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ABSTRACT Supervoxels find applications as a pre-processing step in many image processing problems
due to their ability to present a regional representation of points by correlating them into a set of
clusters. Besides reducing the overall computational time for subsequent algorithms, the desirable properties
in supervoxels are adherence to object boundaries and compactness. Existing supervoxel segmentation
methods define the size of a supervoxel based on a user inputted resolution value. A fixed resolution results
in poor performance in point clouds with non-uniform density. Whereas, other methods, in their quest for
better boundary adherence, produce supervoxels with irregular shapes and elongated boundaries. In this
article, we propose a new supervoxel segmentation method, based on k-means algorithm, with dynamic
cluster seed initialization to ensure uniform distribution of cluster seeds in point clouds with variable
densities. We also propose a new cluster seed initialization strategy, based on histogram binning of surface
normals, for better boundary adherence. Our algorithm is parameter-free and gives equal importance to the
color, spatial location and orientation of the points resulting in compact supervoxels with tight boundaries.
We test the efficacy of our algorithm on a publicly available point cloud dataset consisting of 1449 pairs
of indoor RGB-D images, i.e., color (RGB) images coupled with depth information (D) mapped per pixel.
Results are compared against three state-of-the-art algorithms based on four quality metrics. Results show
that our method provides significant improvement over other methods in the undersegmentation error and
compactness metrics and, performs equally well in the boundary recall and contour density metrics.

INDEX TERMS Clustering methods, supervoxels, over-segmentation, point clouds

I. INTRODUCTION

Like superpixels in 2D images, supervoxels are a collection
of 3D points or pixels of a 3D image that are grouped together
based on closeness between their spatial location and other
textural features. For this work, we define supervoxels as
disjoint clusters of points in a point cloud. Supervoxels rep-
resent regions in a point cloud that share common features,
such as spatial location, color, and orientation. Subsequent
computationally intensive image processing algorithms work
on supervoxels instead of individual points or pixels to save
computational time. Supervoxels find applications in various
fields, such as point cloud segmentation and classification,
[1], 3D semantic segmentation of point clouds, [2], [3],

medical imaging, [4], [5], object detection, [6] and saliency
detection, [7], to name a few. Despite so many applications,
there is few literature that deals with clustering methods
tailored for point clouds.

The desirable properties in a supervoxel include: (1)
boundary adherence, i.e., a supervoxel should preserve ob-
ject boundaries and should overlap with only one object
and not cross over the boundaries, (2) compactness, i.e.,
supervoxels should have a regular shape and should not have
elongated and arbitrary boundaries, and (3) efficiency, i.e.,
they should be computed fast enough not to decrease the
efficiency of subsequent algorithms that use supervoxels.
Existing supervoxel segmentation methods fall short on some
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FIGURE 1. An example showing deficiencies in existing supervoxel segmentation methods and improvements in those aspects achieved by our proposed method

of these desirable aspects, especially, compactness. Fig. 1
shows an example of some of the shortcomings of existing
methods. Fig. 1 shows a point cloud of a complex scene
with many objects and high depth of field. Methods that rely
on a constant user-inputted supervoxel resolution value fail
when the point cloud density or depth varies steeply (see
Fig. 1(b)), while other methods that adapt well to variable
point density and can provide good boundary adherence for
general point clouds, produce irregularly shaped supervoxels
(see Fig. 1(c)). Non-compact supervoxels introduce spatial
discontinuity and are not a desirable property in good super-
voxels. Moreover, the artificially elongated boundaries may
influence the values of comparison metrics to show more
accuracy but do not look visually appealing.

In this work, we propose a new clustering method for
colored point clouds. Our method is based on the k-means
algorithm, like the SLIC algorithm by Achanta et al., [8]. The
distance metric used in our method gives equal importance
to color, points’ spatial position and their orientation and is
thus, free from implicit parameters. This property produces
compact clusters with regular shapes. To maintain sensitivity
to varying point density, we introduce a cluster seed re-
initialization strategy to dynamically remove cluster seeds
with very few assigned points or to add additional cluster
seeds in regions with considerable number of unlabeled
points. For better boundary adherence, we introduce a new
strategy to first create a histogram of all points based on
their surface normals and initialize cluster seeds according to
the histogram bins. This strategy allows us to create cluster
seeds in small, isolated regions or objects that may be missed
otherwise when cluster seeds are distributed uniformly across
the spatial extent. We tested the efficacy of our method
on the publicly available NYU Depth V2 dataset, [9], and
compared it against three state-of-the-art supervoxel segmen-
tation methods based on four evaluation metrics.

Results show that our method performs best in terms of
undersegmentation error and compactness metrics. While the
performance of our method in the boundary recall metric is
comparable to existing methods, we show that our method
produces compact supervoxels with fine boundaries which
make it look visually appealing than other methods. Al-
though dynamic cluster seed initialization introduces addi-
tional computational overhead, the gained accuracy in terms
of boundary adherence and compactness can be beneficial

for algorithms that are not seriously restricted in time. We
previously introduced this method in [10] where we used it
to cluster a set of 3D points with surface normals representing
camera poses on the surface of a vehicle’s 3D model. It
was introduced as a pre-processing step to reduce the input
complexity of an optimal camera placement (OCP) problem
for vehicle surround vision. The method showed promising
results for the OCP problem by significantly reducing the
overall computational time (up to 160 times). However, the
supervoxel method was not analyzed as it was used as a
pre-processing step. In this article, we present a detailed
analysis of the method on colored point clouds to compare
its efficacy against state-of-the-art supervoxel segmentation
methods. The rest of the document is organized as follows:
Section II details relevant literature, Section III details our
proposed clustering method and the results are discussed in
Section IV.

II. BACKGROUND WORK
Superpixels are 2D versions of supervoxels. While super-
pixels are extensively studied in the field of image pro-
cessing, [8], [11]–[14], supervoxels have not been studied
enough despite their requirement due to recent advances in
3D image analysis. In the beginning, video sequences or
stacks of 2D images collected over time were considered as
3D images. Therefore, the first 3D extensions of superpixel
methods were tailored to deal with stacks of images, with
time being the third dimension. [8], [14], [15] are some of the
first supervoxels methods that extended their work to video
sequences. Moore et al., [14] produced over-segmentation
on videos by iteratively partitioning pixels into clusters by
horizontal and vertical cutting in 3D grid. Achanta et al., [8]
proposed an efficient and widely successful approach based
on the k-means algorithm. In their method, they distribute
cluster seeds uniformly across a 2D or 3D grid, search a local
neighbourhood around each cluster seed and assign points
to the closest cluster center based on a distance metric that
relates pixels to a cluster center using position and color
information. The primary idea behind the clustering method
we propose here is based on this method.

In [16], Veksler et al., proposed another supervoxel method
for videos where they formulate it as an energy minimization
problem and solve it using graph cuts. [17]–[19] are some
of the pioneering works on supervoxel segmentation for
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RGB-D images. In [17], the authors extended their previ-
ous work on depth-adaptive superpixels to RGB-D videos.
They used color and point normal information to construct
a graph of spatio-temporal supervoxels and used spectral
graph clustering to partition the graph into spatio-temporal
segments. Gao et al., [18], proposed a new cluster seed
initialization scheme for dense cluster seed initialization in
salient regions of the image. Their motivation for adaptive
cluster seed initialization is like ours and such a strategy
works well to improve overall accuracy by producing clusters
with non-uniform sizes and densities. Zhou et al., [20], used
hierarchical edge weighted Voronoi tessellation to propose
a multi-scale supervoxel algorithm that gradually constructs
supervoxels at higher levels based on the supervoxels con-
structed at lower levels. The method that we propose here
works on point clouds in 3D space. It is like other methods
for RGB-D data only in the sense that we use mapped RGB-
D to construct point clouds.

Papon et al., [21] proposed one of the first supervoxel
segmentation methods (vccs) tailored for point clouds. They
first voxelate the point cloud and cluster them based on voxel
adjacency. They initialize cluster seeds uniformly across the
voxelated point cloud and use the same distance metric as
SLIC, [8]. They use voxel adjacency graphs to iteratively add
neighbors to cluster seeds until all the voxels are assigned
a label. Their method is simple and fast but, the voxel
resolution parameter fails to adapt well to point clouds with
variable density. Also, voxelization produces an approxima-
tion of the underlying points, thereby decreasing the quality
of the method’s boundary adherence. Our proposed method
is like vccs in some aspects, but the primary difference is
that our method works directly on the points. Lin et al.,
[22], more recently proposed a new supervoxel segmentation
method for point clouds while citing the limitations of vccs.
They formulate it as a subset selection problem based on an
energy function that can be optimized to find optimal subsets.
Their method does not require initialization of cluster seeds
and is claimed to produce supervoxels with non-uniform
resolution to better adapt to boundaries. Their method, how-
ever, produces irregularly shaped supervoxels with arbitrarily
elongated boundaries (see Fig. 1(c)).

More recently, supervoxel methods for point clouds have
garnered increased research interest. In [23], the authors
propose modified versions of the vccs algorithm that are
better suited for point clouds. In the method, they gather point
neighbours without voxelization and combine neighbours
computed by different methods to create supervoxels directly
on the point cloud. Dong et al., [24] proposed a method that is
capable of GPU acceleration. They divide the algorithm into
two stages, where they produce an initial segmentation based
on energy functions in the first stage and improve the result
by minimizing segmentation energy in the second stage. Ni
et al., [25], proposed a new supervoxel segmentation method
based on local allocation. They propose a novel cost func-
tion for preserving boundaries which is claimed to achieve
satisfactory results through local minimization enforcement.

Lastly, [26], [27] use deep learning methods for the learning
geometrical features of point clouds and produce supervoxel
segmentation. However, none of these recent methods em-
phasise on the compactness of supervoxels.

III. SUPERVOXEL SEGMENTATION FOR POINT CLOUDS
Our clustering algorithm is an iterative process like k-means
algorithm. It is dynamic in nature as at each iteration, we
allow for new clusters centers to be added and/or existing
ones to be removed depending on the number of outlier points
and the clusters’ sizes. The algorithm works on a set of N
points, P = {p1, . . . , pN}, where each point is represented
by its position in 3D, (x, y, z), color in RGB space, (r, g, b),
and a unit surface normal vector, (u, v, w), as,

pi = [xi yi zi ri gi bi ui vi wi]
T ∀i = 1 : N. (1)

The goal is to group them into K disjoint subsets S =
{S1, . . . , SK}, where each subset, Sk represents a supervoxel
with the label k. At the end of the clustering process, it
is expected that every point in P is assigned a label k ∈
[0, . . . ,K], depending on which supervoxel the point belongs
to. Each supervoxel is represented by its centroid, Ck, that
is a 9D vector calculated as the mean of all points assigned
to it. The points are assigned to a supervoxel based on a
similarity metric, D, calculated as the Euclidean distance
between a point pi and a cluster center Ck. Supervoxel
segmentation algorithms have individual strategies to tackle
outlying points. At the end of all iterations of our algorithm,
we assign a label k = 0 to the outlier points to mark them as
unlabeled.

The algorithm requires one input parameter, i.e., the num-
ber of supervoxels, K. Our proposed algorithm differs from
VCCS, [21], in three aspects: (1) for cluster center initial-
ization, instead of uniformly sampling the point cloud we
exploit the surface geometry to identify important regions in
the point cloud, (2) instead of projecting the points into lab
color space, we propose a method to use the similarity metric
in the RGB color space, and (3) we allow to add or remove
supervoxels dynamically to ensure that the entire point cloud
is covered by the over-segmentation. The following sub-
sections detail the individual steps of the algorithm, i.e.,
cluster center initialization in Section III-A and, assignment
and update steps in Section III-B.

A. INITIALIZATION
We propose a novel approach to select initial cluster seeds
based on points’ orientation while ensuring that they are not
initialized close to one another. Like the strategy used in [8],
we assume that supervoxels are regular in shape and estimate
the sidelength of each supervoxel as S =

√
N
K . Two cluster

centers placed close to one another will have a significant
overlap in their search spaces. This results in competition for
the same set of points in every iteration and the algorithm
may never converge. Therefore, we first voxelate the point
cloud with a voxel sidelength of S and select K voxels as
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FIGURE 2. Fibonacci spiral bins on a unit sphere, [28]

initial cluster seeds. In the process of voxelation, a uniform
grid is placed over the point cloud and the value of each grid
cell (voxel) is given as the average of all the points that lie
within that cell. Points from cloud that are spatially closest to
the K selected voxel centers are chosen as the initial cluster
seeds. While methods like vccs, [21], select all the voxels in
the voxelized point cloud as initial cluster seeds, we propose
a new point orientation-based histogram binning to select
only K important points as seeds from all the voxels. This
strategy ensures that we do not overfit the data and create
only K supervoxels as specified by the user.

To identify geometrically important regions, we construct
a histogram of the voxels’ surface normals using the Fi-
bonacci spiral binning technique as described in [28]. Fi-
bonacci spiral binning works by creating a Fibonacci spiral
on the sphere from the north to the south pole with each
bin location placed at equal increments along the spiral. Fig.
2(a) shows an illustration of bin centers initialized along the
Fibonacci spiral on a sphere. An illustration of Fibonacci bins
is shown in Fig. 2(b). Authors in [28] argue that Fibonacci
spiral produces uniformly distributed bins around the sphere
when compared with other binning techniques (e.g., equian-
gle grid). This binning technique requires that an odd number
of bins must be created to have an equal number of bins in
the two hemispheres. If we want to create bn = K number of
bins, then the bin centers are given in spherical coordinates
as,

B[θ,ϕ](d) =
[
sin−1

(2d
bn

)
+

π

2
,
2π

τ
mod(d, τ)

]
, (2)

where, θ and ϕ are the azimuthal and polar angles, respec-
tively, τ = 1+

√
5

2 is the golden ratio, and d ∈ 1−bn
2 , . . . , bn−1

2
is an integer used to represent the bin centers. The unit
surface normals of all the voxels from the voxelated point
cloud are first projected into spherical coordinates and then
assigned to closest bin center by either a brute force approach
or by a faster implementation as proposed in [28]. We use the
implementation proposed in [28] as it is faster than the brute
force approach especially when K is large.

For indoor scenes taken by one still camera (like the data
used here), the surface normals lie within only one hemi-
sphere as the normals point towards the camera. Therefore,

for better binning accuracy in indoor point clouds, we create
bn = 2K number of bins. After creating the histogram of
surface normals, all the bin centers without any assigned
normals are deleted and one voxel from each of the remaining
bins (say we have b′n bins with at least one assigned normal)
is selected as a cluster seed. The remaining K − b′n clus-
ter seeds are initialized at equal intervals in the remaining
voxels across all bins. Through this strategy, we give more
importance to the geometry of the scene than to the spatial
distribution of points. Identifying important regions through
binning of normals allows for greater representation of small
distinct objects, while at the same time, there is a higher
chance that large objects (e.g., walls) get multiple cluster
seeds.

B. ALGORITHM
In the assignment step, the points pi are assigned to the
cluster center Ck, based on a distance metric D. D is com-
puted as a combination of the Euclidean distances between
the position, color, and normal vectors of a point pi and
a cluster center Ck. For a given point pi and a cluster
center Ck, ds =

√
(xi − xk)2 + (yi − yk)2 + (zi − zk)2

is the distance between position vectors and dn =√
(ui − uk)2 + (vi − vk)2 + (wi − wk)2 is the distance be-

tween normal vectors. In [29], the authors propose a novel
low-cost approximation for calculating the distance be-
tween two colors in RGB space directly. They cite sub-
jective experiments to claim that their proposed formu-
lation overcomes limitations of LUV color space. More-
over, as general datasets have color information given in
RGB space, computations to convert from RGB space
to LUV space can be avoided through this non-linear
distance metric. We propose to calculate the color dis-
tance between a point and a cluster center as dc =√
fr · (ri − rk)2 + fg · (gi − gk)2 + fb · (bi − bk)2, where,

fr = 2 + rm
256 , fg = 4, and fb = 2 + 255−rm

256 are weights
for the respective colors, and rm = ri+rk

2 is the mean of red
color. The distance metric for comparing two points is then
given as,

D =

√
d2n +

1

ns
· d2s +

1

nc
· d2c , (3)

where, ns and nc are normalization factors for spatial and
color distances, respectively. Only the points lying inside a
spherical neighbourhood of radius S are processed for each
cluster center. This implies that a point can be at the most
S units from its cluster center. Therefore, we set ns = S.
Similarly, as the range of color values range in [0, 256], we
set nc = 256. dn does not require normalization as a point’s
orientation is given by unit surface normals.

The algorithm starts by going through each cluster center
sequentially and searching a spherical neighbourhood of
radius S around it. The encountered points are assigned to
the cluster center if it is the smallest distance, D, the point
has seen so far. After this operation, the outlying points
(unassigned points) are collected (Let us call the count of
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outlying points as Nol). As these point clouds are not dense
enough to be considered as volumes, we can ignore the depth
dimension of the points and assume that the approximate size
of each supervoxel to be csize = N

K . This estimated size of a
supervoxel is used later in the update step of the algorithm
to estimate the number of cluster centers to be added. By
keeping csize constant throughout the algorithm, we can keep
the final number of supervoxels close to the user-specified
value K.

In the update step all the cluster centers with the number
of assigned points less than 10% of csize are removed. If Kr

cluster centers are removed, the remaining K − Kr cluster
centers are updated as the mean of all the points, pi, assigned
to each. After updating the cluster centers, additional cluster
centers are initialized in the set of unassigned points. A new
point cloud is created from the set of unassigned points and
new clusters are initialized in it following the same procedure
as described in Section III-A. The number of cluster centers
that need to be initialized from the unassigned points is
given as cadd = Nol

csize
. The process of dynamically adding

and/or removing cluster centers results in different number
of clusters (say K ′) from the user selected value K. The
actual value of the difference K ′ −K depends on the spatial
distribution of the points. However, the process of dynamic
cluster seed initialization has two advantages: (1) small but
geometrically distinct regions get their own cluster seeds,
and (2) outlier points do not get incorrectly assigned to any
clusters.

The assignment and update steps are repeated iteratively
until, either the number of outliying points changes by less
than 10% from the previous iteration, or if there are no more
cluster centers required to be added. For example, when
Nol < csize, cadd, as an integer division, becomes zero,
implying that no additional cluster centers can be initialized.
Our experiments show that the algorithm usually runs until
there is no possibility of adding any more clusters. Hence,
when the stopping criteria is satisfied, it is only the outlier
points that remain unassigned. As a last step, the K ′ cluster
centers are updated as the mean of all points assigned to
each of them. By leaving the outlier points as unassigned,
our algorithm achieves better accuracy and object boundary
adherence as most datasets consist of a category of unlabeled
points. The complete algorithm is detailed in Algorithm 1.
The clustering algorithm has a time complexity of O(N).

IV. RESULTS
We test the proposed clustering method’s efficacy on the
openly available NYU-V2 Depth dataset, [9]. The dataset
consists of 1449 densely labelled pairs of aligned RGB and
depth images. The aligned depth information was mapped to
corresponding pixels to obtain 3D point clouds with color
information in RGB space. The proposed method is com-
pared against three state-of-the-art clustering algorithms: (1)
the original voxel cloud connectivity segmentation (vccs)
method that works on voxelated point clouds, [21], (2) a
supervoxel segmentation method framed as a subset selection

Algorithm 1: Clustering based on point orientation

Input: K,pi = [xi yi zi ri gi bi ui vi wi]
T ∀

i = 1 : N ;
Result: labelsi ∀ i = 1 : N , Ck ∀ k = 1 : K ′

S =
√

N
K ;

Initialize: Ck = [xk yk zk rk gk bk uk vk wk]
T ∀

k = 1 : K;
Di = inf , labelsi = −1 ∀ i = 1 : N ;
K ′ = K, t = 0, Nol(t) = N , csize = N

K ;
while (1) do

for k = 1 to K ′ do
for pi in neighbourhood of radius S do

D = D(pi, Ck) as in equation 3;
if D < Di then

Di = D;
labelsi = k;

end
end

end
outliers = collect points with label == −1;
Nol(t+ 1) = size(outliers);
remove all centers with size(Ck) < 0.1× csize;
Re-estimate Ck as mean of all pi with
labelsi == k;
cadd = Nol(t+1)

csize
;

if (Nol(t)−Nol(t+1)
Nol(t)

< 0.1) || (cadd < 1) then
break;

end
Initialize cadd clusters and append to Ck;
K ′ = K after adding and/or removing clusters;
t = t+ 1;

end

problem (ssp), [22], and (3) a K-nearest-neighbours version
of vccs method (vccs-knn) that works directly on the point
clouds without voxelation, provided by the authors in [22].
The vccs method is available as part of PCL (Point Cloud
Library), [30], and it was tested using the default parame-
ter settings. Voxel resolution for VCCS method was set at
0.1m for all experiments. The ssp and vccs-knn methods
were tested using their openly available source code1 with
the parameters for both methods set to the values as pro-
posed in their article, [22]. While the vccs, ssp and vccs-
knn methods implicitly compute the surface normals for the
point clouds, for our method they were computed using the
standard nearest-neighbours-based method provided by PCL
with number of neighbours equal to 30. Our method requires
only one input parameter, i.e., the number of clusters K. All
the experiments were run on a computer with an Intel Core
i7-8700K CPU and 16GB of RAM. Our method is coded in
C++ programming language.

1https://github.com/yblin/Supervoxel-for-3D-point-clouds.git
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We compare the performance of the algorithms using four
evaluation metrics. For evaluations, we first represent the
labelled point clouds as 2D labeled images and compare them
against the labeled 2D ground truth images. Boundary recall
(R) measures the fraction of ground truth boundaries that
fall within a distance ϵ of at least one estimated supervoxel
boundary. We follow the definition of boundary recall as
proposed in [31]. Given a ground truth boundary image G
and an estimated boundary image B, R is computed as the
fraction of true positives (TP) and the sum of true positives
and true negatives (TN), i.e., R = TP

TP+TN , where TP are
defined as the number of boundary pixels in G for whose
exist a boundary pixel in B in range ϵ, and TN as the number
of boundary pixels in G for whose do not exist a boundary
pixel in B in range ϵ. In this article, we use ϵ = 2 pixels.
An R value of 1 reflects best performance indicating the
methods precision in identifying object boundaries whereas,
a value of 0 reflects otherwise. The second metric we use
is the undersegmentation error (UE). According to [31], UE
measure to what extent estimated segmentation boundaries
cross-over the ground truth boundaries. Generally, the num-
ber of pixels of a segment that cross over the boundary are
measured. However, this method imposes a high penalty on
large supervoxels with only a small overlap with the ground
truth segment. To avoid this, In [31], they propose a new
method where the smaller value of either the region that
crosses over the boundary or the region that lies within the
segment is counted depending on whichever is smaller. It is
defined as,

UE =
1

N

[ ∑
S∈GT

( ∑
P :P∩S ̸=0

min(Pin, Pout)

)]
, (4)

where, S are the ground truth (GT ) segments, P are the
estimated segments, N is the total number of pixels, Pin is
the part of the estimated segment that lies within S and Pout

is the part of the estimated segment that crosses over the
ground truth segment’s boundary. A UE value of 0 implies
that the method has best adherence to object or segment
boundaries whereas, UE = 1 indicates otherwise.

The third metric we use is the compactness (C) of the
supervoxels. In mathematics, compactness of a shape is com-
monly measured through the isoperimetric quotient which
compares the area of a shape to the area of a circle with the
same perimeter as this shape, [32]. If AP is the area and LP

is the perimeter of a superpixel (supervoxel projected in 2D),
P , then the radius of a circle with the same perimeter as P is
given as, r = LP

2π . If AS is the area of the circle with radius
r, then the isoperimetric quotient is given as,

QP =
AP

AS
=

4πAP

L2
P

. (5)

Therefore, if I is the set of all segments in a segmented
image, then the compactness measure is given as,

C =
∑
P∈I

QP · |P |
N

, (6)

where, |P | is the size of the segment and N is the total
number of pixels in the image (or points in the point cloud).
C = 1 implies that the estimated segments are perfect circles
whereas, C = 0 implies that the segments have highly
irregular and non-convex shapes. Lastly, we also compare
the algorithms based on the contour density (CD) metric,
[11]. CD measures the fraction of boundary pixels in the
segmentation image. Given a set of boundary pixels, B, of an
estimated segmentation contour density is defined as, CD =
|B|
2N , where N is the total number of pixels. The fraction is
divided by two because computation of segment boundaries
produces edges that are two-pixels wide. The contour density
metric also indicates regularity of the boundaries as higher
values of CD mean that there exist more number of boundary
pixels for the same number of supervoxels. Higher values
of CD indicate that the object boundaries are irregular and
elongated.

A. EVALUATION
All the above-mentioned algorithms were tested on the NYU
V2 Depth dataset and compared using the above-mentioned
metrics. While supervoxel resolution as a measure has geo-
metrical significance, we believe that the number of clusters
is easier to interpret for a general user. The complexities
of all algorithms is given in terms of the input size. As
a result, a user can have better control on estimating the
complexity of subsequent algorithms which would be used
on the segmented point cloud when there is a direct control
on the number of supervoxels that need to be produced in
a point cloud over-segmentation. Moreover, it is important
to note that each algorithm produces a different number
of supervoxels for a point cloud at any given supervoxel
resolution. In all cases, ssp method produces the highest
number of supervoxels between all the algorithms for any
given resolution. It is well known that as the number of
supervoxels increases the performance in terms of metrics
also increases. Due to this reason, as one method produces
more supervoxels than another for the same segmentation,
comparison by the supervoxel resolution becomes an unfair
comparison for methods that produce fewer number of super-
voxels. Therefore, we choose to compare results based on the
number of supervoxels produced.

We tested the vccs, ssp and vccs-knn algorithms at super-
voxel resolutions (in meters) 0.10, 0.11, 0.12, 0.13, 0.14,
0.16, 0.18, 0.20, 0.25 and 0.35. To keep the number of
supervoxels produced by our method in similar range as other
methods, we set the output number from vccs method as
the input number of clusters for our method. Although the
number of clusters produced by our method is dynamic, it is
usually within a range of ±100 clusters from the user-chosen
number K. To maintain uniformity in comparison, for each
experiment, we round the output number of clusters to the
nearest 100 and order the results according to these multiples.
We believe that this strategy allows for a fair comparison as
results from some point clouds may get rounded to higher
multiple of hundred while a similar number of point cloud
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FIGURE 3. histogram distribution of number of point clouds for which results
were obtained, binned according to the number of clusters.

results may get rounded to a lower multiple of hundred. As
the number of supervoxels found varies with the method,
density, or spatial spread of the point cloud, and the super-
voxel resolution, it is not possible to have a control on how
many point clouds produce results for a given number of
clusters. A histogram of the number of point clouds, ordered
by the cluster entries for which results were obtained, is
shown in Fig. 3. We present results only when there exist
at least 30 point clouds contributing to the results for a given
number of clusters entry.

Quantitative results of the four metrics obtained from
testing the four methods on the entire 1449 image pairs
of the dataset are shown in Fig. 4. Overall, our proposed
method performs best in the undersegmentation error and
compactness metrics while the ssp and vccs methods perform
best in the boundary recall and contour density metrics,
respectively. The ssp method and our proposed clustering
method perform similarly well in R and UE metrics. With
a relative difference of 0.0086 between both the methods’
overall mean R for all the tests, the ssp method performs
marginally better than our method in the boundary recall
metric. Whereas, in the UE metric, our method is relatively
3.17% better than ssp method. Moreover, a student’s t-test on
the results from our method and ssp shows that the means of
UE of our method are significantly better than those of ssp,
with a p − value = 1.32e − 6 and a t − value = 6.38 in
the confidence interval CI = [0.0070, 0.0136]. As evident
from Fig. 4(a), both these methods show significantly better
boundary adherence (significantly better performance in both
R and UE metrics) than both the variants of vccs method.
The major advantage of our method lies in the regularly
shaped supervoxels that it produces. The plot in Fig. 4(c)
shows that our method significantly outperforms the three
other methods in terms of producing most regularly shaped
and compact supervoxels. The ssp method performs worst
in this metric as their method produces supervoxels with
highly irregular boundaries. This quality of ssp method is
also reflected in the CD metric (see Fig. 4), where ssp
method performs worst out of all the methods. Large values

of CD for ssp method, or a large number of boundary pixels
for a given number of supervoxels, reflects the irregularly
shaped supervoxels produced by it.

It is to be noted that a higher number of boundary pixels
may result in artificially inflated values of R as there is a
greater chance that a segmentation boundary lies in close
distance to a given ground truth boundary. Therefore, it is
possible that the ssp method may not produce results that
are visually as appealing as reflected by their quantitative
analysis values. The same can be verified from Fig. 5, where
it can be seen that although the supervoxels produced by
ssp method agree to object boundaries to an extent, the re-
sulting supervoxels are irregular in shape. Irregularly shaped
supervoxels are undesirable for subsequent applications as
it introduces spatial discontinuity within the segmentation.
With the least CD values of all methods, the vccs method
can be expected to produce the most compact supervoxels.
Although it produces more regular shaped supervoxels than
ssp and vccs-knn methods, our method outperforms it be-
cause the vccs method fails on noisy point clouds or on point
clouds with low spatial density (or high variation in depth).
The same can be verified visually from the second row of
Fig. 5(b), where there exist empty regions (seen in white)
and small isolated supervoxels in the segmentation. While
missing regions or small and isolated supervoxels do not
contribute to the CD, they impose a serious penalty on the
compactness metric, thereby resulting in lower values of C
for vccs method.

Fig. 5 shows visualizations of segmentations from the
four methods on some example point clouds. In general,
our method produces visually appealing segmentations with
compact and regularly shaped supervoxels that addhere to
object boundaries well. An exception where our method fails
to produce compact supervoxels can be seen in the second
row of Fig. 5. The mesh doors at vicinity of the viewpoint
act as noise in that region of the point cloud as they appear
as scattered points at a different depth than the background,
resulting in irregular supervoxels. The superior compactness
of supervoxels produced by our method is visible in the
fourth row of Fig. 5. The highlighted region consists of planar
regions with very few objects. Yet, all methods except ours
produced supervoxels with arbitrary shapes in that region.
The shown segmentations are for 500, 700, 2000 and 1100
supervoxels for the first to fourth rows, respectively. The
result for vccs-knn method in the third row of the figure
consists of only 800 supervoxels as the method produced
only those many at a resolution of 0.1m, while the rest of
the methods produced about 2000 supervoxels. Finally, it
can be said that this figure presents an accurate visual reit-
eration of the results shown as part of quantitative analysis.
Visualizations show that the vccs method fails in the case of
point clouds with complex scenes and when the point clouds
have varying depth and points density. The vccs-knn method
produces supervoxels with irregular shapes, while the ssp
method also produces irregularly shaped suypervoxels with
elongated boundaries but with greater accuracy. Our method
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FIGURE 4. Quantitative analysis of the four methods on NYU Depth V2 dataset.

FIGURE 5. Visual representation of segmentation results on NYU Depth V2 dataset.

produces compact supervoxels with clear and tight bound-
aries that addhere well to the scene, for a range of supervoxel
resolutions (100 supervoxels to over 2000 supervoxels) with
some exceptions as shown for the point cloud in the second
row of 5.

A comparison of the total running times by vccs, ssp and
our method are shown in Fig. 6. In terms computational
time, the vccs method proves its simplicity and robustness
as it performs segmentation in about 1s. While all methods
have constant complexity, our method, with a complexity
of O(N), requires significantly longer computational time
when compared against the other methods. This is expected
as our algorithm involves the assignment step for all the
points in every iteration. The step of collecting unassigned
points and initializing and/or removing cluster centers adds

additional computational overhead. However, our proposed
initialization procedure based on Fibonacci binning produces
accurate initial seeds. The algorithm typically converged in
6 − 8 iterations in all cases. While the overall complexity of
our algorithm seems big when compared to other methods,
the gained accuracy and quality of segmentation may be
beneficial to applications that do not have serious limitations
on computational time but, which may benefit from accu-
rate and compact supervoxel segmentation. Performing the
assignment step only on the points at supervoxel boundaries
or maintaining a database of initially unassigned points and
working only on that set of points iteratively, may benefit the
algorithm in terms of speed.
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FIGURE 6. Time taken for segmentation by the vccs, ssp and our proposed
methods on NYU Depth V2 dataset.

V. CONCLUSION AND FUTURE WORK
We proposed a new supervoxel segmentation method with
dynamic cluster seed initialization. Our method inherits the
advantages of the k-means algorithm. Coupled with a novel
cluster seed initialization strategy based on Fibonacci binning
of surface normals, the method achieves superior bound-
ary adherence when compared against existing state-of-the-
art methods. As the algorithm is parameter-free, it gives
equal importance to the spatial location, color, and surface
normals of all points to produce regularly shaped compact
supervoxels with tight boundaries. Quantitative analysis us-
ing four metrics on the publicly available NYU Depth V2
dataset shows that our method performs equally good as the
ssp and vccs methods in the boundary recall and contour
density metrics, respectively. Our proposed method shows
significantly better performance than all other methods in
the undersegmentation error and compactness metrics. Visual
representations of segmentation results on some of the point
clouds show that our method produces visually appealing
supervoxels with a high degree of compactness that adhere
well to object boundaries.

However, the added accuracy of our proposed algorithm
comes at the cost of increased complexity. For future work,
we propose to explore the possibility of reducing the overall
computational time of our algorithm. Calculating the distance
metric in the assignment step for only the points at supervoxel
boundaries and maintaining a database of unassigned points
and working iteratively only on that set of points can be
approaches to improve the time complexity of our algorithm.
Another improvement to decrease the number of calculations
per iteration could be to stop the assignment step after
meeting a certain criterion. An example criterion could be
to track the change in cluster seeds based on the L1-norm
between cluster centers at current and previous iterations and
stop the assignment step when the norm becomes lower than
threshold.
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