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Abstract
Fuzzy cognitive maps (FCM) have recently gained ground in many engineering 
applications, mainly because they allow stakeholder engagement in reduced-form 
complex systems representation and modelling. They provide a pictorial form of 
systems, consisting of nodes (concepts) and node interconnections (weights), and 
perform system simulations for various input combinations. Due to their simplic-
ity and quasi-quantitative nature, they can be easily used with and by non-experts. 
However, these features come with the price of ambiguity in output: recent litera-
ture indicates that changes in selected FCM parameters yield considerably different 
outcomes. Furthermore, it is not a priori known whether an FCM simulation would 
reach a fixed, unique final state (fixed point). There are cases where infinite, chaotic, 
or cyclic behaviour (non-convergence) hinders the inference process, and literature 
shows that the primary culprit lies in a parameter determining the steepness of the 
most common transfer functions, which determine the state vector of the system dur-
ing FCM simulations. To address ambiguity in FCM outcomes, we propose a certain 
range for the value of this parameter, λ , which is dependent on the FCM layout, for 
the case of the log-sigmoid and hyperbolic tangent transfer functions. The analysis 
of this paper is illustrated through a novel software application, In-Cognitive, which 
allows non-experts to define the FCM layout via a Graphical User Interface and then 
perform FCM simulations given various inputs. The proposed methodology and 
developed software are validated against a real-world energy policy-related problem 
in Greece, drawn from the literature.
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1  Introduction

Fuzzy cognitive maps (FCMs) (Kosko 1986) have been used to model systems in 
many scientific areas, such as in social and political science (Craiger and Coovert 
1994; Tsadiras and Kouskouvelis 2005; Axelrod 2015) as well as in economics 
(Koulouriotis et al. 2001; Carvalho and Tomé 2004; Koulouriotis 2004; Penn et al. 
2013; Azevedo and Ferreira 2019). They have also been used in the presentation 
of social scientific knowledge and description in various decision-making methods 
(Zhang et  al. 1989, 1992; Georgopoulos et  al. 2003). Other notable applications 
include geographical information systems (Liu and Satur 1999; Satur and Liu 1999b, 
a), pattern-recognition applications (Papakostas et  al. 2006, 2008), numerical and 
linguistic prediction of time-series functions (Silva 1995; Stach et al. 2008), techno-
logical (Stylios and Groumpos 2004), industrial (Abbaspour Onari and Jahangoshai 
Rezaee 2020; Markaki and Askounis 2021) and medical applications (Froelich et al. 
2012; Amirkhani et  al. 2017, 2018; Apostolopoulos et  al. 2017; Bevilacqua et  al. 
2018; Puerto et al. 2019).

Several other studies have also employed FCMs in environmental and ecologi-
cal problems (Hobbs et  al. 2002; Fons et  al. 2004; Xirogiannis et  al. 2004; Çelik 
et al. 2005; Mendoza and Prabhu 2006; Kok 2009; Ceccato 2012; Soler et al. 2012; 
Cakmak et  al. 2013; Gray et  al. 2014) or energy policy and efficiency projects 
(Ghaderi et  al. 2012; Kyriakarakos et  al. 2012; Huang et  al. 2013; Reckien 2014; 
Hsueh 2015; Karavas et  al. 2015; Amer et  al. 2016; Olazabal and Pascual 2016; 
Nikas and Doukas 2016; Nikas et al. 2020, 2019; Antosiewicz et al. 2020; Doukas 
and Nikas 2020). As a policy support tool, FCMs have particularly gained ground in 
such energy and climate policy applications, partly due to stakeholders encountering 
difficulties in understanding, or being excluded from, state-of-the-art policy support 
frameworks, like energy- and climate-economic modelling tools (Nikas and Doukas 
2016). Due to limited model complexity and reliance on quantitative data, FCMs 
have proliferated as a policy support tool, especially at the local level, allowing poli-
cymakers to reflect their understanding of a problem domain in a structured manner 
and act based on it (Özesmi and Özesmi 2004). They have also been proposed as an 
effective way to bridge the science-policy gap and engage stakeholders in environ-
mental modelling processes (van Vliet et al. 2010).

Broadly speaking, however, the simplicity and attractiveness of FCMs across 
application areas and domains lies in their ability to capture the perception of a sys-
tem in graphical representations consisting of concepts (nodes) and interconnections 
(weights) among these nodes, which are characterised by transfer functions deter-
mining the state vector of the system in simulation (Tsadiras 2008). However, the 
topology of nodes and weights, on the one hand, and the transfer function, on the 
other, are formulated differently: the former are typically defined by the non-expert 
decision makers (stakeholders) of the case study, while the latter are selected by the 
analysts. In essence, like stakeholders, the analysts are required to take decisions, 
which are both relevant to the analysis and critical to its results.
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However, despite the plethora of applications, the FCM theory is still incon-
sistently applied in the literature (Felix et al. 2019). Notably, there seems not to 
exist a common ground among researchers regarding one of its core features, the 
type of transfer function used to drive simulations. Various monotonic functions 
have been used in literature, such as step, sigmoidal, ramp, and linear functions 
(e.g. Hobbs et al. 2002; Mendoza and Prabhu 2006) and (Soler et al. 2012)), with 
each one potentially yielding markedly different results. This diversity in FCM 
outcomes imposes barriers to the final inference procedure. In the absence of 
common criteria on selecting the transfer function, analysts should carefully jus-
tify their choice based on the physical interpretation of each application, which 
however is not common practice (Nápoles et al. 2018).

In this paper, we propose the use of two transfer functions, namely the log-
normal (sigmoid) and hyperbolic tangent functions. We also introduce a crite-
rion to define their parameter �—i.e., their steepness—toward standardising the 
selection of the FCM transfer function. The observations and analysis in this 
study build on previous studies (Boutalis et al. 2008; Kottas et al. 2010; Lee and 
Kwon 2010; Knight et al. 2014; Harmati and Kóczy 2018; Harmati et al. 2018), 
which provided bounds for parameter � . Depending on the � value, the sigmoid 
and hyperbolic tangent functions yield a unique final state of nodes for a given 
set of input values (i.e., a fixed state vector). However, by providing a domain of 
parameter � , they only restrict � values so they do not yield chaotic, ambiguous 
FCM responses. The selection of parameter � is thus still subject to the subjective 
selection of the analyst within the provided bounds.

Despite providing final node values with clear ordering, the linear trans-
fer function suffers from the undesired condition of chaotic final states (Knight 
et  al. 2014). Additionally, although the sigmoid and hyperbolic tangent func-
tions—given parameters � within specific bounds provided in the literature—do 
not exhibit such behaviour, they often result in final node values close to one 
another, thereby hindering clear inference. To tackle these barriers, we propose 
an improved version of sigmoid and hyperbolic tangent transfer functions, which 
is active within an almost-linear region. We illustrate this methodology through 
a Python web software application “In-Cognitive” that we developed in the con-
text of this study. This novel application features a user-friendly Graphical User 
Interface (GUI) that allows various stakeholders to define the FCM layout (e.g., 
nodes, weight interconnections, input/initial state vector, etc.), and execute sce-
nario simulations before reaching a final state vector. The value of parameter � is 
calculated endogenously, based on the proposed analysis.

Section 2 provides a theoretical background (notations and definition) of fuzzy 
cognitive mapping. In Sect.  3, we provide an FCM analysis without consider-
ing input nodes (all nodes may change throughout the simulation iterations): we 
first present and discuss the state-of-the-art bounds of parameter � , before intro-
ducing a framework to define bounds/value of � parameter. Section  4 performs 
similar analysis for the case of FCMs with given input nodes that remain steady 
and unaffected by other nodes throughout the simulation. The “In-Cognitive” 
software application is presented in Sect. 5 and then validated in Sect. 6 in a case 
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study drawn from the literature. Section  7 finally concludes the research, high-
lighting key takeaways and discussing prospects.

2 � FCM background and layout notations

An FCM consists of n concepts (nodes), Ci ∶ i = 1, 2,… , n , linked to one another 
through a weight, wij , which describes the degree of influence of Cj over Ci within 
[−1, 1] . When wij < 0 (negative causality), Ci decreases for an increase in Cj . When 
wij > 0 (positive causality), Ci increases for an increase in Cj . Finally, when wij = 0 
there is no relationship (nor adjacency) between Cj and Ci . Figure  1 illustrates how 
node Ci is connected through weights with all the other nodes.

Input or steady nodes, steady nodes hereafter, influence but are not influenced by 
other nodes (i.e., they have outbound but no inbound links). The nodes which are nei-
ther steady nodes nor output nodes are called intermediate nodes. In Fig. 2, an FCM of 
5 nodes is presented: nodes C1 and C4 (solid circles) are steady nodes, while nodes C2 , 

Fig. 1   A node and its intercon-
nections

...

...
...

Fig. 2   Example of a small FCM, 
with steady nodes (C1 and C4) 
represented by solid-border 
circles and intermediate nodes 
(C2, C3, and C5) represented by 
dotted-border circles
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C3 and C5 (dotted circles) are intermediate nodes. For a real-world example, the reader 
is referred to Sect. 6.

The matrix consisting of all FCM weights wij is called the weight matrix, W . Equa-
tion (1) shows the weight matrix of the FCM illustrated in Fig. 2.

3 � FCM equilibrium analysis with no steady nodes

To analyse FCM outcomes, we express node interactions using a mathematical for-
mulation that should be iterative through time. If Ak

i
 is the value of node i at time 

instance k , the iterative interconnection expression for each node is

where f (⋅) is the transfer function and di the feedback coefficient ∈ [0, 1] . The latter 
indicates the dependency of node C

�
 on its starting value in each iteration. The trans-

fer function could be any function. However, to avoid chaotic FCM behaviours, the 
transfer function values should be bounded. Usually, the log-sigmoid and hyperbolic 
tangent functions are used. The values of the former span within [0,1] and of the lat-
ter within [− 1,1]. The general form of the log-sigmoid function is

whereas the corresponding one of the hyperbolic tangent is

As discussed in (Knight et al. 2014), the selection of the transfer function should 
be justified based on the given application and, therefore, there is no standard crite-
rion to yield the best fitted transfer function; Knight et al. also show that different 
types of transfer functions yield different FCM final states and thus different infer-
ences. To tackle this issue, Knight et al. proposed the execution of various simula-
tions, with each one having different transfer functions. They then compared results 
to identify common patterns: nodes, whose final values are relatively high (low) for 
all executions are considered the most (least) important FCM concepts.

(1)W =

⎡
⎢⎢⎢⎢⎣

w1,1 w1,2 w1,3 w1,4 w1,5

w2,1 w2,2 w2,3 w2,4 w2,5

w3,1 w3,2 w3,3 w3,4 w3,5

w4,1 w4,2 w4,3 w4,4 w4,5

w5,1 w5,2 w5,3 w5,4 w5,5

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0

w2,1 0 0 0 w2,5

0 w3,2 0 w3,4 0

0 0 0 0 0

w5,1 0 w5,3 w5,4 0

⎤
⎥⎥⎥⎥⎦
.

(2)Ak+1
i

= f

(
n∑

j=1,i≠i

(
wijA

k
j
+ diA

k
i

))
,

(3)fs =
1

1 + exp(−�x)

(4)fh =
exp(�x) − exp(−�x)

exp(�x) + exp(−�x)
=

exp(2�x) − 1

exp(2�x) + 1
.
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3.1 � State‑of‑the‑art bounds of parameter λ of transfer functions

Different types of transfer functions yield different inferences for the iterative 
function of Eq.  (2)—similarly, different � parameters of the same transfer func-
tion (see Eqs. (3) and (4)) may yield different FCM final states and therefore dif-
ferent inferences. Some of the various final states of Eq.  (2) might be chaotic, 
infinite, or periodic (Knight et al. 2014). These states are not fit for any kind of 
inferences. Therefore, it is necessary to ensure the FCM converges and explore 
whether a given layout can be stabilised around a final steady state after several 
iterations of Eq. (2).

Under certain conditions and a given combination of (a) the weight matrix, (b) 
the number of nodes, and (c) the parameters of the transfer function, it is possible 
to reach a final, unique fixed vector regardless of the initial values A0

i
,∀i ∈ [0, n] . 

It should be noted that, for any of these combinations, the final state is not neces-
sarily the same.

It should be noted that, in previous research (Boutalis et al. 2008; Kottas et al. 
2010; Lee and Kwon 2010; Knight et al. 2014; Harmati and Kóczy 2018; Harmati 
et al. 2018), the authors provided conditions under which the existence and unique-
ness of solutions of concept values (see Eq.  (2)) are guaranteed. In Knight et  al. 
(2014), the authors provided a maximum bound of � parameter for the log-sigmoid 
transfer function (see Eq. (3)), regardless of the structure and contents of the weight 
matrix; they also showed that, when the FCM is equipped with a step function (i.e., 
the limit state of log-sigmoid function when � → ∞ ), the uniqueness and existence 
of a fixed solution is not guaranteed as well as that, as the examined FCM grows in 
size ( n → ∞ , where n the number of FCM nodes), the � parameter to guarantee the 
existence and the uniqueness of a final fixed solution gets smaller ( � → 0 ). However, 
the provided upper bounds of � parameter were strict enough, rendering unnecessary 
the consideration of the layout of a given FCM (i.e., the weigh matrix). In Kottas 
et al. (2010), the authors provided a less strict upper bound conditions, under which 
there is a fixed-point solution when � = 1 , for both Eqs. (3) and (4), depending also 
on the weight matrix/structure. Consequently, the conditions discussed in Knight 
et al (2014) are less restrictive in case � = 1 . In Harmati et al. (2018), the authors 
extended the results of Kottas et al. (2010) for all 𝜆 > 0 and finally reached a bound 
of � for all log-sigmoid and hyperbolic tangent-equipped FCM implementations.

In the case of the log-sigmoid transfer function, the bound guaranteeing the 
existence and uniqueness of FCM final state is found to be (Harmati et al. 2018):

Whilst, in the case of the hyperbolic tangent transfer function, the bound is:

where W is the weight matrix and ‖⋅‖F the Frobenius norm, such that:

(5)𝜆s < 𝜆
�

s
=

4

‖W‖F .

(6)𝜆h < 𝜆
�

h
=

1

‖W‖F ,
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It should be noted that the above conditions are sufficient, but not necessary for 
an FCM to have one and only one fixed point for a given parameter � : there could 
be cases where an FCM has a unique fixed-point solution if � is greater than the 
above upper bounds (see Eqs. (5) and (6)).

Lee and Kwon (2010) reached similar conclusions for the log-sigmoid transfer func-
tion, by using a different approach (Lyapunov criteria).

3.2 � Remarks on transfer functions

Among many transfer functions, the linear function—more specifically the identity 
function—yields lucid inferences, because the distance among outcomes is clearer than 
other transfer functions (Knight et al. 2014). Based on the structure of Eq. (2), the lin-
ear function features no distortion during the calculation of Ak+1

i
 from previous iterative 

values Ak
j
 . The value of the transfer function is always proportional to the argument of 

Eq.  (2) through all iterations. This property of linear functions gives room to lucid 
inferences; the distance among the final node values is sufficient to distinguish each 
node final state from the others. However, the linear transfer function comes with cer-
tain caveats. Often, during iterations, the Ak+1

i
 values are constantly increasing (decreas-

ing) reaching infinite (minus infinite) values. Despite FCMs equipped with linear trans-
fer functions exhibiting a closer-to-reality increment (decrement), the above extreme 
case behaviour is restrictive for the execution of the iterative procedure (Eq. (2)). For 
this reason, the analysts tend to impose restrictions on Ak+1

i
 values by using bounded 

transfer functions—i.e., the log-sigmoid and hyperbolic tangent function. Both are odd 
functions around the y = 0.5 and y = 0 axis, respectively, and exhibit an almost-linear 
behaviour in a region close to these axes. This linearity gives them resemblance to a 
linear transfer function for a sufficient interval. The non-linear regions on the tails of 
these functions are used to represent the large Ak+1

j
 values. The y = 0 and y = 1 bounds 

( y ± 1 bounds) are used to represent the infinite (or close to infinity) Ak+1
j

 values for the 
case of the log-sigmoid (hyperbolic tangent) transfer function (see Fig. 3). The heavy 
curved regions close to these bounds are mainly responsible for the distortion (non-
proportionality) of Ak+1

j
 values; arguments close to infinite tend to map to almost the 

same Ak+1
j

 values (i.e., no sufficient distance among nodes’ final values).
However, bounded transfer functions exhibit shortcomings as well. Not only do 

the non-linear regions introduce distortion, but the existence of bounds ( y = 0 and 
y = 1 , or y ± 1 ) could yield final states that are either chaotic or limit cycles (i.e., a 
period function of Ai ). This could happen when the xk

i
 arguments of Eq. (2)

(7)‖�‖F =

���� n�
i=1

n�
j=1

�
w2
ij

�
.

(8)xk+1
i

=

n∑
j=1,i≠i

(
wijA

k
j
+ diA

k
i

)
,
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exhibit prolonged stay in the area where fs → +1 or fs → 0 (log-sigmoid case), or 
fh → ±1 (hyperbolic tangent case) during the iterative procedure of Eq. (2). In this 
case, it is more likely for the FCM simulation to conclude to a state where all final 
Ai values are close to 0 or 1 (log-sigmoid) or ±1 (hyperbolic tangent) making the 
ordering of final Ai values obscure. From Fig. 3, we can conclude that this unde-
sired behaviour happens when parameter � exhibits large values (i.e., f  is almost 
a step function). Knight et al. (2014) reached the same conclusion by using a dif-
ferent approach. Similarly, another case yielding cyclic behaviour happens when 
the xk

i
 values are perpetually changing sign through iterations and parameter � is 
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Fig. 3   Plot of a a log-sigmoid function and b a hyperbolic tangent function
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simultaneously large enough (i.e., the transfer function is almost a step function). In 
that case, the Ai values are more likely to oscillate with an amplitude having extreme 
values close to the bounds of the transfer function. Such oscillations in node values 
are almost chaotic and insufficient for inferences. As a rule of thumb, the FCM ana-
lyst should therefore avoid large values of the � parameter.

Another undesirable condition occurs when parameter � is too small (almost 
zero). When � → 0 , the transfer function is almost flat (see Fig. 3) in all ranges of 
xk
i
 values and, therefore, all Ai values conclude to almost the same value. This state 

is stable; however, it cannot reach a conclusion because there is no lucid ordering 
among Ai values. Concluding, FCM analysts should avoid both small and large 
values of parameter � . Below we propose an upper bound of parameter � based on 
the above remarks. These bounds can thereafter be combined with the bounds of 
Eqs. (5) and (6).

3.3 � Proposed bounds for parameter �

The proposed methodology refers to FCMs equipped with the log-sigmoid or hyper-
bolic tangent transfer function. It is based on the conclusion that � → 0 and � → ∞ 
are two undesired regions of parameter � and the assertion that linear transfer func-
tions are preferable, if they do not yield chaotic, cyclic, or infinite final states (see 
Sect. 3.2). The main idea behind the proposed methodology is that both log-sigmoid 
and hyperbolic tangent transfer functions have a region that is almost linear (desired 
region). We provide certain conditions, under which all Ak+1

i
 values fall within that 

region. These conditions are then used to provide bounds of parameter � . By operat-
ing in the almost linear region, we get a combination of benefits of both linear and 
bounded transfer functions (see Sect. 3.2); mainly, we avoid the distortion that the 
curved segments in the tails of the bounded transfer functions introduce (Fig. 4).

However, working in the almost linear region comes at a cost. This region is not 
as large as the interval between the bounds of the log-sigmoid or hyperbolic tangent 
function; therefore, the final Ak+1

i
 values are usually close to one another. To avoid 

this, we propose a normalisation procedure (see Sect. 3.4).

3.3.1 � The almost linear region of the log‑sigmoid and hyperbolic tangent functions

For the almost linear region to be ‘active’ for all nodes during all FCM iterations, all 
arguments xk

i
 ’s (Eq. (8)) must not lie in the region of the transfer function tails. The 

desired region where xk
i
 values lie on is hereafter called ‘almost linear region’ (see 

Fig. 4); all x values bounded by −x∗ , +x∗ , where f ���(±x∗) = 0 , which is where the 
f ′′ has local maxima (see Fig. 4). We call −x∗ and +x∗ "turning points," hereafter.

The third derivative of log-sigmoid (Eq. (3)) is

The third derivative of hyperbolic tangent (Eq. (4)) is:
(9)

f ���
s
(x) = �

2f
�

s
(x)

{(
1 − fs(x)

)(
1 − 2fs(x)

)
− fs(x)

(
1 − 2fs(x)

)
− 2fs(x)

(
1 − fs(x)

)}
.



	 T. Koutsellis et al.

1 3

The � parameter is always positive, as well as f �
s
(x) (Kottas et  al. 2010). Then, 

after equating the {⋅} factor of Eq.  (9) with zero, we conclude to (
fs(x)

)2
− fs(x) + (1∕8) = 0 , which is true if fs(x) ≈ 0.789 or fs(x) ≈ 0.211 . There-

fore, 0.211 ≤ fs(x) ≤ 0.789 (see Fig.  4a). After using Eq.  (3), we finally get 
0.211 ≤

1

1+exp(−�sx)
≤ 0.789 , which is equivalent to:

where �s is parameter � of the log-sigmoid transfer function.
Similarly, from Eq. (10) we get that

where �h is parameter � of the hyperbolic tangent transfer function.

(10)f ���
h
(x) = −2�f ��

h
(x)

(
fh(x) + f ��

h
(x)

)
.

(11)−1.317 ≤ �s ⋅ x ≤ 1.317,

(12)−0.658 ≤ �h ⋅ x ≤ 0.658,

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0

log-sigmoid, λs=1

Almost-linear-region

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Hyperbolic tangent, λh=1

Almost-linear-region

(a)

(b)

Fig. 4   The almost linear region of a a log-sigmoid function and b a hyperbolic tangent function
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The almost linear region is odd with respect to the x = 0 axis and parameter � is 
always positive; therefore, we can rewrite Eqs. (11) and (12) as

and

3.3.2 � Bounds of parameter λ witch quarantine that the almost linear region 
is always “active”

Equations (13) and (14) indicate that all absolute argument values multiplied by 
parameter � (i.e., � ⋅ || xki || ) should lie in intervals [0, 1.317] or [0, 0.658] , respec-
tively. This is satisfied if the largest argument � ⋅ || xki ||max is smaller or equal to the 
upper bound of each interval. Substituting the argument of Eq. (8) to || xki ||max we 
get 

����
∑n

j=1,i≠i

�
wijA

k
j
+ diA

k
i

�����max.
When the transfer function is log-sigmoid, all state values are positive, that is 

0 < Ak
j
< 1 . If we need to restrict the Ak

j
 values to the “almost linear region” (see 

Fig. 4), then 0.211 ≤ Ak
j
≤ 0.789 . In contrast, the wij values could be positive or 

negative. Given the maximum values of Ak
j
 and w′

ij
 values for a specific i node, the 

maximum value |||xki
||| is equal to

where w+

ij
 ’s and w−

ij
 ’s are all positive and negative input weights, respectively, which 

end up to the ith node.
We define as s-norm of matrix W , ‖W‖s , the following

From Eq. (16) we can see that the maximum value the absolute arguments |||xki
||| 

could get is

Therefore, from Eqs. (13) and (17) we finally conclude

For an FCM equipped with the hyperbolic tangent transfer function, the maxi-
mum value the absolute arguments |||xki

||| could get through all iterations is different 
because −1 < Ak

j
< 1 . The Ak

j
 will fall in the ‘almost linear region’ when 

(13)0 ≤ �s ⋅ |x| ≤ 1.317, ∀x

(14)0 ≤ �h ⋅ |x| ≤ 0.658, ∀x.

(15)

|||x
k
i

|||
|||max = max

(|||||
0.211 ⋅

p∑
i=1

w+

ij
+ 0.789 ⋅

q∑
i=1

w−

ij

|||||
,
|||||
0.211 ⋅

p∑
i=1

w−

ij
+ 0.789 ⋅

q∑
i=1

w+

ij

|||||

)

(16)‖W‖s = max
i

����x
k
i

���
���max

�
.

(17)�x��max = ‖W‖s.

(18)�s ≤ �
∗

s
=

1.317

‖W‖s .
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−0.577 ≤ Ak
j
≤ 0.577 . Therefore, the possible maximum value for node Ci could 

be achieved if all w+

ij
 are multiplied by +0.577 ( −0.577 ) and all w−

ij
 by −0.577 

( +0.577 ). Equivalently, the maximum value of |||xki
||| could be achieved when 

���xki
��� = 0.577 ⋅

�∑n

�=1

���wij
���
�
 . The latter factor is equal to the infinite norm of the 

weight matrix, W , which is equal to the maximum absolute row sum of W . 
Therefore,

where ‖W‖
∞
= max

i

n∑
j=1

���wij
��� , the infinite norm of W matrix. From Eq.  (14) we 

conclude

The ordering among parameters �′
s
 , �∗

s
 and �′

h
 , �∗

h
 is not constant for all applica-

tions. As such, we cannot a priori conclude to the existence and uniqueness of the 
FCM fixed-point if 𝜆 < 𝜆

∗

s
 or 𝜆 < 𝜆

∗

h
 . Figure 5 illustrates the bounds �′

s
 and �∗

s
 for 

weight matrices W1
(n×n)

= Jn and W2
(n×n)

 , where W1 is a matrix of ones and W2 is a 
square matrix having three elements per row, all of which are equal to one and 
aligned around its diagonal. W2 could represent an FCM whose nodes are only 
connected with their three adjacent nodes ( W2

(1×1)
 and W2

(2×2)
 are equal to matrices 

of ones because their size is smaller than three). From Fig. 5 it can be shown that 
the ordering of bounds �′

s
 and �∗

s
 changes depending on the size (the number of 

nodes) and type (e.g., W1 or W2 ) of the weight matrix. Similar conclusions can be 
drawn for �′

h
 and �∗

h
.

Based on the above remarks, when �′
s
 ( �′

h
 ) is greater than �∗

s
(�∗

h
 ), the FCM ana-

lysts should choose the �∗
s
(�∗

h
 ). By doing so, they can guarantee that there would 

be a fixed final point due to 𝜆 < 𝜆
′

s
 ( 𝜆 < 𝜆

′

h
 ) and that this fixed point would consist 

(19)�x��max = 0.577 ⋅ ‖W‖
∞
,

(20)�h ≤ �
∗

h
=

1.14

‖W‖
∞

.
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Fig. 5   Comparison of lambda parameter bounds for two different weight matrices (log-sigmoid transfer 
function)
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of Ai values lying in the ‘almost linear region’ of the transfer function. On the 
other hand, if �∗

s
(�∗

h
 ) is greater than �′

s
 ( �′

h
 ), the �′

s
 ( �′

h
 ) should be preferred to guar-

antee that there would be a unique fixed point. These remarks can be formulated 
as follows:

for the log-sigmoid transfer function, and

for the hyperbolic tangent transfer function.
Once the final bound is estimated (Eq. (21) or Eq. (22)), we should choose a param-

eter � that is as close to the final bound as possible, because parameter � must not get 
extremely low values, � → 0 (see Sect. 3.2). This value is the infimum value of bounds 
in Eq. (21) and Eq. (22). For the sake of simplicity, we propose as close to infimum 
� value, which is derived after rounding the final bound of Eq. (21) or Eq. (22) at the 
third decimal digit.

3.4 � Normalisation of final state values

The proposed � bounds squash all concept values during all iterations within 
[0.211, 0.789] and [−0.577, 0.577] for log-sigmoid and hyperbolic tangent transfer 
functions, respectively. This may end up to final output values close to one another. 
Consequently, the relative distance among these values might be unclear. To return to 
the [0, 1] or [−1, 1] interval for log-sigmoid and hyperbolic tangent, respectively (nor-
malised intervals, hereafter), we need to multiply all these values with a factor so that 
the Ak

j
 values are within these normalised intervals.

All concept values, during all iterations, lie in the almost linear region and are, there-
fore, within the following intervals:

and

for log-sigmoid and hyperbolic tangent, respectively. For the case of a log-sigmoid 
FCM, to normalise Ak

j
 we should express them in terms of the y = 0.5 line. Recall that 

the log-sigmoid function is an odd function with respect to y = 0.5 . After subtracting 
0.5 from Eq.  (23) we get −0.289 ≤ Ak

j
− 0.5 ≤ 0.289 . Equivalently, 

−0.289

2⋅0.289
= −0.5 ≤

Ak
j
−0.5

2⋅0.289
≤

0.289

2⋅0.289
= 0.5 ⇔ 0 ≤

Ak
j
−0.5

2⋅0.289
+ 0.5 ≤ 1 . We conclude:

(21)𝜆s < min
(
𝜆
�

s
, 𝜆∗

s

)

(22)𝜆h < min
(
𝜆
�

h
, 𝜆∗

h

)

(23)0.211 ≤ Ak
j
≤ 0.789

(24)−0.577 ≤ Ak
j
≤ 0.577,

(25)0 ≤
Ak
j
− 0.211

0.578
≤ 1.
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Therefore, to normalise the final values of all FCM nodes, we need to subtract 
−0.211 for any of them and then divide them with 0.578.

Similarly, for hyperbolic tangent FCMs, the necessary transformation to normalise 
the final values of FCM nodes is the multiplication with 1.733:

4 � FCM equilibrium analysis with steady nodes

In Sect.  3, we presented conditions, under which an FCM with no input/steady 
nodes has a unique solution ( 𝜆 < 𝜆

′

s
 ) consisting of final Ai values distinct enough 

( 𝜆 < 𝜆
∗

s
 ) to yield lucid inferences. In case of FCM with steady nodes though, which 

is the case for scenario analysis (Nikas et al. 2019, 2020; Antosiewicz et al. 2020) 
the unique equilibrium does not depend solely on the weight matrix and parameter 
� , as it does in the case of FCMs with no input nodes; it also depends on the values 
of the steady nodes (external excitations). Therefore, we can achieve a variation of 
equilibria/responses by changing the excitation of steady nodes and simultaneously 
reassuring that we will not get a chaotic final state if we choose certain values of 
parameter � similarly to Eqs. (21) and (22). To do so, we must express parameter � 
with respect to the weight set of the non-steady nodes (Kottas et al. 2010).

4.1 � Bounds of λ parameter when there are steady/input FCM nodes

Based on Kottas et al. (2010), the existence of equilibrium is guaranteed if Eqs. (5) 
and (6) are valid for the weight set of the non-steady nodes. First, we need to recon-
struct the extended weight matrix, W , so that the first rows correspond to the steady-
nodes and the end rows to the non-steady nodes. That is

The FCM illustrated in Fig. 2 with

has now the following reconstructed extended weight matrix

(26)−1 ≤ 1.733 ⋅ Ak
j
≤ 1.

(27)W =

⎡
⎢⎢⎢⎣

w11 0 ⋯ 0 0

0 w22 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮

W
∗

⎤⎥⎥⎥⎦

(28)W =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

w2,1 0 0 0 w2,5

0 w3,2 0 w3,4 0

w5,1 0 w5,3 w5,4 0

⎤⎥⎥⎥⎥⎦
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To identify the conditions, under which an FCM with steady nodes has equilib-
rium, Kottas et al. (2010) considered the case where � = 1 . In this research, we pro-
pose the corresponding inequality ∀� ∈ ℝ . The mathematical proof follows similar 
steps as described in Harmati et al. (2018). Equation (30) corresponds to an FCM 
equipped with log-sigmoid whereas Eq.  (31) with a hyperbolic tangent transfer 
function.

Similarly, the �∗
s
 and �∗

h
 bounds, when the FCM has steady nodes, are

and

Finally, as in the case of non-steady nodes, Eqs. (21) and (22) must be satisfied.
As in Sect. 3.3.2, we propose that the final � would be derived by the final bound 

of Eq. (21) or Eq. (22) rounded at the third decimal digits.

4.2 � Normalisation of final state values when there are steady FCM nodes

The normalisation procedure when there are steady FCM nodes is like the one 
described in Sect.  3.4. However, it is applied only to the intermediate and output 
nodes and, for that reason, only the relative distance between the final values of 
intermediate and output nodes is suitable for inferences. Equivalently, there is no 
direct relationship between the qualitative values of input and intermediate or output 
node values. That is, if A1 = 0.6 is the final value of input node C1 and A10 = 0.6 
that of C10 , we cannot conclude that both C1 and C10 exceed the same amount of 
deviation. Contrary, if, for example, A7 = 0.6 is an intermediate or output node, we 
can conclude that it exceeds the same amount of variation with the output node C10. 
The above restriction is applied because the analysis of Sect. 3.3.2 is applied to the 

(29)W
*
=

⎡
⎢⎢⎣

w2,1 0 0 0 w2,5

0 w3,2 0 w3,4 0

w5,1 0 w5,3 w5,4 0

⎤
⎥⎥⎦
.

(30)𝜆s < 𝜆
�

s
=

4

‖�‖*
F

,

(31)𝜆h < 𝜆
�

h
=

1

‖�‖*
F

.

(32)�
∗

s
=

1.317

‖�‖∗
s

,

(33)�
∗

h
=

1.14

‖�‖∗
∞

.
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W
* matrix, which corresponds to the intermediate and output nodes (not the input/

steady nodes) or, in other words, only the transfer functions of the intermediate and 
output nodes perform in the “almost linear region”.

5 � Software implementation: the “In‑Cognitive” tool

There exist several software solutions for FCM design and simulation [see Nikas 
et al. (2019) and Tsadiras et al. (2021) for detailed accounts]. The In-Cognitive soft-
ware tool1 is a web-based interactive application for the creation, visualisation, and 
simulation of FCMs, featuring the methodology presented in Sects.  3 and 4. It is 
written in the Python programming language (Python 3.7.3) and based on the Bokeh 
Python library (Bokeh 2.4.0.). It consists of a client-side web GUI (front-end) and 
a web server (back-end), with the former exchanging information and queries with 
Python code/modules stored in the latter. The front-end uses the JavaScript and 
HTML/CSS technologies to implement the interaction procedure with the end-user 
(analyst or otherwise). Both JavaScript and HTML/CSS codes are automatically cre-
ated by the Python Bokeh framework driven by Python scripts. The back-end is built 
on top of a Tornado Python web framework. In Fig. 6, we briefly illustrate the inter-
action between the front-end and back-end parts of the In-Cognitive application. As 
a main functionality, browsers request documents (contents of the web pages) and 
the server’s Python code provides them. The user interacts with the content of docu-
ments and ask for services. The document catches these events and afterwards send 
out feedbacks to the server that listens to these request events.

Figure 7 illustrates the developed GUI. It is divided into two subsections: the (a) 
FCM editor and display layout, and (b) the simulation outcome subsection. The end-
user can easily interact with the FCM editor in order to introduce the FCM layout or 
edit an existing one and configure the FCM by defining the structure and parameters 
(i.e., node interconnections, weights, input node values/excitations, transfer func-
tion). Parameter � is automatically calculated based on the analysis in Sects.  3, 4 
and, thus, the end-user need not insert any specific value for this parameter. Finally, 
the end-user can also alter the format (e.g., size, colour, etc.) of the introduced FCM 
components (e.g., nodes, edges, etc.) to a preferable format and save afterwards the 

Bokeh-Tornado server

Python code

Document #N

…Document #1 …

Document #1

Browser #1

Document #N

Browser #N

Fig. 6   Description of In-Cognitive Python web application

1  https://​github.​com/​Themi​sKout​sellis/​InCog​nitive

https://github.com/ThemisKoutsellis/InCognitive
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figure of the introduced FCM layout. In the GUI subsection (b), the outcomes of the 
FCM simulation executed on the server-side are presented in a user-friendly vis-
ualisation. There is also an integrated console, which displays useful information 
regarding the execution of the corresponding iterative FCM simulation (e.g., warn-
ings, FCM layout information, etc.).

The main contribution of the In-Cognitive web application is the implementation 
of the methodology of selecting parameter � as presented in this paper (Sects. 3 and 
4). To our knowledge, all FCM software tools (e.g., Mohr 1997; Margaritis et  al. 
2002; Aguilar and Contreras 2010; Papaioannou et al. 2010; Cheah et al. 2011; Gray 
et al. 2013; De Franciscis 2014; Poczęta et al. 2015; Nápoles et al. 2017; Nikas et al. 
2017, 2019; Tsadiras et  al. 2021) do not contain any software module to select � 
based on the FCM layout. Instead, parameter � is considered a constant parameter 
usually equal to one (Nikas et al. 2019).

Fig. 7   The In-Cognitive GUI
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Table 1   Node descriptions

Node Description Operation

C1 B1. Ongoing economic recession Input node
C2 B2. Poor public acceptance Input node
C3 B3. Regulatory framework instability Input node
C4 B4. High technological cost Input node
C5 B5. Poor political prioritisation Input node
C6 P1. Financial incentives for large-scale projects Input node
C7 P2. Enhanced land-use planning Input node
C8 P3. Wide-scale deployment of smart meters Input node
C9 P4. Financial incentives for storage units and devices Input node
C10 S1. Monitoring capacity for energy consumption Intermediate node
C11 S2. Control of utility bills Intermediate node
C12 S3. Privacy invasion concerns Intermediate node
C13 S4. Demand flexibility Intermediate node
C14 S5. Trust in institutions Intermediate node
C15 S6. Development of large-scale solar projects Intermediate node
C16 S7. Technological lock-ins Intermediate node
C17 S8. Share of lignite in the energy mix Intermediate node
C18 S9. Share of RES in the power generation mix Intermediate node
C19 S10. Grid stability Intermediate node
C20 S11. Wholesale electricity prices Intermediate node
C21 S12. Energy security Intermediate node
C22 S13. Coal mining jobs Intermediate node
C23 S14. Small-scale energy storage Intermediate node
C24 S15. ‘Green’ engineering and consulting jobs Intermediate node
C25 S16. Not-In-My-Backyard complaints Intermediate node
C26 C1. Electricity costs for end-users Output node
C27 C2. Economic growth in the long-term Output node
C28 C3. Investments Output node
C29 C4. Employment Output node
C30 C5. Tariff deficits Output node

Table 2   Socio-economic risk scenarios

Node Node values

Sustainability Middle of the 
road

Regional rivalry Inequality Fossil-fuelled 
development

C1 − 0.5 0.1 − 0.2 0.6 − 0.7
C2 − 0.7 − 0.1 0.65 0.75 − 0.7
C3 − 0.8 − 0.1 0.6 0.8 − 0.8
C4 − 0.7 0.2 − 0.1 − 0.35 − 0.7
C5 − 0.6 0.2 0.6 0.9 0.15



1 3

Parameter analysis for sigmoid and hyperbolic transfer…

6 � Case study validation of the proposed framework and software

There is a plethora of studies applying the FCM theory in energy/climate policy 
(e.g., Nikas and Doukas 2016; Nikas et  al. 2018, 2019, 2020; Doukas and Nikas 
2020). In Nikas et al. (2020), the authors proposed an FCM layout to identify the 
most pertinent implementation risks to the diffusion of new solar power before cal-
culating the long-term socioeconomic impacts of wide-scale solar PV deployment 
in an energy system and macroeconomic analysis in Greece, building on the uncer-
tainty space associated with the identified implementation risks.

Table  1 briefly describes each node/concept of the FCM, while Table  6 in the 
Appendix presents the FCM layout in tabular format. Nodes C1 to C9 are the steady 
nodes. Nodes C1 to C5 correspond to the barriers of solar-based energy transition 
in Greece as suggested by the stakeholders (uncertainty drivers). Nodes C6 to C9 
correspond to various policies (policy drivers). C26 to C30 are the output nodes (con-
cepts under examination) and C10 to C25 are the intermediate nodes that change their 
values through iterations. Various value combinations of C1 to C5 are illustrated in 
Table 2, representing different socio-economic risk scenarios—i.e., socioeconomic 
paths (SP), hereafter. We adapt the following abbreviations regarding the various 
SPs (see Table  2): SP1: Sustainability, SP2: Middle of the road, SP3: Regional 
rivalry, SP4: Inequality and SP5: Fossil fuelled development. For each SP, four poli-
cies, P1 , P2 , P3 and P4 (see Table 3) are applied to explore their effect on the output 
nodes. Therefore, the following input combinations are applied to the introduced 
FCM: SP1_P1 to SP1_P4, SP2_P1 to SP2_P4, SP3_P1 to SP3_P4, SP4_P1 to SP4_
P4 and SP5_P1 to SP5_P4.   

After applying the analysis of Sect. 4, the norms of matrix W∗ of FCM layout of 
Table 6 are:

and

From Eqs. (30) to (33)

(34)‖W‖∗
F
≈ 1.522,

(35)‖�‖*
∞
≈ 2.708

(36)‖�‖*
s
≈ 1.421.

Table 3   Policies and 
corresponding input nodes

Nodes Policies

Policy 1 (P1) Policy 2 (P2) Policy 3 (P3) Policy 4 (P4)

C6 1 0 0 0
C7 0 1 0 0
C8 0 0 1 0
C9 0 0 0 1
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Finally, from Eqs. (21) and (22)

and

In this example the smallest bounds for both �s and �h are equal to the pro-
posed ones (see Sect. 3.3.2).

All simulations are performed and visualised in the “In-Cognitive” software 
application in the sub-sections below. In Sect.  6.1, we illustrate the results of 
FCM simulations for S2_P3 (S2: Middle of the road, P3: Wide-scale deployment 
of smart meters) when the FCM is equipped with hyperbolic tangent transfer 
function. The values of parameters � vary so that we can reach to useful conclu-
sion regarding the analysis of Sects.  3 and 4 (we include the proposed bound 
�h = 0.421 as well). Moreover, the final concept values, Ak

i
 , is not normalised so 

that we can compare the results for various � values. The normalisation proce-
dure described in Sects. 3.4 and 4.2 is only applied to lambdas smaller than the 
proposed bounds, �∗

s
 and �∗

h
 . In contrast, the normalisation procedure and the 

proposed �h = 0.421 are only applied in Sect. 6.2.

6.1 � Hyperbolic tangent FCM for different parameter λ values

Figures 8, 9, 10, 11 and 12 present the distributions of arguments xk
i
 ’s of Eq. (8) 

for all intermediate and output nodes through all iterations. For all �h ≤ 0.421 
the arguments do not exceed the turning points (Figs.  8, 9); the arguments 
always lie in the almost-linear region. For � = 1 (Fig.  10), a commonly used 
value in FCM simulations, the arguments are already out of the turning points 
and the Ak

i
 ’s values have distortion due to the curved regions of the transfer 

function. We also observe that the greater the lambda parameter, the more argu-
ments fall within the tails of the transfer function; consequently more Ak

i
 receive 

(37)�
�

s
=

4

‖W‖∗
F

=
4

1.522
≈ 2.628,

(38)�
�

h
=

1

‖W‖F =
1

1.522
≈ 0.657,

(39)�
∗

s
=

1.317

‖�‖∗
s

=
1.317

1.421
≈ 0.927,

(40)�
∗

h
=

1.14

‖�‖∗
∞

=
1.14

2.708
≈ 0.421.

(41)𝜆s < min(2.628, 0.927) = 0.927

(42)𝜆h < min(0.657, 0.421) = 0.421.
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±1 value (see Figs.  11, 12). Due to this effect, the final output vector is dense 
around the ±1 region, making the inferences ambiguous (see Table 4 for � = 10 
to � = 100 ). This observation is in accordance with the analysis in Sect.  3.2 
where we concluded that the greater the lambda parameter ( � → ∞ ), the closer 
to the step function the transfer function gets, and the final node values get close 
to ±1 (undesired condition). In this specific application, for 𝜆h > 𝜆

�

h
= 0.657 

(i.e., Table 4 for � = 1 to � = 100 ) the FCM concludes to a fixed-point despite, 
according to Axelrod et al. (2015), the existence of a fixed point not being guar-
anteed for 𝜆h > 𝜆

′

h
 . This means that, if we try different excitations (other than 

S2_P3), we may get chaotic FCM behaviour when 𝜆h > 𝜆
�

h
= 0.657 . Finally, it 

is worth pointing out that the ordering of final output values is different when � 
varies (Table 5), as expected by the analysis in Sect. 3—the variation refers to 
the stage before normalisation.      

Smallest and largest arguments of all nodes of all iterations 

Turning points

Standard deviation of all arguments of all nodes of all iterations 

Mean of all arguments of all nodes of all iterations 

Arguments of all nodes through all iterations

Fig. 8   Hyperbolic tangent FCM with λ = 0.1, SP: middle of the road, policy: P3 (SP2_P3)
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6.2 � Proposed parameter λ values with normalised final output vector

Figure 13 illustrates the values of all intermediate and output nodes during all itera-
tions when the excitation is S2_P3 and �h = 0.421 . All of them are normalised based 
on Eq. (26). The distribution of all arguments (Eq. (8)) through all iterations are as in 
Fig. 9. We can see that, for all xk

i
 and their corresponding Ak

i
 values, the almost linear 

region is much larger. This happens due to the given SP2_P3 excitation. Different exci-
tation would yield different distribution of xk

i
 values but all these distributions would 

fall within the almost linear region because 𝜆h = 0.421 < 𝜆
∗

h
≈ 0.4211 . Finally, it 

should be noted that values do not fall within a narrow band region and therefore their 
ordering is clear and closer to a realistic representation of relative values of each node’s 
deviation. This happens because, in the almost linear region, the deviations of Ak

i
 values 

are proportional to the deviations of xk
i
 values (see Sect. 3.2).

7 � Remarks and conclusions

We have proposed a framework for identifying a value for parameter � for both log-
sigmoid and hyperbolic tangent FCM transfer functions. With the previous state-of-
the-art � values, the transfer function was active for all possible f  values. Given that 
both transfer functions have a curved region close to their tails (see Fig. 4) thereby 

λ=0,421

Smallest and largest arguments of all nodes of all iterations 

Turning points

Standard deviation of all arguments of all nodes of all iterations 

Mean of all arguments of all nodes of all iterations 

Arguments of all nodes through all iterations

Fig. 9   Hyperbolic tangent FCM with λ = 0.421, SP: middle of the road, policy: P3 (SP2_P3)
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creating distortion, final node values usually concluded to an overcrowded region 
(close to 0 and 1 or ±1 , respectively), hence unclear inference. To tackle this bar-
rier, we proposed that transfer functions should operate in the almost linear region 
(see Fig.  4). The latter requirement yielded a certain bound for parameter � . We 
also demonstrated why parameter � should not be excessively large or small (see 
Sect. 3.2). Therefore, we reached the conclusion that parameter � must be as close 
to the proposed bounds in Eqs. (21) and (22). The analysis was performed for FCMs 
with or without steady nodes. We also proposed a normalisation procedure so that 
outcomes are clear, distinct, and sufficient for inferences.

Based on the proposed methodology, we furthermore developed a web software 
application written in Python, called “In-Cognitive”, containing a user-friendly GUI 
that allows non-expert users to connect to the server, define the FCM layout (e.g., 
nodes, their weight interconnection, input state vector if any, etc.) and then request 
the results. The choice of parameter � is taken endogenously based on Sects. 3 and 
4.

λ=1

Smallest and largest arguments of all nodes of all iterations 

Turning points

Standard deviation of all arguments of all nodes of all iterations 

Mean of all arguments of all nodes of all iterations 

Arguments of all nodes through all iterations

Fig. 10   Hyperbolic tangent FCM with λ = 1, SP: middle of the road, policy: P3 (SP2_P3)
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Finally, by using the “In-Cognitive” software application, we ran a simulation 
of an FCM layout drawn from a real-world application in the literature (Nikas 
et al. 2020), validating the methodological takeaways of Sects. 3 and 4.

The parameter � bounds that are proposed in this research aim to contribute to 
the hitherto ambiguity of FCM implementation and results, since different param-
eters � yield different FCM outcomes and therefore different inferences. By pro-
viding an objective criterion to select a unique parameter � we hope to contribute 
to further exploitation of FCM theory in research and policy-/decision-making.

A caveat of this study is that it focuses on a parameter of the transfer func-
tion that is defined by the analyst. On one hand, this means that other parameters 

λ=10

Smallest and largest arguments of all nodes of all iterations 

Turning points

Standard deviation of all arguments of all nodes of all iterations 

Mean of all arguments of all nodes of all iterations 

Arguments of all nodes through all iterations

Fig. 11   Hyperbolic tangent FCM with λ = 10 , SP: middle of the road, policy: P3 (SP2_P3)
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λ=50

Smallest and largest arguments of all nodes of all iterations 

Turning points

Standard deviation of all arguments of all nodes of all iterations 

Mean of all arguments of all nodes of all iterations 

Arguments of all nodes through all iterations

Fig. 12   Hyperbolic tangent FCM with λ = 50 , SP: middle of the road, policy: P3 (SP2_P3)

Table 4   FCM output node values for different parameters �

Node Node final values

λ = 0.1 λ = 0.421 λ = 1 λ = 10 λ = 50 λ = 100

Output nodes
C26 − 9.9313E−05 − 0.00717 − 0.08205 − 0.99934 − 1 − 1
C27 0 0 0 0 0 0
C28 − 2.4574E−04 0.00356 0.07818 0.98154 1 1
C29 0 0 0 0 0 0
C30 1.3504E−03 0.02886 0.20616 1.00000 1 1
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defined by the analyst have not been touched. For example, as a prospect of 
our research, the impact of the choice of transfer function (among sigmoid and 
hyperbolic tangent) on the robustness of the inference/results must be thoroughly 
examined. This also applies for parameter di of the driver function (Eq. 2) and the 

Table 5   Ordering of FCM 
output node values for different 
parameters �

Nodes/concepts

λ = 0.1 λ = 0.421 λ = 1 λ = 10 λ = 50 λ = 100

Ascending ordering
C28 C26 C26 C26 C26 C26
C26 C27 C27 C27 C27 C27
C27 C29 C29 C29 C29 C29
C29 C28 C28 C28 C28 C28
C30 C30 C30 C30 C30 C30

Iteration

Iteration

(a) Intermediate nodes

(b) Output nodes

Fig. 13   All iterations of hyperbolic tangent FCM with � = 0.421 and normalised final values, SP: middle 
of the road, policy: P3 (SP2_P3)
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extent to which it can retain its physical meaning in the FCM model simulation. 
On the other hand, this caveat also means that the impact of aspects of the FCM 
model that are (largely) defined by the decision-makers, such as the FCM layout 
and the weight matrix, must also be further explored. On the latter, much research 
has been carried out in the form of learning algorithms; however, the extent to 
which the simulation outcomes change with regard to input data uncertainty (e.g., 
via Monte Carlo analysis in the weight matrix) is largely understudied. Future 
research should finally focus on improving the proposed normalisation procedure, 
which squashes node values to a smaller range based on the presented example, 
thereby rendering differences within the final state vector less distinct and there-
fore any conclusion harder.

Appendix

See Table 6.

Table 6   Weight node 
interconnections

Nodes Weight Nodes Weight

Source Target Source Target

C1 C15 − 0.442 C14 C13 0.097
C1 C20 − 0.375 C14 C23 0.11
C1 C23 − 0.348 C15 C17 − 0.852
C2 C12 0.594 C15 C18 0.902
C2 C25 0.706 C15 C24 0.226
C3 C14 − 0.421 C15 C30 − 0.852
C3 C16 − 0.132 C16 C15 − 0.719
C3 C23 − 0.245 C16 C28 − 0.274
C4 C15 − 0.52 C17 C21 0.722
C4 C20 0.261 C17 C22 0.888
C4 C23 − 0.29 C18 C19 − 0.521
C5 C16 0.651 C19 C20 − 0.311
C6 C15 0.487 C20 C26 − 0.932
C7 C15 0.229 C20 C28 − 0.419
C8 C10 0.776 C21 C27 0.322
C8 C12 0.319 C22 C29 0.21
C9 C23 0.792 C23 C19 0.9
C10 C11 0.319 C23 C24 0.189
C10 C13 0.391 C24 C29 0.196
C11 C26 − 0.402 C25 C15 − 0.311
C12 C14 − 0.381 C28 C27 0.481
C13 C28 0.481 C29 C27 0.378



	 T. Koutsellis et al.

1 3

Acknowledgements  The most important part of this research is based on the H2020 European Com-
mission Project “PARIS REINFORCE” under Grant Agreement No. 820846. The sole responsibility for 
the content of this paper lies with the authors. The paper does not necessarily reflect the opinion of the 
European Commission.

Funding  European Commission Horizon 2020 Framework, ‘PARIS REINFORCE’ Research and Innova-
tion Project, Grant Agreement No. 820846.

Availability of data and materials  Data used in the case study is available from Nikas, A., Stavrakas, V., 
Arsenopoulos, A., Doukas, H., Antosiewicz, M., Witajewski-Baltvilks, J., & Flamos, A. (2020). Barriers 
to and consequences of a solar-based energy transition in Greece. Environmental Innovation and Societal 
Transitions, 35, 383–399.

Code availability  The code of the In-Cognitive software is open source and available on Github https://​
github.​com/​Themi​sKout​sellis/​InCog​nitive.

Declarations 

Conflict of interests  The authors declare that they have no conflict of interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Abbaspour Onari M, Jahangoshai Rezaee M (2020) A fuzzy cognitive map based on Nash bargaining 
game for supplier selection problem: a case study on auto parts industry. Oper Res. https://​doi.​org/​
10.​1007/​s12351-​020-​00606-1

Aguilar J, Contreras J (2010) The FCM designer tool. In: Glikas M (ed) Fuzzy cognitive maps: advances 
in theory, methodologies, tools and applications. Springer, Berlin, pp 71–88

Amer M, Daim TU, Jetter A (2016) Technology roadmap through fuzzy cognitive map-based sce-
narios: the case of wind energy sector of a developing country. Technol Anal Strateg Manag 
28:131–155

Amirkhani A, Papageorgiou EI, Mohseni A, Mosavi MR (2017) A review of fuzzy cognitive maps in 
medicine: taxonomy, methods, and applications. Comput Methods Programs Biomed 142:129–145

Amirkhani A, Papageorgiou EI, Mosavi MR, Mohammadi K (2018) A novel medical decision support 
system based on fuzzy cognitive maps enhanced by intuitive and learning capabilities for modeling 
uncertainty. Appl Math Comput 337:562–582

Antosiewicz M, Nikas A, Szpor A et al (2020) Pathways for the transition of the Polish power sector and 
associated risks. Environ Innov Soc Transit 35:271–291

Apostolopoulos ID, Groumpos PP, Apostolopoulos DI (2017) A medical decision support system for the 
prediction of the coronary artery disease using fuzzy cognitive maps. In: Conference on creativity in 
intelligent technologies and data science. Springer, pp 269–283

Axelrod R (2015) Structure of decision: the cognitive maps of political elites. Princeton University Press, 
Princeton

https://github.com/ThemisKoutsellis/InCognitive
https://github.com/ThemisKoutsellis/InCognitive
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12351-020-00606-1
https://doi.org/10.1007/s12351-020-00606-1


1 3

Parameter analysis for sigmoid and hyperbolic transfer…

Azevedo ARSC, Ferreira FAF (2019) Analyzing the dynamics behind ethical banking practices using 
fuzzy cognitive mapping. Oper Res 19:679–700. https://​doi.​org/​10.​1007/​s12351-​017-​0333-6

Bevilacqua M, Ciarapica FE, Mazzuto G (2018) Fuzzy cognitive maps for adverse drug event risk man-
agement. Saf Sci 102:194–210

Boutalis Y, Kottas T, Christodoulou M (2008) On the existence and uniqueness of solutions for the con-
cept values in fuzzy cognitive maps. In: 2008 47th IEEE conference on decision and control. IEEE, 
pp 98–104

Cakmak EH, Dudu H, Eruygur O et al (2013) Participatory fuzzy cognitive mapping analysis to evaluate 
the future of water in the Seyhan Basin. J Water Clim Change 4:131–145

Carvalho JP, Tomé JAB (2004) Qualitative modelling of an economic system using rule-based fuzzy cog-
nitive maps. In: 2004 IEEE international conference on fuzzy systems (IEEE Cat. No. 04CH37542). 
IEEE, pp 659–664

Ceccato L (2012) Three essays on participatory processes and integrated water resource management in 
developing countries. Università Ca’ Foscari Venezia, Venice

Çelik FD, Ozesmi U, Akdogan A (2005) Participatory ecosystem management planning at Tuzla lake 
(Turkey) using fuzzy cognitive mapping. arXiv Prepr q-bio/0510015

Cheah WP, Kim YS, Kim KY, Yang HJ (2011) Systematic causal knowledge acquisition using FCM con-
structor for product design decision support. Expert Syst Appl 38:15316–15331. https://​doi.​org/​10.​
1016/j.​eswa.​2011.​06.​032

Craiger P, Coovert MD (1994) Modeling dynamic social and psychological processes with fuzzy cog-
nitive maps. In: Proceedings of 1994 IEEE 3rd international fuzzy systems conference. IEEE, pp 
1873–1877

de Franciscis D (2014) JFCM: a Java library for fuzzy cognitive maps. In: Papageorgiou EI (ed) Fuzzy 
cognitive maps for applied sciences and engineering. Springer, Berlin, pp 199–220

Doukas H, Nikas A (2020) Decision support models in climate policy. Eur J Oper Res 280:1–24. https://​
doi.​org/​10.​1016/j.​ejor.​2019.​01.​017

Felix G, Nápoles G, Falcon R et al (2019) A review on methods and software for fuzzy cognitive maps. 
Artif Intell Rev 52:1707–1737. https://​doi.​org/​10.​1007/​s10462-​017-​9575-1

Fons S, Achari G, Ross T (2004) A fuzzy cognitive mapping analysis of the impacts of an eco-industrial 
park. J Intell Fuzzy Syst 15:75–88

Froelich W, Papageorgiou EI, Samarinas M, Skriapas K (2012) Application of evolutionary fuzzy cogni-
tive maps to the long-term prediction of prostate cancer. Appl Soft Comput 12:3810–3817

Georgopoulos VC, Malandraki GA, Stylios CD (2003) A fuzzy cognitive map approach to differential 
diagnosis of specific language impairment. Artif Intell Med 29:261–278

Ghaderi SF, Azadeh A, Nokhandan BP, Fathi E (2012) Behavioral simulation and optimization of genera-
tion companies in electricity markets by fuzzy cognitive map. Expert Syst Appl 39:4635–4646

Gray SA, Gray S, Cox LJ, Henly-Shepard S (2013) Mental modeler: a fuzzy-logic cognitive mapping 
modeling tool for adaptive environmental management. In: 2013 46th Hawaii international confer-
ence on system sciences. IEEE, pp 965–973

Gray SRJ, Gagnon AS, Gray SA et  al (2014) Are coastal managers detecting the problem? Assessing 
stakeholder perception of climate vulnerability using fuzzy cognitive mapping. Ocean Coast Manag 
94:74–89

Harmati IÁ, Hatwágner MF, Kóczy LT (2018) On the existence and uniqueness of fixed points of fuzzy 
cognitive maps. In: international conference on information processing and management of uncer-
tainty in knowledge-based systems. Springer, pp 490–500

Harmati IÁ, Kóczy LT (2018) On the existence and uniqueness of fixed points of fuzzy set valued sig-
moid fuzzy cognitive maps. In: 2018 IEEE international conference on fuzzy systems (FUZZ-
IEEE). IEEE, pp 1–7

Hobbs BF, Ludsin SA, Knight RL et al (2002) Fuzzy cognitive mapping as a tool to define management 
objectives for complex ecosystems. Ecol Appl 12:1548–1565

Hsueh S-L (2015) Assessing the effectiveness of community-promoted environmental protection policy 
by using a Delphi-fuzzy method: a case study on solar power and plain afforestation in Taiwan. 
Renew Sustain Energy Rev 49:1286–1295

Huang S-C, Lo S-L, Lin Y-C (2013) Application of a fuzzy cognitive map based on a structural equa-
tion model for the identification of limitations to the development of wind power. Energy Policy 
63:851–861

https://doi.org/10.1007/s12351-017-0333-6
https://doi.org/10.1016/j.eswa.2011.06.032
https://doi.org/10.1016/j.eswa.2011.06.032
https://doi.org/10.1016/j.ejor.2019.01.017
https://doi.org/10.1016/j.ejor.2019.01.017
https://doi.org/10.1007/s10462-017-9575-1


	 T. Koutsellis et al.

1 3

Karavas C-S, Kyriakarakos G, Arvanitis KG, Papadakis G (2015) A multi-agent decentralized energy 
management system based on distributed intelligence for the design and control of autonomous 
polygeneration microgrids. Energy Convers Manag 103:166–179

Knight CJK, Lloyd DJB, Penn AS (2014) Linear and sigmoidal fuzzy cognitive maps: an analysis of fixed 
points. Appl Soft Comput 15:193–202

Kok K (2009) The potential of fuzzy cognitive maps for semi-quantitative scenario development, with an 
example from Brazil. Glob Environ Change 19:122–133

Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24:65–75
Kottas TL, Boutalis YS, Christodoulou MA (2010) Fuzzy cognitive networks: adaptive network estima-

tion and control paradigms. In: Glykas M (ed) Fuzzy cognitive maps. Springer, Berlin, pp 89–134
Koulouriotis DE (2004) Investment analysis & decision making in markets using adaptive fuzzy causal 

relationships. Oper Res 4:213–233. https://​doi.​org/​10.​1007/​bf029​43610
Koulouriotis DE, Diakoulakis IE, Emiris DM (2001) A fuzzy cognitive map-based stock market model: 

synthesis, analysis and experimental results. In: 10th IEEE international conference on fuzzy sys-
tems.(Cat. No. 01CH37297). IEEE, pp 465–468

Kyriakarakos G, Dounis AI, Arvanitis KG, Papadakis G (2012) A fuzzy cognitive maps–petri nets energy 
management system for autonomous polygeneration microgrids. Appl Soft Comput 12:3785–3797

Lee IK, Kwon SH (2010) Design of sigmoid activation functions for fuzzy cognitive maps via Lyapunov 
stability analysis. IEICE Trans Inf Syst 93:2883–2886

Liu Z-Q, Satur R (1999) Contextual fuzzy cognitive map for decision support in geographic information 
systems. IEEE Trans Fuzzy Syst 7:481–494

Margaritis M, Stylios C, Groumpos P (2002) Fuzzy cognitive map software. In: 10th international confer-
ence on software, telecommunications and computer networks SoftCom, pp 8–11

Markaki O, Askounis D (2021) Assessing the operational and economic efficiency benefits of dynamic 
manufacturing networks through fuzzy cognitive maps: a case study. Oper Res 21:925–950. https://​
doi.​org/​10.​1007/​s12351-​019-​00488-y

Mendoza GA, Prabhu R (2006) Participatory modeling and analysis for sustainable forest management: 
overview of soft system dynamics models and applications. For Policy Econ 9:179–196

Mohr S (1997) Software design for a fuzzy cognitive map modeling tool. Rensselaer Polytechnic Insti-
tute, Troy

Nápoles G, Leon Espinosa M, Grau I et al (2018) Fuzzy cognitive maps based models for pattern clas-
sification: advances and challenges BT—soft computing based optimization and decision models: to 
commemorate the 65th birthday of Professor José Luis “Curro” Verdegay. In: Cruz Corona C (ed) 
Pelta DA. Springer International Publishing, Cham, pp 83–98

Nápoles G, Leon M, Grau I, Vanhoof K (2017) Fuzzy cognitive maps tool for scenario analysis and pat-
tern classification. In: 2017 IEEE 29th international conference on tools with artificial intelligence 
(ICTAI). IEEE, pp 644–651

Nikas A, Doukas H (2016) Developing robust climate policies: a fuzzy cognitive map approach. In: 
Doumpos M, Zopounidis C, Grigoroudis E (eds) Robustness analysis in decision aiding, optimiza-
tion, and analytics. Springer, Cham, pp 239–263

Nikas A, Doukas H, Lieu J et al (2017) Managing stakeholder knowledge for the evaluation of innovation 
systems in the face of climate change. J Knowl Manag 21:1013–1034

Nikas A, Doukas H, van der Gaast W, Szendrei K (2018) Expert views on low-carbon transition strategies 
for the Dutch solar sector: a delay-based fuzzy cognitive mapping approach. IFAC-PapersOnLine 
51:715–720. https://​doi.​org/​10.​1016/j.​ifacol.​2018.​11.​208

Nikas A, Ntanos E, Doukas H (2019) A semi-quantitative modelling application for assessing energy 
efficiency strategies. Appl Soft Comput 76:140–155

Nikas A, Stavrakas V, Arsenopoulos A et al (2020) Barriers to and consequences of a solar-based energy 
transition in Greece. Environ Innov Soc Transit 35:383–399

Olazabal M, Pascual U (2016) Use of fuzzy cognitive maps to study urban resilience and transformation. 
Environ Innov Soc Transit 18:18–40

Özesmi U, Özesmi SL (2004) Ecological models based on people’s knowledge: a multi-step fuzzy cog-
nitive mapping approach. Ecol Modell 176:43–64. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2003.​10.​027

Papaioannou M, Neocleous C, Sofokleous A, et  al (2010) A generic tool for building fuzzy cognitive 
map systems. In: IFIP international conference on artificial intelligence applications and innova-
tions. Springer, pp 45–52

https://doi.org/10.1007/bf02943610
https://doi.org/10.1007/s12351-019-00488-y
https://doi.org/10.1007/s12351-019-00488-y
https://doi.org/10.1016/j.ifacol.2018.11.208
https://doi.org/10.1016/j.ecolmodel.2003.10.027


1 3

Parameter analysis for sigmoid and hyperbolic transfer…

Papakostas G, Boutalis Y, Koulouriotis D, Mertzios B (2006) A first study of pattern classification using 
fuzzy cognitive maps. In: International conference on systems, signals and image processing-INS-
SIP. pp 369–374

Papakostas GA, Boutalis YS, Koulouriotis DE, Mertzios BG (2008) Fuzzy cognitive maps for pattern 
recognition applications. Int J Pattern Recognit Artif Intell 22:1461–1486

Penn AS, Knight CJK, Lloyd DJB et al (2013) Participatory development and analysis of a fuzzy cogni-
tive map of the establishment of a bio-based economy in the Humber region. PLoS ONE 8:e78319

Poczęta K, Yastrebov A, Papageorgiou EI (2015) Learning fuzzy cognitive maps using structure optimi-
zation genetic algorithm. In: 2015 federated conference on computer science and information sys-
tems (FedCSIS). IEEE, pp 547–554

Puerto E, Aguilar J, López C, Chávez D (2019) Using multilayer fuzzy cognitive maps to diagnose autism 
spectrum disorder. Appl Soft Comput 75:58–71

Reckien D (2014) Weather extremes and street life in India—implications of fuzzy cognitive mapping 
as a new tool for semi-quantitative impact assessment and ranking of adaptation measures. Glob 
Environ Change 26:1–13

Satur R, Liu Z-Q (1999a) A contextual fuzzy cognitive map framework for geographic information sys-
tems. IEEE Trans Fuzzy Syst 7:481–494. https://​doi.​org/​10.​1109/​91.​797974

Satur R, Liu Z-Q (1999b) Contextual fuzzy cognitive maps for geographic information systems. In: 
FUZZ-IEEE’99. 1999b IEEE international fuzzy systems. conference proceedings (Cat. No. 
99CH36315). IEEE, pp 1165–1169

Silva PC (1995) Fuzzy cognitive maps over possible worlds. In: Proceedings of 1995 IEEE international 
conference on fuzzy systems. IEEE, pp 555–560

Soler LS, Kok K, Camara G, Veldkamp A (2012) Using fuzzy cognitive maps to describe current system 
dynamics and develop land cover scenarios: a case study in the Brazilian Amazon. J Land Use Sci 
7:149–175

Stach W, Kurgan LA, Pedrycz W (2008) Numerical and linguistic prediction of time series with the use 
of fuzzy cognitive maps. IEEE Trans Fuzzy Syst 16:61–72

Stylios CD, Groumpos PP (2004) Modeling complex systems using fuzzy cognitive maps. IEEE Trans 
Syst Man Cybern A Syst Hum 34:155–162

Tsadiras A, Pempetzoglou M, Viktoratos I (2021) Making predictions of global warming impacts using a 
semantic web tool that simulates fuzzy cognitive maps. Comput Econ 58:715–745. https://​doi.​org/​
10.​1007/​s10614-​020-​10025-1

Tsadiras AK (2008) Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive 
maps. Inf Sci (NY) 178:3880–3894. https://​doi.​org/​10.​1016/j.​ins.​2008.​05.​015

Tsadiras AK, Kouskouvelis I (2005) Using fuzzy cognitive maps as a decision support system for politi-
cal decisions: the case of Turkey’s Integration into the European Union. In: Lecture notes in com-
puter science, pp 371–381

van Vliet M, Kok K, Veldkamp T (2010) Linking stakeholders and modellers in scenario studies: the use 
of fuzzy cognitive maps as a communication and learning tool. Futures 42:1–14. https://​doi.​org/​10.​
1016/j.​futur​es.​2009.​08.​005

Xirogiannis G, Stefanou J, Glykas M (2004) A fuzzy cognitive map approach to support urban design. 
Expert Syst Appl 26:257–268

Zhang W-R, Chen S-S, Bezdek JC (1989) Pool2: A generic system for cognitive map development and 
decision analysis. IEEE Trans Syst Man Cybern 19:31–39

Zhang W-R, Chen S-S, Wang W, King RS (1992) A cognitive-map-based approach to the coordination of 
distributed cooperative agents. IEEE Trans Syst Man Cybern 22:103–114

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1109/91.797974
https://doi.org/10.1007/s10614-020-10025-1
https://doi.org/10.1007/s10614-020-10025-1
https://doi.org/10.1016/j.ins.2008.05.015
https://doi.org/10.1016/j.futures.2009.08.005
https://doi.org/10.1016/j.futures.2009.08.005

	Parameter analysis for sigmoid and hyperbolic transfer functions of fuzzy cognitive maps
	Abstract
	1 Introduction
	2 FCM background and layout notations
	3 FCM equilibrium analysis with no steady nodes
	3.1 State-of-the-art bounds of parameter λ of transfer functions
	3.2 Remarks on transfer functions
	3.3 Proposed bounds for parameter 
	3.3.1 The almost linear region of the log-sigmoid and hyperbolic tangent functions
	3.3.2 Bounds of parameter λ witch quarantine that the almost linear region is always “active”

	3.4 Normalisation of final state values

	4 FCM equilibrium analysis with steady nodes
	4.1 Bounds of λ parameter when there are steadyinput FCM nodes
	4.2 Normalisation of final state values when there are steady FCM nodes

	5 Software implementation: the “In-Cognitive” tool
	6 Case study validation of the proposed framework and software
	6.1 Hyperbolic tangent FCM for different parameter λ values
	6.2 Proposed parameter λ values with normalised final output vector

	7 Remarks and conclusions
	Acknowledgements 
	References




