Table 2. Effect of seed treatment on crop stand of rice varieties (>14 DAS) sown in standing water.^a Cuttack, India, 1987 dry season.

Treatment	Seedling emergence (no./m ²)	Stand establishment (%)	Plant height (cm)	Dry weight/ plant (g)
Variety				
Utkal Prabha	206	52	26	26
Kalinga 3	185	46	26	24
Ratna	171	43	25	25
LSD (0.05) Seed treatment	ns		ns	ns
Dry seed	144	36	24	18
Seeds soaked 48 h				
$0.3\% \text{ H}_2\text{O}_2$	200	50	27	30
0.1% KMnO ₄	200	50	27	25
Water	205	51	26	26
LSD (0.05)	22		1.5	3

 $[^]a400$ seeds sown/1-m² plot in 10 cm standing water; water depth 10 \pm 2 cm.

rice seedlings increases greatly 2-3 d after germination.

Among the varieties tested, Sabita

showed comparatively higher emergence, followed by FR13A and Utkal Prabha. \square

Soil fertility and fertilizer management

Response of direct-sown rice to Azospirillum lipoferum

G. Gopalaswamy, V. Narasimhan, and A. A. Kareem, Tamil Nadu Rice Research Institute, Aduthurai 612101, India

We tested the effect of *A. lipoferum* on direct-sown rice during the Sep-Jan 1989 wet season.

Peat-based *A. lipoferum* inoculum at 2 kg/ha was mixed with 100 kg of IR20 seeds, using rice gruel water as sticker. The mixture was dried in the shade for 20 min, then sown. Peat-based inoculum at 4 kg/ha was mixed with 15 kg well-powdered farmyard

manure, broadcast, and covered with soil.

Four treatments were laid out in a random block design with five replications (see table). Experimental plots of 20 m² received 75 kg N/ha as urea in 3 splits (50% at 30 d after sowing (DAS), 25% at 60 DAS, and 25% at 90 DAS), 37.5 kg P/ha as superphosphate, and 37.5 kg K/ha as muriate of potash, both basal.

A. lipoferum applied through both seed and soil gave the highest grain and straw yields. Root weight, plant height, and productive tillers increased. □

Effect of A. lipoferum on direct sown rice. Aduthurai, India, 1989 wet season.

Azospirillum treatment	Plant height (cm)	Productive tillers (no./hill)	Root weight (g/hill)	Grain yield (t/ha)	Straw yield (t/ha)
Seed	69.7	7.7	1.51	2.4	3.2
Soil	67.5	7.6	1.76	2.3	2.8
Seed + soil	73.1	8.8	2.09	3.0	4.0
Control (no treatment)	67.4	7.5	1.45	2.3	2.9
LSD (P = 0.05)	5.5	0.6	0.17	0.53	0.90

Effect of zinc fertilizers on rice grown on Typic Ustochrepts

R. L. Bansal and V. K. Nayyar, Soils Department, Punjab Agricultural University, Ludhiana 141004, India

We studied the efficiency of ZnSO₄ and Zn-EDTA applied in soil (11.2, 5.6, and 2.8 kg Zn/ha) and as foliar spray (0.02, 0.1, and 0.2% Zn solution) in long-duration PR106 grown on Typic Ustochrepts during 1988 wet season (kharif).

Soil was loamy sand with pH 8.5, electrical conductivity 0.32 dS/m, 0.42% organic C, and 0.50 mg DTPA extractable Zn/kg soil. Urea, diammonium phosphate, and muriate of potash were applied at 120-27-24 kg NPK/ha.

In the soil treatments, Zn was broadcast at transplanting (45-d-old seedlings). In the foliar spray treatments, the first spray was at 4 wk after transplanting and the remaining two at 10-d intervals. The experiment was laid out in a randomized complete block design with three replications. Straw and grain samples were analyzed for Zn content.

Grain yield increased significantly with increasing rates of soil-applied Zn for both sources (see table). Foliar sprays of Zn-EDTA (except at 0.02% solution) and ZnSO₄ significantly

Effect of application methods, rates, and sources of Zn on rice yield and Zn uptake. Ludhiana, India, 1988 wet season.

Zn source	Zn rate	Yield (t/ha)		Zn						
Zii source	Zii iate	Grain	Straw	uptake (g/ha)						
Soil application (kg Zn/ha)										
$ZnSO_4.7H_2O$	11.2	7.1	15.2	351						
	5.6	6.6	14.4	283						
	2.8	6.1	12.7	225						
Zn-EDTA	11.2	7.6	15.9	378						
	5.6	6.9	14.8	304						
	2.8	6.3	13.5	240						
Foliar application (%)										
$ZnSO_4$. $7H_2O$	0.20	6.2	11.8	206						
, 2	0.10	5.9	10.1	164						
Zn-EDTA	0.10	6.0	10.7	208						
	0.02	5.7	8.2	144						
Control		5.3	8.2	123						
LSD $(P = 0.0)$)5)	0.5	1.3	43						