V))
& // ' to ' // CTM_VSED_DIAG
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
END IF
END DO
WRITE(LOGDEV, '(/5X, 3(C A, :, 1X), I8, ":", 16.6)')
& 'Timestep written to', CTM_VSED_DIAG,
& 'for date and time', MDATE, MTIME
END IF ! GRAV_SETL

C Write other diagnostics
NLPCR_MEAN = NLPCR_SUM / FLOAT(NTICS)
IF (.NOT. WRITE3(CTM_VDIFF_DIAG, 'NLP_MEAN',
& MDATE, MTIME, NLPCR_MEAN)) THEN
XMSG = 'Could not write ' // 'NLP_MEAN to ' // CTM_VDIFF_DIAG
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
END IF
IF (.NOT. WRITE3(CTM_VDIFF_DIAG, 'NLP_MAX',
& MDATE, MTIME, NLPCR_MAX)) THEN
XMSG = 'Could not write ' // 'NLP_MAX to ' // CTM_VDIFF_DIAG
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
END IF
IF (.NOT. WRITE3(CTM_VDIFF_DIAG, 'NLP_MIN',
& MDATE, MTIME, NLPCR_MIN)) THEN
XMSG = 'Could not write ' // 'NLP_MIN to ' // CTM_VDIFF_DIAG
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)

END IF

NLPCR_MAX = 0.0 ! array assignment
NLPCR_MIN = 9.9E30 ! array assignment
NLPCR_SUM = 0.0 ! array assignment

IF (GRAV_SETL) THEN ! Write vsed diagnostics

DTCCR_MEAN = DTCCR_SUM / FLOAT(NTICS)
IF (.NOT. WRITE3(CTM_VDIFF_DIAG, 'SEDI_DTC_MEAN',
& MDATE, MTIME, DTCCR_MEAN)) THEN
XMSG = 'Could not write ' // 'SEDI_DTC_MEAN to ' // CTM_VDIFF_DIAG
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)

20

&

END IF
IF (.NOT. WRITE3(CTM_VDIFF_DIAG, 'SEDI_DTC_MAX',
MDATE, MTIME, DTCCR_MAX)) THEN
XMSG = 'Could not write ' // 'SEDI_DTC_MAX to ' // CTM_VDIFF_DIAG
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
END IF
IF (.NOT. WRITE3(CTM_VDIFF_DIAG, 'SEDI_DTC_MIN',
MDATE, MTIME, DTCCR_MIN)) THEN
XMSG = 'Could not write ' // 'SEDI_DTC_MIN to ' // CTM_VDIFF_DIAG
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)

END IF
DTCCR_MAX = 0.0 ! array assignment
DTCCR_MIN = 9.9E30 ! array assignment
DTCCR_SUM = 0.0 ! array assignment
END IF
CNVCT = 0.0 ! array assignment

DO R = 1, MY_NROWS
DO C = 1, MY_NCOLS
IF (Met_Data%CONVCT(C,R)) CNVCT(C,R) = 1.0
END DO
END DO
IF (.NOT. WRITE3(CTM_VDIFF_DIAG, 'CONVCT',
MDATE, MTIME, CNVCT)) THEN
XMSG = 'Could not write ' // ‘'convct to ' // CTM_VDIFF_DIAG
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
END IF
IF (.NOT. WRITE3(CTM_VDIFF_DIAG, 'LPBL',
MDATE, MTIME, REAL(Met_Datay%LPBL))) THEN
XMSG = 'Could not write ' // 'lpbl to ' // CTM_VDIFF_DIAG
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
END IF

WRITE(LOGDEV, '(/5X, 3(C A, :, 1X), I8, ":", 16.6, 16)')
'Timestep written to', CTM_VDIFF_DIAG,
'for date and time (and ntics)', MDATE, MTIME, NTICS
NTICS = 0O
END IF

IF (MOSAIC) THEN

DO V = 1, N_SPC_DDEP
S = DD2DV(V)
WRDD = 0.0 ! reuse array since it has already been written for hour

DO R = 1, MY_NROWS
DO C = 1, MY_NCOLS
DO J = 1, N_LUFRAC
WRDD(C,R) = WRDD(C,R) + DDEPJ(J,S,C,R) * Grid_Dataj}LUFRAC(C,R,J)
WRDDJ(C,R,J) = DDEPJ(J,S,C,R)
END DO
WRDDJ(C,R,N_LUFRAC+1) = WRDD(C,R) !/ last array element is total across all la
END DO
END DO

21

&

IF (.NOT. WRITE3(CTM_DRY_DEP_MOS, DDEP_SPC(V),
MDATE, MTIME, WRDDJ)) THEN
XMSG = 'Could not write ' // CTM_DRY_DEP_MOS // ' file'
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
END IF

END DO

WRITE(LOGDEV, '(/5X, 3(C A, :, 1X), I8, ":", I6.6)')
'Timestep written to', CTM_DRY_DEP_MOS,
'for date and time', MDATE, MTIME

IF (FST) THEN

DOV 1, N_SPC_DDEP

S = DD2DV(V)

WRDD = 0.0 ! reuse array since it has already been written for hour

DO R = 1, MY_NROWS

DO C = 1, MY_NCOLS
DO J = 1, N_LUFRAC
WRDD(C,R) = WRDD(C,R) + DDEPJ_FST(J,S,C,R) * Grid_Data%LUFRAC(C,R,J)
WRDDJ _FST(C,R,J) = DDEPJ_FST(J,S,C,R)
IF (DDEPJ_FST(J,S,C,R) .GT. DDEPJ(J,S,C,R)) THEN
WRITE(LOGDEV,*) 'FST too big !!!'

WRITE(LOGDEV,*) 'J,S,C,R ="', J, S, C, R
WRITE(LOGDEV,*) 'DDEPJ,DDEPJ FST: ', DDEPJ(J,S,C,R), DDEPJ_FST(J,S,C
WRITE(LOGDEV,*) 'DDEP Species: ', DDEP_SPC(V)
WRITE(LOGDEV,*) 'Time and date: ', MTIME, MDATE
END IF
END DO
WRDDJ_FST(C,R,N_LUFRAC+1) = WRDD(C,R) !/ last array element is total across
END DO
END DO

IF (.NOT. WRITE3(CTM_DRY DEP_FST, DDEP_SPC(V),
MDATE, MTIME, WRDDJ_FST)) THEN
XMSG = 'Could not write ' // CTM_DRY_DEP_FST // ' file'
CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
END IF

END DO
WRITE(LOGDEV, '(/5X, 3(C A, :, 1X), I8, ":", 16.6)')
'Timestep written to', CTM_DRY_DEP_FST,
'for date and time', MDATE, MTIME
END IF ! FST
END IF ! MOSAIC
IF (ABFLUX .0OR. HGBIDI) THEN

CALL WRASX_MEDIA(MDATE, MTIME, ABFLUX)
END IF

22

IF (LIPR) THEN
DO V = 1, N_SPC_DEPV
DO R = 1, MY_NROWS
DO C = 1, MY_NCOLS
DDEP_PA(C,R,V) = DDEP(V,C,R)
END DO
END DO
END DO
CALL PA_UPDATE DDEP ('VDIF', DDEP_PA, JDATE, JTIME, TSTEP)
END IF

C re-set dry deposition array to zero

DDEP = 0.0
ICMP = 0.0
IF (MOSAIC) THEN
DDEPJ = 0.0 ! array assignment
IF (FST) DDEPJ_FST = 0.0 ! array assignment
END IF

END IF

RETURN
END

Notes:

*®

10.
11.
12.
13.

14.

15.

16.

. Header comments - Highly recommended for internal documentation.
. USE includes the Fortran source file specified.
. IMPLICIT NONE must be used in Fortran 90, i.e., implicit declarations are not supported. This

dramatically reduces errors due to typos and undefined variables.

Chemical mechanism array dimensioning and looping global variables.

C preprocessor flags that determine which emissions control dimensioning and looping variables are
compiled.

Other global array dimensioning and looping global variables, including those for the I/O API. The
logical variable LIPR is defined in the SUBST_PACTL_ID INCLUDE file for use at lines labeled (18).
Local variable declaration. Note syntax differences from Fortran-77.

Declarations for the argument list (standardized).

Declarations and PARAMETER statements for local Fortran parameters, illustrating in-line documen-
tation of variables and units. Note syntax differences from Fortran-77.

Declarations for external functions not previously declared.

Declarations for arrays to hold external file data.

Declarations and definitions for local and saved variables, and dynamic memory allocations.

Interface is a convenient way to declare calling arguments to a subroutine as input, output, or both
in the calling program through the INTENT variable specification (as IN, OUT, or IN OUT). No
other declaration of the calling arguments is necessary in the calling program. If IN only, the values of
arguments can be passed explicitly in the subroutine call. If OUT, the argument must be passed as a
variable.

Code section for subroutine initialization and for any local data that need not be set at every entry
into the subroutine. Such data would require a SAVE statement in the declarations. For example,
FIRSTIME is initialized to .TRUE. in the local variables section.

Iustration of memory allocation for a variable declared as allocatable. In this example, NLAYS is
accessed from the COORD.EXT file.

Nlustrates using an I/O API function to set file interpolation time.

23

17. Meteorological and other data are read and interpolated through a series of subroutine calls. These
subroutines in turn use I/O APT utilities to perform the time interpolation of the desired met variables,
deposited and emitted species.

18. Call to process analysis routine to obtain data for the optional integrated process rates function.

19. Tlustrates call to another science process within the module.

20. Main computational loop over the horizontal grid.

21. Time-step loop over subsynchronization time step intervals.

22. Tlustrates writing to an I/O API file within a module.

23. Subroutine end

8.3 Compiling CMAQ with New Source Code

The following steps are recommended for compiling CMAQ when a new module has been developed. The
procedure creates a Makefile, which can then be modified to add the new module in the appropriate class,
but the same steps can be used to obtain a configuration file that can be similarly modified to add the new
module.

e On the computational platform of choice, install CMAQ using Git.

o Inthe $CMAQ_HOME/CCTM/scripts/ subdirectory, modify a file called bldit.cctm by uncommenting
the line “set MakeOpt” (remove the leading ‘#’ character).

o Execute the bldit.cctm script. This creates a Makefile as well as a configuration file in the subdirectory
$CMAQ_HOME/CCTM //scripts/BLD__CCTM__v52b_ {compiler}, where the model code has been
copied.

e The Makefile can be modified to compile and link the new module by specifying <full path name>.o
for the object file that needs to be linked in. It is essential that a source file with the corresponding
name (with extension “F”) reside in the same directory as the specified path name for the object file.

e Issue the “make” command to compile the source code into an executable.

8.4 Guidelines to Writing Shell Scripts for CMAQ

To run a model executable, various UNIX environment variables must be set in the shell that invokes the
execute command. Generally, these variables involve the modeling scenario start date and time, the run
duration, the output time step interval, various internal code flags that differ among the models, and all
the input and output logical (symbolic) file names. There are various ways that external file names can be
referenced in the source code, and UNIX platforms can link them by using environment variables. There
are I/O API utility functions that allow users to easily access these variables in the code in a generic and
portable manner. An additional feature that is provided through the I/O API is the ability to declare a file
“volatile” by appending a -v flag in the shell’s declaration for the environment variable. By doing this, the
I/O API will cause the netCDF file to update (sync) its disk copy after every write and thereby update the
netCDF header. Otherwise, netCDF (I/O API) file headers are not updated until the files are closed. This
feature is useful, for example, for allowing a user to analyze an open netCDF file using visualization tools
while the model is executing. It is also useful in case of a system crash. A CCTM model can be restarted at
the scenario time step after the last successful write using the aborted output file as the input initial data.

The following is a sample run script that can be downloaded from the CMAS web site. The build and run
scripts are part of the downloaded tar file from this site.

#1/bin/csh -f

====s================== (CCTMv5.1 Run Script === = = =====
Usage: rTun.cctm >&! cctm_D51a.log &

#

To report problems or request help with this script/program:

http://www.cmascenter.org

24

#

#
#> Runtime Environment Options
#

#> Choose compiler and set up CMAQ environment with correct
#> libraries using config.cmaq. Options: intel | gcc | pgt
setenv compiler intel

setenv compilerVrsn 13.1

#> Source the config.cmaq file to set the build environment
cd ../..

source ./config_cmaq.csh

cd CCTM/scripts

#> Set General Parameters for Configuring the Simulation

set VRSN = vb2 #> Code Version

set PROC = mpi #> serial or mpi

set MECH = cb6r3_aeb_aq #> Mechanism ID

set EMIS = 2013ef #> Emission Inventory Details

set APPL = SE52BENCH #> Application Name (e.g. Gridname)

#> Define RUNID as any combination of parameters above or others. By default,
#> this information will be collected into this one string, $RUNID, for easy
#> referencing in output binaries and log files as well as in other scripts.
setenv RUNID ${VRSN}_${compiler}_ ${APPL}

#> Set the butld directory (this is where the CMAQ executable
#> 1s located by default).

set BLD = ${CMAQ_HOME}/CCTM/scripts/BLD_CCTM_${VRSN}_${compiler}
set EXEC = CCTM_${VRSN}.exe
cat $BLD/CCTM_${VRSN}.cfg; echo " "; set echo

#> Set Working, Input, and Output Directories
setenv WORKDIR ${CMAQ_HOME}/CCTM/scripts #> Working Directory. Where the runscript is.
setenv OUTDIR ${CMAQ_DATA}/output_CCTM_${RUNID} #> Output Directory
setenv INPDIR ${CMAQ_DATA}/SE52BENCH/single_day/cctm_input #> Input Directory
setenv LOGDIR ${OUTDIR} #> Log Directory Location
setenv NMLpath ${BLD} #> Location of Namelists. Common places are:
#> ${WORKDIR} | ${CCTM_SRC}/MECHS/${MECH} | ${BLD}

#
#> CCTM Configuration Options
- -

#> Set Start and End Days for looping

setenv NEW_START TRUE #> Set to FALSE for model restart
set START_DATE = "2011-07-01" #> beginning date (July 1, 2011)
set END_DATE = "2011-07-01" #> ending date (July 14, 2011)

#> Set Timestepping Parameters
set STTIME = 000000 #> beginning GMT time (HHMMSS)
set NSTEPS = 240000 #> time duration (HHMMSS) for this run

25

set TSTEP = 010000 #> output time step interval (HHMMSS)

#> Hortizontal domain decompostition
if ($PROC == serial) then

setenv NPCOL_NPROW "1 1"; set NPROCS = 1 # single processor setting
else
@ NPCOL = 4; @ NPROW = 2

@ NPROCS = $NPCOL * $NPROW
setenv NPCOL_NPROW "$NPCOL $NPROW";
endif

#> Vertical extent
set NZ = 35

#setenv LOGFILE $CMAQ_HOME/$RUNID.log #> log file mame; uncomment to write standard output to a log, o

setenv GRID_NAME SE52BENCH #> check GRIDDESC file for GRID_NAME options
setenv GRIDDESC $INPDIR/GRIDDESC #> grid description file

#> Output Species and Layer Options
#> CONC file spectes; comment or set to "ALL" to write all species to CONC
#setenv CONC_SPCS "03 NO ANO3I ANO3J NO2 FORM ISOP ANH4J ASO4I ASO4J"
#setenv CONC_BLEV_ELEV " 1 4" #> CONC file layer range; comment to write all layers to CONC

#> ACONC file species; comment or set to "ALL" to write all spectes to ACONC
#setenv AVG_CONC_SPCS "03 NO CO NO2 ASO4I ASO4J NH3"
setenv AVG_CONC_SPCS "ALL"
setenv ACONC_BLEV_ELEV " 1 1" #> ACONC file layer range; comment to write all layers to ACONC
#setenv ACONC END_TIME Y #> override default beginning ACON timestamp [default: N J

setenv EXECUTION_ID $EXEC #> define the model execution id

#> Sychronization Time Step and Tolerance Uptions

setenv CTM_MAXSYNC 300 #> max sync time step (sec) [default: 720]

setenv CTM_MINSYNC 60 #> min sync time step (sec) [default: 60]

setenv SIGMA_SYNC_TOP 0.7 #> top sigma level thru which sync step determined [default: 0.7]
#setenv ADV_HDIV_LIM 0.95 #> mazimum horiz. div. limit for adv step adjust [default: 0.9]
setenv CTM_ADV_CFL 0.95 #> max CFL [default: 0.75]

#setenv RB_ATOL 1.0E-09 #> global ROS3 solver abs tol [default: 1.0E-07]

#> Science Uptions
setenv CTM_WB_DUST Y #> use inline windblown dust emissions [default: Y]
setenv CTM_ERODE_AGLAND Y #> use agricultural activity for windblown dust
#> [default: N J; ignore if CTM_WB_DUST = N
setenv CTM_WBDUST_BELD BELD3 #> landuse database for identifying dust source regions
#> [default: BELD3]; tgnore tf CIM_WB_DUST = N

setenv CTM_LTNG_NO Y #> turn on lightning NOx [default: N]
setenv CTM_WVEL Y #> save derived vertical velocity component to conc

#> file [default: N]
setenv KZMIN Y #> use Min Kz option in edyintb [default: Y],

#> otherwise revert to KzOUT
setenv CTM_ILDEPV Y #> calculate in-line deposition velocities [default: Y]
setenv CTM_MOSAIC N #> landuse specific deposition velocities [default: N]
setenv CTM_FST N #> mosaic method to get land-use specific stomatal flux

26

setenv CTM_ABFLUX Y
setenv CTM_HGBIDI N
setenv CTM_SFC_HONO Y
setenv CTM_GRAV_SETL Y
setenv CTM_BIOGEMIS Y
setenv CTM_PT3DEMIS Y

setenv CTM_ZERO_PCSOA N

#> Process Analysts Options
setenv CTM_PROCAN N

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#>

[default: N]
ammonia bi-directional flux for in-line deposition

velocities [default: N J; ignore if CTM_ILDEPV = N
mercury bi-directional flux for in-line deposition
velocities [default: N J; ignore +f CTM_ILDEPV = N

surface HONO interaction [default: Y]; ignore if CTM_ILDEPV = N
vdiff aerosol gravitational sedimentation [default: Y]
calculate in-line biogenic emissions [default: N]
calculate in-line plume rise for elevated point emissions

[default: N]
turn off the emissions of the VOC precursor to pcSOA.

The CMAQ dev team recommends leaving pcSUA mass in the

model for production runs. [default: N J

use process analysis [default: N]

#> process analysis global column, rTow and layer ranges
#> user must check GRIDDESC for walidity!

setenv PA_BCOL_ECOL "10 320"
setenv PA_BROW_EROW "10 195"

setenv PA_BLEV_ELEV "1 4"

#> I/0 Controls

setenv IOAPI_LOG_WRITE F
setenv FL_ERR_STOP N
setenv PROMPTFLAG F
setenv IOAPI_OFFSET_64 NO
setenv CTM_EMISCHK N

#>
#>
#>
#>
#>

#> Aerosol Diagnostic Controls

setenv CTM_AVISDIAG Y
setenv CTM_PMDIAG Y
setenv CTM_APMDIAG Y

#>
#>
#>

turn on excess WRITE3 logging [options: T | F]

stop on inconsistent input files

turn on I/0-API PROMPT#FILE interactive mode [options: T | F]

support large timestep records (>2GB/timestep record) [options: YES | |
Abort CMAQ if missing surrogates from emissions Input files

Aerovis diagnostic file [default: N]
What is this [default: Y]
What is this [default: Y]

setenv APMDIAG_BLEV_ELEV "1 3" #> layer range for average pmdiag

setenv APMDIAG_BLEV_ELEV ""
setenv AVG_FILE_ENDTIME N

#> Diagnostic Output Flags
setenv CTM_CKSUM Y
setenv CLD_DIAG Y

setenv CTM_AERDIAG Y
setenv CTM_PHOTDIAG Y
setenv CTM_SSEMDIAG Y
setenv CTM_DUSTEM_DIAG Y
setenv CTM_DEPV_FILE Y
setenv VDIFF_DIAG_FILE Y
setenv LTNGDIAG Y

setenv CTM_AOD Y

setenv B3GTS_DIAG Y
setenv PT3DDIAG N

setenv PT3DFRAC N

setenv REP_LAYER _MIN -1

set DISP = delete

#>
#>

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

layer range for average pmdiag = NLAYS
What is this [default: N]

cksum report [default: Y]

cloud diagnostic file [default: N]

aerosol diagnostic file [default: N]

photolysis diagnostic file [default: N]

sea-salt emissions diagnostic file [default: N]

windblown dust emissions diagnostic file [default: N]; ignore if CTM_!
deposition velocities diagnostic file [default: N]

vdiff & possibly aero grav. sedimentation diagnostic file [default: N .
lightning diagnostic file [default: N]

AOD diagnostic file [default: N]

beis mass emissions diagnostic file [default: N]

optional 3d point source emissions diagnostic file [default: N]; ignor
optional layer fractions diagnostic (play) file(s) [default: NJ]; ignor
Minimum layer for reporting plume rise info [default: -1]

[delete | keep] existing output files

27

#
#> Input Directories and Filenames

___________ G ——
set ICpath = $INPDIR/icbc #> initial conditions input directory
set BCpath = $INPDIR/icbc #> boundary conditions input directory

set EMISpath
set IN_PTpath

$INPDIR/emis/gridded_area #> surface emissions input directory
$INPDIR/emis/inln_point #> elevated emissions input directory (in-line point only)

set IN_LTpath = $INPDIR/lightning #> lightning NOx input directory

set METpath = $INPDIR/met/mcip #> meteorology input directory

#set JVALpath = $INPDIR/jproc #> offline photolystis rate table directory

set OMIpath = $BLD #> ozone columne data for the photolysis model
set LUpath = $INPDIR/land #> BELD landuse data for windblown dust model
set SZpath = $INPDIR/land #> surf zone file for in-line seasalt emissions
set ICBC_CASE = 2013ef_v6_13g_s07 #> Version label for the ICBCs

set EMIS_CASE = 2013ef_v6_13g_s07_hg #> Version Label for the Emissions

___________ e ——

#> Begin Loop Through Simulation Days

#

set TODAYG = ${START_DATE}

set TODAYJ = “date -ud "${START_DATE}" +}Y%j~ #> Convert YYYY-MM-DD to YYYYJJJ
set STOP_DAY = “date -ud "${END_DATE}" +%Y%j~ #> Convert YYYY-MM-DD to YYYYJJJ

while ($TODAYJ <= $STOP_DAY) #>Compare dates in terms of YYYYJJJ

#> Retrieve Calendar day Information

set YYYYMMDD = “date -ud "${TODAYG}" +%Y)m%d~ #> Convert YYYV-MM-DD to YYYYMMDD
set YYMMDD = “date -ud "${TODAYG}" +)y’mid” #> Convert YYYY-MM-DD to YYMMDD
set YYYYJJJ = $TODAYJ

#> Calculate Yesterday's Date
set YESTERDAY = “date -ud "${TODAYG}-ldays" +4Y%m)d > #> Convert YYYY-MM-DD to YYYYJJJ

#
#> Input Files (Some are Day-Dependent)
#

#> Initial conditions
if ($NEW_START == true || $NEW_START == TRUE) then
setenv ICFILE ICON_20110630_bench.nc
setenv INITIAL_RUN Y #related to restart soil information file
rm -rf $LOGDIR/CTM_LOG*${RUNID}* # Remove all Log Files Since this is a new start
mkdir -p $0UTDIR
else
set ICpath = $0UTDIR
setenv ICFILE CCTM_CGRID_${RUNID}_${YESTERDAY}.nc
setenv INITIAL_RUN N
endif

28

#> Boundary conditions

set BCFILE = BCON_${YYYYMMDD}_bench.nc

#> Off-line photolysis rates

#set JVALfile

#> Ozone column data

set OMIfile

#> Optics

file

= JTABLE_${YYYYJJJ}

= 0OMI_1979_to_2015.dat

set OPTfile = PHOT_OPTICS.dat

#> MCIP meteorology files

setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv

setenv

#> Emissions files
if ($CTM_PT3DEMIS == 'N') then
#> Offline 3d emissions file name

set EMISfile =

else

GRID_BDY_2D $METpath/GRIDBDY2D_${YYMMDD}.nc
GRID_CRO_2D $METpath/GRIDCRO2D_${YYMMDD}.nc
GRID_CRO_3D $METpath/GRIDCRO3D_${YYMMDD}.nc
GRID_DOT_2D $METpath/GRIDDOT2D_${YYMMDD}.nc
MET_CRO_2D $METpath/METCRO2D_${YYMMDD}.nc
MET_CRO_3D $METpath/METCRO3D_${YYMMDD}.nc
MET_DOT_3D $METpath/METDOT3D_${YYMMDD}.nc
MET_BDY_3D $METpath/METBDY3D_${YYMMDD}.nc

LAYER_FILE $MET_CRO_3D # Deprecated: MET_CRO_3D is now read directly in CCTM

emis_mole_all_${YYYYMMDD} cb6_bench.nc

#> In-line emisstions configuration

set STKCASEG = 12US1_2011lek_cb6cmaq_v6_11g
set STKCASEE = 12US1_cmaq_cb6eb51_2011lek_cbbcmaq_v6_11g

set EMISfile = emis_mole_all_ ${YYYYMMDD}_cb6_bench.nc #> Surface emissions

setenv

setenv
setenv
setenv
setenv
setenv
setenv
setenv

setenv
setenv
setenv
setenv
setenv
setenv
endif

NPTGRPS 5

STK_GRPS_01
STK_GRPS_02
STK_GRPS_03
STK_GRPS_04
STK_GRPS_05
LAYP_STTIME
LAYP_NSTEPS

STK_EMIS_01
STK_EMIS_02
STK_EMIS_03
STK_EMIS_04
STK_EMIS_05
LAYP_STDATE

Stack Group Version Label
Stack Emission Version Label

#> Number of elevated source groups

$IN_PTpath/stack_groups/stack_groups_ptnonipm_${STKCASEG}.nc
$IN_PTpath/stack_groups/stack_groups_ptegu_${STKCASEG}.nc
$IN_PTpath/stack_groups/stack_groups_othpt_${STKCASEG}.nc
$IN_PTpath/stack_groups/stack_groups_ptfire_${YYYYMMDD}_${STKCASEG}.nc
$IN_PTpath/stack_groups/stack_groups_pt_oilgas_${STKCASEG}.nc

$STTIME

$NSTEPS

$IN_PTpath/ptnonipm/inln_mole_ptnonipm_${YYYYMMDD}_${STKCASEE}.nc
$IN_PTpath/ptegu/inln_mole_ptegu_${YYYYMMDD}_${STKCASEE}.nc
$IN_PTpath/othpt/inln_mole_othpt_${YYYYMMDD}_${STKCASEE}.nc
$IN_PTpath/ptfire/inln_mole_ptfire_${YYYYMMDD}_${STKCASEE}.nc
$IN_PTpath/pt_oilgas/inln_mole_pt_oilgas_${YYYYMMDD}_ ${STKCASEE}.nc
$YYYYJIJIJ

#> Lightning NOx configuration
if ($CTM_LTNG_NO == 'Y') then

29

#>

setenv LTNGNO "InLine" #> set LTNGNO to "Inline" to activate in-line calculation

In-line lightning NOz options
setenv USE_NLDN Y #> use hourly NLDN strike file [default: Y]
setenv LTNGPARAM Y #> use lightning parameter file [default: Y]

if ($USE_NLDN == Y) then
setenv NLDN_STRIKES $INPDIR/lightning/NLDN.12US1.${YYYYMMDD}_bench.nc

else
setenv LOG_START 2.0 #> RC value to transit linear to log linear

endif

setenv LTNGPARMS_FILE $INPDIR/lightning/LTNG_AllParms_12US1_bench.nc #> lightning parameter file;
endif
#> In-line biogenic emissions configuration
if ($CTM_BIOGEMIS == 'Y') then

set IN_BEISpath = ${INPDIR}/land

set GSPROpath = ${IN_BEISpath}

setenv GSPRO $GSPROpath/gspro_biogenics_1mar2017.txt

setenv B3GRD $IN_BEISpath/b3grd_bench.nc

setenv BIOG_SPRO B10C6 #> speciation profile to use for biogenics

setenv BIOSW_YN N #> use frost date switch [default: Y]

setenv BIOSEASON $IN_BEISpath/bioseason.12US1.2006.09apr2012_bench.nc #> ignore season switch fil

setenv SUMMER_YN N #> Use summer normalized emissions? [default: Y]

setenv PX_VERSION Y #> MCIP is PX version? [default: N]

setenv INITIAL_RUN Y #> non-existent or not using SOILINP [default: N]; default uses SOILINP
setenv SOILINP $0UTDIR/CCTM_SOILOUT_${RUNID}_${YESTERDAY}.nc
#> Biogenic NO soil imput file; ignore <f INITIAL_RUN =Y

endif

#> Windblown dust emissions configuration

if

($CTM_WB_DUST == 'Y') then

Input wvariables for BELD3 Landuse option

setenv DUST_LU_1 $LUpath/beld3_12US1_459X299_output_a_bench.nc
setenv DUST_LU_2 $LUpath/beld4_12US1_459X299_ output_tot_bench.nc
setenv MODIS_FPAR $LUpath/modis_bench.nc

if ($CTM_ERODE_AGLAND == 'Y') then
setenv CROPMAPO1 ${INPDIR}/land/BeginPlanting_12km_bench.nc
setenv CROPMAPO4 ${INPDIR}/land/EndPlanting_12km_bench.nc
setenv CROPMAPO8 ${INPDIR}/land/EndHarvesting_12km_bench.nc
endif

endif

#> In—-line sea salt emisisions configuration
setenv OCEAN_1 $SZpath/12US1_surf_bench.nc #> horizontal grid-dependent surf zone file

#> Bidiretional ammonia configuration

if

($CTM_ABFLUX == 'Y') then

setenv E2C_Soilfile ${INPDIR}/land/2011_US1_soil_bench.nc

setenv E2C_Fertfile ${INPDIR}/land/2011_US1_time${YYYYMMDD}_bench.nc
setenv B4LU_file ${INPDIR}/land/beld4_12kmCONUS_2006nlcd_bench.nc
setenv E2C_SO0IL ${E2C_Soilfile}

setenv E2C_FERT ${E2C_Fertfile}

30

setenv BELD4_LU ${B4LU_file}
endif

#
#> Output Files
R N
#> set output file name extensions
setenv CTM_APPL ${RUNID}_${YYYYMMDD}
#> set output file nmames

setenv S_CGRID "$0OUTDIR/CCTM_CGRID_${CTM_APPL}.nc" #> 3D Inst. Concenctrations
setenv CTM_CONC_1 "$0OUTDIR/CCTM_CONC_${CTM_APPL}.nc -v" #> On-Hour Concentrations
setenv A_CONC_1 "$0UTDIR/CCTM_ACONC_${CTM_APPL}.nc -v" #> Hourly Avg. Concentrations
setenv MEDIA_CONC "$OUTDIR/CCTM_MEDIA CONC_${CTM_APPL}.nc -v" #> NH3 Conc. in Media

setenv CTM_DRY_DEP_1 "$0UTDIR/CCTM_DRYDEP_${CTM_APPL}.nc -v" #> Hourly Dry Deposition
setenv CTM_DEPV_DIAG "$0UTDIR/CCTM_DEPV_${CTM_APPL}.nc -v" #> Dry Deposition Velocities
setenv CTM_PT3D_DIAG "$OUTDIR/CCTM_PT3D_ ${CTM_APPL}.nc -v" #>

setenv B3GTS_S "$OUTDIR/CCTM_B3GTS_S_${CTM_APPL}.nc -v" #> Biogenic Emissions

setenv SOILOUT "$0OUTDIR/CCTM_SOILOUT_${CTM_APPL}.nc" #> Soil Emissions

setenv CTM_WET_DEP_1 "$0UTDIR/CCTM_WETDEP1_${CTM_APPL}.nc -v" #> Wet Dep From All Clouds
setenv CTM_WET_DEP_2 "$OUTDIR/CCTM_WETDEP2_${CTM_APPL}.nc -v" #> Wet Dep From SubGrid Clouds
setenv CTM_VIS_ 1 "$O0UTDIR/CCTM_PMVIS_${CTM_APPL}.nc -v" #> On-Hour Visibility

setenv CTM_AVIS_1 "$0UTDIR/CCTM_APMVIS_${CTM_APPL}.nc -v" #> Hourly-Averaged Visibility
setenv CTM_PMDIAG_1 "$0UTDIR/CCTM_PMDIAG_${CTM_APPL}.nc -v" #> On-Hour Particle Diagnostics
setenv CTM_APMDIAG_1 "$OUTDIR/CCTM_APMDIAG_${CTM_APPL}.nc -v" #> Hourly Avg. Particle Diagnostic
setenv CTM_RJ_1 "$0UTDIR/CCTM_PHOTDIAG1_${CTM_APPL}.nc -v" #> Photolysis Rxn Diagnostics
setenv CTM_RJ_2 "$0UTDIR/CCTM_PHOTDIAG2_${CTM_APPL}.nc -v" #> Photolysis Rates QOutput
setenv CTM_SSEMIS_1 "$OUTDIR/CCTM_SSEMIS.${CTM_APPL}.nc -v" #> Sea Spray Emissions

setenv CTM_DUST_EMIS_1 "$OUTDIR/CCTM_DUSTEMIS.${CTM_APPL}.nc -v" #> Dust Emissions

setenv CTM_IPR_1 "$O0UTDIR/CCTM_PA_1_${CTM_APPL}.nc -v" #> Process Analysis

setenv CTM_IPR_2 "$0UTDIR/CCTM_PA_2_${CTM_APPL}.nc -v" #> Process Analysis

setenv CTM_IPR_3 "$OUTDIR/CCTM_PA_3_${CTM_APPL}.nc -v" #> Process Analysis

setenv CTM_IRR_1 "$OUTDIR/CCTM_IRR_1_${CTM_APPL}.nc -v" #> Chem Process Analysis
setenv CTM_IRR_2 "$OUTDIR/CCTM_IRR_2_${CTM_APPL}.nc -v" #> Chem Process Analysis
setenv CTM_IRR_3 "$0UTDIR/CCTM_IRR_3_${CTM_APPL}.nc -v" #> Chem Process Analysis
setenv CTM_DRY_DEP_MOS "$OUTDIR/CCTM_DDMOS_${CTM_APPL}.nc -v" #> Dry Dep

setenv CTM_DRY_DEP_FST "$OUTDIR/CCTM_DDFST_${CTM_APPL}.nc -v" #> Dry Dep

setenv CTM_DEPV_MOS "$OUTDIR/CCTM_DEPVFST ${CTM_APPL}.nc -v" #> Dry Dep Velocity

setenv CTM_DEPV_FST "$0UTDIR/CCTM_DEPVMOS_${CTM_APPL}.nc -v" #> Dry Dep Velocity

setenv CTM_VDIFF_DIAG "$OUTDIR/CCTM_VDIFF_DIAG_${CTM_APPL}.nc -v" #> Vertical Dispersion Diagnostic
setenv CTM_VSED_DIAG "$OUTDIR/CCTM_VSED_DIAG_${CTM_APPL}.nc -v" #> Particle Grav. Settling Velocit

setenv CTM_AQOD_1 "$0UTDIR/CCTM_AOD_DIAG_${CTM_APPL}.nc -v" #> Aerosol Optical Depth Diagnosti
setenv CTM_LTNGDIAG_1 "$OUTDIR/CCTM_LTNGHRLY_ ${CTM_APPL}.nc -v" #> Hourly Avg Lightning NO
setenv CTM_LTNGDIAG_2 "$OUTDIR/CCTM_LTNGCOL_${CTM_APPL}.nc -v" #> Column Total Lightning NO

#> set floor file (neg concs)
setenv FLOOR_FILE ${0UTDIR}/FLOOR_${CTM_APPL}.txt

#> create output directory
if (! -d "$0UTDIR") mkdir -p $OUTDIR

#> look for existing log files and output files

set log_test = “1ls CTM_LOG_777.${CTM_APPL}"

set OUT_FILES = "${FLOOR_FILE} ${S_CGRID} ${CTM_CONC_1} ${A_CONC_1} ${MEDIA_CONC} \
${CTM_DRY_DEP_1} $CTM_DEPV_DIAG $CTM_PT3D_DIAG $B3GTS_S $SOILOUT $CTM_WET_DEP_1\

31

$CTM_WET_DEP_2 $CTM_VIS_1 $CTM_AVIS_1 $CTM_PMDIAG_1 $CTM_APMDIAG_1
$CTM_RJ_1 $CTM_RJ_2 $CTM_SSEMIS_1 $CTM_DUST_EMIS_1 $CTM_IPR_1 $CTM_IPR_2
$CTM_IPR_3 $CTM_IRR_1 $CTM_IRR_2 $CTM_IRR_3 $CTM_DRY_DEP_MOS
$CTM_DRY_DEP_FST $CTM_DEPV_MOS $CTM_DEPV_FST $CTM_VDIFF_DIAG $CTM_VSED_DIAG
$CTM_AOD_1 $CTM_LTNGDIAG_1 $CTM_LTNGDIAG_ 2"

set OUT_FILES = “echo $0UT_FILES | sed "s; -v;;g" °

echo $0UT_FILES

set out_test = “1ls $0UT_FILES™

#> delete previous output if requested
if ($DISP == 'delete') then
#> remove previous log files
echo " ancillary log files being deleted"
foreach file ($log_test)
echo " deleting $file"
/bin/rm -f $file
end

#> remove previous output files
echo " output files being deleted"
foreach file ($out_test)

echo " deleting $file"

/bin/rm -f $file

end
else

#> remove previous log files

if ("$log_test" != "") then
echo "xx*x Logs exist - run ABORTED x*x*x"
echo "#x*x To overide, set $DISP == delete in run_cctm.csh **x"
echo "xxx and these files will be automatically deleted. *x*x*"
exit 1

endif

#> remove previous output files
if ("$out_test" != "") then
echo "xxx Qutput Files Exist - run will be ABORTED "
foreach file ($out_test)
echo " cannot delete $file"
/bin/rm -f $file

end
echo "xxx To overide, set $DISP == delete in run_cctm.csh *x*x*"
echo "*xxx and these files will be automatically deleted. **x"
exit 1
endif
endif

#> for the run control

setenv CTM_STDATE $YYYYIJJ
setenv CTM_STTIME $STTIME
setenv CTM_RUNLEN $NSTEPS
setenv CTM_TSTEP $TSTEP

setenv EMIS_1 $EMISpath/$EMISfile
setenv INIT_GASC_1 $ICpath/$ICFILE

32

~

setenv INIT_AERO_1 $INIT_ GASC_1
setenv INIT_NONR_1 $INIT_GASC_1
setenv INIT_TRAC_1 $INIT_GASC_1
setenv BNDY_GASC_1 $BCpath/$BCFILE
setenv BNDY AERO_1 $BNDY_GASC_1
setenv BNDY NONR_1 $BNDY GASC_1
setenv BNDY_TRAC_1 $BNDY_GASC_1
setenv OMI $0MIpath/$0MIfile

setenv OPTICS_DATA $0MIpath/$0PTfile
#setenv XJ_DATA $JVALpath/$JVALfile
set TR_DVpath = $METpath

set TR_DVfile = $MET_CRO_2D

#> species defn & photolysis

setenv gc_matrix_nml ${NMLpath}/GC_$MECH.nml

setenv ae_matrix_nml ${NMLpathl}/AE_$MECH.nml

setenv nr_matrix_nml ${NMLpathl}/NR_$MECH.nml

setenv tr_matrix_nml ${NMLpath}/Species_Table_TR_O.nml

#> check for photolysis input data
setenv CSQY_DATA ${NMLpath}/CSQY_DATA_$MECH

if (! (-e $CSQY_DATA)) then
echo " $CSQY_DATA not found "
exit 1

endif

if (! (-e $0OPTICS_DATA)) then
echo " $0PTICS_DATA not found "
exit 1

endif

#
#> Execution Portion

#

#> Print attributes of the exzecutable
1s -1 $BLD/$EXEC; size $BLD/$EXEC
unlimit

limit

date

#> Ezecutable call for single PE, uncomment to invoke
/usr/bin/time $BLD/$EXEC

#> Ezecutable call for multt PE, configure for your system
set MPI = /usr/local/intel/impi/3.2.2.006/bin64

set MPIRUN = $MPI/mpirun

time mpirun -r ssh -np $NPROCS $BLD/$EXEC

date

#

#> Finalize Run for This Day and Loop to Next Day

33

=== = = = = = = ==

#> Save Log Files and Move on to Next Simulation Day
mv CTM_L0OG_777.${CTM_APPL} $LOGDIR

#> The next simulation day will, by definition, be a restart
setenv NEW_START false

#> Increment both Gregorian and Julian Days
set TODAYG = “date -ud "${TODAYG}+1ldays" +%Y-Ym-%d~ #> Add a day for tomorrow
set TODAYJ “date -ud "${TODAYG}" +%Y%j"~ #> Convert YYYY-MM-DD to YYYYJJJ

end #Loop to the next Simulation Day

exit

8.5 Testing and Distribution of Development Source Code

The CMAS Center collects, tests, and distributes various operational and development versions of CMAQ
through the web site <http://www.cmaq-model.org>. An archive of official releases (both current and
past) and development versions of CMAQ is available to the user community. The CMAQ-MADRID and
CMAQ-AMSTERDAM developed by AER, Inc. under funding from the Electric Power Research Institute
can be downloaded from this archive. As a benefit to the CMAQ community, CMAS periodically updates its
documentation on testing such development code versions to include additional feedback as it becomes avail-
able, based on users’ experiences with these versions. Questions or comments about development versions
of CMAQ such as CMAQ-MADRID should be directed to the developers at AER. Questions or comments
about downloading the source code and associated documentation, and on the software development guide-
lines, may be directed to <http://www.cmascenter.org>.

Based on the insights gained from the testing and archiving of a development version of the model such
as CMAQ-MADRID, CMAS recommends the following steps as the minimum level of coding and testing
practices to be adopted by developers wishing to contribute code to the public CMAQ archive:

1. To make the best use of the CMAQ features in developing new code, the developer should review the
coding conventions that are provided in the previous sections of this chapter. Also see the EPA CMAQ
Science Document].

2. New code should be built using the current operational CMAQ version as a template whenever possible.
This will facilitate consistency in coding practices, including naming conventions, in-line documentation,
and the specification of compile time versus run-time parameters.

3. Before submitting source code to the CMAS Center, the developer should verify that the code is
consistent with the operational CMAQ version from which it was built, especially in the use of common
INCLUDE files (such as horizontal and vertical grid definition files) and run-time parameter settings.
Mixing code from different operational versions of the CMAQ model within the same development
code version can lead to problems in using the generalized CMAQ scripts.

4. Comprehensive documentation or other references to peer-reviewed literature should be provided for
any new science algorithms include in the source code.

5. The developer must document the computational platform used for the testing, including type and
speed of the processor(s), the compiler version used, and CPU usage. It is recommended that developers
use any combination of the above for testing code intended for release through the CMAS Center, to
facilitate benchmarking and portability testing by CMAS staff. Any documentation on potential
differences in model outputs between different computing platforms would be useful for end-users who
may not be able to duplicate the platform on which the model was initially developed and tested. To
this end, code testing and documentation of test results by developers, using more than one platform
if available, are highly desirable.

34

http://www.cmaq-model.org/
http://www.cmascenter.org/
http://www.epa.gov/asmdnerl/CMAQ/CMAQscienceDoc.html
http://www.epa.gov/asmdnerl/CMAQ/CMAQscienceDoc.html

6. The developer should provide all input data for the test case so that interested users may attempt to
run the code and reproduce the results on their own platforms.

7. It is recommended that benchmark results from the testing be provided for at least one 5-day simulation.
Shorter simulations do not provide adequate results from which to discern model trends beyond the
spin-up period.

8. When making incremental changes to model science, the developer should provide documentation of
the results, including (a) the results for all variables that show a deviation of greater than 1.0e10-6 ppm
for the gas-phase species or 1.0e10-4 pg m-3 for the particulate species from the base model results for
the same case, (b) an analysis of what was done to understand these differences, and (c¢) conclusions
of the analysis.

9. Note that more than one simulation may be necessary to adequately demonstrate seasonal or regional
biases, if any, in the results. It is also understood that with models still under development, the
analysis may not resolve all differences from the operational model results. It is recommended that
these unresolved issues also be documented.

Model developers are also recommended to check the CMAS website to see if there are any additional
guidelines that have been recommended since the first set listed above.

8.6 References for Chapter 11: Code Management

Fine, S. S., W. T. Smith, D. Hwang, T. L. Turner, 1998: Improving model development with configuration
management, IEEE Computational Science and Engineering, 5(1, Ja-Mr), 56-65.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, 1991: Object-Oriented Modeling and
Design, Prentice Hall

Young, J. O.,” "Integration of Science Code into Models-3, 1999. In Science Algorithms of the EPA Models-
3 Community Multiscale Air Quality (CMAQ) Modeling System, D. W. Byun and J. K. S. Ching (ed.),
EPA/600/R-99/030, U. S. EPA, Research Triangle Park, NC.

35

	Developers' Guide for the Community Multiscale Air Quality (CMAQ) Modeling System
	Disclaimer

	Motivation
	Summary of Developer Workflow
	Development Life-cycle
	Public Release Versions
	Development Versions

	Making Contributions
	Get in touch
	Nuts and Bolts
	Code Review
	Code Consistency
	Benchmark Testing
	Documentation Requirements

	Ongoing Support

	Copyright Information
	Appendix
	Appendix 1: Compiler Tests
	Compilation Testing Manifest Table (Example)

	Appendix 2: Model Performance Test Metadata

	Code Management and Development
	Source Code Management
	The need for a configuration-management tool
	Choice of a configuration-management tool
	git Explained

	Guidelines for Developing New CMAQ Source Code
	Object-oriented concepts
	Global name data table
	Thin Interface
	Coding guidelines
	Documentation guidelines
	Science process code template

	Compiling CMAQ with New Source Code
	Guidelines to Writing Shell Scripts for CMAQ
	Testing and Distribution of Development Source Code
	References for Chapter 11: Code Management

