m /=
® [|

Targeting Real chemical accuracy at the EXascale

Libraries developed in the

TREX CoE

A. Scemamatl, V.G. Chilkuril, E.
Posenitskiy®, P. de Oliveira Castro?, C.
Valensi2, W. Jalby?

04/10/2022

LUniversity of Toulouse/CNRS, LCPQ (France)

2University of Versailles, Li-PaRAD (France)

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union
Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.

R T

Quantum Monte Carlo in TREX

'[.2'—)(QMC in TREX
QMC: Quantum Monte Carlo methods

m Highly accurate electronic structure methods (solids and molecules)
m Massively parallelisable (multiple QMC trajectories)
m Very CPU intensive: One of the most "compute-hungry" methods

m Still under development: scientists need to run and develop code

m Input data is complex (electronic wave function)

Objective: Make codes ready for exascale

How: Instead of re-writing codes, provide libraries (free software)
TREXIO: A library for exchanging information between codes = Enables HTC
QMCKI: A library for high-performance = Enables HPC

-I-g:_x Quantum Monte Carlo (QMC)

Problem: Stochastic resolution of the Schrédinger equation for N electrons

B fdrl...drNd>(r1,...,rN)HCD(rl,...,rN)
fdrl .. .drN <1>(r1, ceey rN)CD(rl, ey rN)

E

’H\Il(rl,...,rN) .
———— % sampled with (W x ¢
W(rl,...,l’/\/) P ()
r1,...,rn: Electron coordinates

H: Hamiltonian operator

®: Almost exact wave function
E: Energy

W: Trial wave function

-I-g-;x Quantum Monte Carlo (QMC)

Input:
[Runa}, Ny Ny ooy
Ur(Fi,. .., TH)
m Very low memory \4
requirements (no integrals) QMC code
s
m Distribute walkers on different Stochastic dynamics

cores or compute nodes of electrons:

m No blocking communication:
near-ideal scaling
m Difficulty to parallelize within

a QMC trajectory: depends
on the number of electrons

f_Aﬁ
L <L &
m',eﬂ
=
8=y
s
=5
=2
3
<
S
NM.O steps

Expectation values:

Y) D T
vE(l:lnucl)~ /)(F):

r.z-x Both libraries

Productivity
Usable and useful by scientists in different programming languages

Portability
Target: all HPC systems (CPU, GPU, ARM, x86, etc.)
Performance

Must be efficient on all architectures: possible tradeoffs between portability and
performance

| A

Free (libre) software

m Requirement for open science

m BSD license for adoption by any software (academic, commercial, .. .)

R T

TREXIO: 1/0 library

-r2:>< TREXIO: 1/0 library

GammCor

TREXIO

Quantum
Package

(BSD license) Xo
https://github.com/trex-coe/trexio

https://github.com/trex-coe/trexio

,2'_ TREXIO: 1/0 library

m Definition of an API for to read/write wave functions

m C-compatible API: Easy usage in all common languages

m HDF5: Efficient 1/0
m Text:

m Fallback when HDF5 can't be
installed

m Debugging

m Version control systems

TR

File is self-contained: no external knowledge needed to compute W(ry,..., r,)
(normalization factors, basis et parameters, etc)

Strong conventions (atomic units, ordering of atomic orbitals, etc.)

m The data stored in the files is organized in different groups:

Metadata Electron Slater Determinants
Nucleus Basis Cl coefficients
AO MO Two-electron integrals

One-electron integrals Density matrices ECP

Each group contains multiple attributes: information related to the group

TR=><

m For each attribute :

trexio_exit_code trexio_[has|read|write]_<group>_<attribute>
2 (trexio_t* file, <type> attribute)

m The library can be auto-generated by a script as the function names can be
computed

m Productivity : Literate programming with Org-mode
Table — JSON — C source code
— Documentation

m Fortran, Python/Numpy, and OCaml interfaces are also generated
m Performance : HDF5 back end
m Portability : Only optional dependency is HDF5

TR

Productivity:

MEGA/TEX/Pr
o Edt Options Buffers Toos Table Org Tent Help
s @ 0O = . X BB Q
© Effective core potentials (ecp group)...
© Basis set (basis group)

We consider here basis functions centered on nuclei. Hence, we enable
the possibility to define /dunmy atoms/ to place basis functions in
random positions.

The atomic basis set is defined as a list of shells. Each shell s is
centered on a center A, possesses a given angular momentun / and a
radial function R,. The radial function is a linear combination of
Nprim /primitive/ functions that can be of type

Slater (p=1) or Gaussian (p=2),

paraneterized by exponents Yk and coefficients aks:

Ry(r) = Nale = Ra[" 37 aks fis (k. p) exp (ks |r = Ras|?)
=

In the case of Gaussian functions, ms is always zero

Different codes normalize functions at different levels. Computing
normalization factors requires the ability to compute overlap
integrals, so the normalization factors should be written in the
file to ensure that the file is self-contained and does not need the
client program to have the ability to compute such integrals.

=

Some codes assume that the contraction coefficients are for a Linear
conbination of /normalized/ primitives. This implies that a normalization
constant for the primitive ks needs to be computed and stored. If

this normalization factor is not required, fis

Some codes assume that the basis function are normalized. This

implies the computation of an extra normalization factor, Ni.
If the the basis function is not considered normalized, N = 1.

ALL the basis set parameters are stored in one-dimensional arrays:

#+NAME: basis
| variable | Type | Dimensions | Description ,
I
~type~ | Type of basis set: "Gaussian" or "Slater" »
~num-~ | Total Number of shells
~prim_num- | Total number of primitives

~nucleus_index~
~nucleus_shell_num~

|
I
|
I | ~(nucleus.num)~
| ~shell_an

|

|

|

|

I

|

| ~(nucleus.num)-

Index of the first shell of each nucleus (-
Number of shells for each nucleus >
Angular momentum ~0:S, 1:P, 2:D, ...~ *
prim) 3

>

mom
~shell_prim_num-

2
3

prim_s ~int~ | -(basis.num)- Number of primitives in the shell
~shell_factor- ~float~ | ~(basis.num)~ Normalization factor of the shell (A
-shell_prim_index- | —index- | -(basis.num)- Index of the first primitive in the comple
~exponent~ ~float~ | ~(basis.prin_num)~ | Exponents of the primitives (7ks)
~coefficient- ~float- | ~(basis.prin_num)- | Coefficients of the primitives (1k
~prin_factor- ~float~ | ~(basis.prin_num)~ | Normalization coefficients for the primiti
#+CALL: json(data=basis, title="basis"

#+RESULTS: ...

r2 —>< Documentation
@ -

e TR ——— o A
24 personal T4 OComl 3 LCPQ T4 QP2 3 Biblio T ToUpdate T3 TREX T ERC T4 AIDA 0 Microsoft 3 Padiets) S00PM- Enfa
5 Basis set (basis group)
Table of Conter nuclei. Hence, { ibil d place basis functions in random positions.
The atomic basis set is defined as a list of shells. Each shell s is centered center A, i [and aradial function R, . The radial function is a linear
combination of Ny, primitive functions that can be of type Slater (p = 1) or Gaussian (p = 2), i Y expe ks i
Nyciea
Ra(r) = Nolr = Ru™ 3" e fua (i P) exp(=yealr — R ")
5. Basis set (basis group) L
In the case of Gaussian functions, n, is always zero.
— Different codes normalize functions at different levels. Cc lization fac , SO lization factors should
the file to ensure that the file is self-contained and does not need the client program to have the ability to compute such integrals.
ToDo
for alinear . This implies that lizati for imitive ks needs to be

tted and stored. If this

is not required, fi,

d the basis i lized. This implies i lization factor, V. If the the basis function is not considered normalized, Vs
Al the basi: tored i i arrays:
Variable Type Dimensions Description
type str Type of basis set: "Gaussian® or "Slater"
num dim Total Number of shells
prim_num dim Total number of primitives
nucleus_index index (nucleus.num) Index of the first shell of each nucleus (4)
nucleus shell num int (nucleus.num) Number of shells for each nucleus

shell_ang_mom int (basis.num) Angular momentum 0:5,

GloEle)

R T

QMCkl: QMC kernel library

TR

Computational kernels

m QMCKI contains the main kernels of QMC methods: Domain specific library,
end-user driven

m Written together by QMC experts and HPC experts

m Multiple high performance implementations of the kernels, tuned for different

m architectures: portability is critical for users
m problem sizes: from small to large systems
m requested accuracy: reduced precision

TR=><

m The code must stay easy to understand by the physicists/chemists.
Performance-related aspects should be delegated to the library

m Scientists should be able to use their preferred language
m Scientists should not lose control of their codes
m Codes should not die when the architecture changes

m Scientific code development should not kill the performance

m Reuse of the optimization effort among the community

-rQ ->< Functionality and performance

m Keeping high productivity, portability and performance is very hard in a single
piece of software.
We propose (at least) two implementations:
Documentation library
Easy to read, understand, modify for scientists, not necessarily efficient.
High performance libraries
Efficient on a given architecture, but not necessarily readable by physicists/chemists.
Performance within 10% to maximize portability and simplicity.
Ultra-High performance libraries
Generated with auto-tuning tools for well identified datasets.
m Both Documentation and High performance have the same API (similar to BLAS
on netlib vs MKL).
m Scientific progress is made in the documentation library, and implemented in the
HPC versions when the API is stabilized.
m Performance: enable a data-driven task-based parallelism

TR=><

m Creation of a Context that keeps a consistent state of the library (pointers to
computed data, configuration parameters, etc.)

m Memory allocation is abstract:

1 void* gmckl_malloc(gmckl_context context, const gmckl_memory_info_struct info);

allows allocation on CPU/GPU by the HPC variants

m Low level functions: access to simple low-level functions leaving the context
untouched (no allocation, no modification in-place)

m High-level functions: let the library call multiple kernels in an optimal way, possibly
updating the context

m Use of IRP programming paradigm® to keep track of dependencies between
kernels: re-compute only what is necessary and store computed data in the context

http:/ /arxiv.org/abs/0909.5012

-rQ -—>< Dependencies between kernels

m Only the needed sub-graph is
computed

m HPC: Each kernel is one/many parallel
Task(s)

m HPC: Use OpenMP tasks or StarPU
for hybrid architectures: (StarPU

handles very well asynchronous
CPU-GPU transfers).

- -
r2 —>< Use case: low-level
@ -

1 #include <gmckl.h>

2

3 /...

4 int64_t m, n, LDA, LDB, LDC;
5 // ...

6 double A[LDA*3];

7 double B[LDB#*3];

8 double C[LDC#n] ;

° // ...

10

11 gmckl_context context = gmckl_context_create();
12

13 // Compute inter-particle distances between zyz coordinates in A[m][3] and B[3][n]

14 // and store the result in C[m][n]

15 qgmckl_exit_code rc = gmckl_distance(context, 'N', 'T', m, n, A, LDA, B, LDB, C, LDC);
16 assert (rc == QMCKL_SUCCESS);

1w /.

TR

© 0 N O Ut W N

e e e
W N T W N = O

#include <gmckl.h>

/...
double e_loc;
gmckl_context context;

context = gmckl_context_create();

// Store WF parameters in the contexzt
qmckl_exit_code rc = gmckl_trexio_read(context, trexio_filename, strlen(filename));
assert (rc == QMCKL_SUCCESS);

// Set the electron coordinates in the contezt
rc = gmckl_set_electron_coord (context, 'N', walker_num, elec_coord, walker_num¥elec_num#3);
assert(rc == QMCKL_SUCCESS) ;

// Return the local energy at the current electron positions
rc = gmckl_get_local_energy(context, &e_loc);

/)

rQ ->< Development strategy

Kernel extraction: QMC specialists agree on the mathematical expression of the
problem

A mini-application is written to find the optimal data layout with HPC experts
from real-size examples

The kernel is written in the documentation library

The documentation library is linked in a QMC code to check correctness and
numerical accuracy

HPC experts provide an HPC version of the kernel
@ The HPC library is linked in the QMC codes of the CoE

-r2:>< First application : 3-body Jastrow factor

Nouel Netee i—1 Nnord p—1 p_k_26k,0

Jeen(rR) =D 3 i > o () [(Ria) + (Ria)'] (Ri Ria) P72

a=1 =1 j=1 p=2 k=0 1=0

m Gradient and Laplacian are also
required

m Up to 20x faster than in the original
code

m ~ 80% of the AVX-512 peak is reached
using standard MKL on Intel Skylake

m Expressed with a DGEMM kernel =
also efficient on GPU

Speedup

. . . .
500 1000 1500 2000 2500
Number of electrons = 5x(number of nuclei)

TR=X<

Linear algebra hot spots

GEMM, Rank-k update, Matrix Inversion,
GEMV, Diagonal of GEMM, Shermann-Morrison-Woodburry

Matrices are relatively small (< 1000 x 1000)

m Matrices are stored in tiled format fitting a block formulation of the algorithms
— task-based linear algebra, interleaved computation of multiple kernels

Tile sizes will be adjusted by auto-tuning
Increase parallelism by aggregating multiple independent walkers in matrices

Needs fast linear algebra kernels for small matrices (tile size)

For tiny matrices (< 5 X 5) specialized versions are implemented

TR=X<

m Optimization is guided by analysis with MAQAQO?.
m Specialized versions of critical hot-spots
m Monitoring of the use of the library to choose most efficient versions

m Optimizations guided by monitoring numerical accuracy (Verificarlo®)

“https://maqao.org
bhttps://github.com /verificarlo/verificarlo

-r2:>< Efficiently guiding the developer

Unicore run on TURBO RVB

MAQAO support to the (S. Sorella:SISSA)

developer
Total Time (s) 481.84
. 481.84
> Identify profitable optimizations =
(partial/full vectorization, data access 23
restructuring, blocking/interchanging, | i fexcomeeny e
Ioad ba IanCIng etc' "') ::;:: 8;’3::"MA£ : m : :r:::: + Perfect Load Distribution]Igg
»Perform a Return on Investment No scalar Integer 1
(ROI) analysis to help the developer | feveconsed =
3 117
select the most profitable Fully Vectorised I
optimization FP Arithmetic Only A

26/ 37 >

re —>< Extensive/automatic testing of different configurations
@ -

rl: 1 core r2:2cores r3:4 cores rd: 8 cores r5: 16 cores r6: 32 cores
r7: 52 cores. Multicore runs on TURBO RVB (S. Sorella. SISSA)

Comparative analysis
. Metri 1 2 3 4 5 6 7
>Aut0mat| Ca”y perfor'm Total Time (s) e ssér.ee zeér.bl 155.33 ss.':zé 63.%] 56.56 szfrss

Profiled Time (s) 555.66 292.81 156.88 88.89 6301 5646 52.85 |

r:ﬁ,'ee _ar;;‘l; : 430 417 387 343 293 226 166

379 367 340 298 261 206 153

49.7 479 450 400 334 253 18.6

comparative runs to
analyze impact of compiler,

dataset’ algorithm and Eéav!.t.?lﬁ..t.rikur_lqn

No Scalar Integer

parallel configuration s
orenvial speecup IGZIGEINIOZINNIGZNN GGG

FP Vectorised Nb Loops to get
(number Of Cores’ etc") ; ?.34 1331]3.27 7.21 ?.]5 f.]l
. Fully Vectorised 13 13 12 n 5 8
»Analysis can be performed Do 110 109 106 104 103
Only FP Arithmetic 17 17 16 16 17 17

daily or weekly Opene pertecry

R T

Summary

TR=><

m QMC codes integrated in an ecosystem of multiple codes for high-accuracy
quantum chemistry

m Development of open-source libraries to be used in the TREX codes and beyond

m Libraries focus on performance, portability and productivity

m Strategies to make the collaboration between physicists/chemists and HPC experts

optimal
Useful links
TREX web site https://trex-coe.eu
TREXIO https://github.com/trex-coe/trexio
QMCKkI https://github.com/trex-coe/qmckl
QMCkI documentation https://trex-coe.github.io/gmckl
MAQAO http://www.maqao.org
Verificarlo https://github.com/verificarlo/verificarlo

https://trex-coe.eu
https://github.com/trex-coe/trexio
https://github.com/trex-coe/qmckl
https://trex-coe.github.io/qmckl
http://www.maqao.org
https://github.com/verificarlo/verificarlo

R T

Bonus slides

-r2:>< Numerical analysis with Verificarlo

Verificarlo is a tool for assessing the precision of floating point operations. It can be
used to :

m Find numerical bugs in codes !
m Stochastic arithmetic to simulate round-off and
cancellations
eriﬁCOrIO m Localization techniques to pinpoint source of errors
m Optimize precision 2
) m Simulate custom formats for mixed precision
https://github.com/ (float, bf16)

verificarlo/verificarlo L .
GPL v3 m Tune precision in math library calls

1C. Denis et al. doi:10.1109/ARITH.2016.31
2Y Chatelain et al. doi:10.1007/978-3-030-29400-7 34

https://github.com/verificarlo/verificarlo
https://github.com/verificarlo/verificarlo
https://dx.doi.org/10.1109/ARITH.2016.31
https://dx.doi.org/10.1007/978-3-030-29400-7_34

TR=XX

The Verificarlo pipeline

m Each Floating-Point (FP) operation may introduce a § error

z="fl[x+y]l=(x+y)(1+9)

m When chaining multiple operations, errors can accumulate and snowball
m Monte Carlo Arithmetic key principle
m Make § a random variable
m Use a Monte Carlo simulation to empirically estimate the FP error distribution

Backend

Precompiled Verificarlo
backends libraries

« mpfr (libmca)

- quad

« Vprec

1
1

1

1

1

1

1

1

!

1

||C/C++/Fortran| Replace FP
1| Application | —¥»| operation by
i callbacks
|

|

1

1

1

Post-pr

tests
+ expected value
+ standard deviation

+ number significant digits

rQ ->< Continuous-Integration precision tracking
@ -

m Each push to QMCKI triggers a Verificarlo analysis.
m QMCKI kernels unit tests are augmented with probes:

m track a scalar value precision
m ensure that a target precision is reached

[Kernel name] [Variable name] [Target precision j

vfc_ probe("Sherman-Morisson", "residual", res)
vfc_probe assert("Sherman-Morisson",

"res", res, le-7)

I.2 —>< Verificarlo ClI
@ -

RIS o Comporenns pecies EEm—— EE———— R whmcots compins spatins E— TR
Selectors Plots Selectors Plots
o
.- < R
. : |4
m Track precision of kernels over commits m Focus in depth on one particular run
m Shows significant digits s, standard m Compare multiple implementations of
o deviation o, variable distribution B the same kernel) ;@

-r2:>< Example: Specialized DGEMM kernel

Tiling scheme

Simple algorithm - P—
[%%Ew vvvvvvv EEl |
m Simple micro kernel 13 Cache ‘#%%’ﬁ‘ E%)
(GotoDGEMM?)
. . A AAAN] | \
m Code written using asm to forc.e L2 Cache e .
good code generation by compilers [
.y b
m Tiling scheme L1 Cache k‘
?doi:10.1145/1356052.1356053 — =
bdoi:10.1109/|CPP.2015.29 Register \ \ :’4
v ‘ “‘“

-I'Q-—x Example: Specialized DGEMM kernel

m Comparison of MKL vs Specialized DGEMM

i

256 384 512 1024 1536 2048
Size (M=N=K)

120
—— DGEMM (tiled)

&

=4
s

]
&

5
8

7 N
WL

©
&

% (CUSTOM / MKL) GFLOPS

©
S8

®
&

80

m Strong impact on MKL performance due to the number of consecutive executions

m Favorable comparison for MKL: Many consecutive executions to amortize setup
cost, JIT, Skylake CPU

TR

Decent performance (within 10% of MKL) guaranteed independently of the
compiler and BLAS variant

Simple code (a few lines of code)
Open source : can be modified easily
Can be rewritten in different languages to increase portability (MIPP?2)

Allows to keep control on parallelism

Makes autotuning simple

https://github.com/aff3ct/MIPP

	Quantum Monte Carlo in TREX
	TREXIO: I/O library
	QMCkl: QMC kernel library
	Summary
	Bonus slides

