
Supplementary	Table	1:	the	inventory	of	different	objective	functions.	Each	objective	function	is	categorized	based	on	the	mathematical	
formulation	of	the	objective,	type	of	the	problem,	goal	of	the	study	and	the	need	of	reformulation.		
The	 following	 abbreviations	 are	 used	 in	 the	 table:	 Lin:	 Linear,	 Quad:	 Quadratic,	 Lin	 Frac:	 Linear	 Fractional,	 Quad	 Frac:	 Quadratic	
Fractional,	NonLin:	Nonlinear,	LP:	Linear	Programming,	MILP:	Mixed	Integer	Linear	Programming,	QP:	Quadratic	Programming,	MIQP:	
Mixed	 Integer	 Quadratic	 Programming,	 MIQCP,	 Mixed	 Integer	 Quadratically	 Constrained	 Programming,	 FLP:	 Fractional	 Linear	
Programming,	 MIFLP:	 Mixed	 Integer	 Fractional	 Linear	 Programming,	 QFP:	 Quadratic	 Fractional	 Programming,	 MO:	 Multi-Objective	
Optimization,	BL:	Bi-Level	Optimization,	Phys:	Physiology,	App:	Application,	DI:	Data	 Integration,	C:	Consistent,	RN:	Reformulation	 is	
Needed.		
The	meaning	of	the	special	signs:	#	represents	the	original	problem	before	reformulation.	&	represents	a	type	of	problem	that	should	be	
normally	reformulated,	but	in	this	case,	it	is	solved	directly	without	reformulation.	×	represent	the	reformulations	that	are	provided	in	
this	paper.	 	



	

	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

1	
Max.	biomass	
(growth	rate)	 *	 	 	 	 	 *	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 (1-6)	

2	 Max.	ATP	yield	 *	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 (3,	7)	

3	
Min.	the	overall	

flux	
	 *	 	 	 	 	 	 *	 *	 	 	 	 	 	 	 *	 	 	 *	 	 (8-10,	

82)	

4	
Max.	ATP	per	flux	
unit	(sum	of	
fluxes)	

	 	 *	 	 	 *	 	 	 	 	 #	 	 	 	 	 *	 	 	 	 *	 11	

5	
Min.	redox	
potential	 *	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 12	

6	
Min.	ATP	
production	 *	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 12	

7	
Max.	ATP	
production	 *	 	 	 	 	 *	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 (12-14)	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

8	

Max.	the	number	
of	reactions	whose	

activity	is	
consistent	with	
their	expression	

state	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 15	

9	

Min.	the	
inconsistency	
between	gene	
expression	and	
flux	values	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 (16,	17)	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

10	

Min.	the	number	
of	reactions	that	
carry	flux	and	

produce	a	specific	
set	of	metabolites	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 10	

11	

Max.	the	
consistency	

between	relative	
experimentally	
observed	changes	
in	gene	expression	
and	metabolite	
changes	with	the	

flux	levels	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 18	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

12	

Max.	the	
correlation	
between	gene	
expression	and	

fluxes	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 19	

13	
Min.	Growing	
Reaction	Set	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 20	

14	

Max.	
bioengineering	
objective	for	the	
outer	and	max.	
biomass	for	the	
inner	problem	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 *	 21	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

15	

Max.	a	linear	
combination	of	
fluxes	with	

penalty	terms	for	
the	total	number	
of	gene	deletions	

or	over-
expressions	for	

the	outer	and	Max.	
biomass	for	the	
inner	problem	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 *	 22	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

16	
Min.	metabolic	
adjustment	 *	 *	 	 	 	 *	 	 *	 	 	 	 	 	 	 	 *	 	 	 *	 	 (23,	24)	

17	

Min.	the	number	
of	significant	flux	
changes	after	
perturbation	

*	 	 	 	 	 *	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 25	



18	

Min.	the	sum	of	
squared	
differences	
between	flux	

variables	and	MFA	
estimates	

weighted	by	the	
reciprocal	of	
confidence	

intervals,	and	the	
sum	of	squared	

enzyme	
contributions	
weighted	by	the	
reciprocal	of	
enzyme	

expression	values	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 *	 	 26	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

19	

Min.	the	relative	
flux	changes	from	
a	reference	state	
for	reactions	
active	in	the	
reference	state	
and	the	enzyme	
contribution	
increases	for	

enzymes	inactive	
in	the	reference	
state	with	a	
penalty	α	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 *	 	 	 *	 	 26	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

20	
Min.	sum	of	

squared	internal	
fluxes	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 *	 	 	 *	 	 27	

21	

Opt.	the	level	of	
pattern	regulation	
and	the	level	of	
differential	gene	
expression	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 28	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

22	

Min.	the	variance	
of	weighted	sum	
of	squared	

residuals	between	
measured	and	
computed	

massisotopomer	
distributions	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 *	 	 29	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

23	

Min.	the	difference	
between	

measured	and	
predicted	

metabolite	uptake	
and	secretion	

rates	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 *	 	 (29,	30)	

24	

Min.	the	total	
metabolite	

concentrations	
and	total	enzyme	
concentrations	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 *	 	 	 *	 	 31	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

25	
Min.	the	total	sum	
of	absolute	fluxes	 *	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 32	

26	
Min.	the	number	
of	active	reactions	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 33	

27	
Min.	the	sum	of	
nutrient	import	

costs	
*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 34	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

28	

Min.	number	of	
nonnative	

reactions	needed	
to	meet	the	
identified	

maximum	yield	for	
the	outer	and	Max.	
the	yield	on	a	

weight	basis	of	a	
particular		product	

for	the	
inner1	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 ×	 35	

 
1 They solved it by solving the inner problem first and then, they added the inner problem as a constraint to the outer problem. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

29	

Min.	the	difference	
between	

experimentally	
measured	

absolute	gene	
expression	data	
and	predicted	
internal	reaction	
fluxes	weighted	by	
confidence	level	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 36	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

30	

Max.	the	
agreement	

between	fluxes	
and	gene	
expression	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 37	

31	

Min.	of	Manhattan	
distance	between	
the	reference	
metabolite	
turnover	and	

mutant	metabolite	
turnover	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 38	

32	
Max.	biomass	
turnover	 *	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 38	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

33	
Max./Min.	ATP	
turnover	per	
glucose	uptake	

	 	 *	 	 	 *	 	 	 	 	 #	 	 	 	 	 *	 	 	 	 *	 38	

34	
Max./Min.	NADH	
turnover	per	
glucose	uptake	

	 	 *	 	 	 *	 	 	 	 	 #	 	 	 	 	 *	 	 	 	 *	 38	



35	

Min.	the	sum	of	
squared	error	
between	

measured	fluxes	
and	their	

predicted	values	
from	the	model	for	
the	outer,	Max.	the	
sum	of	all	possible	
objectives	for	the	
inner	and	weights	
are	chosen	from	
the	upper	level	

problem	

	 *	 	 	 	 	 	 	 *	 	 	 	 	 	 #	 	 	 *	 	 *	 39	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

36	

Min.	error	for	the	
outer,	

Max.	a	linear	
combination	of	
objective	

functions	for	the	
inner2	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 #	 	 	 *	 	 *	 40	

 
2 They did not mention how to solve the bilevel problem. 



37	

Max.	3	objectives:	
biomass	yield,	
weighted	sum	of	
all	of	the	NADPH-

producing	
reactions	in	the	
model,	and	the	
weighted	sum	of	
all	NADPH-
producing	

reactions	with	the	
exception	of	the	
trans-hydrogenase	

reaction3	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 	 *	 41	

 
3 They used epsilon-constraint method. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

38	

Max.	the	
extracellular	
biomass	

concentration	for	
the	outer	and	Max.	
biomass	yield	for	

the	inner	

	 	 	 	 *	 	 	 	 	 	 	 	 	 	 &	 *	 	 	 	 *	 42	



39	

Min.	a	flux	ratio	of	
interest	subject	to	
media	changes	

and	gene	deletions	
for	the	inner	

problem.	Min.	the	
number	of	

deletions	such	that	
the	minimum	flux	
ratio	is	positive,	
ensuring	that	
coupling	occurs	
between	a	

measurable	flux	
and	the	chosen	

reaction	

	 	 *	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 *	 43	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

40	

Min.	the	set	of	
possible	
exchanged	
metabolites	
between	two	

organisms	1	and	2	
that	can	grow	
simultaneously	
under	a	specified	

condition	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 44	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

41	

Min.	weighted	sum	
of	flux	magnitudes	
(weighted	by	

mRNA	expression	
level)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 45	

42	

Min.	the	distance	
between	

nearoptimal	
polytope	and	
mutant	solution	

space	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 *	 	 	 *	 	 46	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

43	

Min.	the	number	
of	active	fluxes	to	
achieve	the	
maximal	yield	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 47	

44	
Min.	of	minmax	
scaled	metabolic	
adjustment	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 *	 	 	 *	 	 48	

45	

Min.	the	metabolic	
adjustment,	each	
reaction	is	scaled	
by	its	reference	

flux	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 *	 	 	 *	 	 49	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

46	

Min.	the	deviation	
of	fluxes	from	

experimental	data	
for	the	outer	and	
Max.	of	flux	

through	a	generic	
objective	reaction	
for	the	inner	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 #	 	 	 *	 	 *	 (50,	51)	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

47	

Max.	the	similarity	
with	fluxomics	

and	metabolomics	
data	for	the	outer	
and	Min.	the	
squared	sum	of	
fluxes	for	the	

inner4	

	 *	 	 	 	 	 	 	 	 	 	 	 	 	 &	 	 	 *	 *	 	 52	

 
4 Nested Hybrid Differential Evolution was used to solve it. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

48	

Min.	(1)	the	
overall	flux	and	
(2)	glucose	

consumption,	Max.	
of	(3)	biomass,(4)		
ATP	production	
and	(5)	NADPH	
production	

(weighted	sum)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 	 ×	 53	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

49	

Min.	sum	of	
substrates	(or	
light)	uptake	
subject	to	an	
experimentally	
observed	growth	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 (54,	55)	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

50	

Min.	the	distance	
between	dFBA	

growth	and	kinetic	
model	growth	for	
the	outer	and	Min.	
(1)	the	sum	of	
fluxes	and	Max.	

(2)	growth	rate	for	
the	inner	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 #	 #	 *	 	 *	 	 *	 56	

51	
Max.	biomass	per	

unit	flux5	
	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 	 *	 	 (57-59)	

 
5 The objective is fractional quadratic without any proposed reformulation. The last reference solved it as an NLP. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

52	

Min.	the	sum	of	all	
fold-changes	for	
all	genes	with	
increased	

expression	in	the	
evolved	strain	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 58	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

53	

Max.	community	
growth	(or	any	
communitylevel	
objective)	for	the	
outer	and	Max.	

species	growth	(or	
any	specieslevel	
objective)	for	the	

inner	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 #	 *	 	 	 	 *	 60	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

54	

Min.	Euclidean	or	
Manhattan	

distance	between	
a	loopless	flux	
profile	and	a	flux	
profile	with	loops	

*	 *	 	 	 	 	 *	 	 *	 	 	 	 	 	 	 *	 	 	 *	 	 6	

55	

Min.	the	distance	
of	ratios	between	
fluxes	in	predicted	
and	observed	flux	

profiles	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 61	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

56	
Max.	ATP	yield	per	
unit	of	flux	(sum	of	
squared	fluxes)6	

	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 	 *	 	 62	

57	

Min.	the	number	
of	reactions	that	
can	violate	bounds	
imposed	by	kinetic	
laws	(the	kinetic	
laws	were	used	to	
define	reactions	

bounds)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 63	

 
6 The original problem is fractional quadratic programming 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

58	

Min.	the	number	
of	dispensable	
(nonessential)	
reactions	for	the	
outer	and	Max.	the	

weight	of	
similarity	with	
transcriptomics	
data	for	the	inner	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 	 *	 	 *	 64	



59	

Max.	
bioengineering	
objective	for	the	
outer	and	Max.	2	
objectives7	for	the	
inner	problem:	
biomass	and	
redirection	

toward	producing	
the	target	
compound	

(redirection	is	
formulated	as	the	
effect	of	reaction	
perturbation	on	
the	production	of	

target)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 #	 #	 	 *	 	 	 *	 65	

 
7 Weighted sum is used for MO. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

60	

Max.	
bioengineering	
objective	for	the	
outer	and	max.	2	
objectives8	for	the	
inner	problem:	
biomass	and	the	
opposite	of	sum	of	
fluxes	(i.e.	min.	
sum	of	fluxes)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 *	 66	

 
8 Weighted sum is used for MO. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

61	

Min.	the	
metabolite	

turnover	(i.e.	the	
sum	of	absolute	
incoming	and	

outcoming	fluxes	
for	a	metabolite)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 67	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

62	

Max.	the	weighted	
sum	for	patterns	
of	gene	activation	
and	inactivation	to	
find	the	one	that	is	
statistically	match	

better	with	
transcriptomics	

data	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 68	

63	
Min/Max	free	
Gibbs	energy	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 (69,	70)	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

64	

Min.	metabolic	
adjustment	and	
the	opposite	of	
one	of	these	
objectives:	1.	
Growth,	2.	ATP	
yield,	3.	Glucose	
uptake,	4.	Ethanol	

yield9	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 #	 	 *	 	 	 	 *	 71	

 
9 Weighted sum is used to handle MO 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

65	

Min.	the	sum	of	
fluxes	and	the	

opposite	of	one	of	
these	objectives:	1.	
Growth,	2.	ATP	
yield,	3.	Glucose	
uptake,	4.	Ethanol	

yield10	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 	 *	 71	

 
10 Weighted sum is used to handle MO 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

66	

Min.	the	sum	of	
fluxes	of	reactions	
to	produce	each	
metabolite	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 72	

67	
Min.	the	import	of	
energy	(plants)	 *	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 73	

68	

Min.	the	ATP	
hydrolysis	in	
maintenance	
reaction	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 73	

69	
Max.	the	

production	of	
proton	(H+)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 74	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

70	

Max.	the	sum	of	
exchange	fluxes	

(Max.	the	
difference	

between	outflux	
and	influx	as	a	
proxy	of	

catabolism)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 74	



71	

Max.	the	ATP	
requirement	for	
growth	and	Min.	
the	L1	norm	of	
difference	
between	

production	of	
other	biomass	

reactants	and	ATP	
requirement	
(different	
definition	of	
growth	by	

disjoining	biomass	
reactants)11	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 	 *	 75	

 
11 Weighted sum is used for MO. 



72	

Max.	the	minimum	
product	rate	at	the	
maximum	cellular	

growth	in	
different	cellular	
modules	for	the	
outer12	and	Max.	
the	minimum	

product	rate	at	the	
maximum	cellular	
growth	in	each	
cellular	module	
for	the	inner	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 #	 #	 	 *	 	 	 *	 76	

 
12 Both weighted sum and goal programming were used for MO. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

73	

Max.	the	minimum	
product	synthesis	
rate	at	the	non-
growth	state	(𝜇 =
0)	in	different	
cellular	modules	
for	the	outer13	and	

Max.	the	the	
minimum	product	
synthesis	rate	at	
the	non-growth	
state	in	each	

cellular	module	
for	the	inner	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 #	 #	 	 *	 	 	 *	 76	

 
13 Both weighted sum and goal programming were used for MO. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

74	

Min.	the	weighted	
sum	of	absolute	
fluxes	where	the	
weight	of	each	
reaction	is	

proportional	to	
the	length	of	its	
proteins	(as	a	
proxy	of	protein	
synthesis	cost)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 77	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

75	

Max.	the	weighted	
sum	of	absolute	
fluxes	where	the	
weight	of	each	
reaction	is	

proportional	to	its	
abundance	in	
proteomics	data	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 78	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

76	

Max.	the	
production	of	a	

specific	metabolite	
(e.g.	Mycolic	acid	

or	lactate)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 (79,	80)	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

77	

Min.	the	absolute	
difference	
between	two	
steadystate	flux	
profiles	for	two	

different	
conditions,	each	
scaled	by	its	
corresponding	
vector	of	

experimental	data	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 81	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

78	

Min.	the	total	sum	
of	mass	flow	(sum	
of	fluxes	weighted	

by	reactant	
molecular	weight)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 83	

79	

Max.	the	rate	of	
protein	translation	
(the	translation	
reaction	for	a	

protein	is	added	to	
the	metabolic	
network)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 84	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

80	
Min./Max.	iron	
acquisition14	 *	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 85	

81	

Min.	the	level	of	
lactate	

dehydrogenase	as	
an	indicator	of	
cytotoxity	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 85	

82	
Min.	the	reactive	
oxygen	species	

(ROS)	
*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 86	

 
14 To study host-pathogen interaction. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

83	

Max.	the	biomass	
yield	and	ATP	

yield	and	Min.	the	
sum	of	fluxes	in	a	
multi-objective	
formulation15	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 	 *	 87	

84	

Max.	biomass	
divided	by	a	

weighted	sum	of	
square	of	fluxes	
and	square	of	ATP	

production	

	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 	 *	 	 59	

 
15 Epsilon-constraint method was used to handle MO. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

85	

Max.	the	growth	
and	Min.	the	
deviation	of	
system	from	
steady	state	
assumption	
(assuming	

uncertainty	in	
stoichiometric	

network	the	error	
for	Sv=0	is	
minimized)16	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 	 *	 88	

 
16 Weighted sum was used to handle MO. 



86	

Min.	the	Euclidean	
distance	between	
flux	predictions	

and	
experimentally	
observed	fluxes	
for	the	outer	and	
Max.	the	weighted	
sum	of	multiple	
linear	objectives	
for	the	inner	(to	
find	the	most	

relevant	objectives	
and	their	weights)	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 #	 #	 *	 	 *	 	 *	 89	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

87	

Min	the	sum	of	
forward	and	

backward	fluxes,	
where	the	
backward	
weighted	by	

thermodynamic	
equilibrium	
constant	as	an	
indicator	of	

thermodynamic	
effort	to	reverse	
the	directionality	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 90	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

88	

Max.	the	flux	in	
different	
metabolic	

pathways	(each	
pathway	

represents	a	
metabolic	
function)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 91	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

89	

Max.	the	number	
of	active	reactions,	
supplementing	
unlimited	

substrate,	to	find	
the	blocked	
reactions17	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 	 *	 	 92	

 
17 Originally MILP, but can be relaxed to LP 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

90	

Min.	the	number	
of	reactions	to	be	
added	to	the	

model	to	rescue	
growth	in	a	

certain	condition,	
where	each	
reaction	is	

weighted	based	on	
its	biochemical	

and	
thermodynamic	
favorability	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 *	 *	 	 92	



91	

Min.	the	number	
of	reactions	(each	

reaction	is	
weighted	based	on	
its	biochemical	

and	
thermodynamic	
favorability)	to	be	
removed	from	the	
model	to	suppress	

growth	in	a	
certain	condition	
for	the	outer,	
while	Max.	the	
growth	in	the	

normal	condition	
for	the	inner	(to	
maintain	growth	
in	the	wildtype)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 *	 	 *	 92	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

92	

Min.	growth	for	
the	outer	and	Max.	
the	growth	for	the	
inner	to	find	the	
minimal	number	
of	reaction	
removals	to	

suppress	growth	
in	a	specific	
condition	(the	
number	of	

reaction	removals	
is	constrained)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 *	 	 *	 (93,	94)	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

93	

Min.	the	number	
of	reactions	to	be	
added	to	the	

model	to	rescue	
growth	in	a	

certain	condition,	
where	each	
reaction	is	

weighted	equally	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 *	 *	 	 93	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

94	

Min.	the	number	
of	reactions	to	be	
added	to	the	

model	to	rescue	
growth	in	a	

certain	condition,	
where	each	
reaction	is	

weighted	based	on	
information	about	
its	metabolites	

and	
thermodynamic	
favorability	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 *	 *	 	 95	



95	

Max.	the	error	
correction	for	
false	negative	

growth	
predictions	

(prediction	of	zero	
growth	when	

growth	is	known	
to	occur),	Min.	the	
error	introduction	
for	false	positives	
(prediction	of	
growth	when	no	

growth	is	
expected)	and	
Min.	the	number	
of	reactions	to	be	
added	(gap	filling	
reconciliation)18	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 #	 	 	 *	 *	 	 *	 95	

 
18 Weighted sum is used to handle MO. 



96	

Max.	the	chance	of	
high	scored	

reactions	to	be	
included	and	Min.	
the	chance	of	low	
scored	reactions	
to	be	removed	
from	a	generic	
parent	model	to	
make	it	organism	
specific	(the	
scores	are	

calculated	by	gene	
alignment	for	the	
genes	associated	
to	the	reactions)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 #	 	 	 *	 *	 	 *	 96	



97	

Min.	the	number	
of	reactions	to	be	
added	to	the	

model	to	rescue	
growth	in	a	

certain	condition,	
where	each	
reaction	is	

weighted	based	on	
the	reverse	of	its	
similarity	score	
(the	scores	are	

calculated	by	gene	
alignment	for	the	
genes	associated	
to	the	reactions)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 *	 *	 	 96	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

98	

Max.	the	Min.	(min	
mix	problem)	
bioengineering	
objective	for	the	
outer	and	max.	
biomass	for	the	
inner	problem	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 *	 97	

99	

Max.	growth	and	
Max.	production	of	

natural	
byproducts19	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 	 *	 98	

 
19 Epsilon-constraint method is used to handle MO. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

100	

Max.	growth	for	
the	outer,	Min.	the	

violation	of	
transcription	
regulatory	

constraints	for	the	
inner20	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 #	 	 	 *	 	 *	 99	

101	

Max.	growth,	Min.	
the	violation	of	
transcription	
regulatory	
constraints21	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 	 	 *	 	 *	 100	

 
20 There was no method mentioned for the conversion of bilevel optimization.  
21 Weighted sum is used for MO. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

102	

Min.	the	number	
of	reactions	

carrying	flux	(by	
assigning	a	cost	to	
them)	to	make	

sure	that	a	certain	
reaction	carries	

flux	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 101	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

103	

Max.	growth	and	
Max.	production	of	
the	product	and	

Min.	the	
production	of	
undesired	
byproducts	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 #	 	 	 *	 	 	 *	 102	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

104	

Min.	the	number	
of	reactions	to	be	
added	to	the	

model	
(heterologous	
reactions)	to	

satisfy	a	minimum	
yield	for	the	

production	of	a	
metabolite	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 *	 	 103	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

105	

Min.	the	number	
of	active	reactions	
between	two	
metabolites	(i.e.	
finding	the	
shortest	path	
taking	steady-
state	feasibility	
into	account)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 104	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

106	

Min.	the	number	
of	active	reactions	
between	two	

metabolites	each	
weighted	by	the	
number	of	its	
reactants	and	
products	(i.e.	

finding	the	lightest	
path)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 105	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

107	

Min.	the	number	
of	all	elemental	
transfers	in	a	

reaction,	Min.	the	
diversity	of	
elemental	

exchanges	and	
Max.	the	transfer	

score22	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 #	 	 *	 	 	 	 *	 106	

 
22 Weighted sum is used to handle MO. 



108	

Max.	the	sum	of	
binary	variables	
showing	the	
presence	of	a	

pathway	between	
two	metabolites	
weighted	by	a	
large	number	

minus	the	length	
of	this	pathway	(to	
find	the	shortest	
pathway,	while	
keeping	the	

problem	always	
feasible)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 106	



109	

Max.	the	sum	of	
binary	variables	
showing	the	
presence	of	a	

pathway	between	
two	metabolites	
weighted	by	a	
large	number	

minus	the	sum	of	
flow	variables	

each	divided	by	its	
found	flux	in	FBA	
(to	find	the	most	
active	pathways	in	

FBA)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 106	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

110	

Max.	the	uptake	of	
a	specific	

substrate	(e.g.	
ammonia	or	amino	

acids)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 107	

111	

Max.	the	
cardinality	of	the	
network,	i.e.	the	
number	of	

reactions	whose	
flux	is	not	zero	to	

reduce	the	
number	of	blocked	

reactions	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 	 *	 	 108	



112	

Min.	the	absolute	
difference	
between	flux	

distribution	and	a	
set	of	randomly	
generated	fluxes	

based	on	
transcriptomics	
data	(only	applied	
to	reactions	whose	
fluxes	are	coupled	
to	their	gene	
expression	by	
comparing	

fluxomics	and	
transcriptomics	

data)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 109	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

113	

Min.	the	number	
of	active	reactions	
participating	in	
the	synthesis	of	a	
biomass	building	

block	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 *	 	 110	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

114	

Min.	two	
(conceptually	but	
practically	three)	
objectives,	the	
absolute	sum	of	
fluxes	and	

deviation	of	log	
concentrations	of	
metabolites	from	

their	
experimentally	
measured	values	

	 *	 	 	 	 	 	 	 *	 	 	 	 	 #	 	 	 	 *	 	 ×	 111	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

115	

Min.	the	absolute	
difference	

between	scaled	
measurements	
and	fluxes	

multiplied	by	a	
scaling	variable	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 112	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

116	

Min.	two	
objectives	(as	

proxies	of	growth	
demands);	the	
weighted	sum	of	

fluxes	and	
biomass	yield23	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 	 *	 113	

 
23 Weighted Sum is used for MO. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

117	

Max.	growth,	Max.	
ATP	production,	
Min.	the	total	
abundance	of	
metabolic	

enzymes,	and	Min.	
the	carbon	
uptake24	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 	 *	 114	

 
24 Epsilon constraint is used for MO. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

118	

Max.	
bioengineering	
objective	for	the	
outer,	Min.	

bioengineering	
objective	for	the	

inner	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 *	 115	



119	

Max.	the	cellular	
objective	

including	the	
impact	of	the	

inferred	reaction	
for	the	inner,	Min.	
the	squared	sum	
of	differences	
between	

predictions	and	
measured	fluxes	
and	Min.	the	
number	of	

reactants	and	
products	

(sparsity)	in	the	
inferred	reaction	
for	the	outer25	

	 *	 	 	 	 	 	 	 *	 	 	 	 	 	 #	 	 	 *	 	 *	 116	

 
25 KKT conditions are used for the reformulation. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

120	

Min.	the	uptake	
rate	of	a 
particular	

metabolite	for	the	
inner,	Max.	the	
uptake	rate	of	the	

similar metabolite	
for	the	outer	

*      *	 	 	 	 	 	 	 	 #	 	 *	 	 	 *	 117	

121	

Min.	the	number	
of	open	exchange	
reactions	to	

specify	the	growth	
medium	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 *	 	 (118,	
119)	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

122	

Max.	growth,	Max.	
demand	flux	for	
metabolites	with	

increased	
concentration,	
Min.	demand	flux	
for	metabolites	
with	decreased	
concentration26	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 	 	 *	 	 *	 120	

 
26 Weighted sum is used. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

123	

Min.	the	number	
of	reactions	that	
connect	an	
extracellular	

metabolite	to	the	
core	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 *	 	 121	

124	

Max.	production	of	
virulence	factors	
(definition	similar	

to	biomass)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 122	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

125	

Max.	flux	through	
symbiosis	reaction	
(definition	similar	

to	biomass)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 123	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

126	

Max.	the	sum	of	
secretion	of	

biomass	building	
blocks	and	adding	
reactions	from	a	
database	with	
negative	weights	
according	to	
taxonomic	
information	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 *	 	 124	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

127	

Max.	the	
nongrowth	
associated	
maintenance	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 125	

128	

Max.	the	number	
of	active	reactions	
each	scored	by	the	
evidence	for	its	
inclusion	in	a	
specific	tissue	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 126	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

129	

Max.	the	number	
of	reactions	that	
cause	metabolite	
accumulation	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 126	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

130	

Min.	the	sum	of	
deviation	from	
mass	action	
kinetics	and	
deviation	from	
reference	fluxes	
due	to	the	single	
nucleotide	

polymorphisms	
(SNPs)	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 127	



131	

Max.	weighted	
sum	of	ATP	
synthesis	and	
growth	for	the	
first	inner,	Min.	
total	sum	of	fluxes	
for	the	second	
inner,	and	

optimize	fuzzy	
equality	of	the	
logarithmic	flux	
changes	between	
mutant	and	
template	(i.e.	
minimizing	the	

deviation	between	
them)	for	the	
outer27	

	 	 	 	 *	 	 	 	 	 	 	 	 	 #	 &	 	 	 *	 *	 	 128	

 
27 This is a tri-level optimization and Nested Hybrid Differential Evolution was used to solve it. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

132	

Max.	weighted	
sum	of	ATP	
synthesis	and	
growth	for	the	
first	inner,	Min.	
total	sum	of	fluxes	
for	the	second	
inner,	and	Max.	
similarity	ratio	of	
the	fluxes	in	
mutant	and	

template	models	
for	the	outer28	

*	 	 	 	 	 	 	 	 	 	 	 	 	 #	 &	 	 	 *	 *	 	 128	

 
28 This is a tri-level optimization and Nested Hybrid Differential Evolution was used to solve it. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

133	

Min	the	upper	
bound	of	pyruvate	
kinase	for	the	first	
inner,	Max.	growth	
for	the	second	
inner,	and	Min.	
flux	through	
lactate	

dehydrogenase	for	
the	outer29	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 #	 *	 	 	 	 *	 129	

 
29 This is a tri-level optimization. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

134	

Max.	the	
production	of	the	
product	for	the	

inner	and	Min.	the	
number	of	
reaction	

knockouts	for	the	
outer	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 *	 130	

135	

Max.	the	usage	of	
reactions	in	host	
to	simulate	the	
maximum	
metabolic	

exploitation	of	
pathogen	

*	 	 	 	 	 *	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 131	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

136	

Min.	the	L1	norm	
of	slack	variables	
for	the	reaction	
lower	and	upper	
bounds	(the	
bounds	are	

calculated	based	
on	gene	

expression	data)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 132	

137	 Min.	photon	usage	 *	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 133	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

138	

Min.	number	of	
reaction	

knockouts	(static)	
and	regulated	

valves	(dynamic)	
to	allow	switching	

between	
two	distinct	
metabolic	
phenotypes	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 *	 	 134	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

139	

Min.	L1-norm	of	
fluxes	and	L2-

norm	of	difference	
between	fluxes	

and	
transcriptomics	

data30	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 #	 	 	 	 *	 	 *	 135	

 
30 Weighted sum is used. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

140	

Min.	absolute	sum	
of	fluxes	and	
violation	of	

reaction	bounds	
(by	assigning	slack	
variables	to	each	
constraint)	that	
are	defined	based	
on	omics	dataset31	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 	 	 *	 	 *	 136	

 
31 Weighted sum is used. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

141	

Min.		the	
difference	

between	upper	
and	lowerbounds	
of	a	reaction	

compatible	with	
omics	dataset	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 136	

142	

Min.	absolute	sum	
of	fluxes	that	show	
low	expression	in	
transcriptomics	

data	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 137	



143	

Min.	the	violation	
of	constraints	that	
enforce	a	flux	in	
the	new	condition	
to	be	higher	than	
reference	state,	if	

its	gene	
expression	is	
higher	than	the	
reference	by	
assigning	two	

slack	variables	to	
each	constraint32	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 137	

 
32 Both the number and the sum of violations can be minimized. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

144	

Max.	growth	for	
the	outer	and	Max.	
ATP	maintenance	
for	the	inner	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 #	 *	 	 	 	 *	 138	

145	

Min.	the	upper	
bound	of	Gibbs	
energy	of	all	
reactions	in	a	
pathway	

(thermodynamic	
driving	force)	

*	 	 	 	 	 *	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 (139,	
140)	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

146	
Max.	the	absolute	
value	of	reaction	

fluxes	
*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 141	

147	

Max.	the	
combination	of	all	
metabolic	tasks	
specific	to	a	tissue	
gather	from	the	
literature	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 142	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

148	

Max.	the	growth	of	
a	gene	knockout	
mutant	for	the	
inner,	Max.	the	
drop	in	the	

wildtype	growth	
after	the	knockout	

(difference	
between	wildtype	

and	mutant	
growth)	for	the	

outer	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 *	 	 	 	 *	 143	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

149	

Min.	the	variance	
of	difference	
between	flux	
predictions	and	
kinetically	

calculated	fluxes	
by	integrating	

metabolomics	and	
proteomics	data	

	 *	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 *	 	 144	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

150	

Min.	the	number	
of	reactions	

modifications,	i.e.	
knockout,	up	or	
downregulation,	
for	the	outer	and	

Min.	the	
production	of	the	
product	for	the	

inner	
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	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

151	

Max.	the	number	
of	metabolites	that	
can	be	produced	
in	the	network	to	
distinguish	the	
metabolites	that	
can	never	be	
produced	
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152	
Min./Max.	the	
ratio	of	any	two	

reactions	
	 	 *	 	 	 *	 	 	 	 	 #	 	 	 	 	 	 *	 	 	 *	 147	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

153	

Max.	the	
production	of	the	
product	and	Min.	
the	number	of	

genetic	
modifications	for	
the	outer,	and	
Max.	the	growth	
for	the	inner	
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	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

154	

Max.	the	
productions	of	the	
product	for	the	

outer,	and	Min.	the	
metabolic	

adjustment	for	the	
inner	
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155	

Weighted	sum	of	
growth	rates	of	

different	microbial	
species	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 #	 	 *	 	 	 	 *	 (149,	
150)	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

156	

Max.	the	flux	
through	two	
exchange	

reactions	between	
the	host	and	the	
microbe33	
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33 Epsilon-constraint method is used. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

157	

Max.	growth	and	
Min.	total	squared	
sum	of	fluxes	for	
the	inner	(a	

weighted	sum),	
and	Min.	absolute	

difference	
between	predicted	
growth	by	FBA	
and	kinetic	model	
for	the	outer34		
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34 First the inner problem was solved, then the outer problem. 



158	

Min.	the	weighted	
sum	of	1)	the	
square	of	
difference	
between	

constrained	and	
unconstrained	
fluxes	with	

experimental	data,	
2)	the	sum	of	
candidate	
biological	

objectives,	3)	the	
cross-product	of	
the	weights	of	
candidate	

objective	to	prefer	
only	one	of	them,	
4)	the	difference	
between	the	

lower-	and	upper-
bounds	to	find	the	
least	number	of	

active	
constraints35		
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35 Dynamic modelling 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

159	

Max.	the	biomass	
concentration	at	
the	final	time	

step36	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 154	

160	

Max.	the	total	sum	
of	biomass	

concentrations	of	
different	microbial	

species37	
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36 Dynamic modelling 
37 Dynamic modelling 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

161	

Min.	the	total	sum	
of	fluctuations	in	
metabolite	

concentrations38	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 156	

162	
Min.	total	sum	of	
explicit	enzyme	
concentrations	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 *	 	 	 *	 	 157	

 
38 Dynamic modelling 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

163	

Min.	the	sum	of	
reaction	fluxes,	
where	each	
reaction	is	

weighted	by	its	
BLAST	score	and	

DG	
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	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

164	

Min.	the	
inconsistency	

between	reaction	
fluxes	and	

transcriptomics	
data	up	and	

downregulation	in	
two	conditions	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 159	



165	

Max.	the	growth	in	
non-growing	

phenotypes	for	the	
inner,	Min.	the	
number	of	

modifications,	
including	
removals	or	

additions	of	the	
reactions,	

directionality	
changes,	removals	
or	additions	of	the	

metabolites	
regarding	the	

biomass	reaction,	
in	the	model	to	fix	
false	growth	and	
non-growth	

predictions	for	the	
outer	

*	 	 	 	 	 	 *	 	 	 	 	 	 	 #	 #	 	 *	 	 	 *	 160	



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

166	

Max.	the	
uncentered	

Pearson	product-
moment	
correlation	
between	flux	

variables	and	gene	
transcription	

data39	
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39 Semi-definite nonlinear optimization. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

167	

Min.	the	squared	
difference	
between	the	
predicted	and	
experimentally	
observed	ethanol	
yields	for	the	
outer,	Min.	the	
weighted	sum	of	
squared	fluxes	and	
the	opposite	of	
ethanol	flux	for	
the	inner40	
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	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

168	

Min.	the	difference	
between	the	
measured	and	
predicted	linear	
combinations	of	
the	objective	

functions	(instead	
of	fluxes,	the	
objective	

coefficients	are	
variables)	

*	 	 	 	 	 *	 	 	 	 	 	 	 	 	 	 	 	 *	 *	 	 163	

 
40 Bilevel problem is solved directly with an in-house algorithm. 



	 Objective	Function	
Type	of	Objective	 Type	of	Problem	 Goal	of	

Study	
Consistency	
with	This	
Formulation	 References	

Lin.	 Quad.	 Lin.	
Frac.	

Quad.	
Frac.	 NonLin.	 LP	 MILP	 QP	 MIQP	 MIQCP	 FLP	 MIFLP	 QFP	 MO	 BL	 Phys	 App	 DI	 C	 RN	

169	

Min.	the	L1norm	
of	the	coefficients	
in	the	objective	

function	
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