T-303-HUGB: Software

Engineering
MO1l: Requirements
Engineering

Grischa Liebel

This Lecture

Activities in RE:

Elicitation, specification, validation, management
Stakeholders vs. Users
Elicitation: Recap from T-216-GHOH

Specification: Specification styles, Non-functional

requirements
Validation techniques

Elements of Requirements Management

Literature

" [Sommerville] Ch. 4

Learning OQutcomes

Contrast software engineering techniques required for different

types of software systems.

Illustrate the term stakeholder in relation to different types of

software systems.

Classify different kinds of requirements needed in software

engineering.

Formulate functional and quality requirements using different

techniques.

Summarise different techniques for performing requirements

validation.

Why the Vasa Sank

2. Changing needs

3. Lack of technical specifications

4. Lack of a documented project plan

5. & 6. Excessive and secondary innovations

7. Requirements creep

Software Project Failure Factors Percentage of Projects (%)

In-house | Outsourced Overall
Delivery date impacted the development process 939 90.5 929
Project under-estimated 83.7 76.2 8l.4
Rislfs were not re-assessed, controlled, or managed through the 73.4 80.9 75.7
— | Project
Staff were not rewarded for working long hours) 81.6 57.1 74.3
Delivery decision made without adequate requirements 83.7 47.6 72.9
information
Staff had an unpleasant experience working on the project 83.7 47.6 72.9
Customers/Users not involved in making schedule estimates 69.4 76.2 71.4
Risk not incorporated into the project plan 65.3 80.9 70.0
Change control not monitored, nor dealt with effectively 63.3 85.7 70.0
I Customer/Users had unrealistic expectations I 69.4 66.7 68.6
Process did not have reviews at the end of each phase] 75.5 47.6 67.1
Development Methodology was inappropriate for the project 71.4 52.4 65.7
Aggressive schedule affected team motivation) 69.4 57.1 65.7
I Scope changed during the project I 67.3 57.1 64.3
Schedule had a negative effect on team member's life 71.4 42.9 62.9
Project had inadequate staff to meet the schedule 63.3 57.1 61.4
—ataffadded |ate to meetan aggressive schedile : 61.2 61.9 61.4
Customers/Users did not make adequate time available for 61.2 57.1 60.0
requirements gathering

Cerpa & Verner, 2009. “Why did your project fail?”, CACM 52 (12)

Here are 10 signs of IS project failure:®
1. Project managers don't understand users’

needs.
2. The project’s scope is ill-defined.
Project changes are managed poorly.
The chosen technology changes.
Business needs change.
Deadlines are unrealistic.
Users are resistant.
Sponsorship is lost.
9. The project lacks people with appropriate
skills.
10. Managers ignore best practices and lessons
learned.

Reel, 2002. “Critical success factors in software projects”, IEEE SW 16 (3)

© N OO~ W

“+ Cost to
Correct

Phase That a /

Defect Is Created
Requirements\ /\\/ N /f/)
Architecture\ \ /\/ < /
N e SN A
Construction\ \

Requirements Architecture Detailed Construction Maintenance
design
Phase That a Defect Is Corrected

McConnel, Software Project Survival Guide, 1998

Four activities

Elicitation (Discovering Requirements)
Specification (Writing them down)
Validation (Checking whether they are appropriate)

Management (Keeping track/evolving them)

Requirements
specification

System requirements
specification and
modeling

RE Process Spiral

User requirements
specification

" Main point: It's iterative - -
usiness requirements
specification

Start I
S Feasibility
stem
Requirements yreq_ study Requirements
requirements .
elicitation Prototyping
Reviews

System requirements
document

[Sommerville]

System vs. User Requirements

Requirement: high-level abstract statement to detailed
mathematical functional specification

« Basis for a bid for a contract

- Basis for an actual contract

Even if market-driven software

- High-level requirements (to discuss with stakeholders)

- Detailed technical requirements (towards implementation)

In practice: Often accidental ("right" abstraction is hard)

Who needs what?

Client managers

System end-users
> Client engineers
Contractor managers

User
requirements

System architects

System end-users

System Client engineers
requirements System architects

Software developers

[Sommerville]

Stakeholders

Any person or organization who is affected by the

system in some way

Not just the end user(s), but a large scope

End users
System managers
System owners

External stakeholders (regulators, authorities)

Functional and non-functional

requirements

" Functional requirements
- What should the system do? (Not how!)

" Non-functional requirements ("quality requirements")
« Constraints/"qualities" of the system (e.g.,

performance, maintainability)

« Difficult to break down to sub-systems (they affect

the entire system)

« Difficult to decide Limits

icitation

El

1. Requirements
discovery

4. Requirements
specification

2. Requirements
classification and
organization

3. Requirements
prioritization and

negotiation

[Sommerville]

Techniques

To a large extent covered in T-216-GHOH

Interviews - not just planlessly, but different

strategies (structured, semi-structured)

Surveys

Observation

Studying existing systems, documentation, processes

Important: Not just asking stakeholders what they want

Issues

Stakeholders don’'t know what they really need
Domain-specific language

Conflicting requirements

Politics and organisational factors

Requirements and stakeholders change

(continuously and unplanned: Scope creep)

Scenarios

Real-life examples of the system in use

Rationales often implicitly included (context)
Often easier to relate to than single requirements
But: Hard to tell what is required and what is extra

Sommerville describes scenarios as a tool for elicitation

- Also a tool for specification: Describing requirements

as scenarios.

Scenarios

Scenarios should include

- Starting situation

Normal event flow

What can go wrong - exception flows

Other concurrent activities

State when the scenario finishes

Specification

Functional Requirements

Specification

"Writing down" requirements in a document

Or adding them to a system (JIRA, Doors, ...)

User requirements: understandable by end-users and

customers without technical background

System requirements: more detailed, may include

more technical information

Functional Requirements

Specification

Overall: What's the purpose of your specification?

Driving development
Contracting
Explaining to stakeholders

Documentation

Natural language specification

One requirement = One natural language sentence
Often supplemented (id, rationale, priority, traces,

dependencies)

Expressive, intuitive and universal

Highly ambiguous

Natural language specification

Invent a standard format

Use consistent vocabulary

"shall" for mandatory requirements

"should" for desirable requirements

Avoid jargon

Include a rationale

Often helps to avoid misunderstandings!

Can help to remember why requirements were added

Examples

3.2 The system shall measure the blood sugar and deliver insulin, if
required, every 10 minutes. (Changes in blood sugar are relatively
slow so more frequent measurement is unnecessary; less frequent
measurement could lead to unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with the
conditions to be tested and the associated actions defined in Table 1.
(A self-test routine can discover hardware and software problems
and alert the user to the fact the normal operation may be
impossible.)

[Sommerville]

Structured specifications

Pre-defined structure (=templates)

Freedom of writer is limited

Might not work for everything
Ensures consistency

Allows/facilitates automation (e.g., generating tests)

Common in critical systems!

As a profile owner on Instagram, | want to be able to
add tags to my pictures, so that they can be found
easier.

User Stories

As a driver, | want the car to react to voice
commands, so that | am not distracted by searching
the menu.

Very common/popular in Agile processes

Avoid common problems with requirements

« Who is the actor?

- What is the rationale (here: the benefit)?

Most common format:

“"As a [Persona], | want to [action], so that [benefit]"

Form-based specifications

" Natural language + mandatory/optional fields

- Definition

« In/Qutputs

- 1D

- Pre/Post conditions

« Priority

Structured specification 'Sommervillel

—Insulin Pump/Control Software/SRS/3.3.2
Function Compute insulin dose: safe sugar level.

Description Computes the dose of insulin to be delivered when the

current measured sugar level is in the safe zone between 3 and 7 units.
Inputs Current sugar reading (r2); the previous two readings (r@ and rl).
Source Current sugar reading from sensor. Other readings from memory.
OQutputs CompDose—the dose in insulin to be delivered.

Destination Main control Loop.

Additional fields Berirer e

—Insulin Pump/Control Software/SRS/3.3.2
Function Compute insulin dose: safe sugar level.

Description Computes the dose of insulin to be delivered when the

current measured sugar level is in the safe zone between 3 and 7 units.
Inputs Current sugar reading (r2); the previous two readings (r@ and rl).

Source Current sugar reading from sensor. Other readings from memory.
OQutputs CompDose—the dose in insulin to be delivered.

Destination Main control Loop.
RATIONALE: In order to attract users to new products,

program releases, discounts, etc.
DEPENDENCIES: Req A, Req B

Use cases

A structured kind of scenario

Central parts: The actors involved, and the

interaction between them
UML has a high-level model as an overview

Use cases are useful for automated generation of

other artefacts

Use cases (Mentcare)

Register
patient
View
personal info.
View record

Edit record
Setup
consultation

[Sommeryville]

Export
statistics
Generate

report

X

Manager

X

Doctor

X

Medical receptionist

X

Nurse

Non-functional/quality requirements

Non-functional
requirements

Product Organizational External

requirements

requirements

requirements

Efficiency
requirements

Dependability
requirements

Security
requirements

Regulatory
requirements

Ethical
requirements

Usability
requirements

Environmental
requirements

Operational
requirements

Development
requirements

Performance
requirements

Space
requirements

[Sommerville]

Legislative
requirements

Accounting
requirements

Safety/security
requirements

Metrics PROPEREYIT
Speed

Reliability

Robustnhess

Portability

Processed transactions/second
User/event response time
Screen refresh time

Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Percentage of target dependent statements
Number of target systems

[Sommerville]

T-216-GHOH

A bad requirement:

"The system should be really fast"

Better:
"The average response time should be less than

500 milliseconds when executing a query"

{ why 500ms? J

Limits

In practice, deciding lLimits for quality requirements is

really hard

Beware of arbitrary Limits (is 500ms the default value?)

It could be that 500ms costs you 100000%$ more than
600ms

Limits
If you can, make an informed decision

- E.g., based on literature

(500ms is the threshold where users start complaining?)

- Usage statistics
(e.g., 80% of the users Leave if the application does

not respond in 500ms)

- Typical response times in old systems

(The old system took 1ls. Users found this irritating.)

PLanguage

TAG A unique, persistent identifier

GIST A short, simple description of the concept contained in the Planguage
statement

STAKEHOLDER A party materially affected by the requirement

SCALE The scale of measure used to quantify the statement

METER The process or device used to establish location on a SCALE

MUST The minimum level required to avoid failure

PLAN The level at which good success can be claimed

STRETCH A stretch goal if everything goes perfectly

WISH A desirable level of achievement that may not be attainable through
available means

PAST An expression of previous results for comparison

TREND An historical range or extrapolation of data

RECORD The best-known achievement

DEFINED The official definition of a term

AUTHORITY The person, group, or level of authorization

Simmons, "Quantifying Quality Requirements Using PLanguage", 2001

Requirements Specification

Document

(Not necessarily standard today)

O But: GUldancel Table of Contents

1. Introduction
1.1 Purpose

) E Xam p I' c. I E E E S t d 8 3 0 - 1 9 9 8 ’ 15 ?)Z:E;ions, acronyms, and abbreviations

1.4 References

"Recommended Practice for 1.5 Overview

2. Overall description
Software Requirements 2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing
this section of the SRS.)

Appendixes

Specifications"

Index

Specification Audiences

System
customers

Specify the requirements and
read them to check that they
meet their needs. Customers
specify changes to the
requirements.

System
engineers

Use the requirements to
understand what system is
to be developed.

Managers

Use the requirements
document to plan a bid for
the system and to plan the
system development process.

System test
engineers

Use the requirements to
develop validation tests for
the system.

System
maintenance
engineers

[Sommerville]

Use the requirements to
understand the system and
the relationships between its
parts.

Good Requirements Specifications

A requirements specification should be

Correct

Complete
Achieving most of these is

Unambiguous practically impossible

Consistent
Ranked for importance/stability
Modifiable

Verifiable

- ol From: Soren Lauesen: Software Requirements
raccabie © Pearson / Addison-Wesley 2002

101N

Validat

Requirements validation

Do the requirements define the system that the

customer needs?
Finding errors early: large cost savings

Check for:
Correctness, Completeness, Free from ambiguity,

Consistency, Ranked for importance/stability,
Modifiability, Verifiability, Traceability

Techniqgues: Reviews, Prototypes, Checklists...

Requirements Reviews

Do regularly!
Include stakeholders (not just engineers)

Different techniques

Ad-hoc/informal: No specific guidelines - just "read"
Checklists: Lists of questions/items to focus the reading

Perspective-based reading: Read the specification from a

specific perspective (role)

N-fold inspection: n different groups go through the

inspection process in parallel

Requirements Checks

Content check : all required items/sections/parts present

Structure check: right structure for each requirement

(e.g., all requirements have an ID)
Consistency check: contradictions between requirements

CRUD check: read/write/update/delete of all entities

Requirements Tests

Paper prototypes
Sketch the system (frontend) on paper

Have a user "use" the paper system

Usability testing
T-216-GHOH

Executable prototypes

Skeleton: Runs, but might not have functionality/quality

Formal models: More in the modelling lectures!

Management

Requirements management

Managing changing requirements (during the life-cycle)
New requirements emerge all the time

Keep track of individual requirements

- Changes in content, priority, dependencies, ...

Maintain links between requirements (and other artefacts)

- "Traceability" - an entire research area

- Many standards/regulations require traceability from code

or tests to requirements!

Elements of Requirements

Management

Requirements identification: Is each requirement

uniquely identified?

Change Process: Where do changes come from? How

are they registered and handled?

Traceability policy: What is traced to what? Who

creates/maintains traces?

Tool support: What tools are used? With what other

systems do they interact?

Requirements Change Management

Identified

problem

>

Problem analysis and
change specification

Change analysis
and costing

[Sommerville]

Change
implementation

Revised
requirements

>

Discussion Points

RE is not only about creating a plan that is then

implemented

For many companies, the value is knowledge management

- Point of reference to understand the system
« Can help introducing new staff
- Helps to understand impact of changes

- Avoids accidental changes

RE matters also in agile development!

Questions

What does the term 'stakeholder' describe in RE?

Describe the purpose of requirements

elicitation/specification/management

What potential purposes can a specification serve?

What makes requirements elicitation difficult?

What alternatives exist to natural language specifications?
What makes quality requirements challenging?

What is the aim of requirements validation?

Next Module

" Processes
- Plan-driven processes

(waterfall, incremental)
- Agile development

e« Scrum

« Literature: Ch. 2, 3 [Sommerville]

Haskdlinn i Reykjavik | Menntavegur 1 | 101 Reykjavik | Simi: 599 6200 | www.hr.is

Sources

Education: Designed by Freepik Todo: Designed by Makyzz / Freepik
Assignment icons: Designed by ibrandify / Megaphones: Designed by Freepik
Freepik

