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Abstract

Anticipating user localization by making accurate
predictions on its indoor movement patterns is a
fundamental challenge for achieving higher de-
grees of personalization and reactivity in smart-
home environments. We propose an approach to
real-time movement forecasting founding on the
efficient Reservoir Computing paradigm, predict-
ing user movements based on streams of Received
Signal Strengths collected by wireless motes dis-
tributed in the home environment. The ability of
the system to generalize its predictive performance
to unseen ambient configurations is experimentally
assessed in challenging conditions, comprising ex-
ternal test scenarios collected in home environ-
ments that are not included in the training set. Ex-
perimental results suggest that the system can ef-
fectively generalize acquired knowledge to novel
smart-home setups, thereby delivering an higher
level of personalization while decreasing costs for
installation and setup.

1 Introduction

Localization and tracking of mobile users in indoor envi-
ronments are important services in the construction of smart
spaces, and they are even considered enabling, baseline ser-
vices for Ambient Assisted Living (AAL) [AAL, 2009] ap-
plications. In fact, AAL aims at improving the quality of
life of elderly or disabled people, by assisting them in their
daily life, in order to preserve their autonomy and by mak-
ing them feeling included, protected and secure in the places
where they live or work (typically their home, their office,
the hospital and any other places where they may spend sig-
nificant part of their time). These objectives can be granted
only if the appropriate services are delivered to the users in
the right time and in the right pace.

In AAL applications, localization aims at the real time es-
timation of the user position, while tracking refers to the ac-
tivity of reconstructing the path of the user, with the purpose
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of anticipating its future position and thus to prepare the sys-
tem to the timely delivery of the appropriate services. Local-
ization and tracking of objects can be achieved by means of
a large number of different technologies, however only few
of them are suitable for AAL applications, as they should
be non-invasive on the users, they must be suited to the de-
ployment in the user houses at a reasonable cost, and they
should be accepted by the users themselves. On the other
hand, accuracy in the position estimation is subject to less
requirements than it may occur in other applications (accu-
racies in the order of the centimeter or below are typically
not required). Considering all these constraints, a promising
technology for this services is based on Wireless sensor net-
works (WSN) [Baronti et al., 2007], due to their properties of
cost and time effective deployment. Within such WSN, it is
possible to estimate the location of a user by exploiting Re-
ceived Signal Strength (RSS) information, that is a measure
of the power of a received radio signal that can be obtained
from almost any wireless device.

The measurement of RSS values over time provides infor-
mation on the user trajectory under the form of a time se-
ries of sampled signal strength. The relationship between the
RSS and the location of the tracked object cannot be eas-
ily formulated into an analytical model, as it strongly de-
pends on the characteristics of the environment as well as on
the wireless devices involved. In this sense, computational
learning models have received much interest as they allow
to learn such relationship directly from the data. These ap-
proaches typically exploit probabilistic learning techniques
to learn a probabilistic estimate of user location given RSS
measurements at known location [Zàruba et al., 2007]. How-
ever, such models have considerable computational costs con-
nected both with the learning and the inference phase, which
might grow exponentially with the number of sensors in the
area. Further they do little to exploit the sequential nature
of the RSS streams, whereas they provide static pictures of
the actual state of the environment. There exist several ma-
chine learning approaches capable of explicitly dealing with
signals characterized by such time-dependent dynamics in-
cluding, for instance, probabilistic Hidden Markov Models
(HMM), Recurrent Neural Networks (RNN) and kernel meth-
ods for sequences. In this paper, we focus on a computation-
ally efficient neural paradigm for modeling of RNNs, that is
known as Reservoir Computing (RC). In particular, we con-
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sider Echo State Networks (ESNs) [Jaeger and Haas, 2004;
Jaeger, 2001], that are dynamical neural networks used for se-
quence processing. The contractive reservoir dynamics pro-
vides a fading memory of past inputs, allowing the network
to intrinsically discriminate among different input histories
[Jaeger, 2001] in a suffix-based fashion [Tiño et al., 2007;
Gallicchio and Micheli, 2011], even in absence of training.

The most striking feature of ESNs is its efficiency: training
is limited to the linear outputs whereas the reservoir is fixed;
additionally, the cost of input encoding scales linearly with
the length of the sequence for both training and test. In this
regard, the ESN approach compares favorably with compet-
itive state-of-the-art learning models for sequence domains,
including general RNNs, in which the dynamic recurrent part
is trained, e.g. [Kolen and Kremer, 2001], probabilistic Hid-
den Markov Models, that pay consistent additional inference
costs also at test time, and Kernel Methods for sequences,
whose cost scales at least quadratically with the input length,
e.g. [Gärtner, 2003]). ESNs have been successfully ap-
plied to several tasks in the area of sequence processing, of-
ten outperforming other state-of-the-art learning models (see
[Jaeger and Haas, 2004; Jaeger, 2001]). Recently, ESNs
have shown good potential in a range of tasks related to au-
tonomous systems modeling, e.g. as regards event detection
and localization in robot navigation [Antonelo et al., 2008;
2007] and multiple robot behavior modeling [Waegeman et
al., 2009]. However, such applications are mostly focused
on modeling robot behaviors and often use artificial data ob-
tained by simulators.

In this paper, we apply the ESN approach to a real-world
scenario for user indoor movements forecasting, using real
and noisy RSS input data, paving the way for potential appli-
cations in the field of AAL. The experimental assessment is
intended to show that the proposed technology has a strong
potential to be deployed in real-life situations, in particular as
regards the ability of generalizing the prediction performance
to unknown environments. In this sense, we expect that the
proposed solution will increase the level of service personal-
ization by making accurate prediction of the user spatial con-
text, while yielding to a reduction of the setup and installation
costs thanks to its generalization capability.

2 User Movement Prediction in Indoor
Environments

2.1 Localization by Received Signal Strength

The exploitation of wireless communication technologies for
user localization in indoor environments has recently received
much attention by the scientific community, due to the poten-
tial of service personalization involved in an accurate identi-
fication of the user spatial context. Cost efficiency is a criti-
cal aspect in order to determine the success of such localiza-
tion technologies. In this sense, the most promising localiza-
tion approaches are certainly those based on Received Signal
Strength (RSS) information, that is a measure of the power
of a received radio signal. RSS measurements can be readily
obtained from (potentially) any wireless communication de-
vice, being a standard feature in most radio equipments. In

a, not so far-ahead, scenario, we foresee an ubiquitous diffu-
sion of wireless sensors in the environment (e.g. monitoring
temperature, humidity, pollution, etc.), together with a wide
availability of radio devices on the user’s body (e.g. personal
electronics, sensors monitoring health status, etc.). There-
fore, irrespectively of the intended use of such sensors and
devices, we expect to be able to exploit their radio apparatus
to obtain noisy, yet potentially informative, RSS traces for
realtime user localization.

Indoor positioning systems based on RSS information are
getting increasing attention due to the widespread deploy-
ment of WLAN infrastructures, given that RSS measures are
available in every 802.11 interface. Mainly, we distinguish
between two alternative approaches to localize users leverag-
ing the RSS measurements, i.e. model-based and fingerprint-
ing positioning. Model-based positioning is popular approach
in literature that founds on expressing radio frequency signal
attenuation using specific path loss models [Barsocchi et al.,
2011]. Given an observed RSS measurement, these methods
triangulate the person based on distance calculations from
multiple access points. However, the relationship between
the user position and the RSS information is highly com-
plex and can hardly be modeled due to multipath, metal re-
flection, and interference noise. Thus, RSS propagation may
not be adequately captured by a fixed invariant model. Dif-
ferently from model-based approaches, fingerprinting tech-
niques, such as [Kushki et al., 2007], create a radio map of
the environment based on RSS measurements at known posi-
tions throughout an offline map-generation phase. Clearly,
the localization performance of fingerprinting-based model
relies heavily on the choice of the distance function that is
used to compute the similarity between the RSS measured in
the online phase, with the known RSS fingerprints. Further,
the offline-generated ground truth needs to be revised in case
of changes to the room/environment configuration which re-
sult in relevant discrepancies in the known fingerprints.

The user localization approaches discussed above focus on
finding accurate estimates of the current user position, but
lack the ability of anticipating his/her future location. Be-
ing capable of predicting the future user context is of funda-
mental value to enhance the reactivity and personalization of
smart services in indoor environments. In the following, we
describe a real-life office scenario targeted at adaptive user
movement prediction using RSS traces: a brief discussion of
the wireless technology involved is provided together with a
detailed description of the experimental indoor environment.

2.2 Movement Prediction Scenario

A measurement campaign has been performed on the first
floor of the the ISTI institute of CNR in the Pisa Research
Area, in Italy. The scenario is a typical office environments
comprising 6 rooms with different geometry, arranged into
pairs such that coupled rooms (referred as Room 1 and Room
2 in the following) have fronting doors divided by an hallway,
as depicted in Fig. 1. Rooms contain typical office furniture:
desks, chairs, cabinets, monitors that are asymmetrically ar-
ranged. From the point of view of wireless communications,
this is a harsh environment due the to multi-path reflections
caused by walls and the interference produced by electronic
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Figure 1: Schematic view of the experimental setting: an-
chors’ position and prototypical user movements are shown.
Straight paths, labeled as 1 and 5, yield to a room change,
while curved movement (paths 2, 3, 4 and 6) preserve the
spatial context. The M markers denote the points where we
predict if the user is about to change its location. The actual
setting differs from the schematics by the presence of office
furniture (covering roughly 50% of the space) that is asym-
metrically arranged and influences the actual user trajectories
in the different rooms.

Dataset Number length [m] width [m]

1 4.5 12.6

2 4.5 13.2

3 4 12.6

Table 1: Physical layout of the 3 room couples.

devices. Experimental measurements have been performed
by a sensor network of 5 IRIS nodes1 embedding a Chip-
con AT86RF230 radio subsystem that implements the IEEE
802.15.4 standard. Four sensors, in the following anchors,
are located in fixed positions in the environment and one sen-
sor is placed on the user, hereafter called mobile.

The measurement campaign comprises experiments on
three different couple of rooms with a total surface spanning
from 50 m2 to about 60 m2. Table 1 details the environment
dimensions for the three couple of rooms, hereby referred as
dataset 1, dataset 2 and dataset 3. Experiments consisted in
measuring the RSS between anchors and mobile for a set of
repeated user movements. Figure 1 shows the anchors de-
ployed in the environment as well as a prototypical trajectory
for each type of user movement. The height of the anchors
has been set to 1.5m from the ground and the mobile was
worn on the chest. The measurements were carried out on
free paths to facilitate a constant speed of the user of about 1
m/s. Measures denote RSS samples (integer values ranging
from 0 to 100) collected by sending a beacon packet from the
anchors to the mobile at regular intervals, 8 times per second,
using the full transmission power of the IRIS.

Experimentation gathered information on 6 prototypical
paths that are shown in Fig. 1 with arrows numbered from

1Crossbow Technology Inc., http://www.xbow.com

Path Type Dataset 1 Dataset 2 Dataset 3

1 26 26 27

2 26 13 12
3 - 13 12

4 13 14 13
5 26 26 27

6 13 14 13

Tot. Changed 52 52 54

Tot. Unchanged 52 54 50

Lengths min-max 19-32 34-119 29-129

Table 2: Statistics of the collected user movements.

1 to 6: two movement types are considered for the predic-
tion task, that are straight and curved trajectories. The former
run from Room 1 to Room 2 or viceversa (paths 1 and 5 in
Fig. 1) and yield to a change in the spatial context of the
user, while curved movements (paths 2, 3, 4 and 6 in Fig. 1)
preserve the spatial context. Table 2 summarizes the statis-
tics of the collected movement types for each dataset: due to
physical constraints, dataset 1 does not have a curved move-
ment in Room 1 (path 3). The number of trajectories leading
to a room change, with respect to those that preserve the spa-
tial context, is indicated in Table 2 as ”Tot. Change” and ”Tot.
Unchanged”, respectively. Each path produces a trace of RSS
measurements that begins from the corresponding arrow and
that is marked when the user reaches a point (denoted with M
in Fig. 1) located at 0.6m from the door. Overall, the exper-
iment produced about 5000 RSS samples from each of the 4
anchors and for each dataset. The marker M is the same for
all the movements, therefore different paths cannot be distin-
guished based only on the RSS values collected at M.

The experimental scenario and the gathered RSS measures
can naturally be exploited to formalize a binary classification
task on time series for movements forecasting. The RSS val-
ues from the four anchors are organized into sequences of
varying length (see Table 2) corresponding to trajectory mea-
surements from the starting point until marker M. A target
classification label is associated to each input sequence to in-
dicate wether the user is about to change its location (room)
or not. In particular, target class +1 is associated to location
changing movements (i.e. paths 1 and 5 in Fig. 1), while la-
bel −1 is used to denote location preserving trajectories (i.e.
paths 2, 3, 4 and 6 in Fig. 1). The resulting dataset is made
publicly available for download2.

3 Reservoir Computing for Movement
Prediction

Reservoir Computing (RC) is a computational paradigm cov-
ering several models in the Recurrent Neural Network (RNN)
family, that are characterized by the presence of a large and
sparsely connected hidden reservoir layer of recurrent non-
linear units, that are read by means of some read-out mech-
anism, i.e. typically a linear combination of the reservoir

2http://wnlab.isti.cnr.it/paolo/index.php/
dataset/6rooms
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Figure 2: The architecture of an ESN: Win, Ŵ and Wout

denote the input, the reservoir and the output weights, respec-
tively. Terms u(t) and y(t) identify the input at time t and
the corresponding predicted read-out; x(t) is the associated
reservoir state. Further details are given in the text.

outputs. With respect to traditional RNN training, where
all weights are adapted, RC performs learning mainly on
the output weights, leaving those in the reservoir untrained.
As other RNNs, RC models are well suited to modeling of
dynamical systems and, in particular, to temporal data pro-
cessing. As the movement prediction problem discussed in
this paper is, from a machine learning perspective, a time-
series prediction task, we are naturally interested in analyz-
ing and discussing the effectiveness of the RC paradigm on
such a scenario. In particular, we focus on the computation-
ally efficient ESNs [Jaeger, 2001; Jaeger and Haas, 2004;
Lukosevicius and Jaeger, 2009], that are one of the best
known RC models, that are characterized by an input layer of
NU units, an hidden reservoir layer of NR untrained recur-
rent non-linear units and a readout layer of NY feed-forward
linear units (see Fig. 2). Within a time-series prediction task,
the untrained reservoir acts as a fixed non-linear temporal ex-
pansion function, implementing an encoding process of the
input sequence into a state space where the trained linear
readout is applied.

Standard ESN reservoirs are built from simple additive
units with a sigmoid activation function which, however, has
been shown to weakly model the temporal evolution of slow
dynamical systems [Jaeger et al., 2007]. In particular, [Gal-
licchio et al., 2011] have shown that indoor user movements
can be best modeled by a leaky integrator type of RC net-
work (LI-ESNs) [Jaeger et al., 2007]. Given an input se-
quence s = [u(1), . . . ,u(n)] over the input space RNU , at
each time step t = 1, . . . , n, the LI-ESN reservoir computes
the following state transition

x(t) = (1− a)x(t− 1) + af(Winu(t) + Ŵx(t− 1)), (1)

where x(t) ∈ RNR denotes the reservoir state (i.e. the out-
put of the reservoir units) at time step t, Win ∈ RNR×NU

is the input-to-reservoir weight matrix (possibly including a

bias term), Ŵ ∈ RNR×NR is the (sparse) recurrent reser-
voir weight matrix and f is the component-wise applied ac-
tivation function of the reservoir units (we use f ≡ tanh).
The temporal recursion in (1) is based on a null initial state,
i.e. x(0) = 0 ∈ RNR . The term a ∈ [0, 1] is a leak-
ing rate parameter, which is used to control the speed of
the reservoir dynamics, with small values of a resulting in

reservoirs that react slowly to the input [Jaeger et al., 2007;
Lukosevicius and Jaeger, 2009]. Compared to the standard
ESN model, LI-ESN applies an exponential moving average
to the state values produced by the reservoir units (i.e. x(t)),
resulting in a low-pass filter of the reservoir activations that
allows the network to better handle input signals that change
slowly with respect to the sampling frequency. LI-ESN state
dynamics are therefore more suitable for representing the his-
tory of input signals.

For a binary classification task over sequential data, the lin-
ear readout is applied only after the encoding process com-
puted by the reservoir is terminated, by using

y(s) = sgn(Woutx(n)), (2)

where sgn is a sign threshold function returning +1 for non-
negative arguments and −1 otherwise, y(s) ∈ {−1, +1}NY

is the output classification computed for the input sequence
s and Wout ∈ RNY ×NR is the reservoir-to-output weight
matrix (possibly including a bias term).

The reservoir is initialized to satisfy the so called Echo
State Property (ESP) [Jaeger, 2001]. The ESP asserts that
the reservoir state of an ESN driven by a long input se-
quence only depends on the input sequence itself. Depen-
dencies on the initial states are progressively forgotten after
an initial transient (the reservoir provides an echo of the in-
put signal). A sufficient and a necessary condition for the
reservoir initialization are given in [Jaeger, 2001]. Usually,
only the necessary condition is used for reservoir initializa-
tion, whereas the sufficient condition is often too restrictive
[Jaeger, 2001]. The necessary condition for the ESP is that
the system governing the reservoir dynamics of (1) is locally
asymptotically stable around the zero state 0 ∈ RNR . By

setting W̃ = (1 − a)I + aŴ, where a is the leaking rate
parameter, the necessary condition is satisfied whenever the
following constraint holds:

ρ(W̃) < 1 (3)

where ρ(W̃) is the spectral radius of W̃. Matrices Win and

Ŵ are therefore randomly initialized from a uniform distri-

bution, and Ŵ is successively scaled such that (3) holds. In
practice, values of ρ close to 1 are commonly used, leading to
reservoir dynamics close to the edge of chaos, often resulting
in the best performance in applications (e.g. [Jaeger, 2001]).

In sequence classification tasks, each training sequence is
presented to the reservoir for a number of Ntransient con-
secutive times, to account for the initial transient. The final
reservoir states corresponding to the training sequences are
collected in the columns of matrix X, while the vector ytarget

contains the corresponding target classifications (at the end
of each sequence). The linear readout is therefore trained to
solve the least squares linear regression problem

min ‖WoutX − ytarget‖
2

2 (4)

Usually, Moore-Penrose pseudo-inversion of matrix X or
ridge regression are used to train the readout [Lukosevicius
and Jaeger, 2009].
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4 Experimental Evaluation

We evaluate the effectiveness of the RC approach to user
movement prediction on the real-life scenario described in
Section 2.2. In particular, we assess the ability of the pro-
posed approach to generalize its prediction to unseen indoor
environments, which is a fundamental property for the de-
ployment as a movement prediction system in real-life appli-
cations. To this end, we define an experimental evaluation
setup where RC training is performed on RSS measurements
corresponding to only 4 out of 6 rooms of the scenario, while
the remaining 2 offices are used to test the generalization ca-
pability of the RC model.

In [Gallicchio et al., 2011], it has been analyzed the base-
line performance of different ESN models on user movement
prediction with a small 2-rooms dataset. Such an analysis
suggests that the LI-ESN model, described in Section 3, is
best suited to deal with slowly changing RSS time series.
Therefore, in the remainder of the section, we limit our analy-
sis to the assessment of a leaky-integrated model, with meta-
parameters chosen as in [Gallicchio et al., 2011]. In particu-
lar, we consider LI-ESNs comprising reservoirs of NR = 500
units and a 10% of randomly generated connectivity, spec-
tral radius ρ = 0.99, input weights in [−1, 1] and leaking
rate a = 0.1. Results refer to the average of 10 independent
and randomly guessed reservoirs. The readout (NY = 1) is
trained using pseudo-inversion and ridge regression with reg-
ularization parameter λ ∈ {10−i|i = 1, 3, 5, 7}.

Input data comprises time series of 4 dimensional RSS
measurements (NU = 4) corresponding to the 4 anchors in
Fig. 1, normalized in the range [−1, 1] independently for each
dataset in Table 1. Normalized RSS sequences are feed to the
LI-ESN network only until the marker signal M. To account
for the the initial reservoir transient, each input sequence is
presented consequently for 3 times to the networks.

We have defined 2 experimental settings (ES) that are in-
tended to assess the predictive performance of the LI-ESNs
when training/test data comes from both uniform (ES1) and
previously unseen ambient configurations (ES2), i.e. provid-
ing an external test set. To this aim, in ES1, we have merged
datasets 1 and 2 to form a single dataset of 210 sequences.
A training set of size 168 and a test set of size 42 have been
obtained for the ES1, with stratification on the path types.
The readout regularization parameter λ = 10−1 has been se-
lected in the ES1, on a (33%) validation set extracted from
the training samples. In ES2, we have used the LI-ESN with
the readout regularization selected in the ES1, and we have
trained it on the union of datasets 1 and 2 (i.e. 4 rooms), using
dataset 3 as an external test set (with measurements from 2
unknown environments). Table 3 reports the mean test accu-
racy for both the ESs. An excellent predictive performance is
achieved for ES1, which is coherent with the results reported
in [Gallicchio et al., 2011]. Such an outcome is noteworthy,
as the performance measurements in [Gallicchio et al., 2011]
have been obtained in a much simpler experimental setup,
comprising RSS measurements from a single pair of rooms
(that differ from those considered in this study). This seems
to indicate that the LI-ESN approach, on the one hand, scales
well as the number of training environments increases while,

ES 1 ES 2

95.95%(±3.54) 89.52%(±4.48)

Table 3: Mean test accuracy (and standard deviation) of LI-
ESNs for the two ESs.

LI-ESN Prediction

+1 -1

Actual
+1 44.04%(±5.17) 7.88%(±5.17)
-1 2.60%(±2.06) 45.48%(±2.06)

Table 4: Mean confusion matrix (expressed in % over the
number of samples) on the ES2 external test-set.

on the other hand, it is robust to changes to the training room
configurations. Note that RSS trajectories for different rooms
are, typically, consistently different and, as such, the addition
of novel rooms strongly exercises the short-term memory of
the reservoirs and their ability to encode complex dynamical
signals (see RSS examples in Fig. 3).

The result on the ES2 setting is more significative, as it
shows a notable generalization performance for the LI-ESN
model, that reaches a predictive accuracy close to 90% on
the external test comprising unseen ambient configurations.
Table 4 describes the confusion matrix of the external test-
set in ES2, averaged over the reservoir guesses and expressed
as percentages over the number of test samples. This allows
appreciating the equilibrium of the predictive performance,
that has comparable values for both classes. Note that total
accuracy is obtained as the sum over the diagonal, while error
is computed from the sum of the off-diagonal elements.

5 Conclusion

We have presented a RC approach to user movement predic-
tion in indoor environments, based on RSS traces collected
by low-cost WSN devices. We exploit the ability of LI-ESNs
in capturing the temporal dynamics of slowly changing noisy
RSS measurements to yield to very accurate predictions of the
user spatial context. The performance of the proposed model
has been tested on challenging real-world data comprising
RSS information collected in real office environments.

We have shown that, with respect to the work in [Gallicchio
et al., 2011], the LI-ESN approach is capable of generalizing
its predictive performance to training information related to
multiple setups. More importantly, it can effectively general-
ize movement forecasting to previously unseen environments,
as shown by the external test-set assessment. Such flexibility
is of paramount importance for the development of practical
smart-home solutions, as it allows to consistently reduce the
installation and setup costs. For instance, we envisage a sce-
nario in which an ESN-based localization system is trained
off-line (e.g. in laboratory/factory) on RSS measurements
captured on a (small) set of sample rooms. Then, the system
is deployed and put into operation into its target environment,
reducing the need of an expensive fine tuning phase.

In addition to accuracy and generalization, a successful
context-forecasting technology has also to possess sufficient
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Figure 3: Examples of RSS sequences in the 3 datasets: trajectories leading to a room change are denoted as continuous lines,
while dashed curves are examples from the negative class. Circles, stars and triangles denote sequences from dataset 1, 2 and
3, respectively. Due to space constraints, RSS streams are shown only for 3 out of 4 available anchors.

reactivity, so that predictions are delivered timely to the high-
level control components. In this sense, ESN is a good candi-
date to optimize the trade-off between accuracy, generaliza-
tion and computational requirements among machine learn-
ing models for sequential data. Such potential can be fur-
ther exploited by developing a distributed system that em-
beds the ESN learning modules directly into the nodes of the
wireless networks. By virtue of ESN’s limited computational
requirements, we envisage that such solution could be cost-
effectively realized on WSNs comprising simple computa-
tionally constrained devices (e.g. see the objectives of the
EU FP7 RUBICON project3).
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