RADCAL

A Fundamental Breakthrough in Detecting Atmospheric Radicals.

TOWARDS ATMOSPHERIC RADICAL SENSING: FABRICATION OF JUNCTIONLESS TRANSISTORS

M. B. Khan ^a, S. Ghosh ^a, V. Vardhan ^b, S. Biswas ^b T. Maciel ^b,

J. D. Holmes^b, A. Erbe^a, Y. M. Georgiev^{a, c}

^a Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany

^b University College, Cork, Ireland

^c Institute of Electronics at the Bulgarian Academy of Sciences, Sofia, Bulgaria

 $\langle \bigcirc \rangle$

The RADICAL project has received funding from the Durapean Unior's Horizon 2020 research and innovation programme under grant agreement number 899282.

I. JUNCTIONLESS NANOWIRE TRANSISTOR (JNT)

II. FABRICATION PROCESS

JNT has:

- Either n- or p-type doping and thus no ultra-steep doping profile
- Simplified fabrication process
- Nanoscale dimensions with high surface-to-volume ratio: ideal for sensing.

Highly phosphorous doped silicon-on-insulator substrates used.

III. ELECTRICAL CHARACTERIZATION

Transfer characteristics of different devices in ambient (air) and vacuum conditions

Single nanowire (NW) based device

NW array based device

IV. INITIAL SENSING EXPERIMENTS

Change in electron (n) and hole (p) current at different concentration of NO₂ gas:

NO₂ is a strong oxidizing gas and acts as an electron acceptor

• Exposure of nanowires to NO₂ leads to an increase in hole current and decrease in electron current.

Transfer characteristics:

BG 20 NWs in an array

- Higher on-currents than the single NW
- Better for sensing application

Dr. Muhammad Bilal Khan Institute of Ion Beam Physics and Materials Research, HZDR, Dresden, Germany.

+49 351 260 3896 m.khan@hzdr.de

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF