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Abstract— Automation of vineyards cultivation necessitates
for mobile robots to retain accurate localization system. The
paper introduces a stereo vision-based Graph-Simultaneous
Localization and Mapping (Graph-SLAM) pipeline custom-
tailored to the specificities of vineyard fields. Graph-SLAM
is reinforced with a Loop Closure Detection (LCD) based on
semantic segmentation of the vine trees. The Mask R-CNN
network is applied to segment the trunk regions of images, on
which unique visual features are extracted. These features are
used to populate the bag of visual words (BoVWs) retained
on the formulated graph. A nearest neighbor search is applied
to each query trunk-image to associate each unique feature
descriptor with the corresponding node in the graph using a
voting procedure. We apply a probabilistic method to select the
most suitable loop closing pair and, upon an LCD appearance,
the 3D points of the trunks are employed to estimate the loop
closure constraint to the graph. The traceable features on trunk
segments drastically reduce the number of retained BoVWs,
which in turn expedites significantly the loop closure and
graph optimization, rendering our method suitable for large
scale mapping in vineyards. The pipeline has been evaluated
on several data sequences gathered from real vineyards, in
different seasons, when the appearance of vine trees vary
significantly, and exhibited robust mapping in long distances.

I. INTRODUCTION

Vineyards are used for the production of grapes,
the growing of which constitutes a significant fragment
in orchards farming that requires dedicated agricultural
operations [1]. Vineyard agriculture comprises procedures
such as cultivation, inspection, spraying, pruning and
harvesting which are currently performed manually. The
deployment of autonomous robots in vineyards, capable of
undertaking such procedures [2], can significantly minimize
the harsh and long working conditions experienced by grapes
growers, while at the same time can offer precise and extend
control on monitoring, planning and prediction of farmers
yield [3].

However, the deployment of existing robotic technologies
in vineyards is not straightforward, since there are major
challenges [4]. The various illumination conditions that
influence the vision systems’ performance, the poor GPS
(Global Positioning System) availability due to the signal
blockage or multi-reflections in vineyards located in
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Fig. 1. On top, an aerial instance of a vineyard. On bottom, three instances
of the same vineyard in different seasons exhibit the variation of the scenery.

mountains or in canopies created in blossom seasons, the
dead-reckoning systems failure due to harsh terrains, the
patterns’ repeatability and the seasonal variation of trees’
morphology that influence the robot’s localization, are some
of these challenges that agricultural robots need to cope with.
Robot mobility is essential for vineyards exploration thus,
accurate SLAM that deals with such challenges is essential
for each robot to be deployed in such environments [5].

The visual SLAM in vineyards has been already studied
from different perspectives. Some approaches focus on the
use of cameras in GPS-denied environments [6], [7], [8] to
incrementally create a map relied on vineyards structured
features. High resolution 3D Lidar sensors are also used to
provide dense vineyards reconstruction [9], yet the high-cost
of such sensors still hinders the adoption of such solutions.
Semantic SLAM methods have also been presented, tailored
to vineyards mapping needs, but tested on limited ranges and
data [10], mainly due to excessive demands on computational
resources. LCD approaches are typically used in long
travelled distances to correct the significant drift caused by
incremental SLAM methods [11], some of which have been
applied to agriculture applications [12], [13]. Though, the
uniformity of vineyards makes the detection of places, which
the robot has passed, so challenging that requires dedicated
approaches to distinguish among grape trees and structures.
To the best of our knowledge, a semantic-based LCD method
for SLAM optimization in vineyard environments has not
been presented yet. The majority of the existing methods
rely on the existence of artificial landmarks for LCD or
employ the GPS measurements, yet placing landmarks in



all vineyards areas is not possible neither practical, while
the presence of accurate GPS measurements is sometimes
questionable, since it depends on the vineyard’s location.

We introduce a Graph-SLAM method accompanied by
an LCD strategy that capitalizes on deep learning-based
semantic segmentation of grape trees to isolate their trunk
regions upon which traceable and unique visual words
(VWs) are computed. We tackle the uniformity of vineyard
environments (see Fig. 1) by focusing on the trunk regions
of grape trees, since they slightly vary among seasonal
alterations. Candidate frames for LCD are inferred in a
vote-wise probabilistic manner, exploiting the (trunk-based)
semantic VWs, which in turn used for graph optimization
when the robot revisits previously seen places in the
vineyard. Our method relies only on stereo visual input,
maintaining the required perception resources as minimal as
possible thus, the main contributions are as follows:

• a semantic segmentation of grape trees based on Mask
R-CNN neural network and the formalization of visual
words with local descriptors on the salient regions (i.e.,
the trunks)

• a feature tracking visual odometry (VO) strategy relied
on a double-filtering approach to remove outliers among
consecutive frames

• an LCD method that build upon semantic visual words
to calculate appearance based probability among stored
nodes in the graph

• data accumulation and fusion using Graph-SLAM in
order to map, correct and smooth the robot’s long
trajectories

II. RELATED WORK

We focus on recent works related to mapping techniques
in orchard related environments, emphasizing on works
conducted for vineyards applications. In addition, we discuss
the existing works oriented towards the semantics of
vineyards either for semantic mapping and robot localization.

A. Mapping and Localization in Vineyards

In many agricultural related robotics applications, the
ORB-SLAM and ORB-SLAM2 [14], [15] approaches are
widely used since they are suitable for outdoor applications,
and prune redundant key-frames maintaining a bounded-size
map. Authors in [16] utilized ORB-SLAM for vineyards,
yet slightly modified to recover key-frames for further
classification approaches. Authors in [17] extensively tested
monocular ORB-SLAM2 in Rosario [18] agriculture dataset
and found that the heuristic threshold used for initializing
monocular tracking and the number of ORB features
extracted impact the robustness of the system significantly.
VineSLAM [8], constitutes a 2D SLAM solution tailored to
vineyard environments. The authors employed geometrical
attributes of the grape trees and their relevant distances
to create dedicated natural features, namely ViTruDe [19].
ViTruDe features combined with RFID tags placed on
the edges of each row of the vineyard to ease LCD in
row transitions can alleviate extended Kalman filter from

increased complexity. In [20], an LCD in a commercial
orchard is performed with artificial landmarks made of
retro-reflective tapes located at the end of each row,
facilitating the detection of the pre-visited location with a
3D Lidar. However, such methods require the existence of
a large number of artificial landmarks to cover an entire
vineyard and in many cases could be impractical. Authors
in [21], found GMapping to be the most reliable among
KartoSLAM [22] and Google-Cartographer [23] although,
these algorithms are considered to be efficient only on planar
fields. In more recent work described in [9], a SLAM method
based on a 3D Lidar data fused with GPS measurements,
created 3D maps for the canopy density estimation. The
method exhibited accurate results for long travelled distance.
However, in such cases GPS signal reception could be sparse
and the utilization of 3D Lidar sensors would significantly
increase the cost of the solution. Another work that follows
a similar philosophy to ours is the one described in [10].
The authors used semantic features, which represented grape
spheres, extracted from 2D images and by exploiting depth
information the corresponding 3D point clouds were utilized
for the camera motion estimation in consecutive frames
with singular value decomposition, followed by an ICP
variation. This method provides accurate SLAM for few
meters travelled distance, although it does not account for
long distances in vineyards and does not cope with the LCD
and localization error drift. Moreover, relying only on grapes
detection ends up to ephemeral mapping and localization
abilities, since grapes are present on the trees only for
one season annually and the rest period the map becomes
obsolete.

B. Deep Vine Part Detection

Over the last decade, the computer vision community has
increasingly moved away from the paradigm of handcrafted
features on images, towards richer feature representations
extracted from deep Convolutional Neural Networks (CNN).
This trend has greatly affected the state-of-the-art methods in
the tasks of semantic segmentation, bounding box regression
and instance segmentation in viticulture. The authors of
[24] detected grape bunches in their manually annotated
dataset, evaluating YOLOv2 [25], YOLOv3 [26], in the
tasks of grape bunch bounding box detection and Mask R-
CNN[27] in the task of instance segmentation. The authors
of [28] utilized a location sensitive variant of the HTC [29]
instance segmentation network to detect grape bunches on
RGB images and estimated the number of individual berries
inside them. Although these works achieved impressive
results in the extraction of grape bunch masks, they did
not concern themselves with parts of the plant that remain
unchanged throughout the year. In [30] bounding box
detection was performed on an RGB vine trunk dataset with
Faster R-CNN [31], YOLOv3 and YOLOv5 [32]. However,
they did not predict trunk masks in their dataset, which
consist more precise representations of trunks’ location.
The authors of [28] trained SegNet [33] and FCN [34] to
semantically segment trunks and cordons for the task of



cordon trajectory estimation. Due to the heavy occlusions
of cordons from shoot/leaves, in [35] the same authors
utilized the Faster-RCNN architecture to detect all the visible
cordon parts and the FCN [34] architecture to segment
shoots/leaves. Afterwards, they predicted the centroid of
an occluded cordon segment between two visible cordon
segments by leveraging the geometric information from the
occluding shoots/leaves. However, a forward-looking camera
in a vineyard corridor adds perspective distortion to the
scenery, resulting in whole plant cordons being occluded, and
different plant cordons occupying significantly different pixel
area, thus, making the regression of cordon trajectory less
robust. The works most similar to ours are those presented
in [36] and [37], which both captured their datasets with
a frontal stereo camera mounted on an AgRob V16, in
conjunction with thermal and blue-infrared-filtered cameras
respectively. In [36] the authors evaluated two SSD [38]
bounding box detector variants on their manually annotated
datasets. Similarly, the authors of [37] evaluate the SSD
architecture with a MobileNetv1 and MobileNetv2 backbone,
as well as the TinyYOLOv3 [26] architecture, for the
bounding box detection of vine trunks, which are projected
in corresponding registered depth images to facilitate the
construction of a vineyard corridor 2D map. However, both
works considered only the bounding boxes surrounding the
trunks, which according to our experiments were inadequate
for the extraction of salient features throughout the seasons.

III. METHODOLOGY

A. Structured Motion in Vineyards

For harvesting and inspection tasks executed in an orchard-
like environments such as vineyards, the robot follows
structured motions in order to complete its mission. Such
motions are typical in outdoor applications where robots
cover long distances to visit all places of interest [39]. We
selected a variation of Boustrophedon-like motion in our
mapping approach based on which, each row is traversed
twice. In the first row passing the robot moves close to
the trees on the left side of the row and in the second row
passing, the robot moves close to trees on the right side of the
row. This is a reasonable motion for harvesting applications
where the robot moves closer to vine trees to execute
the manipulation tasks. This motion is also convenient for
localization, since passing from the same row twice will
favour the loop closure detection.

B. Trunk Detection Network

Our approach for leveraging visual information for the
accurate robot SLAM is to isolate trunk regions of RGB
images and compute on these segments representative
features that uniquely describe the observed place and will
be traceable in a potential robot revisit of the same area.
The semantic module of our pipeline extracts the binary
masks defining only the regions of vine trunks and returns the
”strongest” features that constitute the visual words (VWs).
These unique features extracted from semantic regions of
vine trees contribute to the formulation of a Bag of Visual

Words (BoVWs) framework utilized for the loop closure
searching strategy.

Mask extraction is actualized through Deep Convolutional
Neural Networks trained on our hand-tailored dataset of
vineyard scenery. The relevant tasks associated with our
problem are either semantic segmentation or instance
segmentation, with the latter providing more information, as
it additionally provides information regarding the existence
of individual objects on the image, instead of a per-pixel
mask of the image. We investigated both approaches using
state-of-the-art architectures representative of each category
- PSPNet [40] for semantic segmentation and Mask R-
CNN [27] for instance segmentation. Mask R-CNN estimates
masks for each instance of trunks existing in an RGB image,
therefore, we created the total trunks mask by applying the
OR logical operator to all the predicted masks.

The experimental results indicated the superior
performance of Mask R-CNN in our dataset. Therefore,
we chose it for the task of estimating the binary masks of
the trunks V for the query RGB image IQ. Following the
estimation of V, we extract trunk information from IQ as
follows:

Iei =

{
IQi if Vi = 1
0 if Vi = 0

where Ie is the extracted image, IQi the value of IQ at
pixel i and Vi is the value of the trunk mask V at
pixel i. Afterwards, we calculate the ORB features for Ie,
where we limit the maximum number of the requested
features on the detected trunks to 1000. The set of the ORB
features’ descriptors is denoted as the MQ and corresponds
to the semantic VWs of the query image. We showcase the
complete VWs computation pipeline with a sample from our
dataset in Fig. 2.

Fig. 2. The visual words computation pipeline: a) The original RGB image;
b) The trunks binary mask; c) The extracted RGB trunks from the original
image; d) The ORB features’ positions on the grayscale extracted trunks.

C. Semantic Graph-SLAM

Our complete framework for the proposed stereo vision-
based Graph-SLAM is graphically illustrated in Fig. 3. The
front-end, is a VO scheme, where the estimated robot poses
constitute the nodes of a pose graph. The VWs are also
computed and associated with each node in the graph. The



back-end refers to the LCD and to the graph optimization
approach.

Fig. 3. The proposed Graph-SLAM pipeline; the front-end comprises to the
robot incremental motion estimation and the creation of key-frames based
on the semantic segmentation of trunks, while the back-end comprises the
LCD and graph-optimization modules.

1) Visual odometry (VO) (front-end): We employ a two-
step features tracking and filtering method in order to discard
as many outliers as possible, aiming at obtaining a reliable
rigid transformation among camera poses. The ORB features
[41] are selected, which are computational inexpensive and
account for viewpoint changes. In particular, let Qt and
Qt−1 be the sets of 2D correspondences of the frames
at time t and t − 1, respectively. The feature matching is
performed in brute force manner by exploiting Hamming
distance. On the 2D correspondences, we estimate the planar
rotation matrix H using RANSAC, with the Direct Linear
Transform (DLT) as the hypothesis of the RANSAC loop.
The correspondences which do not satisfy the transformation
Qt−1 = HQt are discarded as outliers. The depth image
is then calculated using the corresponding disparity maps.
The matched inliers are then projected to 3D coordinates
using the depth image formulating two sets of Pt and
Pt−1. Subsequently, for each 3D point pt ∈ Pt, the rate
ρz =

pz
t

pz
t−1

is calculated, where pzt denotes the z coordinate
of the point pt, and if there is an extreme deviation from
1 the point is rejected as outlier [42]. The transformation
T which best aligns the remaining 3D correspondences is
computed through singular value decomposition (SVD). We
apply a local Sparse Bundle Adjustment (SBA) [43] on a
sliding window of three consecutive frames to optimize the
estimated transformation T by minimizing the re-projection
error. The camera motion transformation T is expressed to
the robot base frame and the final robot transformation τt
among consecutive robot poses xt, xt−1 is obtained.

2) Pose Graph formulation (back-end): In our graph each
node corresponds to a robot pose xt, which is added as a
new node, when d(xt, xt−m) > D, where m, is the last
pose added in the graph and D is an euclidean distance
threshold large enough to maintain the sparse nature of
the problem. The edges correspond to the accumulative
transformation Tg = τt−m, τt−m+1, ..., τt, between the nodes
in the graph. Each node is also associated with a key-frame
KQ which contains the information of the VWs MQ, as
described in Sect. III-B. Using the trunks image Ie and the

depth information of the disparity maps, the point cloud is
calculated and included in KQ. The concatenated descriptors
M for each processed key-frame formulate the BoVWs used
for searching for LCD when a new query image IQ appears.

In Fig. 3 a formulated pose graph with 4 nodes is
graphically illustrated, where each node is also associated
with a key-frame Kn and contains the respective VWs.

Each key-frame Kn contains also the point clouds
corresponding to segmented trunks that inherit the
transformation Tg . This allows global map refinements when
an LCD triggers a graph optimization.

3) Loop closure detection and optimization: When a new
node is to be added in the graph, we trigger an LCD
scheme as proposed in [44]. Let IQ be the captured image
of the query node and MQ ⊂ KQ containing NQ ORB
features on the detected trunks of the query image IQ. A k-
nearest neighbor (k-NN) search based on hamming distance
is performed with k = 1, having as a train set all the pre-
visited nodes’ descriptors Mi, i ∈ (0, L− l) of Ni features.
L denotes the number of already existing nodes in the pose
graph and l is the set of most recently added nodes. A
histogram of votes is created where each bin represents the
ki NNs of the node i. Efficient search for NNs is achieved
through a Locality Sensitive Hashing (LSH) algorithm. To
avoid definition of heuristics and thresholds for each node i
we estimate the binomial probability mass function (PMF):

Pr,i(X = ki) =

(
Ni

ki

)
pki
i (1− pi)Ni−ki , (1)

where, 0 < pi =
Ni∑
i Ni

< 1.

By exploiting the ”Law of rare events” [45] an LCD
event is considered when the following criteria are met:

0 ≤ Pr,i(X = ki) < λ, where λ ≈ 0, (2)

and
ki > E[Bin(Ni, pi)]. (3)

To avoid false detection, we consider that a loop actually
exists if there are at least three consecutive LCDs. For each
candidate node c we estimate the transformation Tc which
best aligns the point clouds that correspond to the projected
features of VW, Pc and PQ with the method described
in Sect. III-C.1. Should the emerged transformation’s Tcv
translation norm is smaller than D, this transformation is
added as a constraint between the nodes Q and cv . The
graph update and optimization follows by exploiting the
ISAM2[46].

IV. EXPERIMENTAL EVALUATION

A. Experimental Protocol

The evaluation dataset for both the vine trunk detection
and LCD is consisted of stereo RGB images with 1280 ×
720 pixels captured by a ZED 2 camera and collected
during three visits to a northern Greece vineyard in the



autumn of 2020, the winter and the summer of 20211,
with significant differences in the ambient illumination
during the data collection. The collected data sequences
followed the trajectory described in Sect. III-A for 2 adjacent
rows. In the time interval between our first two visits, the
vineyard had been defoliated and no withered leaves had
remained on the ground, while in our last visit the trees had
blossomed, contributing to an important qualitative change
in the captured scenery. Among the collected sequences we
selected 399 frames from the first visit, 105 frames from the
second visit, and 114 frames from the last visit to manually
annotate the four closest to the camera trunks from the left
and right rows of visible trees. Samples of the captured data
are exhibited in Fig. 4.

B. Evaluation

1) Trunk Detection performance: We trained our
algorithms from samples drawn randomly from all visits,
but evaluated them separately. We made a 70 − 10 − 20%
train-validation-test split of the data captured from each visit,
and augmented our training set ten times per training image,
following the augmentation schema proposed in [24]. We
zero-padded the images fed into Mask R-CNN to a 1 : 1
aspect ratio at the largest image dimension, i.e., 1280 pixels.

Fig. 4. Qualitative comparison of PSPNet and Mask R-CNN detection
of trunks, with respect to the ground truth annotated data, for an autumn,
winter and summer RGB sample. In all cases Mask R-CNN produces more
accurate trunk masks than PSPNet, especially for the third and fourth trunk
in a row. The reader should note the qualitative differences between the
scenes corresponding to different collection sessions.

Regarding the training of the trunk mask prediction
networks, we generally kept most of the default parameters
of the Mask R-CNN implementation [47] and PSPNet
implementation [48] [49]. We utilized the validation dataset
for the selection of the optimal learning rate, number
of training iterations and network backbone. For Mask
R-CNN the metric optimized was mAP@0.5:0.95 IoU,
while for PSPNet it was mean trunk class IoU (Trunk
IoU). Additionally for Mask R-CNN we found the optimal
confidence threshold value by maximizing the F-measure
at 0.3 IoU. We trained our algorithms on a Nvidia Tesla

1We thank Ktima Gerovassiliou winery for providing us with access to
its vineyard for our data collection and experiments

TABLE I
EVALUATION OF MASK R-CNN AND PSPNET FOR THE THREE VISITS.

Method / Dataset Trunk IoU BG IoU
Mask R-CNN / autumn 0.683 0.998
PSPNet / autumn 0.641 0.996
Mask R-CNN / winter 0.723 0.998
PSPNet / winter 0.659 0.996
Mask R-CNN / summer 0.625 0.999
PSPNet / summer 0.474 0.997

K40m up to the largest batch size and backbone network
possible with respect to our hardware. We evaluated the
two methods with Trunk IoU and the mean IoU of the
background class (BG IoU) in our three datasets, and present
our experimental results on Table I, highlighting with bold
letters the best evaluation metric for each method. Qualitative
results comparing the two methods with the ground truth can
be seen in Fig. 4.Mask R-CNN constituted the best method
for our datasets and, therefore, we employed it for the LCD
method.

2) Mapping and Optimization performance: In order to
achieve real-time performance, the front and back-end of
proposed SLAM assigned to two separate threads. As for
the parameters described in Sect. III-C.1 and Sect. III-C.2,
we found D = 0.5m and l = 160 to be sufficient for
the respective dataset. For the evaluation of the proposed
SLAM algorithm, we extracted 5 pairs of rows from the total
available scenes, 1 from autumn (A01), 2 from the winter
(W01, W02) and 2 from the summer (S01, S02). The S01 and
S02 also contain ground truth (GT) data provided by a Real
Time kinematic positioning (RTK) system and an absolute
heading Inertial Measurement Unit (IMU). A summary of
the datasets details are presented in Table II.

TABLE II
SLAM DATASET SUMMARY.

Dataset Name Row Length(m) Total Distance(m) GT FPS
A01 80 175 No 2
W01 80 327 No 2
W02 80 317 No 2
S01 35 102 Yes 5
S02 45 122 Yes 5

First, we evaluate our method regarding the loop closure
performance. To evaluate how the VWs stemming from
our trunk semantic segmentation approach contribute to the
efficient detection of loop closures, we compare it against
the case where 20% of the strongest ORB features obtained
from the entire image are added as VWs in each key-frame.
The results are summarized in Table III for our method and
in Table IV for the base line method, respectively.

In our method, from the total amount of nodes added to
the graph while traversing the row at second time, ≈ 50% are
identified as LCD events. However, for the baseline approach
less than 1/3 of nodes are correctly identified as LCD events.
The latter means that the extracted VWs based on semantic
trunk segmentation significantly contribute to the LCD since
those VWs are traceable when the robot passes from the same



TABLE III
EVALUATION OF LCD - SEMANTIC TRUNKS MASKS.

Dataset #Nodes Common Nodes True LCD False LCD
A01 305 11 5 1
W01 436 145 71 11
W02 427 137 74 4
S01 197 62 42 2
S02 240 137 91 4

TABLE IV
EVALUATION OF LCD - 20% BASELINE METHOD.

Dataset #Nodes Common Nodes True LCD False LCD
A01 305 11 2 5
W01 436 145 45 18
W02 427 137 39 11
S01 197 62 27 14
S02 240 137 22 17

place and can coped with the uniformity of the observed
scenes within the same row.

Since the GT data were only available in the summer
datasets, we evaluate the trajectory against the GT and
the ORB-SLAM2 [15] approach. The error metric used to
evaluate the output trajectory are the Absolute Trajectory
Error (ATE), which is defined as the average deviation from
the GT, where for S01 and S02 our method achieved 0.667
and 0.76 for each sequence respectively, against the 0.976
and 1.082 of the ORB-SLAM2. The trajectory comparison
is shown in Fig. 5 and the root mean square error (RMSE) of
the translation and rotation vector w.r.t. the travelled distance
of the robot is exhibited in Fig. 6.
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Fig. 5. Evaluation of our proposed implementation (green) with the ORB-
SLAM2 (yellow) and the GT (blue) in the summer datasets a) S01 and b)
S02.

The results shows that our method performs better in the
challenging environment of the vineyard based both on the
qualitative comparison and the resulted errors. The efficacy
of the LCD and the graph optimization, is indicated in Fig. 6
by the significant drop on the translation and rotation error

(a)

(b)

Fig. 6. Translation and rotation RMSE comparison of our method (orange)
against ORB-SLAM2 (blue) in datasets a) S01 and b) S02.

after the first row passing.
In order to further evaluate the global consistency of the

generated map, we utilized a statistical methodology. First,
we extracted the 3D points corresponding to the mask of each
trunk i denoted as Ti, translated by the respective optimized
robot’s pose, and calculated the trunk’s points mean µi. Then,
we created clusters, where each cluster q contains all the Ti

in a radius r around the trunk i. The radius was selected
to be 0.7m, since two consecutive trunks are mostly 0.8m
apart. For each cluster we calculated its center and estimated
the standard deviation σi, of the trunks belonging to q. The
mean 1

n

∑
i σi, where n is the total number of detected trunks

found to be 0.29m for A01, 0.19m for W01, 0.13m for W02,
0.09m for S01 and 0.12m for S02. This metric indicates that
the the existence of large amount of LCDs and the triggering
of the graph-optimization contribute to the formulation of
consistent 3D metric maps, avoiding duplicate registration
of trunks.

V. CONCLUSION

A Graph-SLAM method for robot operation in vineyard
environments has been presented. For the front-end, a custom
stereo VO tailored to the specificities of such environments
has been designed. Nodes and edges are added to the pose
graph based on robot motion strategy while the salient
information in each key-frame is obtained through unique
features from the segmented trunk regions on the image.
Trunk segmentation is applied with a Mask R-CNN network
and on the extracted masks ORB features are calculated.
These features, formulate a representative BoVWs that can
discriminate among the uniform scenes within the rows
of the vineyard, highly contributing to the efficient loop
closures, the detection of which is relied on the ”law of rare
events” calculated as the lowest probability in the binomial
distribution. The 3D projected trunk regions are further
utilized for the optimized graph-update with an accurate loop
closure constraint. Experimental results on real vineyards
proved the ability of the method to produce accurate robot
motion estimation and consistent metric maps.
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