
Libraries developed in the
TREX CoE
A. Scemama1, V.G. Chilkuri1, E.
Posenitskiy1, P. de Oliveira Castro2, C.
Valensi2, W. Jalby2

04/10/2022
1University of Toulouse/CNRS, LCPQ (France)
2University of Versailles, Li-PaRAD (France)

Quantum Monte Carlo in TREX

QMC in TREX

QMC: Quantum Monte Carlo methods
Highly accurate electronic structure methods (solids and molecules)
Massively parallelisable (multiple QMC trajectories)
Very CPU intensive: One of the most "compute-hungry" methods
Still under development: scientists need to run and develop code
Input data is complex (electronic wave function)

Objective: Make codes ready for exascale
How: Instead of re-writing codes, provide libraries (free software)

1 TREXIO: A library for exchanging information between codes =⇒ Enables HTC
2 QMCkl: A library for high-performance =⇒ Enables HPC

3/ 37

Quantum Monte Carlo (QMC)

Problem: Stochastic resolution of the Schrödinger equation for N electrons

E =

∫
dr1 . . . drN Φ(r1, . . . , rN)HΦ(r1, . . . , rN)∫
dr1 . . . drN Φ(r1, . . . , rN)Φ(r1, . . . , rN)

∼
∑ HΨ(r1, . . . , rN)

Ψ(r1, . . . , rN)
, sampled with (Ψ× Φ)

H: Hamiltonian operator
E : Energy

r1, . . . , rN : Electron coordinates
Φ: Almost exact wave function
Ψ: Trial wave function

4/ 37

Quantum Monte Carlo (QMC)

Very low memory
requirements (no integrals)
Distribute walkers on different
cores or compute nodes
No blocking communication:
near-ideal scaling
Difficulty to parallelize within
a QMC trajectory: depends
on the number of electrons

5/ 37

Both libraries

Three objectives
1 Productivity

Usable and useful by scientists in different programming languages
2 Portability

Target: all HPC systems (CPU, GPU, ARM, x86, etc.)
3 Performance

Must be efficient on all architectures: possible tradeoffs between portability and
performance

Free (libre) software

Requirement for open science
BSD license for adoption by any software (academic, commercial, . . .)

6/ 37

TREXIO: I/O library

TREXIO: I/O library

Before

(BSD license)
https://github.com/trex-coe/trexio

After

8/ 37

https://github.com/trex-coe/trexio

TREXIO: I/O library

Front end
Definition of an API for to read/write wave functions
C-compatible API: Easy usage in all common languages

Back end
HDF5: Efficient I/O
Text:

Fallback when HDF5 can’t be
installed
Debugging
Version control systems

9/ 37

Content of the files

File is self-contained: no external knowledge needed to compute Ψ(r1, . . . , rn)
(normalization factors, basis et parameters, etc)
Strong conventions (atomic units, ordering of atomic orbitals, etc.)
The data stored in the files is organized in different groups:

Metadata Electron Slater Determinants
Nucleus Basis CI coefficients
AO MO Two-electron integrals
One-electron integrals Density matrices ECP

Each group contains multiple attributes: information related to the group

10/ 37

Source code

For each attribute :

1 trexio_exit_code trexio_[has|read|write]_<group>_<attribute>
2 (trexio_t* file, <type> attribute)

The library can be auto-generated by a script as the function names can be
computed
Productivity : Literate programming with Org-mode
Table → JSON → C source code

→ Documentation
Fortran, Python/Numpy, and OCaml interfaces are also generated
Performance : HDF5 back end
Portability : Only optional dependency is HDF5

11/ 37

Source code

Productivity:

12/ 37

Documentation

13/ 37

QMCkl: QMC kernel library

QMC kernel library

Computational kernels
QMCkl contains the main kernels of QMC methods: Domain specific library,
end-user driven
Written together by QMC experts and HPC experts
Multiple high performance implementations of the kernels, tuned for different

architectures: portability is critical for users
problem sizes: from small to large systems
requested accuracy: reduced precision

15/ 37

Objectives

The code must stay easy to understand by the physicists/chemists.
Performance-related aspects should be delegated to the library
Scientists should be able to use their preferred language
Scientists should not lose control of their codes
Codes should not die when the architecture changes
Scientific code development should not kill the performance
Reuse of the optimization effort among the community

16/ 37

Functionality and performance

Keeping high productivity, portability and performance is very hard in a single
piece of software.
We propose (at least) two implementations:

1 Documentation library
Easy to read, understand, modify for scientists, not necessarily efficient.

2 High performance libraries
Efficient on a given architecture, but not necessarily readable by physicists/chemists.
Performance within 10% to maximize portability and simplicity.

3 Ultra-High performance libraries
Generated with auto-tuning tools for well identified datasets.

Both Documentation and High performance have the same API (similar to BLAS
on netlib vs MKL).
Scientific progress is made in the documentation library, and implemented in the
HPC versions when the API is stabilized.
Performance: enable a data-driven task-based parallelism

17/ 37

Library design

Creation of a Context that keeps a consistent state of the library (pointers to
computed data, configuration parameters, etc.)
Memory allocation is abstract:

1 void* qmckl_malloc(qmckl_context context, const qmckl_memory_info_struct info);

allows allocation on CPU/GPU by the HPC variants
Low level functions: access to simple low-level functions leaving the context
untouched (no allocation, no modification in-place)
High-level functions: let the library call multiple kernels in an optimal way, possibly
updating the context
Use of IRP programming paradigm1 to keep track of dependencies between
kernels: re-compute only what is necessary and store computed data in the context

1http://arxiv.org/abs/0909.5012

18/ 37

Dependencies between kernels

Only the needed sub-graph is
computed
HPC: Each kernel is one/many parallel
Task(s)
HPC: Use OpenMP tasks or StarPU
for hybrid architectures: (StarPU
handles very well asynchronous
CPU-GPU transfers).

19/ 37

Use case: low-level

1 #include <qmckl.h>
2

3 // ...
4 int64_t m, n, LDA, LDB, LDC;
5 // ...
6 double A[LDA*3];
7 double B[LDB*3];
8 double C[LDC*n];
9 // ...

10

11 qmckl_context context = qmckl_context_create();
12

13 // Compute inter-particle distances between xyz coordinates in A[m][3] and B[3][n]
14 // and store the result in C[m][n]
15 qmckl_exit_code rc = qmckl_distance(context, 'N', 'T', m, n, A, LDA, B, LDB, C, LDC);
16 assert (rc == QMCKL_SUCCESS);
17 // ...

20/ 37

Use case: high-level

1 #include <qmckl.h>
2 // ...
3 double e_loc;
4 qmckl_context context;
5

6 context = qmckl_context_create();
7

8 // Store WF parameters in the context
9 qmckl_exit_code rc = qmckl_trexio_read(context, trexio_filename, strlen(filename));

10 assert (rc == QMCKL_SUCCESS);
11

12 // Set the electron coordinates in the context
13 rc = qmckl_set_electron_coord (context, 'N', walker_num, elec_coord, walker_num*elec_num*3);
14 assert(rc == QMCKL_SUCCESS);
15

16 // Return the local energy at the current electron positions
17 rc = qmckl_get_local_energy(context, &e_loc);
18 // ...

21/ 37

Development strategy

1 Kernel extraction: QMC specialists agree on the mathematical expression of the
problem

2 A mini-application is written to find the optimal data layout with HPC experts
from real-size examples

3 The kernel is written in the documentation library
4 The documentation library is linked in a QMC code to check correctness and

numerical accuracy
5 HPC experts provide an HPC version of the kernel
6 The HPC library is linked in the QMC codes of the CoE

22/ 37

First application : 3-body Jastrow factor

Jeen(r,R) =

Nnucl∑

α=1

Nelec∑

i=1

i−1∑

j=1

Nnord∑

p=2

p−1∑

k=0

p−k−2δk,0∑

l=0

clkpα (rij)
k
[
(Riα)l + (Rjα)l

]
(Ri α Rjα)(p−k−l)/2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 500 1000 1500 2000 2500

S
p
e
e
d

u
p

Number of electrons = 5x(number of nuclei)

Gradient and Laplacian are also
required
Up to 20× faster than in the original
code
∼ 80% of the AVX-512 peak is reached
using standard MKL on Intel Skylake
Expressed with a DGEMM kernel =⇒
also efficient on GPU

23/ 37

High-Performance strategies

Linear algebra hot spots

GEMM, Rank-k update, Matrix Inversion,
GEMV, Diagonal of GEMM, Shermann-Morrison-Woodburry

Matrices are relatively small (≤ 1000× 1000)

Matrices are stored in tiled format fitting a block formulation of the algorithms
=⇒ task-based linear algebra, interleaved computation of multiple kernels
Tile sizes will be adjusted by auto-tuning
Increase parallelism by aggregating multiple independent walkers in matrices
Needs fast linear algebra kernels for small matrices (tile size)
For tiny matrices (< 5× 5) specialized versions are implemented

24/ 37

High-Performance strategies

Tuning
Optimization is guided by analysis with MAQAOa.
Specialized versions of critical hot-spots
Monitoring of the use of the library to choose most efficient versions
Optimizations guided by monitoring numerical accuracy (Verificarlob)

ahttps://maqao.org
bhttps://github.com/verificarlo/verificarlo

25/ 37

Efficiently guiding the developer

26/ 37

Extensive/automatic testing of different configurations

27/ 37

Summary

Summary

QMC codes integrated in an ecosystem of multiple codes for high-accuracy
quantum chemistry
Development of open-source libraries to be used in the TREX codes and beyond
Libraries focus on performance, portability and productivity
Strategies to make the collaboration between physicists/chemists and HPC experts
optimal

Useful links

TREX web site https://trex-coe.eu
TREXIO https://github.com/trex-coe/trexio
QMCkl https://github.com/trex-coe/qmckl
QMCkl documentation https://trex-coe.github.io/qmckl
MAQAO http://www.maqao.org
Verificarlo https://github.com/verificarlo/verificarlo

29/ 37

https://trex-coe.eu
https://github.com/trex-coe/trexio
https://github.com/trex-coe/qmckl
https://trex-coe.github.io/qmckl
http://www.maqao.org
https://github.com/verificarlo/verificarlo

Bonus slides

Numerical analysis with Verificarlo

Verificarlo is a tool for assessing the precision of floating point operations. It can be
used to :

https://github.com/
verificarlo/verificarlo
GPL v3

Find numerical bugs in codes 1

Stochastic arithmetic to simulate round-off and
cancellations
Localization techniques to pinpoint source of errors

Optimize precision 2

Simulate custom formats for mixed precision
(float, bf16)
Tune precision in math library calls

1C. Denis et al. doi:10.1109/ARITH.2016.31
2Y Chatelain et al. doi:10.1007/978-3-030-29400-7_34

31/ 37

https://github.com/verificarlo/verificarlo
https://github.com/verificarlo/verificarlo
https://dx.doi.org/10.1109/ARITH.2016.31
https://dx.doi.org/10.1007/978-3-030-29400-7_34

The Verificarlo pipeline

Each Floating-Point (FP) operation may introduce a δ error

z = fl [x + y] = (x + y)(1 + δ)

When chaining multiple operations, errors can accumulate and snowball
Monte Carlo Arithmetic key principle

Make δ a random variable
Use a Monte Carlo simulation to empirically estimate the FP error distribution

32/ 37

Continuous-Integration precision tracking

Each push to QMCkl triggers a Verificarlo analysis.
QMCkl kernels unit tests are augmented with probes:

track a scalar value precision
ensure that a target precision is reached

vfc_probe("Sherman-Morisson", "residual", res)
vfc_probe_assert("Sherman-Morisson", "res", res, 1e-7)

Kernel name Variable name Target precision

33/ 37

Verificarlo CI

Compare runs

Track precision of kernels over commits
Shows significant digits s, standard
deviation σ, variable distribution

Inspect runs

Focus in depth on one particular run
Compare multiple implementations of
the same kernel

34/ 37

Example: Specialized DGEMM kernel

Simple algorithm
Simple micro kernel
(GotoDGEMMa)
Code written using asm to force
good code generation by compilers
Tiling schemeb

adoi:10.1145/1356052.1356053
bdoi:10.1109/ICPP.2015.29

Tiling scheme

kc

mc

nr

kc

L3 Cache

L1 Cache

mr nrmr

nr

1

1

L2 Cache

Register

nr

kc

kc

mc kc

nc

Fig. 3. Packed data storage for GEBP in GotoBLAS.

register

L1 cache

L2 cache

L3 cache

RAM

Level 0

Level 1

Level 2

Level 3

Level 4

fast

slow

Fig. 4. The memory hierarchy in the ARMv8 architecture.

time, denoted ! , of a program can be estimated as:

! = "# +
∑

!

∑

"

$!"%!" +
∑

!

∑

"

&!"'!" (1)

where " , $!" , and &!" represent the number of operations,
words, and messages, respectively. For example, $10 denotes
the number of words loaded from the L1 cache to registers.

Given the packed data stored contiguously in slow memory,
as shown at layer 4 in Figure 2, we assume that all the words
in a message are needed in consecutive computations, i.e.,
that they can be read or written together as one message (one
cache line). Hence, the ratio of the number of moved messages
to that of moved words is nearly a constant:

∑
!

∑
" &!" ≃

(
∑

!

∑
" $!" . Since %!" ≥ 0and '!" ≥ 0, we have:

! ≤ "# + (1 + ()
∑

!

∑

"

$!" × (
∑

!

∑

"

%!" +
∑

!

∑

"

'!")

For convenience, we let) =
∑

!

∑
" %!" +

∑
!

∑
" '!" and

$ =
∑

!

∑
" $!" . Then the compute-to-memory access ratio,

denoted *, for the program can be expressed as:

* =
"

$
=

"∑
!

∑
" $!"

(2)

Then we can obtain:

! ≤ "# + (1 + ()$) (3)

Since overlapping computation and communication is an im-
portant and necessary optimization for improving performance,
we propose a so-called overlapping factor as a function +(*)
of *. Using this overlapping factor, we can refine (3) into:

!#$% ≤ "# + (1 + ()$)+(*) (4)

Note that +(*) → 1 if * → 0and +(*) → 0if * → +∞. In
addition, +(*) is typically a monotonically decreasing function
with respect to *. By (2), we have:

!#$% ≤ " (# + (1 + ())
+(*)

*
) (5)

Finally, we obtain the following lower bound on the perfor-
mance of a DGEMM implementation:

,-./#$% =
"

!#$%
≥ 1

(# + (1 + ())&(')
')

(6)

which indicates clearly that larger compute-to-memory ratios
* lead always to better peak performance (efficiency).

IV. FAST IMPLEMENTATION

Based on our performance model, we obtain a highly
efficient implementation of DGEMM for the 64-bit ARMv8
architecture by developing systematically a highly-optimized
GEBP kernel in assembly. As illustrated in Figure 2, GEBP
comprises layers 4 – 7. Its development involves implementing
each rank-1 update performed at layer 7 (referred to as the
register kernel in Section II-C) and determining various block
sizes used across the four layers. We will describe our GEBP
implementation inside out from layer 7 (the register kernel) to
layer 4, i.e., across the four levels of the memory hierarchy
in the ARMv8 architecture, starting from the fastest to the
slowest. Thus, some block sizes determined at a level will be
used later to determine other block sizes at a lower level.

When developing a highly-optimized GEBP, the main
challenge lies in choosing the right register block size for
its register kernel. We make such a choice analytically with
the goal of maximizing its compute-to-memory access ratio
from the L1 data cache to registers. In order to realize the
optimal ratio thus found, we optimize the operations in the
register kernel by (1) exploiting loop unrolling, instruction
scheduling and software-implemented register rotation and (2)
taking advantage of A64 instructions to support efficient FMA
operations, data transfer and data prefetching. Subsequently,
we optimize GEBP by maximizing its compute-to-memory
access ratios across all three levels of cache memories. We
do so by determining analytically the other block sizes used,
considering set associativities and replacement policies.

In Section IV-A, we describe how to determine the register
block size 0(×1(for the register kernel, together with asso-
ciated optimizations. In Section IV-B, we find the block sizes
2), 0) and 1) corresponding to layers 6, 5 and 4, respectively.
As shown in Figure 3, 2), 0) and 1) are determined by the
L1, L2 and L3 caches used, respectively. In addition, we also
determine how to insert prefetching instructions to prefetch
data into the L1 data cache in order to accelerate further the
operations in the register kernel. In Section IV-C, we adjust
the block sizes 0) and 1) when moving from a serial to a
parallel implementation due to cache sharing.

204203203203203203

35/ 37

Example: Specialized DGEMM kernel

Benchmarks
Comparison of MKL vs Specialized DGEMM

256 384 512 1024 1536 2048
Size (M=N=K)

80

85

90

95

100

105

110

115

120

%
 (C

US
TO

M
 /

M
KL

) G
FL

OP
s

DGEMM (tiled)

Strong impact on MKL performance due to the number of consecutive executions
Favorable comparison for MKL: Many consecutive executions to amortize setup
cost, JIT, Skylake CPU

36/ 37

Why provide our own DGEMM?

Decent performance (within 10% of MKL) guaranteed independently of the
compiler and BLAS variant
Simple code (a few lines of code)
Open source : can be modified easily
Can be rewritten in different languages to increase portability (MIPP2)
Allows to keep control on parallelism
Makes autotuning simple

2https://github.com/aff3ct/MIPP

37/ 37

	Quantum Monte Carlo in TREX
	TREXIO: I/O library
	QMCkl: QMC kernel library
	Summary
	Bonus slides

