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ParticleGrid

* Is a library for generating 3D grids to represent molecules

* |s designed for deep learning applications and to seamlessly integrate
with deep learning frameworks
* Generative and predictive models are the goal
* Low overhead and simple to install

* Is highly optimized
* Orders of magnitude faster than NumPy and Numba

* Up to 9000x, 79.5x, and 14x over NumPy, Numba, and baseline C++
implementations



Representations of Molecules

C9oHg04 or CH3COOCsH4COOH or Aspirin

(a) SMILES: (d) Graph: | (f) 3D Grid:
CC(=0)0C1=CC=CC=C1C(=0)0 [

(b) InChl:

C

6(10)12-8.5.2.9-4. g (e) Coulomb ¢
1S/C9H804/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12) Matrix: §
(c) SELFIES: E
[C][C][=Branch1][C][=O][O][C][=C][C][=C][C][=C][Ring1][=Branch1][C][=Branch1][C][=0][O] E
c

o

o

ccoocccccccoo

» String based representations are compact and expressive
* But they don’t generalize for crystals and other materials
* Symmetries are hidden

* Graph based representations are a natural choice for molecules
* Graph generation is difficult



Design Goals

* Why use 3D grids? * Design Goals:
* Learning on tensors is * Application in deep learning
convenient and well-studied e Ease of use
* Deep learning generative e Flexible
models on grids e Fast

* Convenient, reusable
representation

* Enable transfer learning

Invertible

Trained Model

CCCS(=0)c1ccc2[nH]c(=NC(=0)O0C)[nH]c2c1

- Grid
Raw Data el e Con;::;ned Generation >

[ 3D Grids

—_—




Design Goals

* Why use 3D grids? * Design Goals:
* Learning on tensors is e Application in deep learning
convenient and well-studied e Ease of use
* Deep learning generative e Flexible
models on grids e Fast

* Convenient, reusable
representation

* Enable transfer learning — B

Invertible

CCCS(=0)c1cce2[nH]c(=NC(=0)OC)[nH]c2¢1

Generate on Trained Model
the fly!
ParticleGrid

=== [ Training >
Grid
Raw Data | Conformation > Con[;g:la'ned Generation>

Cache this | 3D Grids |




3D Guassian Grids

* 3D grids based on Gaussian spreads
of atoms:

e Each grid Foint is the sum over the
integral of the 3D Guassian function

* Calculate 6 erf per grid point per
molecule
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* Challenges:

e Reduce the number of calculations
* Exploit data parallelism




Performance Optimizations

* Exploiting Truncation

* Probe Gaussian values over grid in
linear time over a single direction

 Skip regions without signal in one

dimension
* No op for cells with little to no signal

e Results in 7x speed up

e SIMD parallelization of main

functions

e Custom SIMD erf implementation using
BlUrman series approximation
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The evaluations are performed on an Intel Xeon Silver 4114 CPU @ 2.20 Ghz, with 32k L1i and L1d cache, 1024K L2 cache, and 14080k L3
cache, 128 GB of system RAM and GCC 7.5.0
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Using ParticleGrid

e ParticleGrid can be installed via
pip
* Low dependency overhead:

* C++17 enabled compiler
* NumPy

* Smooth integration with deep
learning frameworks

e Zero-copy transfers to data
containers

* Integrates into existing data
pipelines

import numpy as np

2 import torch
3 import tensorflow as tf
4 from ParticleGrid import coord_to_grid
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# Points are in the format

(channel, x, vy, z)
7 E€BENpoints =Snp . array ([0, 005, 0TS 005,
IS (S O Gl (P 2 1]1)

# Generates a (2,32,32,32) grid

grid = coord_to_grid(test_points,
width=1,
height=1,
depth=1,
num_channels=2,
grid_size=32,
variance=0.05)

# Convert to PyTorch tensor
grid_torch_tensor = torch.from_ numpy (grid)
# Convert to TensorFlow tensor
grid_tf_tensor = tf.convert_to_tensor(grid)



Using ParticleGrid

* The grid generation function
coord_to_grid takes as input:

e A set of of coordinates to transform

* The dimensions of the extent
(bounding box):
* Width
* Height
* Depth
* The size of the grid
e The variance (amount of spread)

1 import numpy as np

2 import torch

3 import tensorflow as tf

4 from ParticleGrid import coord_to_grid
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# Points are in the format (channel, x, vy, z)
7 E€BENpoints =np.array ([0, 005, 005, 005,
JUIS () () IS ()RS 21| 0)

# Generates a (2,32,32,32) grid

grid = coord_to_grid(test_péints,
width=1,
height=1,
depth=1,
num_channels=2,
grid_size=32,
variance=0.05)

# Convert to PyTorch tensor
grid_torch_tensor = torch.from_ numpy (grid)
# Convert to TensorFlow tensor
grid_tf_tensor = tf.convert_to_tensor(grid)
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Using ParticleGrid

* Returns a NumPy array

* By reference. Handles ownership of
object over to Python

* Most prominent DL libraries can
ingest NumPy without copying the
data

import numpy as np
import torch

3 import tensorflow as tf
4 from ParticleGrid import coord_to_grid

# Points are in the format (channel, x, vy,
7 E€BENpoints =np.array ([0, 005, 005, 005,
JUIS () () IS ()RS 21| 0)

# Generates a (2,32,32,32) grid

grid = coord_to_grid(test_points,
width=1,
height=1,
depth=1,
num_channels=2,
grid_size=32,
variance=0.05)

# Convert to PyTorch tensor
grid_torch_tensor = torch.from_ numpy (grid)
# Convert to TensorFlow tensor
grid_tf_tensor = tf.convert_to_tensor(grid)
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Retrieving Coordinates from Grids

Input Grid Representation: The input to
retrieve the generating coordinates of.

The true coordinates,
generated from
conformations of a molecules
are never available to the
discretizer. The approximated
grid is optimized to match the
input gnd.
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Practical Application: Property Prediction

* Natural to consider the efficacy of this
representation

* We use 3D structure for learning on molecular
properties

* We train on the Open Graph Benchmarks Large-
Scale Challenge PubChem Quantum Mechanics
for Molecules (OGB-LSC PCQM4M)

* Predict the highest occupied molecular orbital
(HOMO) lowest unoccupied molecular orbital (LUMO)
energy gap using 3D coordinates of molecules

* With a 10 layer 2D-Residual Network S TT AL .
* We achieve a 0.006 MSE on the test set
* A throughput of about 50,000 molecules a second!
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Future Work

* Enable wider range of materials such as periodic crystals
e Support SIMD on ARM and Power architectures
* Integrate noise generation to enable on the fly diffusion data generation

e Support new use cases for practitioners
* We are looking for users!
* If you have a problem that could use molecular 3D information for deep learning,
we’re interested!
* The public repo is located at:
https://github.com/ParticleGrid/ParticleGrid
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