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ABSTRACT

Tetranychus urticae Koch (Acari: Tetranychidae) is known to be a serious pest in cotton fields worldwide. In this
research, monitoring of T. urticae was done based on satellite data by using the time series of vegetation index and
climatic factors through near real-time assessment. The current study aimed to determine correlations between the
population dynamic of T. urticae and the effects of Absorbing Aerosol Index (AAI) depicted by Sentinel-5 Precursor,
Sentinal-2 NDVI (10 m), Land Surface Temperature (LST), MODIS-Evapotranspiration (ET), and CHIRPS
precipitation. Spider-mite outbreak was found to be coincided with wheat harvesting where several dusty days were
experienced with a high aerosol index of 0.167. Rainfall had a significant negative correlation with T. urticae
populations (R? = 0.378), while a threshold precipitation level of at least 2 mm was estimated for cleaning up the
canopy. No significant pattern could be found between temperature and T. urticae populations until August 2020. Yet,
significant positive relationships were weekly observed during August 2020 (R? = 0.3519, 0.1283, 0.1675, and 0.178).
Evapotranspiration (ET) displayed a statistically synchronous relationship with T. urticae dynamism (R? = 0.637).
Also, there was a positive correlation between increasing NDVI and T. urticae population until August 2020 and then,
it changed to a negative pattern (R?= 0.273 and 0.139). Based on these findings, AAls of Sentinel-5 and MODIS-
evapotranspiration had the potential to forecast spider-mite population with high temporal resolution.
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INTRODUCTION

Tetranychus urticae Koch (Acari: Tetranychidae), is a serious economic pest in cotton fields
worldwide because of its polyphagous behavior accompanied by a wide range of plant hosts (about
900 plant species) (Brown et al. 2017). The main spider mite species, including Tetranychus
turkestani Ugarov & Nikolski and T. urticae, are known as a common pest for cotton fields (Forghani
and Honarparvar 2012). Tetranychus urticae populations have extended in cotton fields in all the
territories of Iran, including Golestan, Tehran, Azerbaijan, Khorasan, Ardebil, and Fars provinces
(Honarparvar et al. 2012). Yield loss caused by two spotted spider mite (T. urticae) infestation on
cotton, Gossypium hirsutum L. (Malvaceae), has been measured in various studies, some of which
have tried to determine the two-spotted spider mite populations and the injury levels during 2010 and
2011 (Scott et al. 2013).
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Among abiotic parameters, climatic parameters such as temperature, relative humidity, rainfall,
daytime duration, etc., play a key role in pest population dynamics. Climate factors have been found
to affect acarid biology not only mite species such as Oligonychus coffeae Nietner (Acari:
Tetranychidae) and Varroa destructor Anderson & Trueman (Acari: Varroidae) (Ahmed et al. 2012;
Giliba et al. 2020), but also tick species (Gray et al. 2009; Liu et al. 2016). A 14-year-long population
study on Scabies in Taiwan can be mentioned as a typical example which indicted negatively and
positively correlated realtionships between scabies population with temperature and humidity,
respectively (Liu et al. 2016). Also, a 5-year systematic sampling program in Bangladesh aimed at
studying the effects of climatic parameters on the Red Spider Mite, O. coffeae (Acari: Tetranychidae),
which showed its positive responses to temperature, relative humidity, and daytime duration and
negative responses to rainfall and cloud coverage (Ahmed et al. 2012). The demographic parameters
of spider mite pests, e.g. the intrinsic rates of increase (rm) in T. pacificus and Eotetranychus
willamettei (McGregor) (Acari: Tetranychidae) (Stavrinides and Mills 2011), as well as the
parameters of developmental time, sex ratio, and fecundity of T. urticae (Margolies and Wrensch
1996), were observed to be temperature-dependent. Tetranychus urticae population was found to
positively and negatively correspond with mean temperature and mean humidity, respectively
(Kumral and Kovanci 2005). According to the targets of the Paris Agreement (1.6 °C warming by
2050) and the suitability modeler of Areas Equipped with Irrigation (AEI) facilities based on climate
change, unsuitable conditions for tomato production and a globally increasing risk of two-spotted
spider mite outbreak was predicted because of failure in biological control until 2050 (Litskas et al.
2019).

Therefore, climatic conditions can affect pest population dynamics, especially in large-scale
climate change projections. This can be evidenced through reflectance spectroscopy in the two
common ways of using satellite data and an Unmanned Aerial Vehicle (UAV) system equipped with
multispectral imagery. The regions infested by T. urticae were identified via diffuse reflectance
spectroscopy (Visible/Near Infrared Reflectance Spectroscopy) and its damages to strawberries were
quantitatively assessed using partial least squares (PLS) regression between mite density and Spectral
classification (Fraulo et al. 2009). Some researches like Reisig and Godfrey (2006), have reported
that the cotton infested by aphid (Aphis gossypii Glover) and spider mite (Tetranychus spp.) could be
distinguished from healthy plants through aerial and satellite images. Martin and Latheef (2017)
performed an evaluation by using a ground-based multispectral optical sensor for detecting spider
mite damage to cotton in greenhouse conditions. Moreover, supervised classification approaches,
such as Support Vector Machine (SVM) and transfer Convolutional Neural Network (CNN), were
reported by Huang et al. (2018) to be useful for detecting mite infestation using UAV-based
multispectral imagery. Furthermore, species composition was specified for modeling ecological niche
of tetranychoid mites (Acari: Tetranychoidea) by applying GIS and remote sensing approaches in the
different climates of Tehran Province, Iran (Ghasemi Moghadam et al. 2016). The current study
aimed to determine the potential effects of five climate and vegetation characters, including air
pollution (dust), Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST),
Evapotranspiration (ET), and precipitation, on spider mite population.

MATERIALS AND METHODS

To reveal the relationship between spider mite populations and climatic factors, relative mite density
was recorded simultaneously on Saturday in all 65 fields (synoptic recorded spider-mite population,
all experts simultaneously recorded the mite population on Saturday). Thematic climatic maps
inducing precipitation (mm), MODIS Land Surface Temperature (LST) (MOD11Al1, 1 km),
Evapotranspiration (kg/m2/8day), Vegetation Index (NDV1) and Aerosol Index (AAL) were provided
using Google Earth Engine (GEE) platform. Afterwards, the correlations were examined by
extracting 200 random points with Google Earth Engine (GEE) (Fig. 1).
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Study area

The study area represented the unique climatic conditions of the northeastern Caspian Sea,
including those of the Hyrcanian forest (southern area), deserts (northern area), and fertile lands and
vast paddy fields (central area), with 14 adjacent districts (Fig. 2) with the latitude of 36° 30' to 38°
10" N and a longitude of 53° 50" to 56° 20' E.
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Figure 1. Workflow for examination the relationships between the five parameters and the distribution mite maps.
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The climatic effects on the hotspot formation of spider mites could be detected through the
climatic diversity of the study area, which covered an area of approximately 21400 km? with an
altitude ranging from —39 to 3780 m above sea level. Its average annual temperature and precipitation
were recorded to be 16.88 °C and 454 mm, respectively. Wheat, barley, canola, and broad bean are
their most important autumn crops and soybean, cotton, rice, and sorghum are the major summer
crops in this province (Kamkar et al. 2014, 2019). Golestan province is one of the top three cotton-
producing provinces in Iran (Kamkar et al. 2014). Our research covered all the agricultural areas
cultivating cotton within this province. The highest areas under cotton cultivation belonged to Aggala
(33%), western part of Gonbad-e-Qabous (31%), and Gorgan (10%), while this crop was barely seen
in Minoodasht and Maravehtappeh. To achieve more accurate data, all the satellite images were
masked by slope > 3° of the Shuttle Radar Topography Mission (SRTM, 30 m) (Farr et al. 2007).
The mask areas included highly dense forests (Hyrcanian forests), which are not the ecological niche
of T. urticae.
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Figure 2. Location of the study area on the world (Golestan province, Iran).

Climate and vegetation datasets as independent factors
Precipitation

As one of the reliable precipitation datasets, the Climate Hazards Group Infrared Precipitation
with Stations (CHIRPS) globally provided us with a high resolution of precipitation through
interpolation approaches (around 0.05°) for a long period (daily from 1981 to the present time) based
on infrared Cold Cloud Duration (CCD), Image Collection ID on Google Earth Engine (GEE), cloud-
based image processing platform, and "UCSB-CHG/CHIRPS/DAILY" (Funk et al. 2015).

Land Surface Temperature (LST)

The Terra-MODIS Land Surface Temperature (LST) (MOD11A1, 1 km) manipulated by Google
Earth Engine (GEE) provided daily information from 09/06/2020 to 17/09/2020. For all the 15
monitoring windows (Table 1), LST time series presented the mean temperatures (day/night) of LST
for every window.

Evapotranspiration (ET)

Net Evapotranspiration (ET) was provided by the Evapotranspiration/Latent Heat Flux
(MOD16A2/V6) with the productivity of an 8-Day Global 500 m. The algorithm embedding the
MOD16 data collection was based on the Penman-Monteith equation (Allen 1996), which was a
combination of different input sources, including daily meteorological reanalysis data, vegetation
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property, albedo (light surfaces reflect more heat than dark surfaces), and MODIS-land cover (global
supervised classification map which highlight different type of vegetation).

Table 1. Monitoring windows for synoptic recorded spider-mite population

Monitoring windows Date range
W1 May 30, 2020—June 9, 2020
W2 June 9, 2020-June 17, 2020
W3 June 17, 2020-June 24, 2020
w4 June 24, 2020-June 30, 2020
W5 June 30, 2020-July 8, 2020
W6 July 8, 2020-July 15, 2020
W7 July 15, 2020-July 21, 2020
w8 July 21, 2020-July 29, 2020
W9 July 29, 2020-August 3, 2020
W10 August 3, 2020-August 11, 2020
W11 August 11, 2020-August 18, 2020
W12 August 18, 2020—-August 29, 2020
W13 August 29, 2020-September 5, 2020
W14 September 5, 2020—September 10, 2020
W15 September 10, 2020-September 17, 2020

The Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index (NDVI) is one of the most applicable vegetation
indices in remote sensing projections (Lamgadem et al. 2018). NDV1 is worked on the red and NIR
reflectance of an object. Its values are within the range of —1 (water resources and snow body) and
+1 (full vegetation coverage). In the current research, the 7-10-day multi-temporal Sentinal-2 data
were provided by NDVI index during monitoring the windows.

Air pollution (aerosol index)

The "NRTI/L3_AER_AI" dataset from Sentinel-5 provides near real-time high-resolution
imagery of the UV Aerosol Index (UVAI) or Absorbing Aerosol Index (AAL). This index works
according to the wavelength-dependent changes in Rayleigh scattering in the UV spectral range for a
pair of wavelengths, i.e., 354 and 388 nm. A positive AAI indicates the presence of those phenomena
that can absorb UV, like dust and smoke. The pair of selected wavelengths are very lowly absorbed
by ozone (Soleimany et al. 2021).

Spider mite sampling and spatial analysis as dependent factors for drawing the distribution map
of T. urticae
Spider mite sampling as the ground-truth data

The ground-truth data of spider-mite population were reported via mean percentage of the leaf
area infected with various symptoms of spider mite (dust-silk webbing, yellow spots, etc.). One
hundred cotton leaves were randomly observed by our experienced experts, who estimated the
infestation scores of spider mite in each field according to the following formula.

(nyxp)+ (njxpj)+(yxp)+--
100

(D Infestation rate =

Where n and p are the number of leaves and their infestation percentage, respectively, and i, j, |
etc. indicate the same infestation percentages. For the unity of procedure, the estimated percentages
of infestation were reported based on specific intervals, including 0 for no evidence of spider mite,
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and 1-10 %, 11-20 %, 21-30 %, 31-50 %, and > 50 % of infested leaf area, respectively. In this
research, the data collected from 65 cotton fields throughout Golestan province were utilized based
on the grid cells of 6 (min.) x 6 (min.) in the Degree/Minute/Second (DMS) coordinate system (Fig.
3). Measurements in these fields were based on the percentages of spider mite involvement during a
fixed time. Afterwards, the distribution maps of spider mite were spatially analyzed for 15 monitoring
windows via Inverse Distance Weighted (IDW) interpolation by using ArcMap/GIS 10.6 software.
The deterministic interpolation method was applied to ‘Spatial Analyst Tools” in ArcMap software
package (version 10.6, ESRI, Redlands, CA) to draw the spider mite distribution maps using the
collected data. This process was performed in every monitoring field located inside a grid cell.
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Figure 3. Spider mite distribution throughout Golestan province; 6 (min.) x 6 (min.) grid cells in the DMS coordinate
system (yellow points indicate the monitoring fields).

Regression analysis

Various satellite data, such as AAL index of Sentinel-5P, LST-MODIS (Terra), NDVI-Sentinel-
2, CHIRPS, and ET-MODIS, were assessed as the main independent factors for spider mite outbreak.
For each window, 200 random points were extracted to assess the correlation between an interpolation
map of spider mite (dependent factor) and 5 satellite-based parameters (independent factors) by using
‘ee.FeatureCollection.randomPoints’ via Google Earth Engine (GEE) platform. The relationships
between the 5 parameters and the distribution windows maps were statistically examined using
ANOVA regression analysis in SPSS software (version 23).

Spatial autocorrelation

Moran's Index has been known as a more applicable statistic for spatial autocorrelation. Global
Moran's | can estimate the possibility of spatial correlation at the study region. The amplitude of
fluctuations in the Moran's | values is between 1 and —1. Positive autocorrelation (clustered) and
negative autocorrelation (dispersed) in the data are translated into the positive and negative values of
Moran's I, respectively. The random distribution of a variable (no autocorrelation) results in a value
close to 0 (Overmars et al. 2003). The relationship between a pixel and its surrounding pixels is
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estimated by weight matrix. Therefore, a distance-based weight matrix (a threshold distance of 5000
m) was applied to consider the “neighbors” (just non-zero values) for all the pixels located at a certain
distance. The normal approximation for global Moran's I could be standardized to Z(I) and Z(I)
(Legendre and Fortin 1989). The significance level of Z(I) was a threshold (1.96) so that the spatial
autocorrelation could be regarded significant if Z(I) fluctuated between 1.96 and —1.96 (Zhang and
McGrath 2004). The spatial correlogram showed patterns of spatial autocorrelation when the
distances between the observations increased. The spatial correlogram was drawn in two common
forms, including Moran's | or Z(I) (standardized Moran's I) (Legendre and Fortin 1989), which were
plotted as ordinate against distance as abscissa although the standardized correlogram represented the
spatial distance correlation that was the first positive peak (Zhang et al. 1998). Local Moran's | is
computed to identify locations of spatial clusters and outliers (Anselin 2010). In the analysis of local
Moran's |, there are 5 possibilities for local spatial autocorrelations. Two types of them distinguish
spatial clusters, including high values surrounded by high values (high-high) and low values
surrounded by low values (low-low). Two other types are known as outliers, including high values
surrounded by low values (high-low) and low values surrounded by high values (low-high). Finally,
the last value is plotted as a non-significant spatial pattern (spatial randomness).

Geostatistical method

In the grid system, the classical IDW interpolation method had the lowest Root Mean Square
Error (RMSE) in pre-evolution (Gorgan data) compared to those of the other methods. It was used to
build the abundance maps, which were consistent with the results obtained by Al-Kindi et al. (2017).
Through IDW method, the values of an unknown pixel are estimated by the predicted nearby pixels
though restricted in the range of maximum and minimum values of the true pixels. The Nearest
Neighbor Statistical (NNS) analysis spatially detected statistical moth distribution, including absence,
random, regular, or aggregation possibilities in each area (Vinatier et al. 2011).

RESULTS AND DISCUSSION

Spatial pattern analysis of spider mite using the spatial autocorrelation analysis

Generally, a higher Moran's | in the absolute value represents a greater spatial correlation and a
more significant spatial autocorrelation is shown by a higher standardized form of Moran's I, Z(1),
which is able to compare the statically spatial patterns of different phenomena or different calculating
parameters of the same phenomenon. At the global autocorrelation, Table 2 depicts the first three
windows (there were no data for spider-mite population in the first window), which do not show a
significant correlation (random distribution) for the standardized form of global Moran's I (> 1.96).
The 4™ window was at a significant level during June of 2020. During the studied periods, the cotton
plants did not complete the canopy, but they were symmetrical with the wheat harvesting calendar at
the 4™ window in Golestan province. Wheat harvesting causes huge local dust. After that, a sinusoidal
pattern was seen in the global autocorrelation (randomness to aggression, vice versa) (Table 2). By
beginning of August 2020 (the 9" and 11" windows), the study areas faced a spider mite outbreak
and the strongest spatial structure was evidenced (Fig. 4h, i). The descending spatial structures at the
10, 13" and 14™ windows could be related to pesticide application at the cotton fields.

Figure S1 represents the standardized spatial correlograms of spider mite distribution at all the
monitoring windows (15 windows). The Moran's | and standardized Moran's I, Z(l), reached their
maximum values at the threshold distance of the weight matrix. At the 1% window (May 30, 2020
June 9, 2020), no spider mites were observed in the pilot farms and thus, no data were reported by
the local experts. The positive standardized Moran's | values at the distance of 5-15 km indicated the
spatial clusters of similar spider mite populations. Generally, the optimal distance was 10 km to reach
the maximum value of Moran's | for detecting a local spatial pattern. The interpolation maps of spider
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mite population were drawn using the IDW method through cross-validation of the parameters. The
evaluation indices obtained from cross-validation of the IDW maps for all the monitoring windows
are given in Table 3 and Figure S2.

Table 2. Spatial global autocorrelation of spider mite population at monitoring programs, Dispersed [ Z(l)** < —2.58;
—2.58 < Z(I)* > —1.96; p-value = 0.1, —1.96 < Z(l) > —1.65], Random [-1.96 < Z(I)"> —1.65], Clustered [Z()** >
-2.58,1.96 < Z(I)* > 2.58; p-value = 0.1, 1.65 < Z(1) > —1.96].

period Global Moran's Index Z-score p-value pattern
Window_1 No Data No Data No Data No Data
Window_2 0.029207 0.731330 0.464578 Random
Window_3 —0.003930 0.107097 0.914712 Random
Window_4 0.247838 3.871930 0.000108 Clustered
Window_5 0.053822 1.018388 0.308494 Random
Window_6 0.043046 0.961567 0.336267 Random
Window_7 0.096227 1.789161 0.073589 Clustered
Window_8 0.076148 1.641488 0.100696 Random
Window 9 0.337405 6.283151 0.000000 Clustered
Window_10 —0.009247 —-0.016164 0.987104 Random
Window 11 0.262986 6.777026 0.000000 Clustered
Window_12 0.217330 4.373817 0.000012 Clustered
Window_13 0.039474 0.991156 0.321610 Random
Window_14 0.042141 1.339547 0.180393 Random
Window_15 0.264988 5.138441 0.000000 Clustered

Table 3. Evaluation indices of the interpolation maps (IDW) of spider mite distribution during monitoring program.

period equations RMSE
Window_1 No data No data
Window_2 0.029 x x + 0.023 0.3556
Window_3 0.018 x x + 0.1086 0.5555
Window_4 0.035 x x +0.116 0.4650
Window_5 0.063 x x + 0.284 0.62478
Window_6 0.035 x x + 0.201 0.7948
Window_7 0.0557 x x + 0.209 0.6404
Window_8 0.091 x x + 0.161 0.6792
Window_9 0.255 x x + 0.102 0.534
Window_10 0.0279 x x + 0.239 1.009
Window_11 0.066 x x + 0.257 0.891
Window_12 0.137 x x + 0.259 0.893
Window_13 0.032 x x + 0.239 1.054
Window_14 0.012 x x +0.25 0.919
Window_15 —-0.008 x x + 0.071 0.6030

Cross-validation of the spatial interpolation confirmed the accuracy of the estimated model. The
common parameters, which could measure errors, included Mean Error (ME), Mean Absolute Error
(MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). RMSE, which is
sensitive to outliers, is known as an optimal model evaluator capable of measuring error size
(Willmott 1982; Hernandez-Stefanoni and Ponce-Hernandez 2006). The smaller RMSE indicated that
the semivariogram parameters calculated by fitting the experimental values were suitable and the
geostatistical prediction had worked more accurately. According to the interpolation maps of spider
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mite distribution, some regions struggled with high population densities of T. urticae (Fig. 4). The
infestation patterns of T. urticae revealed the temporal hot spots in the central and eastern areas of
Golestan province where the mechanized harvesting of grains was associated with dust pollution (Fig.
4 b—f). Upon establishing spring and summer crops like cotton in late July, the patterns of T. urticae
changed towards other regions of the study areas. In the 8" window (July 21, 2020-July 29, 2020),
Aqgala city was the main area of T. urticae (Fig. 4g). This finding was confirmed by the Agriculture
Administration, which named Aqqala as the niche of T. urticae at Golestan Province. At the 15"
window, T. urticae population declined sharply because of completion of the growing season of
cotton and arrival of the harvest dates (Fig. 4n). The spatial analysis of T. urticae during the growing
season of cotton revealed several ups and downs in T. urticae populations, but the climatic aspects
influencing this pattern still remained hidden. Based on the empirical observations, climatic variables,
especially aerosol and dust in the air, had significant impacts on T. urticae population.
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Figure 4. Distribution maps of spider mite based on IDW model during monitoring windows, a—n are the sequence
windows form June 9, 2020 to September 17, 2020 (First window, May 30 to June 9 was not spider mite population
data).
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Figure 4. Continued.

Effects of climatic factors on spider mite population

As mentioned before, there were not enough canopies to establish T. urticae on the cotton fields
up to the 5™ window (Fig. 4d), after which the spider mite outbreak coincided with the wheat harvest
and a high aerosol index of 0.167 on the 21% of June, 2020. In the first three windows, the study area
experienced several dusty days and faced the 1%t peak of T. urticae population (Figs. 4d, 5). The
statistically tight relationship between dusty days and spider mite was repeated in the transition mode
from the 9" and 13" windows to their next windows (from w9 to w10 and w13 to w14) (Fig. 5). The
effects of dust and different environmental conditions on spider mites were reported in several studies
(Hodek 1987; Thomas 2001; Guerena and Sullivan 2003). The results of the previous studies
conducted by Flint (1998) and Guerena and Sullivan (2003) supported those of the present research.
The mentioned studies also represented that the dusty conditions almost caused an increase in T.
urticae populations on farms. According to the findings obtained by Demirel and Cabuk (2008),
spider mite densities were 1.72, 1.75, 4.39, and 2.65 times higher on cotton farms in the vicinity of
dirt roads compared to asphalt roads. Therefore, dust removal could be considered as an applicable
approach to the proper production of organic cotton (Guerena and Sullivan 2003) by controlling T.
urticae population using insecticidal soaps and through water washing to achieve complete coverage.
The effects of precipitation that has the ability to remove dust on cotton canopies and control T.
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urticae populations are presented in Figure 6. In the 1% window, the hidden impact of rainfall on
lowering T. urticae population could be observed along with about 2.5 mm/day precipitation resulting
in a low density canopy in this period. This negative relationship was repeated in the 9" and 12
windows (approximately >2 mm). Based on current results, the study area would experience a severe
outbreak of T. urticae during July 2020 even if rain did not fall about 2 mm on July 6 and 16, 2020.
The threshold precipitation level was estimated to be at least 2 mm to clean up the canopy. Rao et al.
(2018) evaluated the impacts of environmental factors on the population dynamics of T. urticae in
the ecosystem of Brinjal, India, and reported a gradual increase in T. urticae population from 4.34 to
32.64 (number of mites present in 2 cm? of leaf area), the result of which is in agreement with that of
the current study showing an increase from 0.05 to 0.45 scores of spider mite populations. The
findings of Rao et al. (2018) demonstrated that rainfall (Y = 19.358-1.055X; R? = 0.378) had a
significant negative relationship with T. urticae population, which corroborates the negative
relationship achieved in the 2" (y = —1.494 x + 0.3184; R2 = 0.2201), 9" (y = —0.4616 x + 0.6478; R2
= 0.1329), and 12" (y = —0.1428 x + 0.1103; R2 = 0.1213) windows of the current research. The
absence of precipitation coupled with a suitable temperature was introduced by Rao et al. (2018) as
the main environmental factor contributing to the rise in T. urticae population. Evaluation of the
relationship between spider mite population and temperature averages was another part of our climate
studies. The main source of temperature measurement was MODIS-LST imagery twice a day (Fig.
7). We could not find a significant relationship between temperature and T. urticae population until
August, 2020. Nevertheless, significantly tight relationships were observed in the 9" (y = 8.4748 x +
38.298; R2 = 0.3519; P-value = 0.000), 10" (y = 7.5261 x + 38.43; R2 = 0.1283; P-value = 0.008), 11%"
(y = 3.7942 x + 33.272; R2 = 0.0859; P-value = 0.041), 12" (y = 6.6459 x + 35.306; R2 = 0.1675; P-
value = 0.004), and 13" (y = 6.322 x + 36.522; R? = 0.178, P-value = 0.002) windows. In many
studies, a negative relationship between temperature and spider mite populations has been reported
(Majeed et al. 2016; Fahim and El-Saiedy 2021). This result is congruent with those obtained by
Fahim and El-Saiedy (2021), who reported an insignificant relationship between mean temperature
and T. urticae populations at the beginning of the growing season. However, there are many findings
from the previous literature supporting the positive relationship between T. urticae populations and
temperature ( Meena et al. 2013; Chauhan and Shukla 2016). The seasonal abundance of T. urticae
is influenced by biotic and abiotic factors. Parasitoid and predators are known as the biological factors
suppressed by temperature and drought (Romo and Tylianakis 2013). Evapotranspiration (ET) as
another parameter of climate was predicted to affect the abundance, distributions, and activities of
pests. Increasing ET shows the potential to simulate drought conditions (Mullan et al. 2005). The
relationship between spider mite populations and ET depicted a statistically strong relationship (mean
square = 0.349; F = 21.038, R? = 0.637; p-value = 0.001) as displayed in Figure 8. This result was
similar to the findings of Litskas et al. (2019), who reported the relationships of ET with T. urticae
(R?=0.46) and its natural enemy, P. persimilis (R?= 0.60), respectively. Since all the climate factors
had their effects on this plant, NDVI could support its correlation with spider mite populations as
well. During monitoring the windows, negative and positive relationships between NDVI and spider
mite scores were observed. Also, there was a positive correlation between increasing NDVI and T.
urticae population up to the 10" window (August 2020) (Figs. 9a—g). The 5" and 6™ windows (middle
of July 2020) demonstrated significant relationships (R?= 0.107, p-value = 0.016) and (R?= 0.110, p-
value = 0.015), respectively. Beginning in August 2020, there was a shift to a negative relationship,
especially in the 9" and 13" windows with R? = 0.273 (p-value = 0.000) and R? = 0.139 (p-value =
0.006), respectively. This phenomenon was interpreted by the fact that T. urticae had an opportunity
to establish its communities through cotton canopy enhancement. After that, the negative correlations
were due to T. urticae population causing a severe decrease in NDVI (Fig. 9). The NDVI decline
caused by T. urticae was confirmed by numerous studies aimed at assessing T. urticae population and
its damages (Lan et al. 2013; Martin et al. 2015; Martin and Latheef 2017). During multi-temporal
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NDVI series, severe reduction of the 11" window (3—-11 August, 2020) was observed because of high
aerosol density and low rainfall (Fig. 9j).
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Figure 5. The relationship between UV Aerosol Index extracted from Sentinel-5 imagery and spider mite population
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spider mite distribution data).
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Figure 9. The relationship between NDVI (10 m) provided form Sentinal-2 and density of spider mite during monitoring
windows based on ANOVA for linear regression. The alphabetical letters indicate of the sequence windows from
June 9, 2020 to September 17, 2020 (First window, May 30 to June 9 was not spider mite distribution data).
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Figure 9. Continued.
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Figure 9. Continued.

CONCLUSION

In this investigation, T. urticae was found to have diverse responses to climatic factors. Based on a
pre-judgment at the beginning of the study, from among the varied climatic factors, aerosol index
(dusty days) was predicted to severely influence the spider mite density on the monitoring fields.
However, evapotranspiration was seen to be exactly synced to the population dynamic of T. urticae.
Indeed, sentinel-5 and MODIS-evapotranspiration were evidenced to have a suitable potential to
predict spider mite populations with the help of aerosol index with a high temporal resolution. The
study of these drivers offers a realistic view of the accurate models experts can design under a regime
of climate change.
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