
Enabling Scalable and Reliable Real Time Data
Services for Sensors and Devices in StreamCI

Jaewoo Shin∗, Lan Zhao†, Carol X. Song†, Rajesh Kalyanam†, Jian Jin‡, Jacob D. Hosen§,
Ananth Grama∗ and Dongyan Xu∗
∗ Department of Computer Science

† Research Computing
‡ Department of Agricultural & Biological Engineering

§ Department of Forestry & Natural Resources
{shin152, lanzhao, cxsong, rkalyanam, jinjian, jhosen, ayg, dxu}@purdue.edu

Purdue University

Abstract—Rapid advances in technology over the past decade
have enabled collection of large amounts of data, in particu-
lar, through data streams from sensors and devices. Effective
utilization of such data has been hampered by the lack of ready-
to-use resources for data providers to manage the data and
for data consumers to access the data through facile APIs. In
this paper, we present StreamCI, a scalable cloud-based sensor
data collection and analysis system that enables researchers
to easily collect, process, store, and access large volumes of
heterogeneous sensor data. StreamCI provides a web portal for
users and administrators to easily register new data sources and
monitor the status of data ingestion pipelines. The back end
of StreamCI provides real time data ingestion/query APIs, data
access control, and data processing pipelines using an open source
software stack including RabbitMQ, Node.js, MongoDB, Certbot,
Grafana, and HUBzero. Containerization and orchestration of
services using Kubernetes improves scalability, as demonstrated
by our experimental results. The StreamCI system has been
used in multiple research and education domains including the
collection and processing of plant health sensor data by plant
phenotype researchers, collection of real-world air quality sensor
data and its use in data analysis coursework for ecology students,
and the collection and analysis of advanced manufacturing data
for cybersecurity research.

Index Terms—StreamCI, Cyberinfrastructure, Sensor data,
MyGeoHub, Scalability, Kubernetes

I. INTRODUCTION

Rapid advancements in sensing and communication tech-
nologies have resulted in large volumes of streaming data
from Internet of Things (IoT), smart manufacturing, and
precision agriculture, to name a few. Effective management
and utilization of this data can enable significant advances
in diverse areas, ranging from cybersecurity to sustainability
and food security. Managing streaming sensor data brings
significant challenges to researchers and practitioners, who
are typically not familiar with the complexity of underlying
computer systems and often lack the skills needed to develop
and host their own solutions. These data typically come from
different sensor devices, in high volumes, often have different
formats, and use different network protocols. Moreover, these
data are continuously generated and typically need to be

Presented at Gateways 2022, San Diego, USA, October 18–20, 2022

handled and processed at real time. There have been a few
efforts in recent years to address these challenges, however, a
scalable facile cyberinfrastructure (CI) solution that seamlessly
supports collecting, processing, managing, and analyzing such
heterogeneous and continuous data is lacking. One notable
effort is the CHORDS project [1], which provides data ser-
vices to help geoscience researchers to acquire, navigate, and
distribute real-time data. Users can insert or query data using
the CHORDS portal or via HTTP requests. The system enables
users to visualize the data using Grafana [2] visualization
services. While the system is easy to use, there are several
limitations in terms of the types of data and queries supported,
and the scalability of the system.

To help overcome these challenges, we have developed
StreamCI, an easy-to-use, flexible, and scalable cloud based
streaming sensor data management CI system that enables
individual researchers to easily collect, manage, and access
real time sensor data. StreamCI is built upon a prototype
system called SACI [3]. which provides basic support for data
ingestion and processing using a RabbitMQ and a container
based architecture. StreamCI extends SACI with value added
services including OAuth based authentication, fine-grained
data access control, automated SSL certificate renewal, and
scalable and reliable services through the use of Kubernetes
and Purdue’s Geddes composable cloud infrastructure [4].

In the following sections, we first describe the system design
and implementation of StreamCI, followed by benchmarking
results that illustrate the reliability and scalabilty of the system.
We then describe how StreamCI has been used to support
research and education activities in three use cases from
diverse disciplines. We discuss future work and conclusions
in Section V.

II. SYSTEM DESIGN AND IMPLEMENTATION

Developed as part of the NSF funded GeoEDF project [5],
the overall goal of StreamCI is to develop a turnkey solution
that enables researchers to easily connect their sensor data
sources with automatically generated StreamCI data process-
ing and management pipelines with minimal configuration
steps that can be typically completed in just a few mouse

Fig. 1: StreamCI Architecture Overview.

clicks. As shown in Figure 1, StreamCI is a scalable and
extensible cloud based sensor data management and analysis
platform that is developed using an open source software stack.
It provides a portal interface that allows data owners to easily
manage their data streams. They can register new data sources,
view a sample of the latest ingested data, the number of data
records ingested, and the last ingestion time on an easy-to-
use dashboard, plot time series using a flexible data viewer,
and modify the data table schema by themselves. Once users
register a new data source in StreamCI, it automatically sets
up all the required data pipelines at the back end. It also allows
administrators to approve new registration requests and mon-
itor the overall status of the system including CPU/memory
usage, data access response time, message queue availability,
and system logs, to name a few. The StreamCI portal is
implemented as a HUBzero [6] web component and deployed
on MyGeoHub [7], which is a science gateway for geospatial
data driven research, education, and collaboration.

The back end of StreamCI is deployed on Purdue’s Geddes
composable system and consists of several groups of container
pods managed by Kubernetes, including: (1) API pods that
provide data ingestion and query REST APIs implemented
using Node.js; (2) RabbitMQ pods that implement a high-
availability, mirrored queue cluster for dynamically dispatch-
ing user requests to either a data queue, a query queue, or
an authentication queue; (3) data processing pods that receive
ingested data from the data queue and perform some pre-
processing steps, such as metadata/schema validation, before
storing the data in a MongoDB database table; (4) query
processing pods that perform authorization and query syntax
validation before fetching data from the database; (5) an au-
thentication pod that receives an authentication request from a
data or query pod and creates or renews a user’s authentication
status by performing OAuth authentication to the MyGeoHub
OAuth server; (6) a management pod that manages the data
sources and their metadata, provides registration and data
management APIs to the portal, and automatically renews and

installs an SSL certificate for the REST API endpoints to
support secured message protocol using Certbot and acme-dns;
and (7) a replica set of MongoDB that stores data, metadata,
and authentication information. On top of these core com-
ponents, StreamCI implemented a resource monitoring/alert
system by integrating InfluxDB, Grafana, and Slack to allow
system administrators to quickly respond to system failures.

One of the common requirements from the community
we have been working with is to support sensor data that
is geospatially referenced. StreamCI supports ingestion of
GeoJSON data type (i.e., Point, LineString, Polygon, and other
GeoJSON types standardized in RFC 7946) and geospatial
queries. When a user specifies an attribute type as GeoJSON
at the data source registration step, the system creates a
geospatial index on the attribute in MongoDB, which enables
users to query the data with geospatial query operators, such
as $geoIntersects and/or $geoWithin.

StreamCI allows users to customize access control on their
data for sharing and collaboration. Each user is assigned a
role from three categories for each data source: SuperUser,
DataProvider, and GeneralUser. SuperUser has read and write
access to all data sources. DataProvider by default only has
read and write access to her own data sources and read access
to public data. GeneralUser does not own any data sources and
can only read data that is set to be public. The system lets users
read (query) or write (ingest) data into the system only if the
user has the appropriate permissions. In addition, StreamCI
allows users to set the privacy level when they ingest data
into the system. By default, the privacy level is set to private,
but can be changed to public or shared with specific users.

III. PERFORMANCE EVALUATION

As shown in Figure 1, the core components of StreamCI
(i.e., API, Data, and Query pods) are orchestrated via Ku-
bernetes and dynamically scaled. The system monitors the
CPU usage of the components. Once the usage hits a thresh-
old, it assigns more pods and balances the workloads. To
show how many data ingestion and query requests can be

processed by StreamCI, we measured the ingestion and the
query throughput on Geddes, a community cluster at Purdue
equipped with Dell Compute nodes with two 64-core AMD
EPYC Rome processors. We deployed StreamCI with five
MongoDB replica sets (each with 4 CPU and 16 GB Memory)
and three mirrored RabbitMQ clusters (2 CPU/16 GB each)
for stable and reliable services. For the processing pods, we
assigned the CPU/memory usage limit for API (0.5CPU/8GB),
Data (0.2CPU/2GB), and Query (0.2CPU/8GB), respectively.
To measure the system performance of varying data/query
processing pods, we disabled auto-scaling of the API pods
and launched 16 API pods for all experiments.

1 2 4 8 16
0

10,000

20,000

Number of data processing pods

T
hr

ou
gh

pu
t

(r
eq

ue
st

s
/

m
in

.)

(a)

1 2 4 8 16
0

1,000

2,000

3,000

Number of query processing pods

T
hr

ou
gh

pu
t

(q
ue

ri
es

/
m

in
.)

(b)

Fig. 2: Data ingestion/query throughput

First, we measured the data ingestion throughput of
StreamCI by varying the number of data processing pods. For
this test, we used dummy data sources that send data with
three random string values (length of 4, 8, and 16 respec-
tively), two random float values (to simulate latitude/longitude
coordinates), two integer values, and one timestamp. The test
data producers ran on separate VMs and spawned over 120
data streams. We then captured the maximum number of
data units processed per minute by 1, 2, 4, 8, and 16 data
processing pods. As shown in Figure 2a, 1 data processing pod
could process 1,375 requests per minute and the throughput
increased linearly as more processing pods were deployed. In
this test, if we have enough data processing pods so that a
request does not need to wait in a message queue, it takes
less than 20 ms for an ingestion request to be processed and
return the status.

Similar experiments were carried out to measure the data
query performance in StreamCI. We first fed dummy data into
StreamCI at 4,250 units per minute and the test queries were
set to fetch the recent [1,2] minute(s) of data (i.e., the size of
query results is [4,250, 8,500]). Similar to the ingestion test,
1 query processing pod could process 202 queries per minute

on average and the capacity increased as more resources were
assigned for query processing. Although the response time of
a query strongly depends on the query type and the size of
the results, our test queries could be returned within 200 ms
on average.

In our StreamCI deployment, horizontal pod autoscaling is
set on the API, Data, and Query pods so that the resources are
dynamically increased or decreased for a given data ingestion
or query workload. This feature is critical for providing
reliable real-time or near real-time services to handle large
volumes of streaming data.

IV. USE CASES

The StreamCI system is designed to be flexible enough to
work with sensor data from different domains. It has been
successfully used by several research projects in multiple
disciplines to collect and manage data from diverse sensor
devices.

A. Plant Health Sensor Data Collection

Developed by Professor Jin’s research group in the Depart-
ment of Agricultural and Biological Engineering at Purdue
University, LeafSpec [8] is an innovative low cost handheld
hyperspectral imager that can scan a leaf non-destructively
and provide measurements of the plant’s physiological features
including leaf moisture content, chlorophyll content, nitrogen
content, pathogen and insect diseases, and stresses from chem-
ical sprays within 10 seconds. It has been used by researchers
to perform advanced plant phenotyping research to raise and
select crops that are high yield and resistant to pests and
drought stress as well as by farmers to monitor the health
of their crops and to direct fertilizer and pesticide application
in the field. In addition to getting immediate feedback while
scanning a plant using the device, it is also important to collect
the data on the server side and make it available for more
advanced analysis and decision making. To this end, StreamCI
has been successfully used to provide a platform for real-time
crop growth data collection, processing, and exploration from
distributed handheld LeafSpec sensors.

In each measurement, a raw leaf image is processed in real-
time by the onboard software, and the result can be viewed
through a smartphone mobile app, which is connected with
the sensor via bluetooth. The current measurement results
include the spectra of leaf pixels, leaf’s morphological fea-
tures, and plant physiological features such as Normalized
Difference Vegetative Index (NDVI), Leaf Relative Water
Content (RWC), Leaf Nitrogen Content, etc. The mobile app
immediately ingests the georeferenced (with the smartphone’s
GPS) imaging results to StreamCI via its REST API, making
it possible for users to access and visualize field collected
plant hyperspectral imaging data on various maps online in
real time. Figure 3a shows a group of plant sensor data
collected at Purdue’s ACRE farm in July 2018 for different
maize phenotypes using a customized web application tool
that interacts with StreamCI’s MongoDB back end using its
REST API.

(a) (b) (c)

Fig. 3: (a) LeafSpec plant health data collected at Purdue ACRE farm; (b) Energy usage comparisons of data from a 3D printer;
(c) Air quality sensor data used in ecology classes.

B. Secure Manufacturing Research

StreamCI has also been adapted and extended for the
CyManII secure architectures. The goal of this project is to
build a scalable, generic end-to-end architecture that connects
manufacturing shop floors to the cloud for the collection,
transmission, curation, and analytics of manufacturing data,
for a wide range of applications including manufacturing
anomaly detection, quality monitoring, energy profiling and
optimization, and supply-chain management. StreamCI was
enhanced to offer the following key features/functions: (1)
integrates disparate manufacturing data streams from instru-
mented processes in manufacturing; (2) exposes a consistent
API and data schema for analytics applications to achieve
cyber-physical security; (3) integrates energy monitors and
implements basic energy accounting services; (4) performs
authentication, encryption, and privacy services for exporting
data to external (global) supply chain ledgers; (5) implements
feature extraction, compression, and storage indices; and (6)
maintains metadata of manufacturing data streams, along with
associated manufacturing semantics and state, for product
provenance tracking.

C. Ecological Sensor Class

StreamCI has been used to collect ecological sensor data
for Purdue’s “Ecological Sensors and Data” course in the
spring semester of 2021. Three environmental sensors were
set up by the instructor and the data were pushed to StreamCI
endpoints in real time using the webhook mechanism provided
by Particle.io. More specifically, air quality sensors publish
data such as temperature, humidity, and dust to the Particle
platform at various frequencies. Once the webhook detects a
data event, it reads the data attributes to send to StreamCI,
makes a JSON-formatted object for ingestion, and sets addi-
tional fields for user authentication to StreamCI before sending
the data to StreamCI’s REST endpoint. More than 1 million
records have been received from the sensors. Figure 3c shows
one example time series plot of the air quality sensor data
collected in StreamCI. During the course, students learned how
to use environmental sensors to collect and analyze data to
understand ecosystems using sensor data from the StreamCI
system.

V. CONCLUSIONS

In this paper we presented the design and implementation
of StreamCI, a general purpose scalable cyberinfrastructure
for practitioners and researchers to collect, manage, and make
their sensor data available to the community. It has demon-
strated success in applications from multiple disciplines to har-
vest and utilize large volumes of sensor data. Our future work
includes enhancing the user/admin portal functions, developing
real time data quality control services, and implementing a
standalone StreamCI that can be easily deployed on most
existing cloud resources.

ACKNOWLEDGMENT

• This project is funded by the NSF awards no. 1835822.
• This material (IV-B) is based upon work supported by the

U.S. Department of Energy’s Office of Energy Efficiency
and Renewable Energy (EERE) under the Advanced
Manufacturing Office Award Number DE-EE0009046.
The views expressed herein do not necessarily represent
the views of the U.S. Department of Energy or the United
States Government.

REFERENCES

[1] R. Gooch and V. Chandrasekar, “Integration of real-time weather radar
data and internet of things with cloud-hosted real-time data services for
the geosciences (chords),” in 2017 IEEE international geoscience and
remote sensing symposium (IGARSS). IEEE, 2017, pp. 4519–4521.

[2] “Grafana.” [Online]. Available: https://grafana.com/
[3] J. Shin, L. Zhao, C. Song, R. Kalyanam, and J. Jin, “Saci - a cloud based

real-time sensor data management and analysis platform,” Gateways 2020
conference, October 2020.

[4] “Geddes,” Purdue University Research Computing. [Online]. Available:
https://www.rcac.purdue.edu/compute/geddes

[5] R. Kalyanam, L. Zhao, X. C. Song, V. Merwade, J. Jin, U. Baldos,
and J. Smith, “Geoedf: An extensible geospatial data framework for fair
science,” in Practice and Experience in Advanced Research Computing,
2020, pp. 207–214.

[6] M. McLennan and R. Kennell, “Hubzero: A platform for dissemination
and collaboration in computational science and engineering,” Computing
in Science & Engineering, vol. 12, 2010.

[7] R. Kalyanam, L. Zhao, C. Song, L. Biehl, D. Kearney, I. L. Kim, J. Shin,
N. Villoria, and V. Merwade, “Mygeohub—a sustainable and evolv-
ing geospatial science gateway,” Future Generation Computer Systems,
vol. 94, pp. 820–832, 2019.

[8] L. Wang, J. Jin, Z. Song, J. Wang, L. Zhang, T. U. Rehman, D. Ma,
N. R. Carpenter, and M. R. Tuinstra, “Leafspec: An accurate and
portable hyperspectral corn leaf imager,” Computers and Electronics in
Agriculture, vol. 169, p. 105209, 2020.

