T-213-VEFF: Web Programming |

L7/L8: JavaScript

Grischa Liebel

This Lecture

Terminology: Client-/Server-side
The DOM

JavaScript

History/Versions
Principles
Basic Syntax

Hoisting

This Lecture

JavaScript

Callbacks
JavaScript Execution (Event Loop)

AJAX

Learning OQutcomes

define and contrast client-side and server-side web applications

define and explain key lLanguage concepts of HTML, CSS, and
JavaScript

predict the behaviour and Look of a web application based on its
source code

predict the behaviour of asynchronous JavaScript code

develop basic client-side web applications using HTML, CSS, and
JavaScript

Learning OQutcomes

make use of AJAX to enrich web applications with asynchronous
behaviour

analyse web application source code for errors
propose improvements to web application source code

improve existing web application source code

Literature

" [1] https://www.w3.0rg/TR/2004/REC-DQM-Level-3-Core-

) 04040 LN oXe lon.htm

" [2] https://www.w3schools.com/js/
" [3] https://www.w3schools.com/js/js versions.asp
©[4]

" [5]

" [6] http://latentflip.com/loupe

https://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/introduction.html
https://www.w3schools.com/js/
https://www.w3schools.com/js/js_versions.asp
https://www.w3schools.com/tags/ref_eventattributes.asp
https://medium.com/front-end-hacking/javascript-event-loop-explained-4cd26af121d4
http://latentflip.com/loupe

wWeb App vs. Web Site?

"The general distinction between a dynamic web page of any
kind and a 'web application' is unclear. Web sites most likely
to be referred to as 'web applications' are those which have
similar functionality to a desktop software application [..]" -
Wikipedia

We use: "A web application is a dynamic web site

with a functionality similar to desktop software”

Client/Server side, Frontend/backend

- 4 "
GET /wiki/URL HTTP/1.1
Host: en.wikipedia.org

(——————————————————————
Client p N Server

HTTP/1.1 200 OK

"Frontend" "Backend"
"Client side" "Server side"

Client/Server side, Frontend/backend

- [m—
(______________________
Client Server
/o Logic executed on client \ /' Code executed on server \
(orowser) - Before server serves page
o After server serves page o Eg SerVing different HTML code
. Mainly JavaScript depending on parameters
\ J « PHP, Java, JavaScript, ...

/

"Frontend" "Backend"
"Client side" "Server side"

Client- vs Server-Side Web
Applications

A client-side (web) application would use client-side languages

A server-side (web) application would use server-side languages

You can of course use both at the same time

Therefore: Typically, you talk about where your code is

executed, not what kind of application you have

Server-side/Client-side execution

Server-side Execution

Code is private (on the server)

Can enforce specific versions of the scripting language

E.g., we see later that JavaScript has many versions

Can use non-standard language elements

Can access server-side resources

E.g., database

Client-side Execution

Code is public (client sends a GET request to receive the script)
Can be changed by the user (similar to cookies, CSS, ...)
Has to be compatible with different browsers/language versions

Lowers the execution Lload on the server

Clients execute all the logic

More network traffic

Scripts have to be sent to the client via HTTP(S)

Recap: Browser loads HTML

Browsers interpret HTML

Source can be viewed

4 N\
More detailed:

Browsers parse the HTML

code and create the DOM
\ %

The Document Object Model (DOM)

"The Document Object Model (DOM) is an application
programming interface (API) for valid HTML [..] documents" -
W3C

"With the DOM, programmers can build documents, navigate
their structure, and add, modify, or delete elements and
content." - W3C

DOM = Object tree of HTML tags + APl to manipulate it

The way for scripting languages to access the web site
(e.g., read fields, change elements, change CSS,

insert/remove things)

HTML - Structure

L myfile.ntml
<!DOCTYPE html> <!-- HTML Version —-—->
<html> <!-- HTML tags. All but the doctype should be here -->
<head> <!-- Head. Meta information -->

<title>My first web site</title>
</head>

<body> <!-- Body. Actual content -->

<hl>My first web site</hl>

<p>Welcome to my web site!</p>
</body>

</html>

Document
HTML - Structyr—- S
L Html

e e
BRI S [

a N N O
Text = Text = Text =
. . . "My first web "Welcome to
My first web site e o
site my web sitel

- g - N i

JavaScript

“part of the triad of technologies that all Web
developers must learn: HTML, CSS, and JavaScript”
[Flanagan 'll]

Weakly typed, interpreted language
Supports object-oriented, functional, event-driven styles

Traditionally: client-side language, no [/O

D. Flanagan (2011), “JavaScript: The Definite Guide”, 6th ed., O'Reilly

JavaScript

“part of the triad of technologies that all Web
developers must learn: HTML, CSS, and JavaScript”
[Flanagan 'll]

Weakly typed, interpreted language [The focus for now! }

Supports object-oriented, functional, event-driven styles

Traditionally: client-side language, no [/O

D. Flanagan (2011), “JavaScript: The Definite Guide”, 6th ed., O'Reilly

JavaScript

Original version by Netscape: JavaScript

Language standard: ECMAScript

Different standard versions, different browser support
ECMAScript 3 (ES3) fully supported in all browsers [3]

ECMAScript 5 (ES5) fully supported in all modern

browsers [3]

ECMAScript 2015 (ES6) Limited in older browsers

We cover only few concepts of ESO

JavaScript (client-side) Execution

Each browser has a JavaScript engine that interprets the
code
(Simplified. Typically, they have some internal

representation)

Different engines on the market

V8 (Google Chrome, but also for Node.js/backend)
SpiderMonkey (Firefox)

Chakra (Microsoft IE and Edge)

JavaScript (client-side) Execution

Differences in speed, language support, different kind

of optimisations

But "magically", they all work similarly well

Nowadays, for regular use, you notice very few

differences!

‘14 ‘15 ‘16 ‘17

Why JavaScript?

Earlier in this course: C#

© 0O N O O A WOWN

We use JavaScript only, since

Objective C

[
o

« It's popular

(https://octoverse.github.com/projects)
- Both backend and frontend
- Less context switch, tooling, knowledge

« It's supported by all (common) browsers

Why JavaScript?

JavaScript has a bad reputation

Mainly historical

But: Does lots of unintuitive things

(https://www.destroyallsoftware.com/talks/wat)

JS - Example

Let's start with a simple example!

<button type="button"

onclick="window.alert ('Test')">

Click

</button>

React to an HTML event

JS - Example

Internal definition

Script tags!

<script> window.alert ("Test"); </script>

In head or body

Executed once parsed!

JS - Example

External definition
.js file
Script tags!

<script src="script.js"></script>

In head or body

Executed once parsed!

JS - Specification

Three different possibilities:

- As part of HTML attribute (event)
- Internal definition

« External definition

(Multiple definitions/files possible and common)

Similar to CSS: For modularisation and readability, best to

have external files

For internal/external: Where should we place the script tags?

Where to put the Script tag?

Can be in head and in body
Is loaded once the browser parses it (Top-down)

DOM construction stops until script is loaded

|f script is large, website "freezes"

Old recommendation: Put it in the bottom of body

Entire DOM is constructed before the scripts are Loaded

New: Put in head, and use async or defer attributes

For this course: Not so relevant

Some Basic JavaScript

Logging to the browser console (e.g., F12 in Firefox)
console.log("Hello World");

Basic functions Curly braces define a block
//Function definition ////
) |

function showAlert (msg
window.alert (msqg) ;

}
Indentation/Whitespace is optional
//Function call

showAlert ("Hello");«~—— Semicolons are also optional
(but strongly recommended)

Some Basic JavaScript - Variables

var x = 5;

var y = 6;

var z = X + vy,

var pi1i = 3.14;

var person = "Grischa";
var boolean = true;
Untyped!

Not quite - more later

Accessing the DOM

One of the main uses of JavaScript in the Browser:
read/modify the DOM

Access existing elements:
document.getElementById (1d) ;

document.getElementsByTagName (name) ; Most methods work on
document.getElementsByClassName (name) ; any HTML element
document.body;
document.head;

//Get the first child of an HTML element

var child = element.firstChild;

Modifying the DOM

Modify existing elements:

//Change

document.

//Change

document.

//Change

document.

/ /Remove

text between start/end tag of el. with id headerl
getElementById("headerl").textContent = "New";

the src attribute of myPic
getElementById ("myPic").src = "cat.jpg";

the color property of the style attribute to blue
getElementById("headerl") .style.color = "blue";

the first child element of element

element.removeChild(element.firstChild) ;

Modifying the DOM

" Replace the entire HTML:

document.write(text) ;

Modifying the DOM

Create the element itself

Insert new elements Create and add attributes
Complicated! /

var para = document.createElement (

var parald = document. createAttrlbute "1d"
parald.value = "newPara'";
para.setAttributeNode (parald); «
var paraText = document.createTextNode ("new text");

*\

Create and add text
para.appendChild (paraText) ; </ﬂ>etween start and end tag)

document.getElementById ("myDiv") .appendChild(para):;

e

Insert element somewhere in the DOM

Events

When should an action happen (e.g., DOM modification)?

HTML events!
<button type="button"

onclick="callFunction()">Go!</button>

There are a lot of them. Check [4] for a reference

onload, onclick, onchange, onsubmit, oncontextmenu,

A AN—

L Element/page loaded JL Element changed J{ Form submitted J

More on Variables and Types

var x = 5; //number

var y = 6; //number

var z = x + vy; //number

var pi = 3.14; //number

var person = "Grischa"; //string
var boolean = true; //boolean

—Untypedt Weakly typed - implicit and dynamic types!

More on Variables and Types

JavaScript knows six data types

Primitive
* number
e string
* boolean

e undefined

Complex
e object //Arrays are also of type object

e function

Can be checked using typeot (var);

Functions are variables

As in Python

function functA () {

}

//Function call

functA () ;
//Function assignment as a variable
var b = functh;

b(); //calls functA

JavaScript Objects

var obj = {name:"Grischa", age:31};

//Access via obj.variable or obj["variable"]
console.log(obj.name); //outputs "Grischa™"
console.log(obj["name"]); //outputs "Grischa"

No classes! (there are prototypes - not covered in this

course)

Object creation is incredibly simple

« Origin of JSON, the JavaScript Object Notation

JSON

JavaScript Object Notation = Common data exchange format

Essentially the same as a JavaScript object:

var obj = {name: "Grischa", age: 31}; //Object
var json = '"{"name": "Grischa", "age": "31"}';, //JSON
It's a String

All values are quoted

All attributes are quoted

JSON & > JavaScript object

conversion

var obj = {name: "Grischa", age: 31}; //Object

var json = JSON.stringify(obj); //JISON

var json = '"{"name": "Grischa", "age": "31"}'; //var
obj = JSON.parse(json); //Object

This simplicity is one of the main reasons why JSON is
SO popular!

JSON.stringify() removes functions!

JavaScript Arrays

Square brackets, as in most languages

var cars = ["Saab", "Volvo", "BMW"],;

Access by index only (no associative arrays)

cars|[0];

Array in JSON: ungquoted

var jsonObj = '"{"name": "Grischa", "age": "31",
"languages": ["German", "English"]}"';

Of course, you can have objects in arrays
var objArray = [{...},{...}]1>

JavaScript - Summary |

How to include JS in HTML

How to call/trigger JS code

Events

When parsed

DOM access
Basics: variables, types, functions, objects

JSON

JavaScript

What comes on the following 6 slides is the source of

many errors

- Make sure you understand these concepts!

Part of the (bad) reputation of JavaScript
Type conversion

Comparators Z

r
WARNING!

Scope

designed by '@ freepik

Hoisting

JavaScript Type Conversion

var

var

var

var

var

x = 5; //Number
y = 6; //Number 4 A
Types are dynamic

z = 'test'; //String (can change over time)!

_)

+ vy N 4 _ ™
" 7§ J/RemeEE Type conversion from lLeft to
. | right!

txt = "5"; / /Strlny (typeof(m) is "string")

_)
m = x + y + txt //?

//m — 11115"

x

U
WARNING!

designed by @ freepik

JavaScript Comparison

var xXx = 5,
var y — "5";
if (x == vy) { //True or false? [Truel! }

'==' compares only the value (it performs type conversion!)

S

2
WARNING!

designed by @ freepik

Inequality operator: 'I="

|

-

JavaScript Comparison Convention:
Unless you absolutely
— need '==', use '==='
var xXx = 5,
1A 1A K
var y = 5"
if (x === y) { //True or false?[False! }

'===' compares both the type and value

Inequality operator: 'I=='

JavaScript Scopes

Global and local scope, nothing else

- From ESG6: block scope

P
var carName = "Volvo"; <« Global J
\\
>
function myFunction () { .
var licensePlate = "ABC234";</\ Local to the function }
X = by
} M Implicitly global () J t :
if (carName === "Volvo") { (X
\ s

JavaScript Block Scope

" From ESG6: block scope
- Everything within curly braces is a block (also before ESG6)

- ESO Iintroduces special keywords to declare variables with

block scope

1f (carName === "Volvo") {
var temp = 42;
let temp2 = 42;
const temp3 = 42; //no re-definition, re-assignment

}
console.log(temp) //Logs 42

console.log(temp2); //Logs undefined
console.log(temp3); //Logs undefined

S

2
WARNING!

designed by @ freepik

|

4

JavaScript Hoisting

4 N\
console.log (x) ; undefined
x = 5; f)
console.log(x); S
if (true) { N g
var x;
}
x = 73
console.log(x);{ 1 }

No errors!

JavaScript "hoists" (moves) variable declarations to
the top of the scope!

S

-

U
WARNING!

|

designed by @ freepik

JavaScript Strict Mode

"use strict"; //on top of your script/function

Forces a number of conventions

- Variables have to be declared (hoisting still works)
- Deleting variables is not allowed

« Prevents the use of keywords as variable names

From version ES5

Older browsers/JavaScript engines ignore the

statement

Extremely common in
JavaScript

JavaScript Callbacks

A pattern/style to execute functionality after work is done

"You don't call us, we call you!"

function doA(callback) {

//do something { But....why? 1
callback () ;

b) g

doA (function() { console.log("done"),; });

Callback function is provided as a function parameter

doA ()

Callback function is called when Ils finished.

doA () wecalls back™”

JavaScript Callbacks

setTimeout (function () {
console.log(1l);
b, 500)

console.log(2);

setTimeout delays the
execution of a function
(callback) by X ms

o

Qutput:

* Console.log(l)7 js only called after 500ms (roughly)

Meanwhile, the execution continues

(i.e., 2 is logged before 1)

JavaScript Callbacks

This is actually a great tool!

In the internet, many things happen delayed

We don't know how long an HTTP response takes

No polling needed (checking whether there is a result)
No message passing/notification needed

Non-blocking

(while waiting for an answer, you can do other things)

JavaScript Callbacks

But readability is so-so

Nested callbacks

Difficult to read

Prone to errors

"Callback hell"

JavaScript Callbacks

fs.readdir (src, function (err, files) {
if (err) {

} else {
files.forEach (function (...) {
console.log(..);
gm(...).size(function (err, ...) {
if (err) {
console.log(...); Still a pretty small
} else { example...

console.log(...);

JavaScript Callbacks

Define functions separately
Give functions clear names

(Use Promises)

function readCallback (err, files) {
if (err) {

} else {

files.forEach (handleFile(...));
}
}
function fileCallback (...) {
console.log(..);
gm(...).size(doSomething(err,...));
}
function: doSomething(err, ...) {
if (err) {
console.log(...);
} else {
console.log(...);

}

fs.readdir (src, handleRead (err, files)) ;

JavaScript - Asynchronicity

JavaScript is single-threaded

Can only do one thing at a time

But there is complicated asynchronous behaviour!

-

U
WARNING!

designed by '® freepik

JavaScript - Asynchronicity

(Yet another important source of errors)

JavaScript does not execute everything in the way you think!

function log() {

setTimeout (function cb () {

console.log('1');)} Log "1" with timeout Oms

r0) 7
console.log('2"'); Then log "2"
}
Output: 2l
1og () ; ’
1 esigned by & freepik

JavaScript - Execution

Call Stack (single-thread)

4 N
console.log (1) ;
AL J
4 N
cb ()

S

Browser Web APIs

-

(running timer)

setTimeout (...);

~

)

=>

Event Loop

Message Queue

BT

function log() {
setTimeout (

function cb () {
console.log('1"); }

2 0) g

console.log('2"');

}

log ()

£>>x
20
WARNING!

cesgnecy @ reepl

4 .
For each command in

_ execution, a frame is
JavaSCript - Exec placed on the Call Stack
N
Call Stack (single-thread)—

Browser Web APIs Some calls are directed to
Browser Web apis
/ (e.g., timeouts, AJAX calls)
\ /
Once the Browser Web api
Is finished, it places a

message/callback in the
\ Message Queue

- <
After each frame
) execution in the Call Stack,
Event‘Loop the Message Queue checks
>< if the Call Stack is empty y

. p
If it is, it moves all
messages there

Message Queue

JavaScript - Summary Il

You have now learned some of the 'quirks' of JavaScript

Type conversion
Variable comparison
Hoisting

Scopes

Callbacks
Asynchronicity

With this, you are almost ready to understand most

JavaScript libraries!

JavaScript - Dynamic Behaviour

We can now react to things that happen in the HTML page

User events
Timeouts
Loading of sites

But: Sometimes we need to get new information after the

page is loaded

Google suggests search terms while writing
But Google doesn't know what you are going to type!

Google uses AJAX

AJAX

Asynchronous JavaScript And XML
(Allows actually not only XML, but also text, JSON, ...)

Allows HTTP requests/responses after the page has been

served/loaded

- Update the page with new data without reload
- Load only what is needed, more later

- Load different data depending on user actions/input

Use the standard #MLHttpRequest gpject to make requests

AJAX

Browser Server

An event occurs...

® Process HTTPRequest

e Create an — @ REHE. —
XMLHttpRequest object

e Create a response and

send data back to the

browser
e Send HttpRequest

Browser
eProcess the returned
data using JavaScript — Inte rnet

eUpdate page content

AJAX

var xhttp = new XMLHttpRequest () Callback function

|

xhttp.onreadystatechange = function () {

1f (this.readyState = 4 && this.status == 200) {

console.log(this.responseText) ;

} HTTP method URL

I / /

xhttp.open ("GET", "ajaxTest.txt", true):;

AN Asynchronous or blocking?

xhttp.send () ;

AJAX - Axios

XMLHttpReqguest

Using IS cumbersome

Especially for more complicated requests (with several headers

and a body)
Many libraries simplify HTTP requests

One example: AXios

- You are free to use it here in the course
- Uses some advanced concepts (Promises and arrow functions)

- No need to understand all details - for simple usage here

enough

AJAX - Axios

//Include the axios library
<script

src="https://unpkg.com/axios/dist/axios.min.js"></script>

s I
HTTP method } Promise objects:

.then() = success case
axlos.get ('URL')‘/& .catch() = error case
.then(response => {

for (var 1i=0; i<response.data.length; 1i++) {
console.log("Element nr " + 1 + ": " +

/

response.datal[1]) -

J Arrow functions: Short form for function
}).catch(error =>%ft—1 o definition (with some restrictions)

console.log(error); (here:instead of function (error) {})
bl g \

~

/

wWhat have | not covered?

(Intuitive things): Loops, string operations, Math, Random,

Date, lots of operators

Explicit type conversion & float accuracy
Closures

Arrow functions

Promises

Object creation, prototypes

this keyword

wWhat have | not covered?

Cross-0Origin Resource Sharing (CORS)

Transpiled languages (CoffeScript, TypeScript)

Some of these will be added later (testing/debugging,

backend, buffer lectures)

Web Programming Il covers some advanced JavaScript

-

o

Check [2] if you're interested.
Otherwise, be prepared to learn

(also for the assignments)!

~

/

Summary

wWhen an HTML document is parsed, the browser creates the

DOM, an API for accessing and manipulating the content

JavaScript is originally a client-side language

- event-based, reacts to user input

« can read/modify the DOM

Summary

While JavaScript is similar to many programming Languages, it is

Jnintuitive

- Type conversion, comparison, hoisting, scope, asynchronicity

AJAX is used to make HTTP requests (asynchronously) after a

page has been served

- Makes web sites/apps truly interactive/dynamic

Next Lecture (L9)

Testing and Debugging

A bit of theory

Testing Levels, types

Testing processes: TDD, BDD, ATDD

Practical stuff

Main focus: JavaScript
Some basic Ul testing: Selenium and Sikuli
JavaScript debugging

JavaScript (unit) testing with Mocha and Chai

Haskdlinn i Reykjavik | Menntavegur 1 | 101 Reykjavik | Simi: 599 6200 | www.hr.is

Sources

Warning: "Designed by Freepik"

AJAX flow: Screenshot from
https://www.w3schools.com/js/js_ajax_intro.asp
Todo: Designed by Makyzz / Freepik
Megaphones: Designed by Freepik

