
Practical guide to Software
Management Plans

1. About this Document
This document provides guidance to create a Software Management Plan (SMP) template. It is
intended for anyone who is involved in the development, support, and/or management of
research software, including researchers, research software engineers, research supporters,
funders, and policy makers in fields involving research software as a scholarly output.

An SMP is a document that describes how a specific software project is developed, maintained,
and curated. The goal of an SMP is to ensure that the software is usable and maintainable in
the long term. An SMP is written by the developers, maintainers, and/or other stakeholders of a
software project.

An SMP template is a document that prescribes which information is required or expected in an
SMP, in the form of specific questions to be answered by the project maintainers. An SMP
template can be provided by, for example, research groups, research organisations, and funding
agencies to ensure that researchers consistently adhere to certain software management
standards and policies when developing research software.

The document is divided into six sections. The introduction in Section 2 explains how there is
growing recognition of the importance of research software. Section 3 discusses the definition of
research software used in this guide, and is followed by Section 4, which highlights the benefits
of SMPs. Section 5 describes core requirements for SMPs and provides resources to guide
researchers and research support staff in fulfilling these requirements. Finally, Section 6
provides a framework for implementing the core requirements into SMPs. It also guides the
reader in choosing suitable subsets of requirements to create SMP templates for different types
of software that require different levels of management (low, medium, and high). This section
also includes an example SMP template for each of the three management levels.

2. The Importance of Research Software
Researchers increasingly rely on software in their research.1,2,3 For example, a survey by the
Software Sustainability Institute, carried out among UK researchers, found that 92% of academics
use research software, and 7 out of 10 researchers deemed it impossible to conduct their research

3 https://blog.esciencecenter.nl/evidence-for-the-importance-of-research-software-1cb4a49077f3
2 https://newscience.org/how-software-in-the-life-sciences-actually-works-and-doesnt-work/

1https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-
10-uk-researchers

https://blog.esciencecenter.nl/evidence-for-the-importance-of-research-software-1cb4a49077f3
https://newscience.org/how-software-in-the-life-sciences-actually-works-and-doesnt-work/
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers

without it. Research software comes in many forms and applications, from scripts that generate and
collate data to large libraries that build complex reports.4,5 Research software is used in all research
domains, from astronomy6 to theology7, and in all phases of research.

Many significant scientific discoveries strongly rely upon the use of software. For example:

● In 2016, a three-dimensional geographic information system (3D GIS) was used to
generate virtual reconstructions of architecture along the Via Appia, contributing to
researchers’ ability to understand and reconstruct complex archaeological sites.8

● In 2019, the first ever image of a black hole was created by the Event Horizon Telescope.
This breakthrough was made possible by means of software that combined data from a
network of telescopes around the globe.9

● In 2020, the deep learning programme AlphaFold was used to predict the 3D structure of
proteins based on their amino-acid sequence for the first time with an accuracy that
approaches experimental structure determinations. This has been called the
breakthrough of a lifetime for its field.10

2.1. Research software supports Open Science
There is growing consensus across different stakeholders, from research performing organisations
to research funders, that research software must be recognised as an important output of
research.11 Stimulated by technological innovations and the democratisation of science,
researchers, funders, and governments have launched initiatives to advance transparency under the
broad umbrella of the Open Science movement. In its most basic form, Open Science urges
researchers to make all outputs of research, including primary and the intermediate outputs, publicly
accessible.

The ability to reproduce results in order to assess the reliability of findings is an integral part of the
research process, as is the possibility of building upon those results. For the sake of research
transparency, reproducibility, reuse, and recognition, research software should be shared by the
authors of a study in such a way that it can be used to obtain the same results as in the original work
or extend that work.

Open Source software has a long history of contribution to the advancement of research. The values
of quality and integrity, and principles of transparency and reproducibility, sit at the heart of the
UNESCO Recommendation on Open Science.12 The same Recommendation identifies Open

12 https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en
11 ‘Software must be recognised as an important output of scholarly research’ arXiv:2011.07571
10 https://www.nature.com/articles/d41586-020-03348-4
9 https://numfocus.org/case-studies/first-photograph-black-hole
8 http://mappingtheviaappia.nl/3dgis/
7 https://github.com/historical-theology/awesome-theology
6 https://www.astropy.org/
5 https://github.com/garrettj403/SciencePlots
4 https://github.com/ESMValGroup/ESMValTool

https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en
https://www.nature.com/articles/d41586-020-03348-4
https://numfocus.org/case-studies/first-photograph-black-hole
http://mappingtheviaappia.nl/3dgis/
https://github.com/historical-theology/awesome-theology
https://www.astropy.org/
https://github.com/ESMValGroup/ESMValTool

Source software as one of the key elements of open scientific knowledge. Open Source software,
alongside practices laid out in the FAIR principles, promotes collaboration among researchers,
stakeholders, and the public. Furthermore, it enables software creators to extend or expand upon
existing software instead of creating (yet another) stand-alone piece of software. By encouraging
researchers to do so, research organisations and funders can save on investment of funds and
researchers’ time.

Multiple initiatives, such as the Research Software Alliance (ReSA), and the European Open
Science Cloud (EOSC), are looking into improving research software management, reusability, and
sustainability13,14 with the aim of contributing to Open Science. Meanwhile, research institutions and
funders are working on the necessary policies,15 provision of support, and guidance to include
research software as part of the rewards and recognition system; and to facilitate the adoption of
good practices.

Ideally, research software should be as open as possible, but as closed as necessary. All research
software, whether open or closed source (for example, in case of security concerns or commercial
interests), can benefit from using SMPs.

3. What is Research Software?
There are ongoing efforts to define what research software is.16,17,18,19 Creating a formal
definition of research software is beyond the scope of this document. For the purposes of this
document, we will utilise the definition of research software from the FAIR for Research
Software Working Group (a joint initiative of RDA, ReSA and FORCE11):20

“Research Software includes source code files, algorithms, scripts, computational
workflows and executables that were created during the research process or for a
research purpose. Software components (e.g., operating systems, libraries,
dependencies, packages, scripts, etc.) that are used for research but were not created
during or with a clear research intent should be considered software in research and not
Research Software.”

This is admittedly a broad definition of what research software can include and is provided as a
starting point for people involved in research software projects. Scripts, notebooks, source code,

20Defining Research Software: a controversial discussion https://doi.org/10.5281/zenodo.5504015

19 Engineering Academic Software (Dagstuhl Perspectives Workshop 16252)
http://doi.org/10.4230/DagMan.6.1.1

18The Research Software Encyclopedia: A Community Framework to Define Research Software
http://doi.org/10.5334/jors.359

17 On the evaluation of research software: the CDUR procedure
https://doi.org/10.12688/f1000research.19994.2

16 The Four Pillars of Research Software Engineering https://doi.org/10.1109/MS.2020.2973362
15 TU Delft Research Software Policy: https://doi.org/10.5281/zenodo.4629661
14 https://www.eosc.eu/advisory-groups/infrastructures-quality-research-software
13 https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg

https://doi.org/10.5281/zenodo.5504015
http://dx.doi.org/10.4230/DagMan.6.1.1
http://doi.org/10.5334/jors.359
https://doi.org/10.12688/f1000research.19994.2
https://doi.org/10.1109/MS.2020.2973362
https://doi.org/10.5281/zenodo.4629661
https://www.eosc.eu/advisory-groups/infrastructures-quality-research-software
https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg

executables, containers all may be considered research software depending on the context, but
there is no universal agreement. The readers of this guide may decide for themselves whether
this definition suits their purposes.

4. Benefits of a Software Management Plan
Research software is an integral part of the research process and several aspects of its
development, maintenance and curation should be planned for. Data Management Plans
(DMPs) have been used for many years to ensure that good data management practices are
followed.21,22 In recent years, SMPs are also becoming increasingly common.23, 24, 25

An SMP is a document detailing how research software will be managed, usually as part of a
project. An SMP makes explicit what research software does, who it is for, what the outputs are,
who is responsible for the release and to ensure that the software stays available to the
community (and for how long).

An SMP can help to establish a structured way of developing research software. By asking
relevant questions, an SMP can also help to ensure that research software is (and remains)
accessible and reusable. More specifically, an SMP can help to:

● Explain why developing new software is necessary. New software should not be
developed when it would be more cost-efficient and beneficial for the overall community
to contribute to existing software.26

● Make the research software reusable and sustainable. An SMP encourages software
developers to think about, for example, technical choices (such as programming
language or operating system dependencies); whether the right documentation and
metadata are provided (e.g. to allow for reproduction or extension of an analysis); and to
ensure that the software is findable and adequately licensed for reuse for an extended
period of time.

● Plan for the necessary resources. Various types of resources exist: financial, human,
infrastructure, etc. Whenever reusing, creating or building upon research software in a
research project, additional resources might be needed. The questions in an SMP can
help to predict which resources will be needed for developing and maintaining the
software (e.g., hiring research software engineers, training), for making the software

26 A Guide for Publishing, Using, and Licensing Research Software in Germany,
https://doi.org/10.5281/zenodo.4327147

25ELIXIR Software Management Plan for Life Sciences, https://doi.org/10.37044/osf.io/k8znb
24Netherlands eScience Center Software Sustainability Protocol, https://doi.org/10.5281/zenodo.1451750
23Checklist for a Software Management Plan, https://doi.org/10.5281/zenodo.1422656

22Data Management Plan Catalogue,
https://libereurope.eu/working-group/research-data-management/plans/

21Practical Guide to the International Alignment of Research Data Management,
https://doi.org/10.5281/zenodo.4915861

https://doi.org/10.5281/zenodo.4327147
https://doi.org/10.37044/osf.io/k8znb
https://doi.org/10.5281/zenodo.1451750
https://doi.org/10.5281/zenodo.1422656
https://libereurope.eu/working-group/research-data-management/plans/
https://doi.org/10.5281/zenodo.4915861

available to others (e.g., infrastructure) and for making and keeping the software
accessible over time.

● Allow for verification of work that went into software implementation. When a project is
funded to build software, the funders and the community at large should be able to know
if the project's plans regarding the software have been carried out.

Ideally an SMP should be drafted at the beginning of a research project. However, even for
existing projects, it is valuable to create an SMP as it helps to summarise established practices
and stimulate reflection and evaluation in software development.. Drafting an SMP with multiple
stakeholders in larger projects can help develop or strengthen common ways of working.

5. Core Requirements for Developing a Software
Management Plan
Depending on their specific context (e.g. institutional policies and regulations), the creators of
SMP templates may choose which of these requirements will help them to adequately manage
the research software that they are responsible for. Different levels of management will need
different sets of requirements (see Section 6 for further details).

5.1. List of core requirements
This section lists the requirements that an SMP should include. These requirements cover
different aspects that research software needs in order to fulfil its purpose.

The requirements for an SMP are:
● Purpose - clearly state the purpose of the software. Provide general information such

as: what problem does it solve, who is the intended audience, what are its advantages
and limitations, etc. A clear explanation of the purpose of the software helps the
developer focus on its specific needs.

● Version control - use a version control system. Adequate versioning of research
software facilitates management of research software, allowing for the identification of
specific versions of the software.

● Repository - deposit releases of your software in an appropriate repository. This should
preferably be a publicly accessible repository, providing globally unique, persistent, and
resolvable identifiers to each release.27 The most important consideration is that potential
users of the software are able to get a copy they can use.28

● User documentation - explain clearly what the software does and how it should be
used.

28 This satisfies the F1.1, F1.2 and A1.1, A1.2 FAIR principles for Research software

27A Persistent Identifier (PID) policy for the European Open Science Cloud (EOSC)
https://doi.org/10.2777/926037

https://www.rd-alliance.org/system/files/FAIR4RS_Principles_v0.3_RDA-RFC.pdf
https://doi.org/10.2777/926037

● Software licensing and compatibility - assign a licence specifying conditions of use for
your software, including patenting information (if relevant). Preferably the licence should
be as open as possible, and as closed as necessary. Software licences must be
compatible with the licence of external components (dependencies, libraries, etc.) that
the software uses.

● Deployment documentation - explain system requirements (e.g. dependencies) for
deploying the software and instructions for installation and testing.

● Citation - include relevant information indicating how your software should be cited.
● Developer documentation - explain how the software can be modified (docstrings,

in-line comments, etc.), tested, and contributed to (governance, code of conduct,
contributing guidelines, etc.).

● Testing - incorporate tests to ensure your software continues to work as intended.
Different types of testing (unit, functional, integration, linting, typing, regression, etc.)
could be used. Tests in turn should also be documented. Coverage tools should also be
used to assess the extent of the tested code.

● Software Engineering quality - make sure your software adheres to relevant code
quality standards (styling, modularity, etc.) and uses tools for collaborative development
to measure code quality.

● Packaging - use appropriate package managers to allow users to install/deploy your
software with ease.

● Maintenance - make sure there are arrangements in place for the maintenance and
reuse of your software. This could be through a community of developers who will
continue to maintain it, or by including the maintenance of software as part of future
projects, or by increasing the user base. Whenever suitable, develop a retirement
strategy for your software.

● Support (during the project) – plan resources for support-related activities such as
training, hiring research software engineers, infrastructure, hardware, etc. The level of
support should be in line with promises made regarding the level of service provided by
your software (e.g. service level agreements).

● Risk analysis - consider other factors that could have an impact on your software. For
example compliance with privacy policies, security considerations, reliability
requirements, portability / vendor lock, etc.

These requirements are not presented in any particular order. There are many ways of ordering,
grouping, and prioritising them; that is a task left to the creators of SMP templates. As an
example, Figure 1 shows how these requirements could be grouped by their focus.

https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-compatibility.html

Figure 1. Software Management Plan requirements grouped by their focus.

5.2. Guidance
Detailed guidance on how to fulfil these requirements may depend on the specific needs of each
research domain or institution. For example, each institution may have a specific licensing
policy. The following table provides some useful resources, but it is only meant as a starting
point and it should be adapted to the specific needs of each SMP.

Requirement Reference resources

Version control The Turing Way guide on Version Control

Repository and registries List of software registries, Software Heritage

Licensing Free Software Foundation,
choosealicence.com and The Turing Way
guides on Software licences and Licence
Compatibility

Citation The Turing Way guide on Software citation

User documentation
The eScience Center’s guide on writing
documentation, How to Respond to Code of
Conduct Reports and Code of Conduct
Facilitators

Deployment documentation

Developer documentation

Testing The Turing Way guide on Code testing

https://the-turing-way.netlify.app/reproducible-research/vcs.html
https://github.com/NLeSC/awesome-research-software-registries
https://www.softwareheritage.org/howto-archive-and-reference-your-code/
https://www.fsf.org/licensing/
http://choosealicence.com
https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-software.html
https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-compatibility.html
https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-compatibility.html
https://the-turing-way.netlify.app/communication/citable/citable-cff.html#cm-citable-cff
https://guide.esciencecenter.nl/#/best_practices/documentation
https://guide.esciencecenter.nl/#/best_practices/documentation
https://files.frameshiftconsulting.com/books/cocguide.pdf
https://files.frameshiftconsulting.com/books/cocguide.pdf
https://malvikasharan.github.io/blogs/coc-facilitators/
https://malvikasharan.github.io/blogs/coc-facilitators/
https://the-turing-way.netlify.app/reproducible-research/testing/testing-guidance.html

Packaging The Turing Way guides on packaging
systems (language specific guidance such as
Python Packages and R Packages) and
containers

Table 2. Reference resources for different SMP requirements.

Other resources:
Cookiecutter Data Science, Productivity and Sustainability Improvement Planning, Five
Recommendations for FAIR Software.

5.3. SMP rubric
In addition to the SMP template, it is recommended to produce an “SMP assessment rubric."
Here you give examples of acceptable responses and unacceptable responses, per question.
Rubrics provide guidance and an opportunity to reach out for support and/or learn about the
subject. It takes effort to make a rubric (because it must match a template 1:1), but they are very
helpful as guidance for researchers and for SMP evaluators. Examples of rubrics (for data
management plans) can be found in the Science Europe Guide29 and NWO DMP assessment
rubric.30

6. Implementation Examples

6.1. Using subsets of the core requirements to define customised
SMP templates
In Section 5 we defined a set of core requirements that are important in the software
development process and that can, in principle, be included in any SMP. However, software
exists in many forms - from single purpose scripts to mission critical frameworks - which means
that not all requirements are necessarily applicable to every category of software. In practice, it
might be useful to define SMP templates based on subsets of the core SMP requirements
(Section 5.1). In the following sections we illustrate how to create such SMP templates using
software management levels.

A software management level consists of a set of the core requirements that should be
considered when developing a certain type of software. These requirements can be applicable
before, during, and after the formal software development (project) period. Software
management levels provide a recipe for grouping the core requirements into subsets and

30 https://zenodo.org/record/3629157#.Yw5o8HZBwuU

29

https://www.scienceeurope.org/our-resources/practical-guide-to-the-international-alignment-of-research-d
ata-management/

https://the-turing-way.netlify.app/reproducible-research/renv/renv-package.html
https://the-turing-way.netlify.app/reproducible-research/renv/renv-package.html
https://py-pkgs.org/
https://r-pkgs.org/
https://the-turing-way.netlify.app/reproducible-research/renv/renv-containers.html
https://drivendata.github.io/cookiecutter-data-science/
https://bssw-psip.github.io/
https://fair-software.eu/
https://fair-software.eu/
https://zenodo.org/record/3629157#.Yw5o8HZBwuU
https://www.scienceeurope.org/our-resources/practical-guide-to-the-international-alignment-of-research-data-management/
https://www.scienceeurope.org/our-resources/practical-guide-to-the-international-alignment-of-research-data-management/

generating an appropriate SMP template. To determine which set of core requirements are
relevant to a software management level, three important factors should be considered:

1. Purpose. What is the current reason or expected end-use for developing the software?

2. Reliability. The effect of software failure and/or non-maintenance on:
○ Risk of harm to self or others. This includes injury, privacy violation, bias, and

inappropriate content.
○ Reputation. For example to self, institution or other.
○ Research, either your own or of others. This effect could be due to an obvious

software failure (“crash”) or a hidden one, for example, returning inconsistent
numerical results on different operating systems.

3. Maintenance. The long-term effort needed to maintain the software as long as it might
be used as a standalone tool or dependency. This includes maintenance functions that
can extend beyond the lifespan of the original development project and includes fixing
bugs, dependency management, operating system compatibility, and security issues.

Using these factors we define three typical management levels (low, medium, high) that underlie
the software examples (Section 6.2) and example SMP templates (Section 6.3).

It should be noted that, in practice, each organisation is responsible for defining its own
management levels31, and as a software project evolves, so can the management level that
applies to it. For a low management level, organisations could also decide to include the SMP
as part of the DMP template.

6.1.1. Management level: low
Purpose. This software is typically developed for a specific analysis (e.g. drawing a graph) or
one-off project (e.g. practical examples in a course). The developer is the primary user and it is
not intended to be used beyond a defined period or in a different context.

Reliability. This software is generally smaller in terms of lines of code and due to its restricted
scope the output can easily be judged to be correct, either visually (the graph looks correct) or
basic input/output testing (it gives an expected output for a defined input). Good software
practices (e.g. version control and user documentation) are highly recommended.

Maintenance. As this software is not intended to be used by others, either directly or as a
dependency, its influence beyond the scope for which it was intended is likely small. While
measures to enable its reuse (documentation, versioning, archiving) are appropriate, no
additional maintenance planning is required.

31 Examples of alternative software classifications include the German Aerospace Center’s guidelines
https://doi.org/10.5281/zenodo.1344611 and Konrad Hinsen’s scientific software stack
https://hal.archives-ouvertes.fr/hal-02117588.

https://doi.org/10.5281/zenodo.1344611
https://hal.archives-ouvertes.fr/hal-02117588

Core requirement (Section 5.1) Example SMP question(s) (Section 6.1)

1 Purpose Please provide a brief description of your software, stating its purpose and intended
audience.

2 Version control How will you manage versioning of your software?

3 User documentation How will your software be documented for users? Please provide a link to the
documentation if available.

4 Deployment documentation How will you document the installation requirements of your software? Please provide a
link to the installation documentation if available.

5 Software licencing and
compatibility

What licence will you give your software?
Does your software respect the licences of libraries and dependencies it uses?

Table 1. Core requirements of an SMP and examples of associated questions for a low level of
software management.

6.1.2. Management level: medium
Purpose. Software of this level is typically developed as part of a research project or is the
primary output of a research project. Although usually developed for a single purpose, it
incorporates functionality that may be of use to others, either as a standalone tool, library, or
module in an existing tool.

Reliability. This software may have a direct influence on other researchers (e.g. project,
research group) and/or software even if this was not the primary intention when it was
conceptualised. As the software is more complicated and/or larger, in terms of lines of code,
than those in the lower management level, good software practices such as version control
using a system such as Git and user/technical documentation is essential here. More advanced
requirements, such as code auditing, automated testing of major functionality, software
packaging, and distribution also need to be considered.

Maintenance. This software’s functionality is useful to researchers both in and outside the
project, making it suitable for distribution. It will have a lifespan longer than the project in which it
was developed and therefore long-term sustainability becomes more important. Software
management requirements for this level include providing information on software archiving and
citation as well as strategies for post-project maintenance and support.

Core requirement (Section 5.1) Example SMP question(s) (Section 6.1)

1 Purpose Please provide a brief description of your software, stating its purpose and intended
audience.

2 Version control How will you manage versioning of your software?

3 Repository How will you make your software publicly available? If you do not plan to make it
publicly available you should provide a justification.

4 User documentation How will your software be documented for users? Please provide a link to the
documentation if available.

How will you document your software’s contribution guidelines and governance
structure?

6 Software licencing and
compatibility

What licence will you give your software?
How will you check that it respects the licences of libraries and dependencies it
uses?

7 Deployment documentation How will the installation requirements of your software be documented? Please
provide a link to the installation documentation if available.

8 Citation How will users of your software be able to cite your software? Please provide a link to
your software citation file (CFF) if available.

9 Developer documentation How will your software be documented for future developers?

10 Testing How will your software be tested? Please provide a link to the (automated) testing
results.

11 Software Engineering quality Do you follow specific software quality guidelines? If yes, which ones?

12 Packaging How will your software be packaged and distributed? Please provide a link to
available packaging information (e.g. entry in a packaging registry, if available).

13 Maintenance How do you plan to procure long term maintenance of your software?

Table 2. Core requirements of an SMP and examples of associated questions for a medium
level of software management.

6.1.3. Management level: high
Purpose. There are various types of software that require a high level of management, for
example software developed and distributed for users other than the developers or software that
has a direct (or systematic) impact on something it interacts with. For instance, research results
could be directly affected by the functioning of simulation software or training of machine
learning models while physical effects could occur from the use of medical or engineering
control software.

Reliability. As software of this level was designed, or has evolved, to be “mission critical,”
reliability is of utmost importance. All possible actions should be taken to ensure reliability, which
includes software architecture design, code standards, the use of comprehensive cross-platform
automated unit and functional testing frameworks, dependency management, and code
auditing. In addition, legal development requirements, such as traceability, right to use, right to
inspect, right to distribute, etc., and process documentation should be implemented as required
(for example, software medical devices may require ISO or EC certified management
processes).

Maintenance. There is no defined maintenance period associated with this class of software as
it must be maintained as long as it is in use. In order to maintain a high level of reliability,
maintenance strategies, including funding and/or community development plans, should be in
place. Build and release pipelines should be implemented so that not only source code
availability but compiled software is maintained on evolving software/hardware platforms, OS,
CPU, GPU etc.

Core requirement (Section 5.1) Example SMP question(s) (Section 6.1)

1 Purpose Please provide a brief description of your software, stating its purpose and intended
audience.

2 Version control How will you manage versioning of your software?

3 Repository How will you make your software publicly available? If you do not plan to make it
publicly available, you should provide a justification.

4 User documentation How will your software be documented for users? Please provide a link to the
documentation if available.
How will you document your software’s contribution guidelines and governance
structure?

6 Software licencing and
compatibility

What type of licence will your software have?
How will you check that it respects the licences of libraries and dependencies it uses?

7 Deployment documentation How will the installation requirements of your software be documented? Please provide
a link to the installation documentation if available. This documentation should include
a complete and unambiguous description of dependencies to other software, datasets,
and hardware.

8 Citation How will users of your software be able to cite your software? Please provide a link to
your software citation file (CFF) if available.

9 Developer documentation How will your software be documented for future developers?

10 Testing How will your software be tested? Please provide a link to automated testing results

11 Software Engineering quality Do you use a software quality checklist, such as
https://bestpractices.coreinfrastructure.org/en or equivalent?

12 Packaging How will your software be packaged and distributed? Please provide a link to available
packaging information (e.g. entry in a packaging registry, if available).

13 Maintenance What level of support will be provided for users of the software and how will this
support be organised?

14 Support How do you plan to procure long term maintenance of your software?

15 Risk analysis Describe the main external factors that should be considered by developers and users
of the software. These could include data privacy, information security, etc.

Table 3. Core requirements of an SMP and examples of associated questions for a high level
software management.

6.1.4. Summary of SMP templates developed for three management levels

Core requirements (Section 5.1) Software management level (Section 6.1)

Management level: Low
(6.1.1)

Management level: Medium
(6.1.2)

Management level: High
(6.1.3)

Purpose X X X

Version control X X X

Repository X X

https://bestpractices.coreinfrastructure.org/en

User documentation X X X

Software licencing and compatibility X X X

Deployment documentation X X X

Citation X X

Developer documentation X X

Testing X X

Software Engineering quality X X

Packaging X X

Maintenance X X

Support X

Risk analysis X

Table 4. Core requirements of an SMP for software grouped by management level.

6.2. Types of software that require different levels of management
This section gives examples of software types and groups them according to the software
management levels as defined in Section 6.1.

6.2.1. Software that requires low level management
● A script that is used to create and format a single figure for a publication, for example,

when using a plotting package such as ggplot2 (R) or Matplotlib (Python).
● Software written as part of a project to automate an administrative or routine process,

e.g. monitoring a process or generating document templates.
● Software written specifically for the analysis of a single experiment, data processing, and

presentation of its results.32

6.2.2. Software that requires medium level management
● Software that implements a new or higher performance algorithm and can be applied to

different input data.
● Simulation software that implements one or more models and/or numerical methods, e.g.

computational fluid dynamics, chemical interactions, planetary evolution, partial
differential equation solvers, numerical integration, etc.

32 If this is a pipeline usable by others for different experiments it likely requires medium level
management.

6.2.3. Software that requires high level management software
● Software used in production on which an institute, department, or instrument depends on

for their operation, e.g. software that is used for pre-processing all data coming from a
particular telescope.

● Software that cannot be rewritten during a project’s lifetime. If one requires functionality
from high-impact software, replacing it may threaten a project.

6.3. SMP templates generated for three software management
levels
This section contains examples of SMP templates that match the software management levels
defined in Section 6.1. These templates should be adjusted to match the specific needs of an
organisation using this guide.

6.3.1. Sample SMP template for Management level: low
This SMP template is for software with low management level.

1. Please provide a brief description of your software, stating its purpose and intended
audience.

2. How will you manage versioning of your software?

3. How will your software be documented for users? Please provide a link to the
documentation if available.

4. How will you document the installation requirements of your software? Please provide a
link to the installation documentation if available.

5. What type of licence will your software have?

6. Does your software respect the licences of libraries and dependencies it uses?

6.3.2. Sample SMP template for Management level: medium
This SMP template is for software with medium management level.

1. Please provide a brief description of your software, stating its purpose and intended
audience.

2. How will you manage versioning of your software?

3. How will you make your software publicly available? If you do not plan to make it publicly
available you should provide a justification.

4. How will your software be documented for users? Please provide a link to the
documentation if available.

5. How will you document your software’s contribution guidelines and governance
structure?

6. What licence will your software have?

7. How will the installation requirements of your software be documented? Please provide a
link to the installation documentation if available.

8. How will users of your software be able to cite your software? Please provide a link to
your software citation file (CFF) if available.

9. How will your software be documented for future developers?

10. How will your software be tested? Please provide a link to the automated testing results.

11. How will you check that your software respects the licences of libraries and
dependencies it uses?

12. How will your software be packaged and distributed? Please provide a link to available
packaging information (e.g. entry in a packaging registry, if available).

13. How do you plan to procure long term maintenance of your software?

6.3.3. Sample SMP template for Management level: high
This SMP template is for software with a high management level.

1. Please provide a brief description of your software, stating its purpose and intended
audience.

2. How will you manage versioning of your software?

3. How will you make your software publicly available? If you do not plan to make it publicly
available you should provide a justification.

4. How will your software be documented for users? Please provide a link to the
documentation if available.

5. How will contribution guidelines and governance structure of your software be
documented?

6. What licence will your software have? Please provide a valid SPDX-Licence-Identifier.

7. How will the installation requirements of your software be documented? Please provide a
link to the installation documentation if available.

8. How will users of your software be able to cite your software? Please provide a link to
your software citation file (CFF) if available.

9. How will your software be documented for future developers?

10. How will your software be tested? Please provide a link to automated testing results.

11. How will you check that it respects the licences of libraries and dependencies it uses?

12. How will your software be packaged and distributed? Please provide a link to available
packaging information (e.g. entry in a packaging registry, if available).

13. What level of support will be provided for users of the software and how will this support
be organised?

14. How do you plan to procure long term maintenance of your software?

15. Describe the main external factors that should be considered by developers and users of
the software. These could include data privacy, information security, etc.

Acknowledgements
This guide is the result of a joint initiative by the Netherlands eScience Center and the Dutch
Research Council (NWO) to develop (national) guidelines for software management plans
(SMPs). Over the course of 2022, a working group composed of experts in research software,
representing different research organisations in the Netherlands, developed the guidelines. An
international sounding board, representing national and international stakeholders in research
software, provided input to the working group throughout the process of creating the guidelines.
The working group also received input from the wider research community via a workshop and
an open consultation round.

Working Group members
● Carlos Martinez-Ortiz (https://orcid.org/0000-0001-5565-7577)
● Paula Martinez Lavanchy (https://orcid.org/0000-0003-1448-0917)
● James Meakin
● Brett G. Olivier (https://orcid.org/0000-0002-5293-5321)
● Laurents Sesink (https://orcid.org/0000-0001-7880-5413)

Working Group coordinators
● Maaike de Jong (https://orcid.org/0000-0003-4803-7411)
● Maria Cruz (https://orcid.org/0000-0001-9111-182X)

The authors would also like to thank the members of the Sounding Board:
● Anton Akhmerov (https://orcid.org/0000-0001-8031-1340)
● Zoé Ancion (https://orcid.org/0000-0002-6554-8179)
● Jonathan de Bruin (https://orcid.org/0000-0002-4297-0502)
● Antica Culina (https://orcid.org/0000-0003-2910-8085)
● Christopher Erdmann (https://orcid.org/0000-0003-2554-180X)
● Marjan Grootveld (https://orcid.org/0000-0002-2789-322X)
● Fotis E. Psomopoulos (https://orcid.org/0000-0002-0222-4273)
● Vera Sarkol (https://orcid.org/0000-0002-8950-3178)
● Jurgen J. Vinju (https://orcid.org/0000-0002-2686-7409)

And everyone who provided input during the consultation rounds: Ablikim Abudukerim, Renato
Alves, Heather Andrews, Jisk Attema, Sandrine Auzoux, Marianna Avetisyan, Celine
Barthelemy, Burcu Beygu, Celine Blitz Frayret, Loek Brinkman, Hugo Buddelmeijer, Jael Castro,
Pascal de Boer, Gerco de Jager, Rick de Klerk, Jelle de Plaa, Martine de Vos, Fares Dhane,
Andrea Frielink-Loing, Manuel Garcia, Emilio Garcia , Olga Giraldo, Pieter Willem Groen, David
Groep, Patricia Herterich, Maarten Hijzelendoorn, Tom Honeyman, Rob Hooft, Dorien Huijser,
Matus Kalas, Daniel Katz, Adam Kewley, Maurits Kok, Jacko Koster, Arina Kudriavtseva, Frank
Loeffler, Pablo Lopez-Tarifa, Bora Lushaj, Jason Maassen, Sjoerd Manger, Mattia Mazzucchelli,
Margriet Miedema, Jurgen Moers, Neha Moopen, Elisa Yumi Nakagawa, Raymond Oonk,
Robert Oostenveld, Esther Plomp, Reinder Radersma, David Rogers, Jacob Rousseau, Dan
Ruddman, Vera Sarkol, Douwe Schulte, Anita Schürch, Hugh Shanahan, Russell Shipman,

https://orcid.org/0000-0001-5565-7577
https://orcid.org/0000-0003-1448-0917
https://orcid.org/0000-0002-5293-5321
https://orcid.org/0000-0001-7880-5413
https://orcid.org/0000-0003-4803-7411
https://orcid.org/0000-0001-9111-182X
https://orcid.org/0000-0001-8031-1340
https://orcid.org/0000-0002-6554-8179
https://orcid.org/0000-0002-4297-0502
https://orcid.org/0000-0003-2910-8085
https://orcid.org/0000-0003-2554-180X
https://orcid.org/0000-0002-2789-322X
https://orcid.org/0000-0002-0222-4273
https://orcid.org/0000-0002-8950-3178
https://orcid.org/0000-0002-2686-7409

Sandor Spruit, Alexander Struck, Jan van den Brand, Richard van Hees, Vera van Noort, Petra
van Overveld, Peter Verhaar and Qian Zhang

DOI: 10.5281/zenodo.7038280

This work is licensed Creative Commons Attribution 4.0 International.

[LOGOS]

https://doi.org/10.5281/zenodo.7038280
https://creativecommons.org/licenses/by/4.0/legalcode

