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Ensemble Workflows

• Ensemble Workflows – Executing multiple instances of a 
traditional workflow
– Examples: Hyperparameter optimization in AI, 

simultaneous execution of multiple short-range simulations in MD codes

• Scaling ensemble workflows on a cluster/HPC system
– Everyone focuses on efficient compute resource utilization
– End goal is high task throughput

• Extreme scale execution more than just efficiently using CPUs
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Use of WMS in HPC

• Limited adoption of WMS in HPC

• Application scientists hesitant to use WMS

• Too many WMS, lack of classification

• Over 300 systems listed here! à

• Limited support for WMS by HPC facilities

• Common practice to throw together a resource 
manager

• Will it scale to extreme scale?

• What should a WMS for extreme-scale science 
provide?

https://s.apache.org/existing-workflow-systems

https://s.apache.org/existing-workflow-systems


44 Running Ensemble Workflows at Extreme Scale, eScience 2022

Goal of this work

• Use a computational biology AI workflow for 
ensemble runs

• Use the Cheetah campaign management system 
from ECP for efficient resource management

• Highlight challenges encountered at extreme scale
– Composition, execution, and data model

• Discuss lessons learned

• How to design an ensemble workflow from the 
ground up

A schematic of scaling challenges at extreme scale
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iRF-LOOP
• The Iterative Random Forest Leave One Out Prediction (iRF-LOOP)

– Iterative Random Forest algorithm for the creation of Predictive Expression Networks on the 
order of 40,000+ genes

• Multi-threaded C++ application

• Ensemble workflow runs a separate iRF instance for each feature

• Each instance generates importance vector files and model weights that are post-
processed

• Each instance has its own workspace to avoid output filename collision
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iRF-LOOP Execution – The Naïve Approach

• Scientists use shell scripts to run ensemble workflow

• Manually manage CPU resources

• Each instance runs on one node

• Submit a group of runs to fill nodes

• Wait statement acts as a synchronization barrier

• Severely underutilizes resources if different instances 
finish at different times

• Must use more sophisticated resource manager to 
dynamically spawn instances

#BSUB −nnodes 3 

jsrun −p1 irfloop f1 & 
jsrun −p1 irfloop f2 & 
jsrun −p1 irfloop f3 & 
wait 

jsrun −p1 irfloop f6 & 
jsrun −p1 irfloop f7 & 
jsrun −p1 irfloop f8 & 
wait
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Cheetah WMS

• WMS designed specifically for parameter sweeps

• Python-based API to create ‘Campaign’

• Runtime engine dynamically spawns instances 
over available resources

#BSUB −nnodes 3 

jsrun −p1 irfloop f1 & 
jsrun −p1 irfloop f2 & 
jsrun −p1 irfloop f3 & 
wait 

jsrun −p1 irfloop f6 & 
jsrun −p1 irfloop f7 & 
jsrun −p1 irfloop f8 & 
wait

#BSUB −nnodes 3 

jsrun −p1 cheetah

Campaign directory layout

à Runtime Execution
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Executing the iRF-LOOP Ensemble using Cheetah

• Test ensemble using a community 
dataset consisting of 1,606 features
– 1,606 * 50 test sets = 80,000+ runs

8.75𝑥 improvement in feature throughput 
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Ready to scale up?

• Using Cheetah easy
– Short learning curve
– Pure Python, easy to install
– Good speedup with low effort 👍
– Fairly sophisticated WMS – create 

ensemble, execute, monitor, resume

• Lets scale up

• Process large dataset with 81,000 
features
– 81k features * 50 test sets = 4,00,000+ runs

• Two Campaign designs

• Capability class
– One large batch job for all runs
– Good for leadership-class supercomputers
– Large resource allocation

• Capacity class
– Large collection of batch jobs
– Good for capacity-class supercomputers
– Many, smaller resource allocations
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Challenges at Scale

• Composing a large campaign - Memory and time

• Execution of a large campaign - Job scaling, task scaling

• Data scalability - I/O and file system, metadata
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Lesson 1: Cost of Ensemble Setup
• Cost of composing the ensemble high

• Setup process runs out of memory for setting up large ensemble
– Use Python generators to manage memory usage

• Almost 4 hours to create ensemble directories and files
– 40% in file and dir operations, 20% in JSON operations, remaining 40% in Python processing

• Creating an ensemble directory hierarchy is memory intensive and time consuming at 
scale
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Lessons 2 and 3: Job and Task Scaling

• Lesson 2: Queue policies restrict the 
maximum number of jobs in queue

• Limit of 5000 on Perlmutter, 100 on Summit

• Cannot submit full campaign of 80k jobs

• Solution is to use WMS with dynamic job 
management capabilities
– HTCondor, Pegasus, Makeflow and more

• Lesson 3: Job Step Scalability limits 
Task Scalability

• Job execution on most supercomputers:
login node à batch node à compute 
nodes

• Limit on the no. of concurrent srun, jsrun job 
steps from a batch/service node
– Max 1000+ jsrun invocations on Summit

• Limits no. of concurrent ensemble runs
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Lesson 4: Limits on Metadata Scaling

• JSON/YAML formats common for metadata
– Human readable, easy to use

• At extreme scale for iRF-LOOP, 
JSON metadata file over 50 MB!

• Updating a single value in JSON loads the 
entire file in memory

• Fast updates at scale lead to metadata 
bottleneck

• Popular file formats for metadata 
management perform poorly at scale 

• Need to switch over to scalable DB options

Time to update a value in a JSON file
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Lessons 5 and 6: Filesystem and Post-processing 
Overheads
• Files, files, and more files!

• Files provide an easy-to-use way to store data

• A few files per run easily leads to millions of files at scale

• Filesystem scalability issues and limits on inode usage

• Post-processing – read back large no. of files for processing and analysis

• Post-processing data from a large ensemble is prohibitively expensive

• A workflow consisting of a post-processing phase that reads back files bound to fail

Files created by the app in each instance 13
Files created by the WMS 12
No. of runs in the ensemble > 4 million
No. of directories in the ensemble > 4 million
Total no. of files expected > 100 milllion
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WMS for Extreme Scale Workflows: A Path Forward

• Dynamic Execution
– Dynamically create batch jobs and 

assign runs to jobs

• Scalable Task Scheduling
– Pilot-based systems and scalable 

resource management

• Strong integration with 
scientific data management
– How to translate from a traditional file-

based model to HDF5, ADIOS?

• Scalable metadata 
management
– Export API for metadata storage

• Automatic provisioning of 
storage hierarchy
– Transparently use tiered storage

• Online data analysis
– Abstractions to easily move from 

post-processing to in situ
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Summary

• Challenges in scaling ensemble workflows to extreme scale

• Initial application design must include efficient data 
management
– Cannot liberally use files for data and metadata
– File-based post-processing workflow cannot scale

• WMS must include scalable job and task scheduling
– Easy integration into an existing workflow

• Easily integrate hardware resources such as tiered storage

• How to bring together strengths and features of different WMS
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Thank you


