Supplementary Table 1: the inventory of different objective functions. Each objective function is categorized based on the mathematical formulation of the objective, type of the problem, goal of the study and the need of reformulation.

The following abbreviations are used in the table: Lin: Linear, Quad: Quadratic, Lin Frac: Linear Fractional, Quad Frac: Quadratic Fractional, NonLin: Nonlinear, LP: Linear Programming, MILP: Mixed Integer Linear Programming, QP: Quadratic Programming, MIQP: Mixed Integer Quadratic Programming, MIQCP, Mixed Integer Quadratically Constrained Programming, FLP: Fractional Linear Programming, MIFLP: Mixed Integer Fractional Linear Programming, QFP: Quadratic Fractional Programming, MO: Multi-Objective Optimization, BL: Bi-Level Optimization, Phys: Physiology, App: Application, DI: Data Integration, C: Consistent, RN: Reformulation is Needed.

The meaning of the special signs: # represents the original problem before reformulation. & represents a type of problem that should be normally reformulated, but in this case, it is solved directly without reformulation. × represent the reformulations that are provided in this paper.

	Objective Function		Тур	e of Ol	bjective					Ту	pe of P	robl	em				Go S	oal of tudy		Consi with Form	stency This ılation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	MO	BL	Phys	App	DI	С	RN	
1	Max. biomass (growth rate)	*					*	*									*			*		(1-6)
2	Max. ATP yield	*					*										*			*		(3, 7)
3	Min. the overall flux		*						*	*							*			*		(8-10, 82)
4	Max. ATP per flux unit (sum of fluxes)			*			*					#					*				*	11
5	Min. redox potential	*					*										*			*		12
6	Min. ATP production	*					*										*			*		12
7	Max. ATP production	*					*	*									*			*		(12-14)

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	Probl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
8	Max. the number of reactions whose activity is consistent with their expression state	*						*											*	*		15
9	Min. the inconsistency between gene expression and flux values	*					*												*	*		(16, 17)

	Objective Function		Тур	e of O	bjective	e			-	Ту	rpe of F	robl	em				G S	oal of tudy		Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
10	Min. the number of reactions that carry flux and produce a specific set of metabolites	*						*											*	*		10
11	Max. the consistency between relative experimentally observed changes in gene expression and metabolite changes with the flux levels	*						*											*	*		18

	Objective Function		Тур	e of Ol	ojective					Ту	pe of P	robl	em				G S	oal of tudy	f	Consi with Form	stency This lation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
12	Max. the correlation between gene expression and fluxes	*						*											*	*		19
13	Min. Growing Reaction Set	*						*									*			*		20
14	Max. bioengineering objective for the outer and max. biomass for the inner problem	*						*								#		*			*	21

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
15	Max. a linear combination of fluxes with penalty terms for the total number of gene deletions or over- expressions for the outer and Max. biomass for the inner problem	*						*								#		*			*	22

	Objective Function		Тур	e of Ol	ojective	2				Ту	pe of F	Probl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	, ,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
16	Min. metabolic adjustment	*	*				*		*								*			*		(23, 24)
17	Min. the number of significant flux changes after perturbation	*					*	*									*			*		25

18	Min. the sum of squared differences between flux variables and MFA estimates weighted by the reciprocal of confidence	*			*					*	*	26
	contributions weighted by the reciprocal of enzyme expression values											

	Objective Function		Тур	e of Ol	bjective	2				Ту	pe of P	robl	em				Go S'	oal of tudy		Consi with Form	stency This ılation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
19	Min. the relative flux changes from a reference state for reactions active in the reference state and the enzyme contribution increases for enzymes inactive in the reference state with a penalty α	Lin.	Quad.	Frac.	Frac.	NonLin.		MILP	<u>ф</u> Р *	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	*	App	DI	*	RN	26

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
20	Min. sum of squared internal fluxes		*						*								*			*		27
21	Opt. the level of pattern regulation and the level of differential gene expression	*						*											*	*		28

	Objective Function		Тур	e of O	bjective					Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
22	Min. the variance of weighted sum of squared residuals between measured and computed massisotopomer distributions		*						*										*	*		29

	Objective Function		Тур	e of O	bjective	9				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
23	Min. the difference between measured and predicted metabolite uptake and secretion rates		*						*										*	*		(29, 30)
24	Min. the total metabolite concentrations and total enzyme concentrations		*						*								*			*		31

	Objective Function		Тур	e of O	bjective	<u>þ</u>				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
25	Min. the total sum of absolute fluxes	*					*										*			*		32
26	Min. the number of active reactions	*						*									*			*		33
27	Min. the sum of nutrient import costs	*					*										*			*		34

	Objective Function	Function								Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	MO	BL	Phys	Арр	DI	С	RN	
28	Min. number of nonnative reactions needed to meet the identified maximum yield for the outer and Max. the yield on a weight basis of a particular product for the inner ¹	*						*								#		*			×	35

¹ They solved it by solving the inner problem first and then, they added the inner problem as a constraint to the outer problem.

	Objective Function		Тур	e of Ol	bjective	2				Ту	pe of F	Probl	em				G S	oal of tudy		Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
29	Min. the difference between experimentally measured absolute gene expression data and predicted internal reaction fluxes weighted by confidence level	*					*												*	*		36

	Objective Function		Тур	e of Ol	bjective					Ту	pe of P	robl	em				Go S	oal of tudy	2	Consi with Form	stency This ılation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
30	Max. the agreement between fluxes and gene expression	*						*											*	*		37
31	Min. of Manhattan distance between the reference metabolite turnover and mutant metabolite turnover	*					*										*			*		38
32	Max. biomass turnover	*					*										*			*		38

	Objective Function		Тур	e of O	ojective	9				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
33	Max./Min. ATP turnover per glucose uptake			*			*					#					*				*	38
34	Max./Min. NADH turnover per glucose uptake			*			*					#					*				*	38

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
36	Min. error for the outer, Max. a linear combination of objective functions for the inner ²	*					*									#			*		*	40

² They did not mention how to solve the bilevel problem.

Max. 3 objectives: biomass yield, weighted sum of all of the NADPH- producing reactions in the model, and the weighted sum of all NADPH- producing reactions with the exception of the trans-hydrogenase reaction ³	*					*								#		*				*	41
---	---	--	--	--	--	---	--	--	--	--	--	--	--	---	--	---	--	--	--	---	----

³ They used epsilon-constraint method.

	Objective Function				bjective	<u>j</u>				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
38	Max. the extracellular biomass concentration for the outer and Max. biomass yield for the inner					*										&	*				*	42

39	Min. a flux ratio of interest subject to media changes and gene deletions for the inner problem. Min. the number of deletions such that the minimum flux ratio is positive, ensuring that coupling occurs between a measurable flux and the chosen reaction		*		*				#	*		*	43	

	Objective Function		Тур	e of Ol	bjective	2				Ту	pe of P	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
40	Min. the set of possible exchanged metabolites between two organisms 1 and 2 that can grow simultaneously under a specified condition	*						*									*			*		44

	Objective Function		Тур	e of Ol	ojective					Ту	pe of F	Probl	em				G S	oal of tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
41	Min. weighted sum of flux magnitudes (weighted by mRNA expression level)	*					*												*	*		45
42	Min. the distance between nearoptimal polytope and mutant solution space		*						*								*			*		46

	Objective Function		Тур	e of O	bjective					Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
43	Min. the number of active fluxes to achieve the maximal yield	*						*									*			*		47
44	Min. of minmax scaled metabolic adjustment		*						*								*			*		48
45	Min. the metabolic adjustment, each reaction is scaled by its reference flux		*						*								*			*		49

	Objective Function		Тур	e of Ol	bjective	2				Ту	pe of P	robl	em				G S	oal of tudy	f	Consi with Form	stency This ılation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
46	Min. the deviation of fluxes from experimental data for the outer and Max. of flux through a generic objective reaction for the inner		*						*							#			*		*	(50, 51)

	Objective Function		Type of Objective							Ту	pe of P	robl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
47	Max. the similarity with fluxomics and metabolomics data for the outer and Min. the squared sum of fluxes for the inner ⁴		*													&			*	*		52

⁴ Nested Hybrid Differential Evolution was used to solve it.

	Objective Function		Тур	e of O	ojective	<u>j</u>				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
48	Min. (1) the overall flux and (2) glucose consumption, Max. of (3) biomass,(4) ATP production and (5) NADPH production (weighted sum)	*					*								#		*				×	53

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
49	Min. sum of substrates (or light) uptake subject to an experimentally observed growth	*					*										*			*		(54, 55)

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	ſ	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
50	Min. the distance between dFBA growth and kinetic model growth for the outer and Min. (1) the sum of fluxes and Max. (2) growth rate for the inner		*						*						#	#	*		*		*	56
51	Max. biomass per unit flux ⁵				*									*			*			*		(57-59)

⁵ The objective is fractional quadratic without any proposed reformulation. The last reference solved it as an NLP.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
52	Min. the sum of all fold-changes for all genes with increased expression in the evolved strain	*					*												*	*		58

	Objective Function		Тур	e of Ol	ojective	2				Ту	pe of F	robl	em				G S	oal of tudy		Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
53	Max. community growth (or any communitylevel objective) for the outer and Max. species growth (or any specieslevel objective) for the inner	*					*								#	#	*				*	60

	Obiective Function		Тур	e of O	bjective					Ту	rpe of F	robl	em				G S	oal of tudy		Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
54	Min. Euclidean or Manhattan distance between a loopless flux profile and a flux profile with loops	*	*					*		*							*			*		6
55	Min. the distance of ratios between fluxes in predicted and observed flux profiles	*					*												*	*		61

	Objective Function		Тур	e of Ol	ojective	2				Ту	pe of P	robl	em				Go S	oal of tudy	f	Consi with Form	stency This ılation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
56	Max. ATP yield per unit of flux (sum of squared fluxes) ⁶				*									*			*			*		62
57	Min. the number of reactions that can violate bounds imposed by kinetic laws (the kinetic laws were used to define reactions bounds)	*						*											*	*		63

⁶ The original problem is fractional quadratic programming

	Objective Function		Тур	e of Ol	bjective	2				Ту	pe of P	robl	em				Go S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
58	Min. the number of dispensable (nonessential) reactions for the outer and Max. the weight of similarity with transcriptomics data for the inner	*						*								#			*		*	64

59	Max. bioengineering objective for the outer and Max. 2 objectives ⁷ for the inner problem: biomass and redirection toward producing the target compound (redirection is formulated as the effect of reaction perturbation on the production of target)	*			*				#	#	*		*	65

⁷ Weighted sum is used for MO.
	Objective Function		Тур	e of Ol	bjective	9				Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
60	Max. bioengineering objective for the outer and max. 2 objectives ⁸ for the inner problem: biomass and the opposite of sum of fluxes (i.e. min. sum of fluxes)	*						*								#		*			*	66

⁸ Weighted sum is used for MO.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
61	Min. the metabolite turnover (i.e. the sum of absolute incoming and outcoming fluxes for a metabolite)	*					*										*			*		67

	Objective Function		Тур	e of O	bjective					Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency n This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
62	Max. the weighted sum for patterns of gene activation and inactivation to find the one that is statistically match better with transcriptomics data	*						*											*	*		68
63	Min/Max free Gibbs energy	*						*									*			*		(69, 70)

	Objective Function		Тур	e of Ol	bjective	2				Ту	pe of P	robl	em				Go S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
64	Min. metabolic adjustment and the opposite of one of these objectives: 1. Growth, 2. ATP yield, 3. Glucose uptake, 4. Ethanol yield ⁹		*						*						#		*				*	71

⁹ Weighted sum is used to handle MO

	Objective Function		Тур	e of O	ojective	<u>j</u>				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
65	Min. the sum of fluxes and the opposite of one of these objectives: 1. Growth, 2. ATP yield, 3. Glucose uptake, 4. Ethanol yield ¹⁰	*					*								#		*				*	71

¹⁰ Weighted sum is used to handle MO

	Objective Function		Тур	e of O	bjective	9				Ту	pe of P	robl	em				G S	oal of tudy		Consis with Formu	stency This ılation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
66	Min. the sum of fluxes of reactions to produce each metabolite	*					*										*			*		72
67	Min. the import of energy (plants)	*					*										*			*		73
68	Min. the ATP hydrolysis in maintenance reaction	*					*										*			*		73
69	Max. the production of proton (H+)	*					*										*			*		74

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	, ,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
70	Max. the sum of exchange fluxes (Max. the difference between outflux and influx as a proxy of catabolism)	*					*										*			*		74

71	Max. the ATP requirement for growth and Min. the L ₁ norm of difference between production of other biomass reactants and ATP requirement (different definition of growth by disjoining biomass reactants) ¹¹	*			*				#	*		*	75

¹¹ Weighted sum is used for MO.

Max. the minimum product rate at the maximum cellular growth in different cellular modules for the outer ¹² and Max. the minimum product rate at the maximum cellular growth in each cellular module for the inner

¹² Both weighted sum and goal programming were used for MO.

	Objective Function		Тур	e of O	ojective	2				Ту	pe of F	Probl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
	Max. the minimum																					
	product synthesis																					
	rate at the non-																					
	growth state (μ =																					
	0) in different																					
	cellular modules																					
73	for the outer ¹³ and	*						*							#	#		*			*	76
75	Max. the the														π	π						70
	minimum product																					
	synthesis rate at																					
	the non-growth																					
	state in each																					
	cellular module																					
	for the inner																					

¹³ Both weighted sum and goal programming were used for MO.

	Objective Function		Тур	e of Ol	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
74	Min. the weighted sum of absolute fluxes where the weight of each reaction is proportional to the length of its proteins (as a proxy of protein synthesis cost)	*					*										*			*		77

	Objective Function		Тур	e of O	bjective	2				Ту	pe of P	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
75	Max. the weighted sum of absolute fluxes where the weight of each reaction is proportional to its abundance in proteomics data	*						*											*	*		78

	Objective Function		Тур	e of O	ojective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
76	Max. the production of a specific metabolite (<i>e.g</i> . Mycolic acid or lactate)	*					*										*			*		(79, 80)

	Objective Function		Тур	e of Ol	ojective	2				Ту	pe of P	roble	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
77	Min. the absolute difference between two steadystate flux profiles for two different conditions, each scaled by its corresponding vector of experimental data	*					*												*	*		81

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	Probl	em				G S	oal of tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
78	Min. the total sum of mass flow (sum of fluxes weighted by reactant molecular weight)	*					*										*			*		83
79	Max. the rate of protein translation (the translation reaction for a protein is added to the metabolic network)	*					*										*			*		84

	Objective Function		Тур	e of O	bjective	<u>j</u>				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
80	Min./Max. iron acquisition ¹⁴	*					*										*			*		85
81	Min. the level of lactate dehydrogenase as an indicator of cytotoxity	*					*										*			*		85
82	Min. the reactive oxygen species (ROS)	*					*										*			*		86

¹⁴ To study host-pathogen interaction.

	Objective Function		Тур	e of O	bjective	e				Ту	pe of F	Probl	em				G S	oal of tudy		Consi with Form	stency This ılation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
83	Max. the biomass yield and ATP yield and Min. the sum of fluxes in a multi-objective formulation ¹⁵	*					*								#		*				*	87
84	Max. biomass divided by a weighted sum of square of fluxes and square of ATP production				*									*			*			*		59

¹⁵ Epsilon-constraint method was used to handle MO.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
85	Max. the growth and Min. the deviation of system from steady state assumption (assuming uncertainty in stoichiometric network the error for Sv=0 is minimized) ¹⁶	*					*								#		*				*	88

¹⁶ Weighted sum was used to handle MO.

86	Min. the Euclidean distance between flux predictions and experimentally observed fluxes for the outer and Max. the weighted sum of multiple linear objectives for the inner (to find the most relevant objectives and their weights)	*			*			#	#	*	*	*	89

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				Go S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
87	Min the sum of forward and backward fluxes, where the backward weighted by thermodynamic equilibrium constant as an indicator of thermodynamic effort to reverse the directionality	*		Frac.	Frac.		*										*			*		90

	Objective Function		Тур	e of O	ojective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency 1 This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
88	Max. the flux in different metabolic pathways (each pathway represents a metabolic function)	*					*										*			*		91

	Objective Function		Тур	e of O	bjective	2				Ту	pe of P	robl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
89	Max. the number of active reactions, supplementing unlimited substrate, to find the blocked reactions ¹⁷	*					*											*		*		92

¹⁷ Originally MILP, but can be relaxed to LP

	Objective Function		Тур	e of Ol	ojective	2				Ту	pe of P	robl	em				Go S	oal of tudy		Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
90	Min. the number of reactions to be added to the model to rescue growth in a certain condition, where each reaction is weighted based on its biochemical and thermodynamic favorability	*						*										*	*	*		92

91	Min. the number of reactions (each reaction is weighted based on its biochemical and thermodynamic favorability) to be removed from the model to suppress growth in a certain condition for the outer, while Max. the growth in the normal condition for the inner (to maintain growth in the wildtype)	*			*				#	*	*	*	92

	Objective Function		Тур	e of Ol	bjective					Ту	pe of P	robl	em				Go S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
92	Min. growth for the outer and Max. the growth for the inner to find the minimal number of reaction removals to suppress growth in a specific condition (the number of reaction removals is constrained)	*						*								#		*	*		*	(93, 94)

	Objective Function		Тур	e of Ol	bjective	2				Ту	pe of P	robl	em				Go S	oal of tudy	f	Consi with Form	stency This ulation	References
	, ,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
93	Min. the number of reactions to be added to the model to rescue growth in a certain condition, where each reaction is weighted equally	*						*										*	*	*		93

	Objective Function		Тур	e of Ol	bjective					Ту	pe of P	robl	em				Go S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
94	Min. the number of reactions to be added to the model to rescue growth in a certain condition, where each reaction is weighted based on information about its metabolites and thermodynamic favorability	*	Quad.	Frac.	Frac.	NonLin.		*	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	*	*	*	KN	95

95	Max. the error correction for false negative growth predictions (prediction of zero growth when growth is known to occur), Min. the error introduction for false positives (prediction of growth when no growth when no growth is expected) and Min. the number of reactions to be added (gap filling reconciliation) ¹⁸	*			*				#		*	*	*	95

¹⁸ Weighted sum is used to handle MO.

96	Max. the chance of high scored reactions to be included and Min. the chance of low scored reactions to be removed from a generic parent model to make it organism specific (the scores are calculated by gene alignment for the genes associated to the reactions)	*			*				#		*	*	*	96

97	Min. the number of reactions to be added to the model to rescue growth in a certain condition, where each reaction is weighted based on the reverse of its similarity score (the scores are calculated by gene alignment for the genes associated to the reactions)	*			*					*	*	*	96

	Objective Function		Тур	e of O	bjective	9				Ту	pe of F	Probl	em				G S	oal of tudy	ſ	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
98	Max. the Min. (min mix problem) bioengineering objective for the outer and max. biomass for the inner problem	*						*								#		*			*	97
99	Max. growth and Max. production of natural byproducts ¹⁹	*					*								#		*				*	98

¹⁹ Epsilon-constraint method is used to handle MO.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	Probl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
100	Max. growth for the outer, Min. the violation of transcription regulatory constraints for the inner ²⁰	*					*									#			*		*	99
101	Max. growth, Min. the violation of transcription regulatory constraints ²¹	*					*								#				*		*	100

²⁰ There was no method mentioned for the conversion of bilevel optimization.

²¹ Weighted sum is used for MO.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of P	robl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
102	Min. the number of reactions carrying flux (by assigning a cost to them) to make sure that a certain reaction carries flux	*					*										*			*		101

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
103	Max. growth and Max. production of the product and Min. the production of undesired byproducts	*						*							#			*			*	102

	Objective Function		Тур	e of O	bjective	<u>þ</u>				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	, ,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
104	Min. the number of reactions to be added to the model (heterologous reactions) to satisfy a minimum yield for the production of a metabolite	*						*										*		*		103

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
105	Min. the number of active reactions between two metabolites (i.e. finding the shortest path taking steady- state feasibility into account)	*						*									*			*		104
	Objective Function	Function				2				Ту	pe of F	Probl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
-----	---	----------	-------	---------------	----------------	---------	----	------	----	------	---------	-------	-------	-----	----	----	--------	----------------	----	-----------------------	---------------------------	------------
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
106	Min. the number of active reactions between two metabolites each weighted by the number of its reactants and products (i.e. finding the lightest path)	*					*										*			*		105

	Objective Function	Objective Function				e				Ту	pe of P	robl	em				G S	oal o tudy	f	Consi with Form	stency n This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
107	Min. the number of all elemental transfers in a reaction, Min. the diversity of elemental exchanges and Max. the transfer score ²²	*						*							#		*				*	106

²² Weighted sum is used to handle MO.

108	Max. the sum of binary variables showing the presence of a pathway between two metabolites weighted by a large number minus the length of this pathway (to find the shortest pathway, while keeping the problem always feasible)	*			*					*		*	106

Max. the sum of binary variables showing the presence of a pathway between two metabolites weighted by a large number * minus the sum of flow variables each divided by its found flux in FBA (to find the most active pathways in FBA)	
---	--

	Objective Function		Тур	e of O	bjective					Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
110	Max. the uptake of a specific substrate (<i>e.g.</i> ammonia or amino acids)	*					*										*			*		107
111	Max. the cardinality of the network, i.e. the number of reactions whose flux is not zero to reduce the number of blocked reactions	*					*											*		*		108

112	Min. the absolute difference between flux distribution and a set of randomly generated fluxes based on transcriptomics data (only applied to reactions whose fluxes are coupled to their gene expression by comparing fluxomics and transcriptomics data)	*			*						*	*	109

	Objective Function	bjective Function								Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency 1 This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
113	Min. the number of active reactions participating in the synthesis of a biomass building block	*						*										*		*		110

	Objective Function	Type of Objective			2				Ту	pe of P	robl	em				Go S'	oal of tudy		Consi with Form	stency This ulation	References	
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
114	Min. two (conceptually but practically three) objectives, the absolute sum of fluxes and deviation of log concentrations of metabolites from their experimentally measured values		*							*					#				*		×	111

	Objective Function		bjective	2				Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References		
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
115	Min. the absolute difference between scaled measurements and fluxes multiplied by a scaling variable	*					*												*	*		112

	Objective Function		Тур	e of O	bjective	<u>j</u>				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
116	Min. two objectives (as proxies of growth demands); the weighted sum of fluxes and biomass yield ²³	*					*								#		*				*	113

²³ Weighted Sum is used for MO.

	Objective Function	bjective Function				2				Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
117	Max. growth, Max. ATP production, Min. the total abundance of metabolic enzymes, and Min. the carbon uptake ²⁴	*					*								#		*				*	114

²⁴ Epsilon constraint is used for MO.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi witł Form	stency 1 This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
118	Max. bioengineering objective for the outer, Min. bioengineering objective for the inner	*						*								#		*			*	115

119	Max. the cellular objective including the impact of the inferred reaction for the inner, Min. the squared sum of differences between predictions and measured fluxes and Min. the number of reactants and products (sparsity) in the inferred reaction for the outer ²⁵	*				*			#		*	*	116

²⁵ KKT conditions are used for the reformulation.

	Obiective Function		Тур	e of O	bjective	e				Ту	rpe of F	Probl	em				G S	oal of tudy	ſ	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
120	Min. the uptake rate of a particular metabolite for the inner, Max. the uptake rate of the metabolite similar for the outer	*						*								#		*			*	117
121	Min. the number of open exchange reactions to specify the growth medium	*						*										*		*		(118, 119)

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				Go S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
122	Max. growth, Max. demand flux for metabolites with increased concentration, Min. demand flux for metabolites with decreased concentration ²⁶	*					*								#				*		*	120

²⁶ Weighted sum is used.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				Go S ^r	oal of tudy	f	Consi with Form	stency This ulation	References
	, ,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
123	Min. the number of reactions that connect an extracellular metabolite to the core	*						*										*		*		121
124	Max. production of virulence factors (definition similar to biomass)	*					*										*			*		122

	Objective Function		Тур	e of O	bjective	2				Ту	pe of P	robl	em				G S	oal of tudy	f	Consi with Form	stency I This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
125	Max. flux through symbiosis reaction (definition similar to biomass)	*					*										*			*		123

	Objective Function		Тур	e of Ol	ojective	2				Ту	pe of F	robl	em				Go S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
126	Max. the sum of secretion of biomass building blocks and adding reactions from a database with negative weights according to taxonomic information	*						*										*		*		124

	Objective Function		Тур	e of Ol	bjective					Ту	pe of F	robl	em				Go S	oal of tudy	-	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
127	Max. the nongrowth associated maintenance	*					*										*			*		125
128	Max. the number of active reactions each scored by the evidence for its inclusion in a specific tissue	*						*											*	*		126

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency I This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
129	Max. the number of reactions that cause metabolite accumulation	*						*									*			*		126

	Objective Function		Тур	e of O	ojective	2				Ту	pe of P	robl	em				Go S	oal of tudy	f	Consi with Form	stency This ılation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
130	Min. the sum of deviation from mass action kinetics and deviation from reference fluxes due to the single nucleotide polymorphisms (SNPs)	*						*											*	*		127

131	Max. weighted sum of ATP synthesis and growth for the first inner, Min. total sum of fluxes for the second inner, and optimize fuzzy equality of the logarithmic flux changes between mutant and template (i.e. minimizing the deviation between them) for the outer ²⁷			*					#	&		*	*	128

²⁷ This is a tri-level optimization and Nested Hybrid Differential Evolution was used to solve it.

	Objective Function		Тур	e of Ol	bjective	2				Ту	pe of F	Probl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
132	Max. weighted sum of ATP synthesis and growth for the first inner, Min. total sum of fluxes for the second inner, and Max. similarity ratio of the fluxes in mutant and template models for the outer ²⁸	*													#	&			*	*		128

²⁸ This is a tri-level optimization and Nested Hybrid Differential Evolution was used to solve it.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
133	Min the upper bound of pyruvate kinase for the first inner, Max. growth for the second inner, and Min. flux through lactate dehydrogenase for the outer ²⁹	*					*									#	*				*	129

²⁹ This is a tri-level optimization.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	-	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
134	Max. the production of the product for the inner and Min. the number of reaction knockouts for the outer	*						*								#		*			*	130
135	Max. the usage of reactions in host to simulate the maximum metabolic exploitation of pathogen	*					*	*									*			*		131

	Objective Function		Тур	e of Ol	ojective	2				Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
136	Min. the L1 norm of slack variables for the reaction lower and upper bounds (the bounds are calculated based on gene expression data)	*					*												*	*		132
137	Min. photon usage	*					*										*			*		133

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
138	Min. number of reaction knockouts (static) and regulated valves (dynamic) to allow switching between two distinct metabolic phenotypes	*						*										*		*		134

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi witł Form	stency n This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
139	Min. L1-norm of fluxes and L2- norm of difference between fluxes and transcriptomics data ³⁰		*						*						#				*		*	135

³⁰ Weighted sum is used.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
140	Min. absolute sum of fluxes and violation of reaction bounds (by assigning slack variables to each constraint) that are defined based on omics dataset ³¹	*					*								#				*		*	136

³¹ Weighted sum is used.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency 1 This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
141	Min. the difference between upper and lowerbounds of a reaction compatible with omics dataset	*					*												*	*		136
142	Min. absolute sum of fluxes that show low expression in transcriptomics data	*					*												*	*		137

	Min. the violation of constraints that enforce a flux in												
143	the new condition to be higher than reference state, if its gene expression is higher than the reference by assigning two slack variables to each constraint ³²	*			*						*	*	137

³² Both the number and the sum of violations can be minimized.

	Objective Function		Тур	e of Ol	bjective					Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
144	Max. growth for the outer and Max. ATP maintenance for the inner	*					*									#	*				*	138
145	Min. the upper bound of Gibbs energy of all reactions in a pathway (thermodynamic driving force)	*					*	*									*			*		(139, 140)

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
146	Max. the absolute value of reaction fluxes	*						*									*			*		141
147	Max. the combination of all metabolic tasks specific to a tissue gather from the literature	*					*										*			*		142

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	MO	BL	Phys	Арр	DI	С	RN	
148	Max. the growth of a gene knockout mutant for the inner, Max. the drop in the wildtype growth after the knockout (difference between wildtype and mutant growth) for the outer	*						*								#	*				*	143

	Objective Function		Тур	e of O	bjective	<u>c</u>				Ту	pe of P	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
149	Min. the variance of difference between flux predictions and kinetically calculated fluxes by integrating metabolomics and proteomics data		*						*										*	*		144

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
150	Min. the number of reactions modifications, i.e. knockout, up or downregulation, for the outer and Min. the production of the product for the inner	*						*								#		*			*	145
	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	Probl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
-----	---	------	-------	---------------	----------------	---------	----	------	----	------	---------	-------	-------	-----	----	----	--------	----------------	----	-----------------------	---------------------------	------------
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
151	Max. the number of metabolites that can be produced in the network to distinguish the metabolites that can never be produced	*						*										*		*		146
152	Min./Max. the ratio of any two reactions			*			*					#						*			*	147

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	Probl	em				Go S	oal o tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	MO	BL	Phys	Арр	DI	С	RN	
153	Max. the production of the product and Min. the number of genetic modifications for the outer, and Max. the growth for the inner	*						*							#	#		*			*	148

	Objective Function	Type of Objective				2				Ту	pe of F	Probl	em				Go S	oal of tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	Арр	DI	С	RN	
154	Max. the productions of the product for the outer, and Min. the metabolic adjustment for the inner	*									*					#		*			*	148
155	Weighted sum of growth rates of different microbial species	*					*								#		*				*	(149, 150)

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	MO	BL	Phys	Арр	DI	С	RN	
156	Max. the flux through two exchange reactions between the host and the microbe ³³	*					*								#		*				*	151

³³ Epsilon-constraint method is used.

	Objective Function		Type of Objective						Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency This ulation	References	
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	MO	BL	Phys	App	DI	С	RN	
157	Max. growth and Min. total squared sum of fluxes for the inner (a weighted sum), and Min. absolute difference between predicted growth by FBA and kinetic model for the outer ³⁴	*									*					#			*		*	152

³⁴ First the inner problem was solved, then the outer problem.

	Min. the weighted sum of 1) the square of difference between constrained and unconstrained fluxes with experimental data, 2) the sum of											
	biological											
158	objectives, 3) the cross-product of the weights of candidate objective to prefer only one of them, 4) the difference between the lower- and upper- bounds to find the least number of active constraints ³⁵	*			*			#		*	*	153

³⁵ Dynamic modelling

	Objective Function		Тур	e of O	bjective	2				Ту	pe of P	robl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
159	Max. the biomass concentration at the final time step ³⁶	*					*										*			*		154
160	Max. the total sum of biomass concentrations of different microbial species ³⁷	*					*									#	*				*	155

- ³⁶ Dynamic modelling ³⁷ Dynamic modelling

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal o tudy	f	Consi with Form	stency 1 This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
161	Min. the total sum of fluctuations in metabolite concentrations ³⁸	*					*										*			*		156
162	Min. total sum of explicit enzyme concentrations	*					*										*			*		157

³⁸ Dynamic modelling

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
163	Min. the sum of reaction fluxes, where each reaction is weighted by its BLAST score and DG	*					*												*	*		158

	Objective Function		Тур	e of O	bjective	ġ				Ту	pe of F	Probl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
164	Min. the inconsistency between reaction fluxes and transcriptomics data up and downregulation in two conditions	*						*											*	*		159

165	Max. the growth in non-growing phenotypes for the inner, Min. the number of modifications, including removals or additions of the reactions, directionality changes, removals or additions of the metabolites regarding the biomass reaction, in the model to fix false growth and non-growth predictions for the outer	*			*				#	#	*		*	160

	Objective Function		Тур	e of O	bjective	<u> </u>				Ту	pe of P	robl	em				G S	oal o tudy	f	Consi with Form	stency This ulation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
166	Max. the uncentered Pearson product- moment correlation between flux variables and gene transcription data ³⁹					*													*			161

³⁹ Semi-definite nonlinear optimization.

	Objective Function	Type of Objective					Type of Problem											Goal of Study			stency This ılation	References
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	App	DI	С	RN	
167	Min. the squared difference between the predicted and experimentally observed ethanol yields for the outer, Min. the weighted sum of squared fluxes and the opposite of ethanol flux for the inner ⁴⁰		*	Frac.	Frac.										#	&			*		*	162

	Objective Function		jective Function							Ту	pe of F	Probl		Goal of Study			Consi with Form	stency This ulation	References			
	,	Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	МО	BL	Phys	Арр	DI	С	RN	
168	Min. the difference between the measured and predicted linear combinations of the objective functions (instead of fluxes, the objective coefficients are variables)	*					*												*	*		163

⁴⁰ Bilevel problem is solved directly with an in-house algorithm.

	Objective Function		Тур	e of O	bjective	2				Ту	pe of F	robl	em				G S	oal of tudy	f	Consi with Form	stency 1 This ulation	References
		Lin.	Quad.	Lin. Frac.	Quad. Frac.	NonLin.	LP	MILP	QP	MIQP	MIQCP	FLP	MIFLP	QFP	мо	BL	Phys	App	DI	С	RN	
169	Min. the L1norm of the coefficients in the objective function	*					*												*	*		163

References:

1. Edwards J, Palsson B. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences. 2000;97(10):5528-33.

2. Price ND, Reed JL, Palsson BØ. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Reviews Microbiology. 2004;2(11):886.

3. Van Gulik W, Heijnen J. A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnology and bioengineering. 1995;48(6):681-98.

4. Soh KC, Hatzimanikatis V. Constraining the flux space using thermodynamics and integration of metabolomics data. Metabolic Flux Analysis: Springer; 2014. p. 49-63.

5. Henry CS, Broadbelt LJ, Hatzimanikatis V. Thermodynamics-based metabolic flux analysis. Biophysical journal. 2007;92(5):1792-805.

6. Schellenberger J, Lewis NE, Palsson BØ. Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophysical journal. 2011;100(3):544-53.

Ramakrishna R, Edwards JS, McCulloch A, Palsson BO. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2001;280(3):R695-R704.

8. Bonarius HP, Hatzimanikatis V, Meesters KP, de Gooijer CD, Schmid G, Tramper J. Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnology and bioengineering. 1996;50(3):299-318.

9. Blank LM, Sauer U. TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology. 2004;150(4):1085-93.

10. Pandey V, Hatzimanikatis V. Investigating the deregulation of metabolic tasks via Minimum Network Enrichment Analysis (MiNEA) as applied to nonalcoholic fatty liver disease using mouse and human omics data. PLoS computational biology. 2019;15(4):e1006760.

11. Dauner M, Sauer U. Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnology and bioengineering. 2001;76(2):132-43.

12. Knorr AL, Jain R, Srivastava R. Bayesian-based selection of metabolic objective functions. Bioinformatics. 2006;23(3):351-7.

13. Ebenhöh O, Heinrich R. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Bulletin of mathematical biology. 2001;63(1):21-55.

14. Lewis JE, Costantini F, Mims J, Chen X, Furdui CM, Boothman DA, et al. Genome-scale modeling of NADPH-driven β-lapachone sensitization in head and neck squamous cell carcinoma. Antioxidants & redox signaling. 2018;29(10):937-52.

15. Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E. Network-based prediction of human tissue-specific metabolism. Nature biotechnology. 2008;26(9):1003.

16. Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments. PLoS computational biology. 2008;4(5):e1000082.

17. Collins SB, Reznik DS. Temporal expression-based analysis of metabolism. PLoS computational biology. 2012;8(11).

18. Pandey V, Hadadi N, Hatzimanikatis V. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models. PLoS computational biology. 2019;15(5):e1007036.

19. Pandey V, Gardiol DH, Pepe AC, Hatzimanikatis V. TEX-FBA: A constraint-based method for integrating gene expression, thermodynamics, and metabolomics data into genome-scale metabolic models. bioRxiv. 2019:536235.

20. Puchałka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, et al. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS computational biology. 2008;4(10):e1000210.

21. Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and bioengineering. 2003;84(6):647-57.

22. Kim J, Reed JL. OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC systems biology. 2010;4(1):53.

23. Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences. 2002;99(23):15112-7.

24. Snitkin ES, Segrè D. Optimality criteria for the prediction of metabolic fluxes in yeast mutants. Genome Informatics 2008: Genome Informatics Series Vol 20: World Scientific; 2008. p. 123-34.

25. Shlomi T, Berkman O, Ruppin E. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proceedings of the national academy of sciences. 2005;102(21):7695-700.

26. Kim J, Reed JL. RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations. Genome biology. 2012;13(9):R78.

Colombié S, Nazaret C, Bénard C, Biais B, Mengin V, Solé M, et al. Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit. The plant journal. 2015;81(1):24-39.

28. Navid A, Almaas E. Genome-level transcription data of Yersinia pestis analyzed with a new metabolic constraint-based approach. BMC systems biology. 2012;6(1):150.

29. Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T, et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Molecular systems biology. 2013;9(1).

30. Srivastava RK, Maiti SK, Das D, Bapat PM, Batta K, Bhushan M, et al. Metabolic flexibility of d-ribose producer strain of Bacillus pumilus under environmental perturbations. Journal of industrial microbiology & biotechnology. 2012;39(8):1227-43.

31. Tepper N, Noor E, Amador-Noguez D, Haraldsdóttir HS, Milo R, Rabinowitz J, et al. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load. PloS one. 2013;8(9):e75370.

32. D'Huys P-J, Lule I, Vercammen D, Anné J, Van Impe JF, Bernaerts K. Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium. Journal of biotechnology. 2012;161(1):1-13.

33. Murabito E, Simeonidis E, Smallbone K, Swinton J. Capturing the essence of a metabolic network: a flux balance analysis approach. Journal of theoretical biology. 2009;260(3):445-52.

34. Vazquez A, Markert EK, Oltvai ZN. Serine biosynthesis with one carbon catabolism and the glycine cleavage system represents a novel pathway for ATP generation. PloS one. 2011;6(11):e25881.

35. Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for redesign of microbial production systems. Genome research. 2004;14(11):2367-76.

36. Lee D, Smallbone K, Dunn WB, Murabito E, Winder CL, Kell DB, et al. Improving metabolic flux predictions using absolute gene expression data. BMC systems biology. 2012;6(1):73.

37. Rossell S, Huynen MA, Notebaart RA. Inferring metabolic states in uncharacterized environments using gene-expression measurements. PLoS computational biology. 2013;9(3):e1002988.

38. Brochado AR, Andrejev S, Maranas CD, Patil KR. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks. PLoS computational biology. 2012;8(11):e1002758.

39. Yang H, Roth CM, Ierapetritou MG. Analysis of amino acid supplementation effects on hepatocyte cultures using flux balance analysis. Omics: a journal of integrative biology. 2011;15(7-8):449-60.

40. Sánchez CEG, García CAV, Sáez RGT. Predictive potential of flux balance analysis of Saccharomyces cerevisiae using as optimization function combinations of cell compartmental objectives. PloS one. 2012;7(8):e43006.

41. Shen T, Rui B, Zhou H, Zhang X, Yi Y, Wen H, et al. Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress. Molecular BioSystems. 2013;9(1):121-32.

42. Joy J, Kremling A. Study of the growth of Escherichia coli on mixed substrates using dynamic flux balance analysis. IFAC Proceedings Volumes. 2010;43(6):401-6.

43. Tervo CJ, Reed JL. FOCAL: an experimental design tool for systematizing metabolic discoveries and model development. Genome biology. 2012;13(12):R116.

44. Klitgord N, Segrè D. Environments that induce synthetic microbial ecosystems. PLoS computational biology. 2010;6(11):e1001002.

45. Song H-S, Reifman J, Wallqvist A. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle. PloS one. 2014;9(11):e112524.

46. Wintermute EH, Lieberman TD, Silver PA. An objective function exploiting suboptimal solutions in metabolic networks. BMC systems biology. 2013;7(1):98.

47. Riehl WJ, Krapivsky PL, Redner S, Segrè D. Signatures of arithmetic simplicity in metabolic network architecture. PLoS computational biology. 2010;6(4).

48. Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, et al. Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming. PLoS computational biology. 2016;12(4).

49. Tong H, Küken A, Nikoloski Z. Integrating molecular markers into metabolic models improves genomic selection for Arabidopsis growth. Nature communications. 2020;11(1):1-9.

50. Gianchandani EP, Oberhardt MA, Burgard AP, Maranas CD, Papin JA. Predicting biological system objectives de novo from internal state measurements. BMC bioinformatics. 2008;9(1):43.

51. Herrgård MJ, Fong SS, Palsson BØ. Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput Biol. 2006;2(7):e72.

52. Wu W-H, Chien C-Y, Wu Y-H, Wu H-H, Lai J-M, Chang PM-H, et al. Inferring oncoenzymes in a genome-scale metabolic network for hepatocytes using bilevel optimization framework. Journal of the Taiwan Institute of Chemical Engineers. 2018;91:97-104.

53. Cheung CM, Williams TC, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. The plant journal. 2013;75(6):1050-61.

54. Wahl A, Sidorenko Y, Dauner M, Genzel Y, Reichl U. Metabolic flux model for an anchorage-dependent MDCK cell line: Characteristic growth phases and minimum substrate consumption flux distribution. Biotechnology and Bioengineering. 2008;101(1):135-52.

55. Hay J, Schwender J. Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos. The Plant Journal. 2011;67(3):526-41.

56. Feng X, Xu Y, Chen Y, Tang YJ. Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS computational biology. 2012;8(2).

57. Schuetz R, Kuepfer L, Sauer U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Molecular systems biology. 2007;3(1).

58. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Molecular systems biology. 2010;6(1).

59. Serrano-Bermúdez LM, Barrios AFG, Maranas CD, Montoya D. Clostridium butyricum maximizes growth while minimizing enzyme usage and ATP production: metabolic flux distribution of a strain cultured in glycerol. BMC systems biology. 2017;11(1):58.

60. Zomorrodi AR, Maranas CD. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS computational biology. 2012;8(2).

61. Harcombe WR, Delaney NF, Leiby N, Klitgord N, Marx CJ. The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum. PLoS computational biology. 2013;9(6).

62. Adadi R, Volkmer B, Milo R, Heinemann M, Shlomi T. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS computational biology. 2012;8(7).

63. Cotten C, Reed JL. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models. BMC bioinformatics. 2013;14(1):32.

64. Töpfer N, Jozefczuk S, Nikoloski Z. Integration of time-resolved transcriptomics data with flux-based methods reveals stressinduced metabolic adaptation in Escherichia coli. BMC systems biology. 2012;6(1):148.

65. Rockwell G, Guido NJ, Church GM. Redirector: designing cell factories by reconstructing the metabolic objective. PLoS Comput Biol. 2013;9(1):e1002882.

66. Pharkya P, Maranas CD. An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metabolic engineering. 2006;8(1):1-13.

67. Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR. Improved vanillin production in baker's yeast through in silico design. Microbial cell factories. 2010;9(1):84.

68. Jensen PA, Papin JA. Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics. 2011;27(4):541-7.

69. Zampar GG, Kümmel A, Ewald J, Jol S, Niebel B, Picotti P, et al. Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Molecular systems biology. 2013;9(1).

70. Kümmel A, Panke S, Heinemann M. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Molecular systems biology. 2006;2(1):2006.0034.

71. Willemsen AM, Hendrickx DM, Hoefsloot HC, Hendriks MM, Wahl SA, Teusink B, et al. MetDFBA: incorporating time-resolved metabolomics measurements into dynamic flux balance analysis. Molecular BioSystems. 2015;11(1):137-45.

72. Riemer SA, Rex R, Schomburg D. A metabolite-centric view on flux distributions in genome-scale metabolic models. BMC systems biology. 2013;7(1):33.

73. Arnold A, Sajitz-Hermstein M, Nikoloski Z. Effects of varying nitrogen sources on amino acid synthesis costs in Arabidopsis thaliana under different light and carbon-source conditions. PLoS One. 2015;10(2).

74. Zarecki R, Oberhardt MA, Yizhak K, Wagner A, Segal ES, Freilich S, et al. Maximal sum of metabolic exchange fluxes outperforms biomass yield as a predictor of growth rate of microorganisms. PloS one. 2014;9(5).

75. Birch EW, Udell M, Covert MW. Incorporation of flexible objectives and time-linked simulation with flux balance analysis. Journal of theoretical biology. 2014;345:12-21.

76. Garcia S, Trinh CT. Harnessing natural modularity of metabolism with goal attainment optimization to design a modular chassis cell for production of diverse chemicals. ACS Synthetic Biology. 2020.

77. Maarleveld TR, Wortel MT, Olivier BG, Teusink B, Bruggeman FJ. Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models. PLoS computational biology. 2015;11(4).

78. Montezano D, Meek L, Gupta R, Bermudez LE, Bermudez JC. Flux balance analysis with objective function defined by proteomics data—metabolism of Mycobacterium tuberculosis exposed to mefloquine. PloS one. 2015;10(7).

79. Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, et al. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS computational biology. 2009;5(8).

80. Sajitz-Hermstein M, Nikoloski Z. Structural control of metabolic flux. PLoS computational biology. 2013;9(12).

81. Chiu H-C, Segrè D. Comparative determination of biomass composition in differentially active metabolic States. Genome Informatics 2008: Genome Informatics Series Vol 20: World Scientific; 2008. p. 171-82.

82. Tarlak F, Sadıkoğlu H, Çakır T. The role of flexibility and optimality in the prediction of intracellular fluxes of microbial central carbon metabolism. Molecular BioSystems. 2014;10(9):2459-65.

83. Lee JS, Nishikawa T, Motter AE. Why optimal states recruit fewer reactions in metabolic networks. arXiv preprint arXiv:12060766. 2012.

84. Vilkhovoy M, Horvath N, Shih C-H, Wayman JA, Calhoun K, Swartz J, et al. Sequence specific modeling of E. coli cell-free protein synthesis. ACS synthetic biology. 2018;7(8):1844-57.

85. Jamshidi N, Raghunathan A. Cell scale host-pathogen modeling: another branch in the evolution of constraint-based methods. Frontiers in microbiology. 2015;6:1032.

86. Brynildsen MP, Winkler JA, Spina CS, MacDonald IC, Collins JJ. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nature biotechnology. 2013;31(2):160.

87. Sajitz-Hermstein M, Nikoloski Z. Multi-objective shadow prices point at principles of metabolic regulation. Biosystems. 2016;146:91-101.

88. Zavlanos MM, Julius AA, editors. Robust flux balance analysis of metabolic networks. Proceedings of the 2011 American Control Conference; 2011: IEEE.

89. Burgard AP, Maranas CD. Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnology and bioengineering. 2003;82(6):670-7.

90. Holzhütter HG. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. European journal of biochemistry. 2004;271(14):2905-22.

91. Töpfer N, Caldana C, Grimbs S, Willmitzer L, Fernie AR, Nikoloski Z. Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in Arabidopsis. The plant cell. 2013;25(4):1197-211.

92. Dreyfuss JM, Zucker JD, Hood HM, Ocasio LR, Sachs MS, Galagan JE. Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM. PLoS computational biology. 2013;9(7).

93. Kumar VS, Maranas CD. GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS computational biology. 2009;5(3).

94. Suthers PF, Zomorrodi A, Maranas CD. Genome-scale gene/reaction essentiality and synthetic lethality analysis. Molecular systems biology. 2009;5(1):301.

95. Henry CS, Zinner JF, Cohoon MP, Stevens RL. iBsu1103: A new genome-scale metabolic model of Bacillus subtilisbased on SEED annotations. Genome biology. 2009;10(6):R69.

96. Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic acids research. 2018;46(15):7542-53.

97. Tepper N, Shlomi T. Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics. 2010;26(4):536-43.

98. Zakrzewski P, Medema MH, Gevorgyan A, Kierzek AM, Breitling R, Takano E. MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models. PloS one. 2012;7(12).

99. Chandrasekaran S, Price ND. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences. 2010;107(41):17845-50.

100. Garay CD, Dreyfuss JM, Galagan JE. Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis. BMC systems biology. 2015;9(1):57.

101. Schultz A, Qutub AA. Reconstruction of tissue-specific metabolic networks using CORDA. PLoS computational biology. 2016;12(3).

102. Kim TY, Park JM, Kim HU, Cho KM, Lee SY. Design of homo-organic acid producing strains using multi-objective optimization. Metabolic engineering. 2015;28:63-73.

103. Zhang X, Tervo CJ, Reed JL. Metabolic assessment of E. coli as a Biofactory for commercial products. Metabolic engineering. 2016;35:64-74.

104. Pey J, Prada J, Beasley JE, Planes FJ. Path finding methods accounting for stoichiometry in metabolic networks. Genome biology. 2011;12(5):R49.

105. Croes D, Couche F, Wodak SJ, van Helden J. Inferring meaningful pathways in weighted metabolic networks. Journal of molecular biology. 2006;356(1):222-36.

106. Tervo CJ, Reed JL. MapMaker and PathTracer for tracking carbon in genome-scale metabolic models. Biotechnology journal. 2016;11(5):648-61.

107. Wang Y, Eddy JA, Price ND. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC systems biology. 2012;6(1):153.

108. Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact context-specific metabolic network models. PLoS computational biology. 2014;10(1).

109. Kim HU, Kim WJ, Lee SY. Flux-coupled genes and their use in metabolic flux analysis. Biotechnology journal. 2013;8(9):1035-42.

110. Ataman M, Hernandez Gardiol DF, Fengos G, Hatzimanikatis V. redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models. PLoS computational biology. 2017;13(7):e1005444.

111. Hoppe A, Hoffmann S, Holzhütter H-G. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC systems biology. 2007;1(1):23.

112. Zampieri M, Hörl M, Hotz F, Müller NF, Sauer U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nature communications. 2019;10(1):1-13.

113. Mori M, Marinari E, De Martino A. A yield-cost tradeoff governs Escherichia coli's decision between fermentation and respiration in carbon-limited growth. NPJ systems biology and applications. 2019;5(1):1-9.

114. Dai Z, Yang S, Xu L, Hu H, Liao K, Wang J, et al. Identification of Cancer–associated metabolic vulnerabilities by modeling multiobjective optimality in metabolism. Cell Communication and Signaling. 2019;17(1):1-15.

115. Alter TB, Ebert BE. Determination of growth-coupling strategies and their underlying principles. BMC bioinformatics. 2019;20(1):447.

116. Yang L, Saunders MA, Lachance J-C, Palsson BO, Bento J, editors. Estimating Cellular Goals from High-Dimensional Biological Data. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2019.

117. Lloyd CJ, King ZA, Sandberg TE, Hefner Y, Olson CA, Phaneuf PV, et al. The genetic basis for adaptation of model-designed syntrophic co-cultures. PLoS computational biology. 2019;15(3):e1006213.

118. Seif Y, Monk JM, Mih N, Tsunemoto H, Poudel S, Zuniga C, et al. A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types. PLoS computational biology. 2019;15(1):e1006644.

119. Suthers PF, Dasika MS, Kumar VS, Denisov G, Glass JI, Maranas CD. A genome-scale metabolic reconstruction of Mycoplasma genitalium, i PS189. PLoS Comput Biol. 2009;5(2):e1000285.

120. Hastings J, Mains A, Virk B, Rodriguez N, Murdoch S, Pearce J, et al. Multi-omics and genome-scale modeling reveal a metabolic shift during C. elegans aging. Frontiers in molecular biosciences. 2019;6:2.

121. Masid M, Ataman M, Hatzimanikatis V. Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nature Communications. 2020;11(1):1-12.

122. Gerlin L, Cottret L, Cesbron S, Taghouti G, Jacques M-A, Genin S, et al. Genome-Scale Investigation of the Metabolic Determinants Generating Bacterial Fastidious Growth. Msystems. 2020;5(2).

123. Contador CA, Lo S-K, Chan SH, Lam H-M. Metabolic Analyses of Nitrogen Fixation in the Soybean Microsymbiont Sinorhizobium fredii Using Constraint-Based Modeling. Msystems. 2020;5(1).

124. Ong WK, Midford PE, Karp PD. Taxonomic weighting improves the accuracy of a gap-filling algorithm for metabolic models. Bioinformatics. 2020;36(6):1823-30.

125. Lopes HJS, Bonturi N, Kerkhoven EJ, Miranda EA, Lahtvee P-J. C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides. Applied microbiology and biotechnology. 2020:1-11.

126. Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol. 2012;8(5):e1002518.

127. Sarkar D, Maranas CD. SNPeffect: identifying functional roles of SNPs using metabolic networks. The Plant Journal. 2020.

128. Wang F-S, Wu W-H, Hsiu W-S, Liu Y-J, Chuang K-W. Genome-Scale Metabolic Modeling with Protein Expressions of Normal and Cancerous Colorectal Tissues for Oncogene Inference. Metabolites. 2020;10(1):16.

129. Angione C. Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism. Bioinformatics. 2018;34(3):494-501.

130. Lasry Testa R, Delpino C, Estrada V, Diaz SM. In silico strategies to couple production of bioethanol with growth in cyanobacteria. Biotechnology and bioengineering. 2019;116(8):2061-73.

131. Rodenburg SY, Seidl MF, Judelson HS, Vu AL, Govers F, de Ridder D. Metabolic model of the Phytophthora infestans-tomato interaction reveals metabolic switches during host colonization. Mbio. 2019;10(4):e00454-19.

132. Ben Guebila M, Thiele I. Predicting gastrointestinal drug effects using contextualized metabolic models. PLoS computational biology. 2019;15(6):e1007100.

133. Shaw R, Cheung CM. A mass and charge balanced metabolic model of Setaria viridis revealed mechanisms of proton balancing in C4 plants. BMC bioinformatics. 2019;20(1):1-11.

134. Venayak N, von Kamp A, Klamt S, Mahadevan R. MoVE identifies metabolic valves to switch between phenotypic states. Nature communications. 2018;9(1):1-9.

135. Scheunemann M, Brady SM, Nikoloski Z. Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models. Scientific reports. 2018;8(1):1-15.

136. Tian M, Reed JL. Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis. Bioinformatics. 2018;34(22):3882-8.

137. van Berlo RJ, de Ridder D, Daran J-M, Daran-Lapujade PA, Teusink B, Reinders MJ. Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM transactions on computational biology and bioinformatics. 2009;8(1):206-16.

138. Yaneske E, Angione C. The poly-omics of ageing through individual-based metabolic modelling. BMC bioinformatics. 2018;19(14):83-96.

139. Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput Biol. 2014;10(2):e1003483.

140. Hädicke O, von Kamp A, Aydogan T, Klamt S. OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli. PLoS computational biology. 2018;14(9):e1006492.

141. Mishra P, Lee N-R, Lakshmanan M, Kim M, Kim B-G, Lee D-Y. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. BMC systems biology. 2018;12(2):9-20.

142. Chang RL, Xie L, Xie L, Bourne PE, Palsson BØ. Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol. 2010;6(9):e1000938.

143. Diamant I, Eldar YC, Rokhlenko O, Ruppin E, Shlomi T. A network-based method for predicting gene–nutrient interactions and its application to yeast amino-acid metabolism. Molecular BioSystems. 2009;5(12):1732-9.

144. Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics. 2010;26(12):i255-i60.

145. Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol. 2010;6(4):e1000744.

146. Kumar VS, Dasika MS, Maranas CD. Optimization based automated curation of metabolic reconstructions. BMC bioinformatics. 2007;8(1):212.

147. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome research. 2004;14(2):301-12.

148. Kim J, Reed JL, Maravelias CT. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PloS one. 2011;6(9):e24162.

149. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, et al. Metabolic modeling of a mutualistic microbial community. Molecular systems biology. 2007;3(1):92.

150. Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, et al. Competitive and cooperative metabolic interactions in bacterial communities. Nature communications. 2011;2(1):1-7.

151. Heinken A, Sahoo S, Fleming RM, Thiele I. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut microbes. 2013;4(1):28-40.

152. Pan D-T, Wang X-D, Shi H-Y, Yuan D-C, Xiu Z-L. Dynamic flux balance analysis for microbial conversion of glycerol into 1, 3-propanediol by Klebsiella pneumoniae. Bioprocess and biosystems engineering. 2018;41(12):1793-805.

153. Nikdel A, Braatz RD, Budman HM. A systematic approach for finding the objective function and active constraints for dynamic flux balance analysis. Bioprocess and biosystems engineering. 2018;41(5):641-55.

154. Mahadevan R, Edwards JS, Doyle III FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophysical journal. 2002;83(3):1331-40.

155. Zomorrodi AR, Islam MM, Maranas CD. d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS synthetic biology. 2014;3(4):247-57.

156. Luo RY, Liao S, Tao GY, Li YY, Zeng S, Li YX, et al. Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions. Molecular systems biology. 2006;2(1):2006.0031.

157. Sánchez BJ, Zhang C, Nilsson A, Lahtvee PJ, Kerkhoven EJ, Nielsen J. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Molecular systems biology. 2017;13(8):935.

158. Krumholz EW, Libourel IG. Thermodynamic constraints improve metabolic networks. Biophysical journal. 2017;113(3):679-89.

159. Zhu L, Zheng H, Hu X, Xu Y. A computational method using differential gene expression to predict altered metabolism of multicellular organisms. Molecular BioSystems. 2017;13(11):2418-27.

160. Hartleb D, Jarre F, Lercher MJ. Improved metabolic models for E. coli and mycoplasma genitalium from GlobalFit, an algorithm that simultaneously matches growth and non-growth data sets. PLoS computational biology. 2016;12(8):e1005036.

161. Kim MK, Lane A, Kelley JJ, Lun DS. E-Flux2 and SPOT: validated methods for inferring intracellular metabolic flux distributions from transcriptomic data. PloS one. 2016;11(6):e0157101.

162. Guo W, Feng X. OM-FBA: integrate transcriptomics data with flux balance analysis to decipher the cell metabolism. PloS one. 2016;11(4):e0154188.

163. Zhao Q, Stettner AI, Reznik E, Paschalidis IC, Segrè D. Mapping the landscape of metabolic goals of a cell. Genome biology. 2016;17(1):1-11.