

BIOCOMPLEXITY INSTITUTE

A Web-Based System for Contagion Simulations on Networked Populations

Tanvir Ferdousi, Aparna Kishore, Lucas Machi, Dustin Machi, Chris J. Kuhlman, S. S. Ravi

Biocomplexity Institute and Initiative University of Virginia

IEEE eScience 2022, October 11-14, 2022 Salt Lake City, Utah, United States

Acknowledgments: This research is supported by University of Virginia Strategic Investment Fund award number SIF160, VDH grant VDH-21-501-0135-1, and NSF Grants OAC-1916805 (CINES), CCF-1918656 (Expeditions) and CMMI-1916670 (CRISP 2.0).

Outline

- Motivation
- System Architecture
- Performance Evaluation
- Case Studies
- Related Work
- Conclusions
- Limitations & Future Directions

Introducing Networks

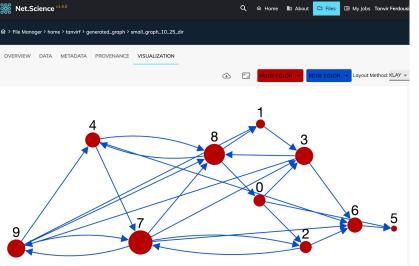
- Networks are everywhere.
- Many situations can be represented by entities (nodes) & relationships (links).
- Network models and simulations are widely used.

Motivation

- Many social processes can be formulated as contagion dynamics on networks.
- Agent-based simulation tools are commonly used for networked systems.
- People need software development experience to build and run such tools.
- Some simulations require high performance computing resources.
- Modeling and Simulation as a Service (MSaaS) can alleviate many issues.

Highlights of Our Solution

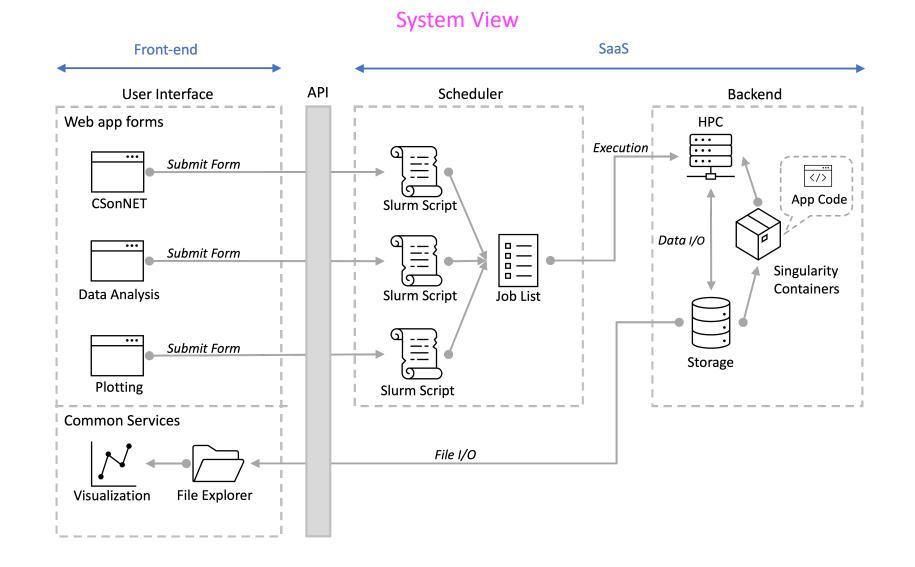
- Network Simulation as a Service (NetSimS).
- Web-based open access system.
- Simulation module for contagion dynamics on networks.
- Graph seeding module for network state initialization.


A Cyberinfrastructure for Network Science

- Open to public and accessible at: <u>http://net.science</u>
- Features
 - Modeling & Simulation as a Service (MSaaS).
 - Intuitive GUI & accessible APIs.
 - On demand high performance computing (HPC).
- The results in paper were generated using net.science.

File System Browser

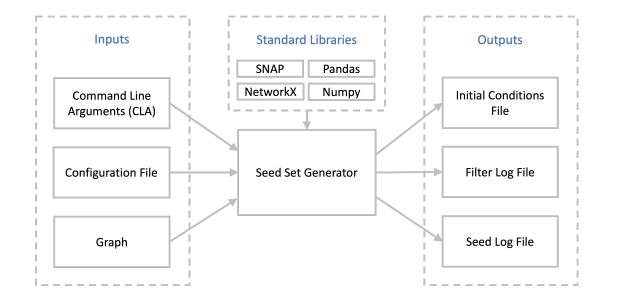
***	Net.So	cience ^{v1.4.0}		Q ଢ Home	🗈 About 🗅 File	s 💷 My Jobs Tanvir Ferdou		
ጩ ን F	ïle Manag	ger > home > tanvirf > generated	l_graph		с	X C 🗔	④	
		Name 🥠	Туре 🥠	Owner 🥠	Size 🥠	Last Update 🛛 🔶		
	۵	small_graph_10_25_dir	PNGraph	tanvirf	256 B	a year ago		
	۵	small_graph_10_25	PUNGraph	tanvirf	296 B	a year ago		
		undir_viz	png	tanvirf	1 MB	a year ago		
	D	er_random_graph	PUNGraph	tanvirf	5.63 KB	a year ago		


Interactive Graph Visualization

Graph Metadata

i Net.Science				Q, ∯ Home ∎th About	🗅 Files 🔲 My Jobs 1
	me > tanvirf > cines_work > ne mNodes	tworks > jazz.net.clean.uel			
OVERVIEW DATA	METADATA PROVENAN	ICE VISUALIZATION			
ADD PROPERTY					
GENERAL		FILE FORMAT		NODE DEGREE	
Nodes	198	Source ID Column	0	Average	27.696969697
Edges	2742	Destingtion ID Column	1	Max	100
Edge Directionality	undirected			Min	1
Edge Attributed	FALSE				
Node Attributed	FALSE				
Weakly Connected	TRUE				
Estimated Graph Diam	ieter 6				
STRONGLY CONNECT	ED COMPONENTS	WEAKLY CONNECTED O	OMPONENTS	NODE IN DEGREE	
Num	1	Num	1	Average	27.696969697
Size Smallest	198	Size Smallest	198	Max	100
Num Smallest	1	Num Smallest Size	1	Min	1
Frac Smallest	1	Frac Smallest	1		
Size Largest	198	Size Largest	198		
Num Largest	1	Num Largest Size	1		
Frac Largest	1	Frac Largest	1		
NODE OUT DEGREE		KCORE		NODE BETWEENIN	IESS CENTRALITY
Average	27.696969697	Smallest	0	Average	121.6515151515
Max	100	Num Nodes Smallest	198	Max	2916.2901040932
Min	1	Frac Nodes Smallest	1	Min	0
		Largest	29		
		Num Nodes Largest	30		
		Frac Nodes Largest	0.1515151515		
		Kcore Size 50% Nodes	17		
EDGE BETWEENNESS	CENTRALITY	NODE AUTHORITY SCOP	RE HITS	NODE EIGENVECT	OR CENTRALITY
Average	31.7943107221	Average	0.0558719064	Average	0.0558722192
Max	664.946335133	Max	0.2104085663	Max	0.2104080754
Min	2	Min	0.0000035318	Min	0.0000035326
NODE HUB SCORE HI	TS	NODE PAGE RANK			
Average	0.0558719064	Average	0.0050505051		
Max	0.2104085663	Max	0.0165752351		
		Min	0.0009285752		

Network Simulation as a Service (NetSimS)


Web Interface

Net.Science ^{v12.3 dev}	ය Home 🗈 About 🗅 Files 💷 My Jobs Chris
Input Input may either be a Graph or a previous simulation.	Stochasticity Seed* 0 0 0
input_file *- SELECT FILE /home/cjk8gx/18-feb-2022-big-graph/snap-n-1e7-m-5e7-v04	Composition Of Simulation
Dynamics Model	Simulation Timing
Behaviour Model* SEIR O	Iterations * 🕜
Sub Model* stochastic exposed fixed infectious	Time Steps * ① Initial Conditions(Seeding)
Edge probability*	Seeding Method* Custom
Exposed transition probability *	Number Nodes * State* 🗸 🕥
Infectious duration *	Node Selection Method* -
	Property Degree Ordering
	Min Max Weight
	Property Clustering Coefficient
	Min Max Weight
	Initial Conditions (default)

• Representative inputs for simulation

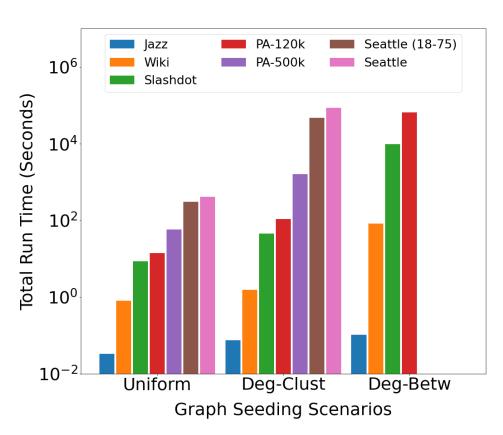
- Agent model and parameters
- Network
- Number of iterations, time per iteration
- Initial conditions
- Many types of web forms
 - Contagion simulation
 - Post-processing simulation data
 - Plotting
- Web app uses same API as other 3rd party tools.

Initial Conditions Module

seed.config.01

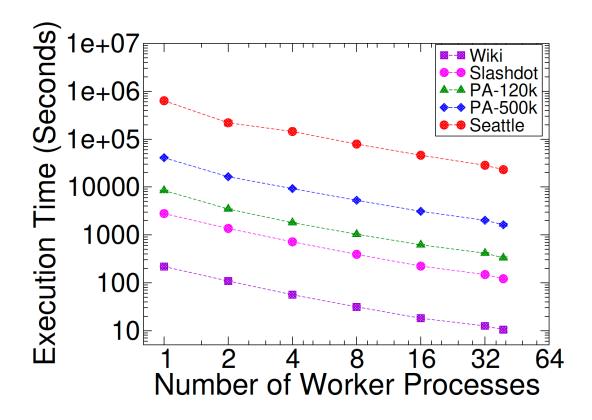
- 1 #graph_metric,sort_method,metric_min,metric_max,metric_weight-
- 2 outdeg,high,3,4,1-

5

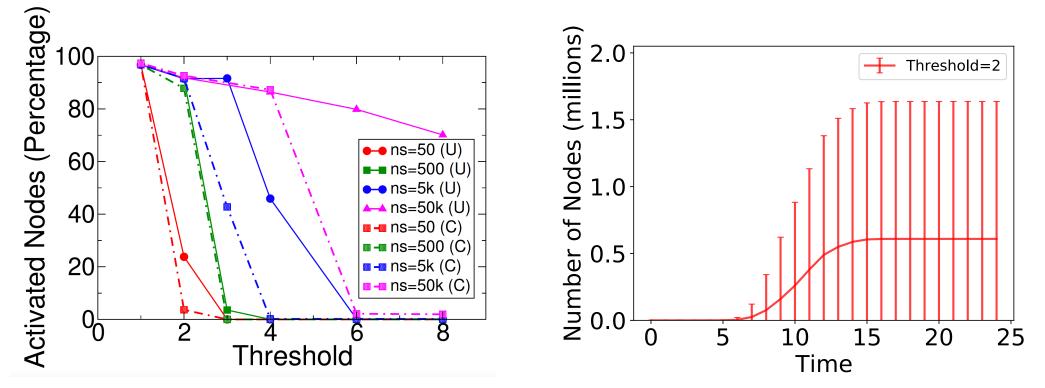

- 3 betwcnt,high,0.2,6,1-
- 4 clustcf,high,0.4,0.8,1-

• Initialize graph node states.

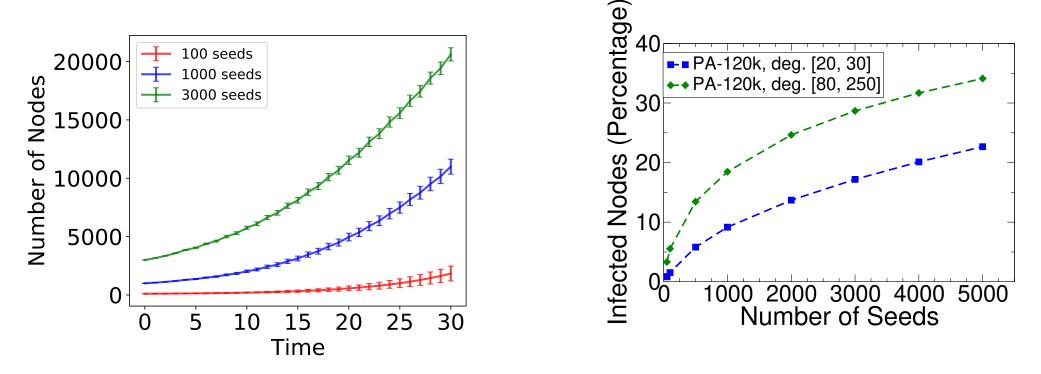
- Compute graph metrics.
- Filter, sort nodes using metrics.
- Combine multiple metrics.
- Generate multiple seed sets
 - Deterministic
 - Stochastic
- 11 graph metrics are supported
 - Including degree, betweenness, clustering coefficient, pagerank, and hub/authority scores.


Performance Evaluation – Network Initialization

	Structural Properties					
Network	Num.	Num.	Avg.	Max.	Largest	
	Nodes	Edges	Degree	Degree	k-core	
Jazz, M	198	2,742	27.7	100	29	
Wiki, M	7,066	100,736	28.51	1,065	53	
Slashdot, M	77,360	469,180	12.13	2,539	54	
PA-120k, S	120,000	2.4 M	39.99	2,686	20	
PA-500k, S	500,000	9.99 M	39.99	5,405	20	
Seattle (18-75), C	2.56 M	40.34 M	31.49	664	42	
Seattle, C	3.52 M	66.51 M	37.82	879	43	


M: Mined, C: Constructed, S: Synthetic

Strong Scaling Study – Agent-Based Simulation


- Uses SIR model
 - Transmission probability: 0.004
 - Infectious duration: 4 days
- Y-Axis: total time to run 100 iterations of 100 timesteps
- 300 nodes initialized as infected (I).
- The system exhibits strong scaling.

Case Study I – Simulation of Social Protests

- Simulated using the Granovetter (1978) threshold model.
- Seattle (18-75) network was used.
- Two different seed node sampling methods were used (U, C).

Case Study II – Simulation of Virus Transmission

- (Left) Cumulative infection for SIR on PA-120k with three seed configurations with degree in [20,30].
- (Right) Final fraction of infected nodes after 30 days using two seeding configurations.

Related Work

- With IDE/GUI
 - Repast Simphony [North et al., 2013]
 - NetLogo [Wilensky, 2011]
- Geared towards parallel and high-performance computing
 - Repast HPC [Collier et al., 2013]
 - µsik [Perumalla, 2005]
- Modeling and Simulation as a Service (MSaaS)
 - Anylogic [http://anylogic.com]
 - CloudSME [Taylor et al., 2018]

Conclusions

- A system that generates initial conditions and runs contagion simulations on networks.
- On demand high performance computing (HPC).
- Open access, versatile simulation framework within net.science.
- Can benefit researchers, educators, and students.

Limitations & Future Directions

- Addition of new models requires working on both front and backends.
- Input network sizes are limited by available memory and processing power.
- Parallelization of graph analysis algorithms in the initial conditions module to improve performance.

Questions ?

Tanvir Ferdousi Email: <u>tanvir@virginia.edu</u> Project Site: <u>https://net.science</u>