
HTR-1.3 solver: predicting electrified combustion using the
Hypersonic Task-based Research solver

Mario Di Renzo∗
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Abstract

This manuscript presents an updated open-source version of the Hypersonics Task-based Re-
search (HTR) solver. The solver, whose main features are presented in Di Renzo et al. (Comput.
Phys. Commun. 255, 2020) and Di Renzo & Pirozzoli (Comput. Phys. Commun. 261, 2021), is
designed for direct numerical simulation of reacting flows at high Reynolds numbers. This new
version extends the applications of the HTR solver to turbulent combustion in the presence of
external electric fields. In particular, a new distributed Poisson solver compatible with hetero-
geneous architectures has been incorporated in the algorithm to compute the electric potential
distribution in bi-periodic configurations. The drift fluxes of the electrically charged species are
now included in the transport equations using a targeted essentially non-oscillatory scheme. A
verification of these new features of the solver is provided using one-dimensional burner stabi-
lized flames, whereas a three dimensional turbulent flame is utilized to discuss the scalability of
the proposed numerical tool.

Keywords: Compressible reacting flows, GPUs, High-order numerics, Chemi-ionization,
Ion-wind

PROGRAM SUMMARY

Program Title: Hypersonics Task-based Research solver
CPC Library link to program files:
Developer’s respository link: https://github.com/stanfordhpccenter/HTR-solver.git
Code Ocean capsule:
Licensing provisions: BSD 2-clause
Programming language: Regent, C++, and CUDA
Journal reference of previous version:

• Di Renzo, M., Fu, L., & Urzay, J. (2020). HTR solver: An open-source exascale-oriented task-based
multi-GPU high-order code for hypersonic aerothermodynamics. Computer Physics Communica-
tions 255, 107262.
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Does the new version supersede the previous version?: yes
Reasons for the new version: new features of the solver
Summary of revisions:

• normalization of the multicomponent mixture

• Lu & Law [1] 30 species chemical scheme added to the solver as a mixture model for combustion of
methane in air

• TENO-LAD [2] implemented in the solver as an option for the inviscid fluxes discretization

• new FFT-based Poisson solver for bi-periodic problems

• calculation of transport properties using the (n,6,4) interaction theory for charge-neutral species in-
teractions

• new optional module for ion-wind effects on charged species transport

• FFCM-1 [3] provided as a mixture model

• Boivin et al. [4] added as a mixture model for hydrogen combustion

Nature of problem (approx. 50-250 words):
This code solves the compressible multicomponent Navier-Stokes equations at high Mach numbers includ-
ing finite-rate chemistry and complex chemical species transport. The implemented numerical methods are
designed for direct numerical simulations (DNS) of high Reynolds number reacting flows, such as transi-
tional and turbulent hypersonic boundary layers at high enthalpy and turbulent flames.

Solution method (approx. 50-250 words):
This code uses low-dissipation finite difference schemes for the spatial discretization of the conservation
equations on Cartesian stretched grids. The time advancement is performed either with an explicit method,
when the chemistry is slow and therefore does not introduce additional stiffness in the integration, or with
an operator-splitting method that integrates the chemical production rates with an implicit discretization.

Additional comments including Restrictions and Unusual features (approx. 50-250 words):
The HTR solver builds on the runtime Legion [5] and is written in the programming language Regent [6]
recently developed at Stanford University. Instructions for the installation of the components are provided
in the README.md file enclosed with the HTR solver repository.
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1. Introduction

Developing efficient and scalable solvers is an established way to favor the advancement
of Computational Fluid Dynamics (CFD). The advent of High Performance Computing (HPC)
facilities with heterogeneous architecture, featuring many types of processors and memories,
has significantly improved the throughput available to computational scientists on supercom-
puters but, at the same time, has posed additional difficulties in developing applications that
are able to take advantage of these systems. The community of CFD has recently seen the de-
velopment of many solvers that are targeted to these heterogeneous systems. AFiD-GPU [1]
and CaNS-GPU [2] are two examples of GPU compatible open-source incompressible Navier–
Stokes solvers that have been recently open sourced to the community. Similarly, few com-
pressible Navier–Stokes solvers have been open sourced in the past few years. For instance,
STREAmS [3] and OpenSBLI [4] are finite difference solvers for ideal gas mixtures. The first
solver uses CUDA Fortran to generate GPU compatible binaries, whereas, OpenSBLI is written
using Python-based code generator that automatically produces CPU and GPU compatible rou-
tines. Both these applications rely on static scheduling of the data communications across the
nodes based on Massage Passing Interface (MPI) libraries and have proved to be efficient and
scalable. However, the difficulties and potential performance issues that can be encountered in
static scheduling of the data communications among the nodes and devices are bound to increase
as the complexity of the HPC system architectures and the size of the calculations increases
toward exascale computing.

An innovative framework designed for exascale computing is provided by the Legion run-
time [5–7]. In this framework, applications are represented as a collection of tasks, which are
functions that sequentially operate on a specified set of data. This representation allows the run-
time to dynamically foresee the data dependencies among tasks, to organize them as a graph, to
map this graph on the available computational resources, and to perform all the memory man-
agement operations including data communications among devices. In this way, many of the
responsibilities of data management are relieved from the user, who can instead focus on de-
veloping the functionality of the application. The applicability of this programming model in
the field of CFD has been recently shown in finite-difference solvers [8–10] and a discontinuous
Galerkin solver [11]. In particular, the Hypersonic Task-based Research (HTR) solver [9, 10]
is a finite-difference multicomponent compressible reacting flow solver designed to compute
hypersonic flows at high-enthalpies leveraging HPC systems with heterogeneous architecture.
One of the innovative aspects of this solver is its implementation with the Regent programming
language [12]. This programming language is designed to efficiently produce applications com-
patible with the Legion programming model and takes care of automatically compiling binaries
that are compatible with GPUs and CPUs.

The task-based approach has many features that ease the implementation of complex appli-
cations compatible with heterogeneous architectures. Among these features, the composability
of task-graphs is particularly advantageous in assembling multi-physics solvers. In fact, task-
graphs defined in various modules of a multi-physics solver can be automatically merged into a
single task-graph by the Legion runtime. In this way, the runtime manages the various data struc-
tures required by each module ensuring correct synchronization of the components to preserve
the correctness of the algorithm. This feature of the task-based programming model is exercised
by the presented new version of the HTR solver to predict the behavior of electrified turbulent
flames.

The prediction of the interaction between external electric fields and hydrocarbon flames is
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very challenging from a numerical point of view. In fact, though this technology could lead to
significant improvements in active control of combustion, there are very few numerical investi-
gations that have studied it. Predictive calculations of the impingement of an electric field on a
flame involve phenomena occurring in a very broad spectrum of spacial and temporal scales and
need complex transport models and chemical mechanisms. For this reason, most of the numer-
ical studies present in the literature are based on one-dimensional calculations [13–17]. These
studies have been utilized to assess the accuracy of transport and chemical production models.
Two-dimensional calculations have been carried out using flamelet progress variable models [18–
20], reduced chemistry [21, 22], and detailed chemistry consisting of about 60 species [23, 24].
Very recently, Belhi et al. [25] presented a three-dimensional calculation of a laminar Bunsen
flame impinged by an electric field performed using a skeletal mechanism. Even though sig-
nificant advances in the numerical methods for the simulation of electrified flames have been
accomplished [26], the numerical prediction of turbulent flames impinged by electric field still
appears very challenging even in academic configurations. In this work, an updated version of the
HTR solver is presented with the intent of providing an efficient, opensource, and scalable tool
that can be used to predict the behavior of turbulent electrified flames in bi-periodic geometries
like 2D and 3D temporal reacting mixing layers.

The rest of the manuscript is organized as follows. Section 2 provides a description of the
mathematical formulation utilized in the solver. The dimensionless formulation of the transport
equations implemented in the new version of the solver is presented in Section 3. The numerical
methods deployed to compute the electric drift fluxes of the charged species and the electric po-
tential distribution are described in Section 4. Section 5 presents two validation tests performed
on one-dimensional flames to assess the accuracy of the presented solver in predicting combus-
tion with and without external electric fields. Scaling tests of the solver, performed both on GPU
and CPU based supercomputers, using a three-dimensional turbulent flame impinged by an ex-
ternal electric field are provided in Section 6. Finally, Section 7 gives the concluding remarks on
this study.

2. Mathematical formulation

The new version of the HTR solver presented in this manuscript numerically integrates the
conservation equations of species partial densities, momentum, and total energy, namely

∂ρYi

∂t
+ ∇ ·

[
ρYi (u + Vi)

]
= ẇi for i = 1, . . . ,Ns, (1)

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇P + ∇ · τ − ρq∇Φ, (2)

∂(ρe0)
∂t

+ ∇ · (ρuH) = ∇ ·

λ∇T + τu − Pu −
Ns∑
i=1

ρiVihi

 − Ns∑
i=1

ρq,i (u + Vi) · ∇Φ. (3)

In these equations, ρ is the mixture density, Yi are the mass fraction of each of the Ns species
considered in the mixture model, u is the flow velocity vector, P is the static pressure, T is the
static temperature, and e0 is the total energy. The system of transport equations is closed with
the equation of state for a multicomponent mixture of ideal gases,

P = ρR0T/W, (4)
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where R0 is the universal gas constant and W = (
∑Ns

i=1 Yi/Wi)−1 is the mean molecular weight
based on the individual weights Wi of each species, and with the Gauss law,

ε0∇
2Φ + ρq = 0, (5)

where Φ is the local electrostatic potential and ε0 is the dielectric permittivity of vacuum. In
this formulation, ρq =

∑Ns
i=1 ρq,i is the electric charge density of the mixture obtained by the

summation of the partial electric charge densities

ρq = ρNAe
SiYi

Wi
, (6)

where NA is the Avogadro number, e is the elementary electric charge value, and Si is the number
of elementary charges of the i-th species (Si = 0 for neutral species, Si > 0 for positive ions, and
Si < 0 for negative ions and electrons).

The symbol τ denotes, in the momentum conservation equation (2) and in the total energy
conservation equation (3), the viscous stress tensor

τ = µ
[
∇u + ∇uT − 2 (∇ · u) I/3

]
, (7)

where I is the identity tensor and µ is the dynamic viscosity of the mixture. The stagnation
energy is defined with the symbol e0 = e + |u|2/2, with e being the specific internal energy of the
mixture defined as

e = h − P/ρ =

Ns∑
i=1

Yihi − P/ρ, (8)

where h is the specific enthalpy of the mixture, and hi is the partial specific enthalpy of species i
given by

hi = hi,ref +

∫ T

Tref

cp,i(T ′)dT ′. (9)

In Eq. (9), hi,ref is a reference value of the specific enthalpy taken at the reference temperature
Tref, whereas cp,i is a temperature-dependent specific heat of species i at constant pressure, which
is evaluated using either the 7-coefficient or the 9-coefficient, depending on availability, NASA
polynomials tabulated in [27]. The diffusion velocity vector Vi, appearing in the species conser-
vation equation (1), is defined as

Vi = −Di∇ (ln Xi) − Siki∇Φ +

Ns∑
j=1

Y j

[
D j∇

(
ln X j

)
+ S jk j∇Φ

]
. (10)

The first two terms on the right-hand side of equation (10) correspond, respectively, to a Fickian
flux and to the electric drift flux [28, 29]. The third term on the right-hand side of equation (10)
is a mass corrector that enforces the conservation of mass in the formulation [30, 31]. Xi, Di,
and ki are the molar fraction, the mixture-averaged mass diffusivity, and the mixture-averaged
electric mobility of species i, respectively.

The chemical production rates ẇi are evaluated at runtime using Arrhenius based reactions
contained in one of the multiple chemical reaction mechanisms provided with the solver.
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Most of the transport properties mentioned in this section are evaluated using the algorithm
described in Di Renzo et al. [9]. In particular, the dynamic viscosity is evaluated as function
of the local dynamic viscosity of each component for the gas mixture using Wilke’s rule [32].
Similarly, the thermal conductivity of the mixture, λ, is computed by averaging the local thermal
conductivities in accordance with the formulation described in Mathur et al. [33].

The formulation in Bird et al. [34] is applied to compute the mixture-averaged mass dif-
fusivity. The individual binary diffusivities Di j and dynamic viscosities of neutral species are
evaluated as a function of the local temperature and pressure from collision integrals based on
the Stockmayer potential [35, 36].

The main additions to the mathematical formulation of the solver concern the transport prop-
erties of the charged species. The mixture-averaged electric mobilities of the heavy ions are
determined as

ki =

 Ns∑
j=1

X j

ki j


−1

(11)

using the local binary electric mobilities ki j [37]. The ki j of heavy ions are computed from the
binary mass diffusivities using the Einstein relation Di j/ki j = kBT/e, where kB is the Boltzmann
constant. The (n,6,4) theory is deployed for the calculation of the binary mass diffusivities be-
tween heavy ions and neutral species [13, 38]. The electric mobility of free electrons is kept
constant in the mixture. In particular, ke− = 0.8m2/ (V s) is considered for the calculations pre-
sented in this work. As consequence, the mass diffusivity of the electrons is assumed equal to
De− = ke−kBT/e.

The discussed formulation is targeted toward the simulation of weekly ionized gas (
∑Ns

i=1 |Si|Xi �

1), that are featured by electrified flames. For this reason, the contribution of collisions among
charged species to the transport properties is not currently considered in the mathematical for-
mulation of the solver in order to limit the computational complexity. Future developments of
the HTR solver will include the effects of charged-charged species collisions in the evaluation
of the transport properties and the introduction of more precise formulation for the estimation of
free electrons transport properties [39].

3. Dimensionless formulation

The new version of the HTR solver released with this work features a new dimensionless
formulation of the transport equations, which diminishes the roundoff errors involved in the
calculation of reacting compressible flows. In particular, the reference values utilized for the
normalization of velocity, energy, and density read as

ure f =

√
Pre f

ρre f , ere f =
Pre f

ρre f , and ρre f =
Pre f W

re f

R0T re f , (12)

where W
re f

is the reference mean molecular weight computed using a reference mixture compo-
sition Xre f

i . The dynamic viscosity, mass diffusivities, thermal conductivity are normalized with
the following reference values

µre f =

√
ρre f Pre f Lre f , Dre f

i =

√
Pre f

ρre f Lre f , and λre f =

√
ρre f Pre fR0L

W
re f . (13)
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The constant pressure heat capacities are normalized with cre f
p = R0

W
re f , whereas ẇre f

i =

√
ρre f pre f

Lre f is
the reference value for the species chemical production rates. The electric mobilities, the charge
densities and the electric potential differences are normalized by

kre f
i =

√
ρre f

Pre f

NaeLre f

W
re f , ρ

re f
q =

Naeρre f

W
re f , and ∆Φre f =

pre f W
re f

ρre f Nae
. (14)

The user has to specify the reference pressure (Pre f ), the reference temperature (T re f ), the refer-
ence length (Lre f ), and a reference mixture composition (Xre f

i ) to allow the solver to compute all
the normalization factors and perform compressible reacting flow simulations, whereby most of
the solved variables are of order one.

The main advantage of the implemented normalization method is that the transport equations
described in the previous section read in exactly the same form in their dimensional and dimen-
sionless formulations. For this reason, the implementation of the described normalization is very
easy in existing solvers and allows users to easily opt in or out from its deployment.

4. Numerical methods

Most of the numerical methods utilized in this new version of the solver are already described
in the previous publications related to the HTR solver [9, 10]. The two most relevant additions
are related to the Poisson solver that has been included to compute the electrostatic potential
from the Gauss law and the discretization method for the charged species flux due to the electric
drift.

4.1. Poisson solver for distributed heterogeneous architectures

The parallel Poisson solver released with the new version of the HTR solver attached to
this work is formulated to compute the electrostatic potential from the electric charge density
distribution in computational domains periodic in x and z directions. The solution strategy that
is implemented for this version of the solver consists in:

1. performing the two-dimensional direct Fast Fourier Transform (FFT) of the electric charge
density on each of the x-z plane of the computational domain

2. solving the tri-diagonal systems of equations derived from the Gauss law, where the Fourier
transform has been applied in the x and z direction, namely

(
k2

x + k2
z

)
Φ̂ +

dΦ̂

dy
+
ρ̂q

ε0
= 0, (15)

and where the derivative in y is discretized with a second-order centered scheme. In the
previous equation, kx and kz are the wavenumbers in the x and z directions, respectively,
and the hat over the symbols means that the corresponding quantities are Fourier trans-
formed in the x and z directions. The Thomas algorithm is utilized to solve the tri-diagonal
systems of equations at this step. In particular, the algorithm is parallelized in a way that
each CPU or GPU thread computes the values of Φ̂ along each y pencil of the computa-
tional grid.
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3. performing the two-dimensional inverse FFT on the Φ̂ computed from the solution of the
tri-diagonal systems of equations at the previous point to obtain the instantaneous electric
potential field.

The numerical solution obtained with this algorithm is second order accurate in space. It is
noteworthy, that the discretization error introduced by this solution procedure is negligible con-
sidering the absence of high-wave number fluctuations in the electric potential field distribution.

The current implementation allows the user to specify either Dirichlet boundary conditions
with constant value of Φ or a Robin boundary conditions, which imposes only the mean value of
Φ, on the y = ymin and y = ymax planes.Elliptic solver for heterogeneous architectures

Main characteristics of the solver 
• Uses FFTs along periodic directions, and 2nd order finite differences along inhomogeneous directions.


• Compatible with GPUs (CUDA) and CPUs (OpenMP)


• Implemented using the Legion runtime1, which manages data communications among the domain partitions at 
runtime, and interfaced with the HTR solver2


• To be open-sourced soon
1website: https://legion.stanford.edu

2Di Renzo, M., Fu, L. & Urzay, J. 2020 “HTR solver: An open-source exascale-oriented task-based multi-GPU high-order code for hypersonic 
aerothermodynamics.” Computer Physics Communications 255, 107262

Flow Domain  
Decomposition

Flow Domain  
Decomposition

Direct 2D FFT of 
electric charge density

Tridiagonal solution of 
Fourier transformed 

electric potential
Inverse 2D FFT of 
electric potential

Figure 1: Schematics of the logical data partitions utilized by the Poisson solver algorithm.

From an implementation point of view, the direct and inverse FFTs are either performed
on CPUs using the library FFTW [40] or on GPUs using the cuFFT library. In order to perform
these transformations each node or each GPU, depending on the architecture of the machine, will
need to contain some of the x-z data planes that compose the computational domain. Similarly,
the solution of the tri-diagonal systems of equations requires each node (or GPU) to store a
slab of the domain oriented in the y direction. For this reason, the outlined numerical procedure
requires multiple communications and data layouts in order to be correctly executed. An efficient
implementation of these procedures would not be trivial in a solver based on MPI. On the other
hand, the rich data partitioning system provided by the Legion framework allows one to define
the required partitions and data layout constraints, leaving the complex task of scheduling the
communications to the runtime. In fact, the two data partitions (x-z planes and y slabs) depicted
in the Figure 1 are described at the logical level using the partitioning operators available in
Regent. The runtime foresees the data dependencies that exist between the task that perform the
Poisson solver and the rest of the HTR solver algorithm and automatically schedules all the data
communications needed to correctly advance the solution in time.

The presented algorithm adds a very low overhead in the organization of the task graph that
describes the solver algorithm. In fact, only three tasks are needed to describe the entire Poisson
solver. At the same time, the large data movements that are required to preserve correctness
of this algorithm could create bottlenecks during the execution of the solver. The analysis of
potential benefits derived by more complicated task graphs, which describe algorithms where the
FFT transformations are executed direction by direction [1] or where different solution strategies
are deployed [41], is deferred to future studies.

4.2. Discretization of ion-wind terms
The second addition to the HTR solver algorithm concerns the discretization of the electric

drift fluxes of the electrically charged species. These terms in the transport equations, which
model the ion-wind generated by the flame, are particularly stiff. In fact, the species electric drift
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velocity Vd,i = −Siki∇Φ often exceeds values of thousands of meter per second even when mild
electric fields are applied. Such high values of Vd,i pose two main challenges in the numerical
integration of the transport equations [18, 19, 23, 26].

The first challenge in the integration of the charged species transport is related to the stabil-
ity of the third-order temporal discretization scheme utilized in the HTR solver to advance the
transport equations in time [42]. The Courant–Friedrichs–Lewy (CFL) number related to the
electric drift velocity reads as CFLd,i = ∆t max(Ud,i/∆x,Vd,i/∆y,Wd,i/∆z), where Ud,i, Vd,i, and
Wd,i are the Cartesian components of the vector Vd,i, ∆t is the time step used in the temporal
discretization, and ∆x, ∆y, and ∆z are the computational grid spacing in the three Cartesian direc-
tions, respectively. The explicit Runge–Kutta scheme utilized in the HTR solver remains stable
for CFLd,i < 1, hence very short time steps are required for the integration of electrified flames.
These constraints in the temporal advancement could be relaxed by introducing implicit time
advancement schemes for the electric drift and chemical production terms. These schemes will
need to solve the non-linear problem constituted by the charged species electric drift, chemical
production, and by the Gauss law. Considering the number of unknowns and the stiffness of the
problem, even Newton-Krylov solvers, which appear to be the best candidates for this task [26],
will need a significant number of iterations at each sub-step of the Runge-Kutta algorithm in
order to converge. As a result, a significant increase of floating point operations and data com-
munications to be performed within each time step is expected. For these reasons, the numerical
efficiency of these complex schemes on distributed heterogeneous computers is still uncertain
and will be subject of future investigations.

The second challenge in the numerical description of the ion-wind is due to the hyperbolicity
of the electric drift. The high drift velocity developed by the charge species can generate sharp
fronts in the molar fraction profiles, which are advected though the domain. For this reason,
the spatial discretization scheme has to be capable of capturing the propagation of these sharp
discontinuities in the charged species concentration fields. This capability is ensured by the use
of sixth-order targetted essentially non oscilatory (TENO) [43] schemes in conjunction with a
local Lax-Friederics flux splitting. The numerical procedure for the discretization of these fluxes
consist of the following five steps in each of Cartesian direction (the procedure is explained
for the x direction because the calculation for the other directions is analogous): i) computing
the plus and minus ion-wind fluxes, which in the x direction read as f ±d,i = ρYiUd,i ± ρYiλi,
where λi is the maximum of the absolute value of Ud,i across the six points stencil considered
in the reconstruction scheme; ii) reconstructing the plus and minus fluxes using a TENO6-A
scheme [44] at the intercell locations i ± 1/2 where i are the cell indices in the computational
domain; iii) computing the numerical fluxes at the intercell locations as fd,i =

(
f +
d,i + f −d,i

)
/2; iv)

applying the mass corrector in Eq. 10; v) compute the contribution to the flux divergence of the
drift fluxes as d fd,i/dx =

(
f i+1/2
d,i − f i−1/2

d,i

)
/∆x.

Two types of boundary conditions are imposed for charged species on non-periodic bound-
aries of the domain. Zero-gradient conditions are imposed on surfaces where locally the normal
drift velocity is oriented outward with respect to the computational domain. The molar fraction
of the charged species is instead set to zero with a Dirichlet boundary condition if its local normal
drift velocity is oriented toward the computational domain.

5. One-dimensional burner stabilized flames

The correctness and appropriateness of the mathematical and numerical formulation of the
HTR solver in predicting combustion problems is assessed in this work by computing one-
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Figure 2: Profiles of mixture temperature (a) and molar fractions (b) obtained by the HTR solver (lines) and by Cantera
(symbols) for the electroneutral flame.

dimensional burner stabilized flames of methane and air. Though these testcases are only one
dimensional, they have high complexity due to the sharp gradients of temperature and composi-
tions generated in the proximity of the burner. For this reason, the accuracy in the prediction of
the coupling between the chemical production and transport of the chemical species and of the
temperature is fundamental to correctly capture the expected solution. The accuracy of the HTR
solver is assessed in this section by comparing its solutions with the results of the well-known
opensource solver Cantera [45].

5.1. Electroneutral flame
The electroneutral burner stabilized flame utilized to verify the HTR solver in this work is

inspired by the setup studied numerically and experimentally by Speelman et al. [15]. It consists
of an heat flux burner that produces a flat flame. The burner is fed with a stoichiometric mixture
of methane and air at ambient pressure, which flows at the laminar flame velocity developed
by the same mixture at 298 K. The burner is kept at 350 K to stabilize the flat premixed flame.
The computational setup considered in this work consists of a one dimensional domain with a
length of 1 cm, which is discretized by 600 grid points. The reacting mixture is modeled using
the chemical reaction mechanism composed by 30 species and 184 reactions presented by Lu
and Law [46]. The computational solution is initialized with the constant mixture composition
and temperature that would be achieved in burnt gasses and left free to evolve until steady state
is achieved.

Figure 2 shows a comparison of the solution obtained using the HTR solver and Cantera.
The two panels in the figures show the profiles of mixture temperature and the molar fractions
of methane, carbon dioxide, CH, and H2, across the flame. The excellent agreement shown in
the pictures demonstrates that the mathematical and numerical formulation of the HTR solver is
capable of correctly capturing the combustion phenomena occurring in this flame.

5.2. Electrified flame
The premixed flame setup discussed in the previous section has been modified to include

the effects of an impinging electric field. Similarly to the experiments in Speelman et al. [15],
two electrodes are considered in this setup. The first electrode is positioned at the edge of the
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Figure 3: Profiles of electrostatic potential (a) and charged species molar fractions (b) obtained by the HTR solver (lines)
and by Cantera (symbols) for the electrified flame.

burner and is grounded. The second electrode is positioned at a distance of 1 cm downstream of
the burner exit and is attached to an ideal voltage generator that produces a difference of poten-
tial ∆Φ = 250 V. The calculations are executed using a chemical mechanism composed of 43
species, including 4 positive ions (H3O+, CHO+ CH5O+, C2H3O+), 2 negative ions (OH– , O2

– ),
and the free electrons, which react with 464 reactions. This chemical scheme, which is provided
with this software release, is obtained by the analytic reduction of the detailed combustion mech-
anism proposed by Ranzi et al. [47] supplemented by the chemi-ionization mechanism proposed
by Prager et al. [13]. The comparison of the temperature and neutral species molar fraction pro-
files is not included in this manuscript for brevity as these quantities would show the same kind
of agreement as in Figure 2. The two panels in Figure 3 show the distribution of the electric
potential and of the main charged species molar fractions across the computational domain. The
positive polarity of the impinging electric field forces the positive ions to drift toward the burner,
while negative ions and electrons are attracted by the downstream electrode. Though the charged
species represent only a minor part of the mixture (Xi � 1), the electric charge that they carry is
able to generate significant modifications of the electric potential distribution. In fact, the elec-
tric potential distribution, which would have a linear scaling between the two electrodes in the
absence of electric charges in the domain, shows significant curvature in the proximity of the
burner.

The excellent agreement shown between the results of the HTR solver and of Cantera further
demonstrates the appropriateness of the mathematical and numerical formulation proposed in
this work to predict the combustion physics even in the presence of electrically charged species
and electric fields.

6. 3D temporal mixing layer impinged by an electric field

The capabilities of the developed solver to perform simulations of electrified combustion in
high Reynolds number conditions are demonstrated in this work by computing the evolution of
a reacting turbulent temporal mixing layer impinged by an external electric field. The examined
configuration, which is shown in Figure 4a, consists of two flows at atmospheric pressure with
different composition, which mix and react, while flowing in opposite directions. The first gas
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Figure 4: Contour plots of the instantaneous carbon monoxide molar fraction (a) and normalized electric potential (b)
distributions in the reacting temporal mixing layer. In panel b, the plotted vectors are oriented and scaled with the local
electric field whereas the red and cyan iso-lines are drawn based on the molar fraction of H3O+ and of OH– , respectively.

mixture is composed of pure methane at 300 K and has a velocity −∆U/2 along the x direction.
The second mixture is dry air at 600 K and flows with a velocity ∆U/2. The analyzed configu-
ration has a convective Mach number Mac = ∆U/aAir = 0.2 and is initialized with a Reynolds
number based on the momentum thickness Re0

θ = ρAir∆Uθ0/µAir = 320. In these conditions, the
density ratio of the two mixtures ρCH4/ρAir ∼ 1, therefore the two opposite flows have similar
momentum. Thermochemical and velocity fields within the mixing layer are initialized using
the solution of a one dimensional mixing layer, whereby the mixture is ignited. Transition to
turbulence is favored by a random velocity disturbance based on the Passot-Pouquet spectrum
which is imposed around the mixing region at the beginning of the three dimensional simula-
tion [48, 49]. The mixing layer is impinged by an external electric field whose mean directions
is aligned with the y axis. The mean intensity of the applied electric field E0 is determined such
that the interaction parameter Ξ = E2

0ε0/
(
ρAir∆U2

)
= 10−5.

The computational domain utilized to compute this flow has size 86θ0 × 64.5θ0 × 43θ0 in
the streamwise, mixing normal, and spanwise directions, where θ0 is the momentum thickness
computed at the beginning of the calculation. Periodic boundary conditions are considered in the
x and z directions, while multicomponent one-dimensional non-reflecting characteristic outflow
conditions are imposed at the surfaces y = ±32.25θ0 [50]. Robin boundary conditions are utilized
for the electric potential field at the two non-periodic boundaries. The described computation
domain is discretized with 256 × 196 × 128 points uniformly distributed along the streamwise,
mixing normal, and spanwise directions, respectively.

The examined configuration has a stoichiometric mixture fraction equal to 0.07, entailing the
formation of the flame on the air side of mixing layer. For this reason, the reacting layer of the
flame, where the molar fraction of CO peaks, is positioned in the bottom half of the figure 4a.
In this area, the high temperature developed within the flame locally increases the viscosity and
decreases the density of the gas mixture, therefore lowering the local Reynolds number. Hence,
the turbulence is localized only on the fuel side of the mixing layer, where the mixture properties
favor its formation. At the same time, the chemi-ionization processes lead to the formation of
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electrically charged species inside the reacting layer of the flame. These charged species drift
toward the positive (negative) direction of the y axis, if they are positively (negatively) charged,
as shown by the isolines of H3O+ and OH– molar fractions in Figure 4b. The electric drift of
the ions generates positive and negative peaks of net charge density around the reacting layer of
the flame. These peaks modify the electric potential distribution determining an electro-neutral
region around the flame. However, the high mobility of the negative species, and particularly
of free-electrons, determines a lower concentration of negative ions in the domain, therefore the
electric potential of the electro-neutral region is similar to the positive electrode (bottom end in
Figure 4b). For this reason, most of the electric potential difference imposed at the boundaries of
the domain is concentrated between the flame and the negative electrode (top end in Figure 4b),
where intense electric field is formed as shown by the longer vector arrows drawn in the figure.

The scalability of the presented release of the HTR solver has been assessed for the de-
scribed electrified reacting mixing layer setup. This configuration is significantly more chal-
lenging than the scaling tests of the HTR solver for electroneutral setups previously presented
in Di Renzo et al. [9] and also proposed in this work for reference. In fact, the coupling of
the newly implemented Poisson solver triggers complex data communication patters within the
time-advancement algorithm of the transport equations. Two very different facilities have been
utilized during these tests in order to assess the performance and portability of the solver on
supercomputers with and without GPUs. Marconi 100, which is installed at the HPC center of
CINECA in Italy and currently is ranked 11th in the Top500, has been utilized to test the scalabil-
ity of the solver on multi-GPU machines. In fact, four NVIDIA Volta V100 GPUs and two IBM
POWER9 AC922 CPUs are installed on each node of Marconi 100. These components produce
a computational power of about 32 TFlops. Conversely, the supercomputer Quartz at Lawrence
Livermore National Laboratory has been utilized to test the solver in CPU-based computing ar-
chitectures. Two 18-cores Intel Xeon E5-2695 are installed on the nodes of this supercomputer.
The powerful nodes of Marconi 100 allow the user to consider setups with many more grid points
per node than Quartz. For this reason, the same calculation performed on the two machines will
have much less communications with larger size on Marconi 100, whereas it will use more nodes
which will communicate fewer data on Quartz. These different balances between communica-
tions and local floating point operations force the runtime to apply different strategies in order to
hide the overhead of data communications. It is noteworthy that the results shown in this section
have been obtained by porting the exact same version of the solver on these two different super-
computers without implementing any machine specific tuning. In this way, the results presented
in this work are representative of the performance that could be achieved by a new user who
installs the software for the first time on similar HPC facilities.

Figure 5 shows the efficiency achieved by the HTR solver during a weak scaling test in elec-
trified and electroneutral conditions. This test has been conducted by assigning a computational
grid of the size 128 × 32 × 256 points in the x, y, and z directions to each GPU available on the
nodes of Marconi 100 and of the size 32 × 64 × 32 to each of the CPUs available on the nodes
of Quartz. The solver shows optimal efficiency for an electrified case up to eight GPU nodes (32
GPUs) for where the about 33 million grid points are solved. The efficiency decreases linearly
for larger node counts, while still remaining above 90% for 32 nodes (128 GPUs). At the same
time, the non-electrified setup, where the Poisson solver is not deployed, has optimal efficiency
for the entire range of problem sizes tested in this study. The largest configuration considered
in this scaling tests consists of about 134 million grid points, which correspond to about 6.5
billion degrees of freedom, considering that the chemistry model utilized in this setup involves
43 species. A similar trend of the efficiency is encountered for the scaling test of Quartz. An
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Figure 5: Efficiency of the HTR solver during a weak scaling performed using a three-dimensional electrified and elec-
troneutral flame configuration on Marconi 100 (a) and on Quartz (b).

efficiency higher than 88% is attained up to 64 nodes in the electrified case, which solve about
8 million grid points. A sudden drop to about 72% is observed for 128 nodes when the time
consumed by data communications becomes too large to be hidden by the runtime. The non-
electrified setup is in general more efficient than the electrified counterpart whereby an about 89
% is shown for the 128 nodes setup.

Figure 6 shows the speedup achieved by the HTR solver during a strong scaling test based
on the described electrified reacting mixing layer configuration. This strong scaling test is
performed on Marconi 100 and Quartz by associating a computational domain composed of
256×64×256 and 1283 points, respectively, to an increasing number of nodes. The solver shows
an ideal speedup on Marconi100 up to 2 nodes (8 GPUs) for the considered computational grid in
the electrified setups where the Poisson solver is deployed. At higher node counts, the reduction
of floating point operations assigned to each GPU and the increase in the data communication
overhead lead to a degradation of the solver performance and, eventually, to a saturation of the
speedup at 8 nodes (32 GPUs). Such saturation is delayed in non-electrified conditions because
of the lower data movement. Similarly, the results obtained on Quartz show an almost ideal
speedup up to 16 nodes and a saturation at 64 nodes. It is noteworthy that a potential cause of the
different scalability limit encountered between GPU-based and CPU-based architectures is the
lack of GPU-direct communications in the utilized version of the Legion runtime. This kind of
communications significantly augment the efficiency of data transfer among GPUs and will be
effortlessly included in the solver when they will be supported by future releases of the Legion
runtime.

Significant improvements in the results of weak and strong scaling tests can be also achieved
by implementing more sophisticated task mapping techniques. In fact, the Legion runtime offers
many different options to modify the way data are laid out in memory and how the tasks are
assigned to the available computational resources. Future work will be dedicated to exploring
new mapping algorithm that could reduce the data communication overhead and improve the
scalability of the solver.
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Figure 6: Speedup of the HTR solver during a strong scaling test performed using a three-dimensional electrified and
non-electrified flame configuration on Marconi 100 (a) and on Quartz (b).

7. Conclusions

A new version of the Hypersonic Task-based Research (HTR) solver is presented with this
manuscript. This new version contains major updates in the formulation as well as the inclusion
of new capabilities. In particular, a dimensionless formulation of the transport equations is intro-
duced in the solver to improve the quality of its numerical solutions. The chosen dimensionless
formulation has the main advantage of keeping the same form of the transport equations even
for multicomponent flows. For this reason, users can decide to deploy the dimensionless formu-
lation without modifying the implementation of flux reconstruction of the solver. New mixture
models suitable for the calculation of methane and hydrogen chemistry with various levels of
detail have been included in the provided source files. Additionally, the HTR solver has been
upgraded to consider the effects of ion wind on charged species distribution. To this end, a GPU-
compatible Poisson solver suitable for bi-periodic computational domains has been implemented
in the software framework and interfaced with the algorithm.

The new additions to the solver have been tested using one-dimensional burner stabilized
flames. The accuracy of the obtained solutions has been assessed by comparing it with the results
of calculations performed in the open-source solver Cantera. The calculations described in this
manuscript show that the HTR solver is capable of accurately predict the combustion process
and the electrically charged species distribution in the flame. Moreover, the capabilities of the
HTR solver to compute three dimensional turbulent flames impinged by external electric fields
are shown by performing calculations of a temporal reacting mixing layer. This setup has been
used to perform scalability tests of the solver, which has shown a parallel efficiency, measured
using a weak scaling test, above 93% on up to 128 GPUs and above 88% up to 64 CPU nodes.

While the new capabilities of the HTR solver can be readily used by new users to investigate
the behavior of turbulent flames even in the presence of external electric fields, the presented
version offers a solid software base for further developments of this tool. For instance, the current
implementation provides a flexible infrastructure where complex descriptions of the transport
properties of the reacting species, and particularly of the charged species [16, 39], could be
incorporated. On the other hand, future developments of the solver will certainly focus on lifting
the constraints on the complexity of the geometry posed by the current numerical methods. In
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this context, the deployment of curvilinear coordinates formulation [51, 52] of the differential
operator utilized to discretize the transport equations together with more general Poisson solver,
which will not necessarily rely on fast Fourier transforms, will be investigated.
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