
SPIR-V Specification
John Kessenich, Google, Boaz Ouriel, Intel, Raun Krisch, Intel

Version 1.6, Revision 1: Unified

Table of Contents
1. Introduction . 4

1.1. Goals. 4

1.2. Execution Environment and Client API . 5

1.3. About This Document . 5

1.3.1. Versioning . 5

1.4. Extendability . 5

1.5. Debuggability . 6

1.6. Design Principles . 6

1.7. Static Single Assignment (SSA) . 6

1.8. Built-In Variables . 7

1.9. Specialization . 7

1.10. Example . 8

2. Specification. 12

2.1. Language Capabilities . 12

2.2. Terms . 12

2.2.1. Instructions . 12

2.2.2. Types . 13

2.2.3. Computation. 15

2.2.4. Module . 15

2.2.5. Control Flow. 15

2.2.6. Validity and Defined Behavior . 17

2.3. Physical Layout of a SPIR-V Module and Instruction . 18

2.4. Logical Layout of a Module . 19

2.5. Instructions . 20

2.5.1. SSA Form . 21

2.6. Entry Point and Execution Model . 21

2.7. Execution Modes. 21

2.8. Types and Variables . 22

2.8.1. Unsigned Versus Signed Integers . 22

2.9. Function Calling . 23

2.10. Extended Instruction Sets . 23

2.11. Structured Control Flow . 24

2.12. Specialization . 25

2.13. Linkage . 27

2.14. Relaxed Precision . 27

2.15. Debug Information. 28

2.15.1. Function-Name Mangling. 29

2.16. Validation Rules . 29

2.16.1. Universal Validation Rules . 29

2.16.2. Validation Rules for Shader Capabilities . 34

2.16.3. Validation Rules for Kernel Capabilities . 36

2.17. Universal Limits. 37

2.18. Memory Model . 37

2.18.1. Memory Layout . 38

2.18.2. Aliasing . 38

2.18.3. Null pointers . 40

2.19. Derivatives . 40

2.20. Code Motion . 40

2.21. Deprecation. 40

2.22. Unified Specification . 40

2.23. Uniformity . 41

3. Binary Form . 42

3.1. Magic Number. 42

3.2. Source Language . 42

3.3. Execution Model . 42

3.4. Addressing Model . 44

3.5. Memory Model . 44

3.6. Execution Mode . 45

3.7. Storage Class . 56

3.8. Dim . 60

3.9. Sampler Addressing Mode . 60

3.10. Sampler Filter Mode . 61

3.11. Image Format . 61

3.12. Image Channel Order . 63

3.13. Image Channel Data Type . 63

3.14. Image Operands . 64

3.15. FP Fast Math Mode. 68

3.16. FP Rounding Mode . 69

3.17. Linkage Type. 69

3.18. Access Qualifier . 70

3.19. Function Parameter Attribute . 70

3.20. Decoration. 71

3.21. BuiltIn . 89

3.22. Selection Control. 103

3.23. Loop Control . 103

3.24. Function Control . 105

3.25. Memory Semantics <id> . 106

3.26. Memory Operands . 109

3.27. Scope <id> . 110

3.28. Group Operation . 113

3.29. Kernel Enqueue Flags . 115

3.30. Kernel Profiling Info. 116

3.31. Capability . 116

3.32. Reserved Ray Flags . 137

3.33. Reserved Ray Query Intersection. 138

3.34. Reserved Ray Query Committed Type . 138

3.35. Reserved Ray Query Candidate Type . 138

3.36. Reserved Fragment Shading Rate . 139

3.37. Reserved FP Denorm Mode . 139

3.38. Reserved FP Operation Mode . 139

3.39. Quantization Mode . 140

3.40. Overflow Mode . 140

3.41. Packed Vector Format. 141

3.42. Instructions . 142

3.42.1. Miscellaneous Instructions. 142

3.42.2. Debug Instructions . 144

3.42.3. Annotation Instructions . 147

3.42.4. Extension Instructions . 150

3.42.5. Mode-Setting Instructions . 151

3.42.6. Type-Declaration Instructions. 153

3.42.7. Constant-Creation Instructions . 160

3.42.8. Memory Instructions . 166

3.42.9. Function Instructions . 172

3.42.10. Image Instructions . 173

3.42.11. Conversion Instructions . 189

3.42.12. Composite Instructions . 195

3.42.13. Arithmetic Instructions . 199

3.42.14. Bit Instructions . 214

3.42.15. Relational and Logical Instructions . 220

3.42.16. Derivative Instructions . 232

3.42.17. Control-Flow Instructions . 235

3.42.18. Atomic Instructions . 241

3.42.19. Primitive Instructions . 250

3.42.20. Barrier Instructions. 251

3.42.21. Group and Subgroup Instructions . 253

3.42.22. Device-Side Enqueue Instructions. 264

3.42.23. Pipe Instructions . 275

3.42.24. Non-Uniform Instructions . 286

3.42.25. Reserved Instructions . 303

4. Appendix A: Changes . 315

4.1. Changes from Version 0.99, Revision 31 . 315

4.2. Changes from Version 0.99, Revision 32 . 316

4.3. Changes from Version 1.00, Revision 1 . 316

4.4. Changes from Version 1.00, Revision 2 . 318

4.5. Changes from Version 1.00, Revision 3 . 319

4.6. Changes from Version 1.00, Revision 4 . 319

4.7. Changes from Version 1.00, Revision 5 . 319

4.8. Changes from Version 1.00, Revision 6 . 319

4.9. Changes from Version 1.00, Revision 7 . 320

4.10. Changes from Version 1.00, Revision 8 . 320

4.11. Changes from Version 1.00, Revision 9 . 320

4.12. Changes from Version 1.00, Revision 10 . 320

4.13. Changes from Version 1.00, Revision 11 . 321

4.14. Changes from Version 1.00. 322

4.15. Changes from Version 1.1, Revision 1 . 322

4.16. Changes from Version 1.1, Revision 2 . 322

4.17. Changes from Version 1.1, Revision 3 . 322

4.18. Changes from Version 1.1, Revision 4 . 323

4.19. Changes from Version 1.1, Revision 5 . 323

4.20. Changes from Version 1.1, Revision 6 . 323

4.21. Changes from Version 1.1, Revision 7 . 323

4.22. Changes from Version 1.1. 323

4.23. Changes from Version 1.2, Revision 1 . 323

4.24. Changes from Version 1.2, Revision 2 . 323

4.25. Changes from Version 1.2, Revision 3 . 323

4.26. Changes from Version 1.2. 324

4.27. Changes from Version 1.3, Revision 1 . 324

4.28. Changes from Version 1.3, Revision 2 . 325

4.29. Changes from Version 1.3, Revision 3 . 326

4.30. Changes from Version 1.3, Revision 4 . 326

4.31. Changes from Version 1.3, Revision 5 . 326

4.32. Changes from Version 1.3, Revision 6 . 327

4.33. Changes from Version 1.3, Revision 7 . 328

4.34. Changes from Version 1.3. 329

4.35. Changes from Version 1.4, Revision 1 . 329

4.36. Changes from Version 1.4. 330

4.37. Changes from Version 1.5, Revision 1 . 330

4.38. Changes from Version 1.5, Revision 2 . 331

4.39. Changes from Version 1.5, Revision 3 . 332

4.40. Changes from Version 1.5, Revision 4 . 333

4.41. Changes from Version 1.5, Revision 5 . 333

4.42. Changes from Version 1.5. 335

© Copyright 2014-2021 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group,
Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed,
broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos
Group. You may use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the receipt or possession of
this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of
Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that
NO CHARGE is made for the specification and the latest available update of the specification for any
version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG
AS the contents of the specification are not changed in any way. The specification may be incorporated into
a product that is sold as long as such product includes significant independent work developed by the
seller. A link to the current version of this specification on the Khronos Group website should be included
whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this specification, including, without limitation, any implied warranties of merchantability or fitness
for a particular purpose or noninfringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy, completeness,
timeliness, and reliability of the specification. Under no circumstances will the Khronos Group, or any of its
Promoters, Contributors or Members or their respective partners, officers, directors, employees, agents, or
representatives be liable for any damages, whether direct, indirect, special or consequential damages for
lost revenues, lost profits, or otherwise, arising from or in connection with these materials.

Khronos, SYCL, SPIR, WebGL, EGL, COLLADA, StreamInput, OpenVX, OpenKCam, glTF, OpenKODE,
OpenVG, OpenWF, OpenSL ES, OpenMAX, OpenMAX AL, OpenMAX IL and OpenMAX DL are
trademarks and WebCL is a certification mark of the Khronos Group Inc. OpenCL is a trademark of Apple
Inc. and OpenGL and OpenML are registered trademarks and the OpenGL ES and OpenGL SC logos are
trademarks of Silicon Graphics International used under license by Khronos. All other product names,
trademarks, and/or company names are used solely for identification and belong to their respective owners.

1

Contributors and Acknowledgments
Connor Abbott, Intel

Ben Ashbaugh, Intel

Alexey Bader, Intel

Alan Baker, Google

Dan Baker, Oxide Games

Kenneth Benzie, Codeplay

Stuart Brady, Arm

Gordon Brown, Codeplay

Pat Brown, NVIDIA

Diana Po-Yu Chen, MediaTek

Stephen Clarke, Imagination

Patrick Doane, Blizzard Entertainment

Alastair Donaldson, Google

Yuehai Du, Qualcomm

Stefanus Du Toit, Google

Gregory Fischer, LunarG

Theresa Foley, Intel

Spencer Fricke, Samsung

Ben Gaster, Qualcomm

Alexander Galazin, ARM

Christopher Gautier, ARM

Tobias Hector, AMD

Nicolai Hahnle, AMD

Neil Henning, AMD

Kerch Holt, NVIDIA

Lee Howes, Qualcomm

Roy Ju, MediaTek

Baldur Karlsson, Valve

Ronan Keryell, Xilinx

John Kessenich, Google

Daniel Koch, NVIDIA

Ashwin Kolhe, NVIDIA

Raun Krisch, Intel

Graeme Leese, Broadcom

Yuan Lin, NVIDIA

Yaxun Liu, AMD

Victor Lomuller, Codeplay

2

Timothy Lottes, Epic Games

John McDonald, Valve

Mariusz Merecki, Intel

David Neto, Google

Boaz Ouriel, Intel

Kevin Petit, Arm

Robert Quill, Imagination Technologies

Christophe Riccio, Unity

Andrew Richards, Codeplay

Ian Romanick, Intel

Graham Sellers, AMD

Simon Waters, Samsung

Robert Simpson, Qualcomm

Bartosz Sochacki, Intel

Nikos Stavropoulos, Think Silicon

Brian Sumner, AMD

Andrew Woloszyn, Google

Ruihao Zhang, Qualcomm

Weifeng Zhang, Qualcomm

3

Chapter 1. Introduction

NOTE
Up-to-date HTML and PDF versions of this specification may be found at the Khronos
SPIR-V Registry. (https://www.khronos.org/registry/spir-v/)

Abstract

SPIR-V is a simple binary intermediate language for graphical shaders and compute

kernels. A SPIR-V module contains multiple entry points with potentially shared

functions in the entry point’s call trees. Each function contains a control-flow graph

(CFG) of basic blocks, with optional instructions to express structured control flow.

Load/store instructions are used to access declared variables, which includes all

input/output (IO). Intermediate results bypassing load/store use static single-

assignment (SSA) representation. Data objects are represented logically, with

hierarchical type information: There is no flattening of aggregates or assignment to

physical register banks, etc. Selectable addressing models establish whether general

pointer operations may be used, or if memory access is purely logical.

This document fully defines SPIR-V, a Khronos-standard binary intermediate language for representing
graphical-shader stages and compute kernels for multiple client APIs.

This is a unified specification, specifying all versions since and including version 1.0.

1.1. Goals
SPIR-V has the following goals:

• Provide a simple binary intermediate language for all functionality appearing in Khronos
shaders/kernels.

• Have a concise, transparent, self-contained specification (sections Specification and Binary Form).

• Map easily to other intermediate languages.

• Be the form passed by a client API into a driver to set shaders/kernels.

• Support multiple execution environments, specified by client APIs.

• Can be targeted by new front ends for novel high-level languages.

• Allow the first steps of compilation and reflection to be done offline.

• Be low-level enough to require a reverse-engineering step to reconstruct source code.

• Improve portability by enabling shared tools to generate or operate on it.

• Reduce compile time during application run time. (Eliminating most of the compile time during
application run time is not a goal of this intermediate language. Target-specific register allocation and
scheduling are still expected to take significant time.)

• Allow some optimizations to be done offline.

4

https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/

1.2. Execution Environment and Client API
SPIR-V is adaptable to multiple execution environments: A SPIR-V module is consumed by an execution
environment, as specified by a client API. The full set of rules needed to consume SPIR-V in a particular
environment comes from the combination of SPIR-V and that environment’s client API specification. The
client API specifies its SPIR-V execution environment as well as extra rules, limitations, capabilities, etc.
required by the form of SPIR-V it can validly consume.

1.3. About This Document
This document aims to:

• Specify everything needed to create and consume non-extended SPIR-V, minus:

- Extended instruction sets, which are imported and come with their own specifications.

- Client API-specific rules, which are documented in client API specifications.

• Separate expository and specification language. The specification-proper is in Specification and Binary
Form.

1.3.1. Versioning

The specification covers multiple versions of SPIR-V, as described in the unified section. It has followed a
Major.Minor.Revision versioning scheme, with the specification’s stated version being the most recent
version of SPIR-V.

Major and Minor (but not Revision) are declared within a SPIR-V module.

Major is reserved for future use and has been fixed at 1. Minor changes have signified additions,
deprecation, and removal of features. Revision changes have included clarifications, bug fixes, and
deprecation (but not removal) of existing features.

1.4. Extendability
SPIR-V can be extended by multiple vendors or parties simultaneously:

• Using the OpExtension instruction to add semantics, which are described in an extension
specification.

• Reserving (registering) ranges of the token values, as described further below.

• Aided by instruction skipping, also further described below.

Enumeration Token Values. It is easy to extend all the types, storage classes, opcodes, decorations, etc.
by adding to the token values.

Registration. Ranges of token values in the Binary Form section can be pre-allocated to numerous
vendors/parties. This allows combining multiple independent extensions without conflict. To register ranges,
use the https://github.com/KhronosGroup/SPIRV-Headers repository, and submit pull requests against the
include/spirv/spir-v.xml file.

Extended Instructions. Sets of extended instructions can be provided and specified in separate
specifications. Multiple sets of extended instructions can be imported without conflict, as the extended
instructions are selected by {set id, instruction number} pairs.

Instruction Skipping. Tools are encouraged to skip opcodes for features they are not required to process.

5

https://github.com/KhronosGroup/SPIRV-Headers

This is trivially enabled by the word count in an instruction, which makes it easier to add new instructions
without breaking existing tools.

1.5. Debuggability
SPIR-V can decorate, with a text string, virtually anything created in the shader: types, variables, functions,
etc. This is required for externally visible symbols, and also allowed for naming the result of any instruction.
This can be used to aid in understandability when disassembling or debugging lowered versions of SPIR-V.

Location information (file names, lines, and columns) can be interleaved with the instruction stream to track
the origin of each instruction.

1.6. Design Principles
Regularity. All instructions start with a word count. This allows walking a SPIR-V module without decoding
each opcode. All instructions have an opcode that dictates for all operands what kind of operand they are.
For instructions with a variable number of operands, the number of variable operands is known by
subtracting the number of non-variable words from the instruction’s word count.

Non Combinatorial. There is no combinatorial type explosion or need for large encode/decode tables for
types. Rather, types are parameterized. Image types declare their dimensionality, arrayness, etc. all
orthogonally, which greatly simplify code. This is done similarly for other types. It also applies to opcodes.
Operations are orthogonal to scalar/vector size, but not to integer vs. floating-point differences.

Modeless. After a given execution model (e.g., pipeline stage) is specified, internal operation is essentially
modeless: Generally, it follows the rule: "same spelling, same semantics", and does not have mode bits that
modify semantics. If a change to SPIR-V modifies semantics, it should use a different spelling. This makes
consumers of SPIR-V much more robust. There are execution modes declared, but these generally affect
the way the module interacts with its execution environment, not its internal semantics. Capabilities are also
declared, but this is to declare the subset of functionality that is used, not to change any semantics of what
is used.

Declarative. SPIR-V declares externally-visible modes like "writes depth", rather than having rules that
require deduction from full shader inspection. It also explicitly declares what addressing modes, execution
model, extended instruction sets, etc. will be used. See Language Capabilities for more information.

SSA. All results of intermediate operations are strictly SSA. However, declared variables reside in memory
and use load/store for access, and such variables can be stored to multiple times.

IO. Some storage classes are for input/output (IO) and, fundamentally, IO is done through load/store of
variables declared in these storage classes.

1.7. Static Single Assignment (SSA)
SPIR-V includes a phi instruction to allow the merging together of intermediate results from split control
flow. This allows split control flow without load/store to memory. SPIR-V is flexible in the degree to which
load/store is used; it is possible to use control flow with no phi-instructions, while still staying in SSA form,
by using memory load/store.

Some storage classes are for IO and, fundamentally, IO is done through load/store, and initial load and final
store won’t be eliminated. Other storage classes are shader local and can have their load/store eliminated.
It can be considered an optimization to largely eliminate such loads/stores by moving them into
intermediate results in SSA form.

6

1.8. Built-In Variables
SPIR-V identifies built-in variables from a high-level language with an enumerant decoration. This assigns
any unusual semantics to the variable. Built-in variables are otherwise declared with their correct SPIR-V
type and treated the same as any other variable.

1.9. Specialization
Specialization enables offline creation of a portable SPIR-V module based on constant values that won’t be
known until a later point in time. For example, to size a fixed array with a constant not known during
creation of a module, but known when the module will be lowered to the target architecture.

See Specialization in the next section for more details.

7

1.10. Example
The SPIR-V form is binary, not human readable, and fully described in Binary Form. This is an example
disassembly to give a basic idea of what SPIR-V looks like:

GLSL fragment shader:

#version 450

in vec4 color1;
in vec4 multiplier;
noperspective in vec4 color2;
out vec4 color;

struct S {
 bool b;
 vec4 v[5];
 int i;
};

uniform blockName {
 S s;
 bool cond;
};

void main()
{
 vec4 scale = vec4(1.0, 1.0, 2.0, 1.0);

 if (cond)
 color = color1 + s.v[2];
 else
 color = sqrt(color2) * scale;

 for (int i = 0; i < 4; ++i)
 color *= multiplier;
}

Corresponding SPIR-V:

; Magic: 0x07230203 (SPIR-V)
; Version: 0x00010000 (Version: 1.0.0)
; Generator: 0x00080001 (Khronos Glslang Reference Front End; 1)
; Bound: 63
; Schema: 0

 OpCapability Shader
 %1 = OpExtInstImport "GLSL.std.450"
 OpMemoryModel Logical GLSL450
 OpEntryPoint Fragment %4 "main" %31 %33 %42 %57

8

 OpExecutionMode %4 OriginLowerLeft

; Debug information
 OpSource GLSL 450
 OpName %4 "main"
 OpName %9 "scale"
 OpName %17 "S"
 OpMemberName %17 0 "b"
 OpMemberName %17 1 "v"
 OpMemberName %17 2 "i"
 OpName %18 "blockName"
 OpMemberName %18 0 "s"
 OpMemberName %18 1 "cond"
 OpName %20 ""
 OpName %31 "color"
 OpName %33 "color1"
 OpName %42 "color2"
 OpName %48 "i"
 OpName %57 "multiplier"

; Annotations (non-debug)
 OpDecorate %15 ArrayStride 16
 OpMemberDecorate %17 0 Offset 0
 OpMemberDecorate %17 1 Offset 16
 OpMemberDecorate %17 2 Offset 96
 OpMemberDecorate %18 0 Offset 0
 OpMemberDecorate %18 1 Offset 112
 OpDecorate %18 Block
 OpDecorate %20 DescriptorSet 0
 OpDecorate %42 NoPerspective

; All types, variables, and constants
 %2 = OpTypeVoid
 %3 = OpTypeFunction %2 ; void ()
 %6 = OpTypeFloat 32 ; 32-bit float
 %7 = OpTypeVector %6 4 ; vec4
 %8 = OpTypePointer Function %7 ; function-local vec4*
 %10 = OpConstant %6 1
 %11 = OpConstant %6 2
 %12 = OpConstantComposite %7 %10 %10 %11 %10 ; vec4(1.0, 1.0, 2.0, 1.0)
 %13 = OpTypeInt 32 0 ; 32-bit int, sign-less
 %14 = OpConstant %13 5
 %15 = OpTypeArray %7 %14
 %16 = OpTypeInt 32 1
 %17 = OpTypeStruct %13 %15 %16
 %18 = OpTypeStruct %17 %13
 %19 = OpTypePointer Uniform %18
 %20 = OpVariable %19 Uniform
 %21 = OpConstant %16 1
 %22 = OpTypePointer Uniform %13
 %25 = OpTypeBool

9

 %26 = OpConstant %13 0
 %30 = OpTypePointer Output %7
 %31 = OpVariable %30 Output
 %32 = OpTypePointer Input %7
 %33 = OpVariable %32 Input
 %35 = OpConstant %16 0
 %36 = OpConstant %16 2
 %37 = OpTypePointer Uniform %7
 %42 = OpVariable %32 Input
 %47 = OpTypePointer Function %16
 %55 = OpConstant %16 4
 %57 = OpVariable %32 Input

; All functions
 %4 = OpFunction %2 None %3 ; main()
 %5 = OpLabel
 %9 = OpVariable %8 Function
 %48 = OpVariable %47 Function
 OpStore %9 %12
 %23 = OpAccessChain %22 %20 %21 ; location of cond
 %24 = OpLoad %13 %23 ; load 32-bit int from cond
 %27 = OpINotEqual %25 %24 %26 ; convert to bool
 OpSelectionMerge %29 None ; structured if
 OpBranchConditional %27 %28 %41 ; if cond
 %28 = OpLabel ; then
 %34 = OpLoad %7 %33
 %38 = OpAccessChain %37 %20 %35 %21 %36 ; s.v[2]
 %39 = OpLoad %7 %38
 %40 = OpFAdd %7 %34 %39
 OpStore %31 %40
 OpBranch %29
 %41 = OpLabel ; else
 %43 = OpLoad %7 %42
 %44 = OpExtInst %7 %1 Sqrt %43 ; extended instruction sqrt
 %45 = OpLoad %7 %9
 %46 = OpFMul %7 %44 %45
 OpStore %31 %46
 OpBranch %29
 %29 = OpLabel ; endif
 OpStore %48 %35
 OpBranch %49
 %49 = OpLabel
 OpLoopMerge %51 %52 None ; structured loop
 OpBranch %53
 %53 = OpLabel
 %54 = OpLoad %16 %48
 %56 = OpSLessThan %25 %54 %55 ; i < 4 ?
 OpBranchConditional %56 %50 %51 ; body or break
 %50 = OpLabel ; body
 %58 = OpLoad %7 %57
 %59 = OpLoad %7 %31

10

 %60 = OpFMul %7 %59 %58
 OpStore %31 %60
 OpBranch %52
 %52 = OpLabel ; continue target
 %61 = OpLoad %16 %48
 %62 = OpIAdd %16 %61 %21 ; ++i
 OpStore %48 %62
 OpBranch %49 ; loop back
 %51 = OpLabel ; loop merge point
 OpReturn
 OpFunctionEnd

11

Chapter 2. Specification

2.1. Language Capabilities
A SPIR-V module is consumed by a client API that needs to support the features used by that SPIR-V
module. Features are classified through capabilities. Capabilities used by a particular SPIR-V module are
declared early in that module with the OpCapability instruction. Then:

• A validator can validate that the module uses only its declared capabilities.

• A client API is allowed to reject modules declaring capabilities it does not support.

All available capabilities and their dependencies form a capability hierarchy, fully listed in the capability
section. Only top-level capabilities need to be explicitly declared; their dependencies are implicitly declared.

If an instruction, enumerant, or other feature specifies multiple enabling capabilities, only one such
capability needs to be declared to use the feature. This declaration does not itself imply anything about the
presence of the other enabling capabilities: The execution environment needs to support only the declared
capability.

The SPIR-V specification provides universal capability-specific validation rules, in the validation section.
Additionally, each client API includes the following:

• Which capabilities in the capability section it supports or requires, and hence allows in a SPIR-V
module.

• Any additional validation rules it has beyond those specified by the SPIR-V specification.

• Required limits, if they are beyond the Universal Limits.

2.2. Terms

2.2.1. Instructions

Word: 32 bits.

<id>: A numerical name; the name used to refer to an object, a type, a function, a label, etc. An <id> always
consumes one word. The <id>s defined by a module obey SSA.

Result <id>: Most instructions define a result, named by an <id> explicitly provided in the instruction. The
Result <id> is used as an operand in other instructions to refer to the instruction that defined it.

Literal: An immediate value, not an <id>. Literals larger than one word consume multiple operands, one per
word. An instruction states what type the literal will be interpreted as. A string is interpreted as a nul-
terminated stream of characters. All string comparisons are case sensitive. The character set is Unicode in
the UTF-8 encoding scheme. The UTF-8 octets (8-bit bytes) are packed four per word, following the little-
endian convention (i.e., the first octet is in the lowest-order 8 bits of the word). The final word contains the
string’s nul-termination character (0), and all contents past the end of the string in the final word are padded
with 0. For a numeric literal, the lower-order words appear first. If a numeric type’s bit width is less than 32-
bits, the value appears in the low-order bits of the word, and the high-order bits must be 0 for a floating-
point type or integer type with Signedness of 0, or sign extended for an integer type with a Signedness of 1
(similarly for the remaining bits of widths larger than 32 bits but not a multiple of 32 bits).

Operand: A one-word argument to an instruction. E.g., it could be an <id>, or (or part of) a literal. Which
form it holds is always explicitly known from the opcode.

12

WordCount: The complete number of words taken by an instruction, including the word holding the word
count and opcode, and any optional operands. An instruction’s word count is the total space taken by the
instruction.

Instruction: After a header, a module is simply a linear list of instructions. An instruction contains a word
count, an opcode, an optional Result <id>, an optional <id> of the instruction’s type, and a variable list of
operands. All instruction opcodes and semantics are listed in Instructions.

Decoration: Auxiliary information such as built-in variable, stream numbers, invariance, interpolation type,
relaxed precision, etc., added to <id>s or structure-type members through Decorations. Decorations are
enumerated in Decoration in the Binary Form section.

Object: An instantiation of a non-void type, either as the Result <id> of an operation, or created through
OpVariable.

Memory Object: An object created through OpVariable. Such an object exists only for the duration of a
function if it is a function variable, and otherwise exists for the duration of an invocation.

Memory Object Declaration: An OpVariable, or an OpFunctionParameter of pointer type, or the contents
of an OpVariable that holds either a pointer to the PhysicalStorageBuffer storage class or an array of
such pointers.

Intermediate Object or Intermediate Value or Intermediate Result: An object created by an operation (not
memory allocated by OpVariable) and dying on its last consumption.

Constant Instruction: Either a specialization-constant instruction or a non-specialization constant
instruction: Instructions that start "OpConstant" or "OpSpec".

[a, b]: This square-bracket notation means the range from a to b, inclusive of a and b. Parentheses exclude
their end point, so, for example, (a, b] means a to b excluding a but including b.

Non-Semantic Instruction: An instruction that has no semantic impact, and that can be safely removed from
the module.

2.2.2. Types

Boolean type: The type declared by OpTypeBool.

Integer type: Any width signed or unsigned type from OpTypeInt. By convention, the lowest-order bit is
referred to as bit-number 0, and the highest-order bit as bit-number Width - 1.

Floating-point type: Any width type from OpTypeFloat.

Numerical type: An integer type or a floating-point type.

Scalar: A single instance of a numerical type or Boolean type. Scalars are also called components when
being discussed either by themselves or in the context of the contents of a vector.

Vector: An ordered homogeneous collection of two or more scalars. Vector sizes are quite restrictive and
dependent on the execution model.

Matrix: An ordered homogeneous collection of vectors. The vectors forming a matrix are also called its
columns. Matrix sizes are quite restrictive and dependent on the execution model.

Array: An ordered homogeneous aggregate of any non-void-type objects. The objects forming an array are
also called its elements. Array sizes are generally not restricted.

13

Structure: An ordered heterogeneous aggregate of any non-void types. The objects forming a structure are
also called its members.

Aggregate: A structure or an array.

Composite: An aggregate, a matrix, or a vector.

Image: A traditional texture or image; SPIR-V has this single name for these. An image type is declared
with OpTypeImage. An image does not include any information about how to access, filter, or sample it.

Sampler: Settings that describe how to access, filter, or sample an image. Comes either from literal
declarations of settings or from an opaque reference to externally bound settings. A sampler does not
include an image.

Sampled Image: An image combined with a sampler, enabling filtered accesses of the image’s contents.

Physical Pointer Type: An OpTypePointer whose Storage Class uses physical addressing according to the
addressing model.

Logical Pointer Type: A pointer type that is not a physical pointer type.

Concrete Type: A numerical scalar, vector, or matrix type, or physical pointer type, or any aggregate
containing only these types.

Abstract Type: An OpTypeVoid or OpTypeBool, or logical pointer type, or any aggregate type containing
any of these.

Opaque Type: A type that is, or contains, or points to, or contains pointers to, any of the following types:

• OpTypeImage

• OpTypeSampler

• OpTypeSampledImage

• OpTypeOpaque

• OpTypeEvent

• OpTypeDeviceEvent

• OpTypeReserveId

• OpTypeQueue

• OpTypePipe

• OpTypeForwardPointer

• OpTypePipeStorage

• OpTypeNamedBarrier

Variable pointer: A pointer of logical pointer type that results from one of the following instructions:

• OpSelect

• OpPhi

• OpFunctionCall

• OpPtrAccessChain

• OpLoad

• OpConstantNull

14

Additionally, any OpAccessChain, OpInBoundsAccessChain, or OpCopyObject that takes a variable
pointer as an operand also produces a variable pointer. An OpFunctionParameter of pointer type is a
variable pointer if any OpFunctionCall to the function statically passes a variable pointer as the value of
the parameter.

2.2.3. Computation

Remainder: When dividing a by b, a remainder r is defined to be a value that satisfies r + q × b = a where q
is a whole number and |r| < |b|.

2.2.4. Module

Module: A single unit of SPIR-V. It can contain multiple entry points, but only one set of capabilities.

Entry Point: A function in a module where execution begins. A single entry point is limited to a single
execution model. An entry point is declared using OpEntryPoint.

Execution Model: A graphical-pipeline stage or OpenCL kernel. These are enumerated in Execution Model.

Execution Mode: Modes of operation relating to the interface or execution environment of the module.
These are enumerated in Execution Mode. Generally, modes do not change the semantics of instructions
within a SPIR-V module.

Vertex Processor: Any stage or execution model that processes vertices: Vertex, tessellation control,
tessellation evaluation, and geometry. Explicitly excludes fragment and compute execution models.

2.2.5. Control Flow

Block: A contiguous sequence of instructions starting with an OpLabel, ending with a termination
instruction. A block has no additional label or termination instructions.

Branch Instruction: One of the following, used as a termination instruction:

• OpBranch

• OpBranchConditional

• OpSwitch

• OpReturn

• OpReturnValue

Termination Instruction: One of the following, used to terminate blocks:

• any branch instruction

• OpKill

• OpTerminateInvocation

• OpUnreachable

Dominate: A block A dominates a block B, where A and B are in the same function, if every path from the
function’s entry point to block B includes block A. A strictly dominates B only if A dominates B and A and B
are different blocks.

Post Dominate: A block B post dominates a block A, where A and B are in the same function, if every path
from A to a function-return instruction goes through block B.

15

Control-Flow Graph: The graph formed by a function’s blocks and branches. The blocks are the graph’s
nodes, and the branches the graph’s edges.

CFG: Control-flow graph.

Back Edge: A branch is a back edge if there is a depth-first search starting at the entry block of the CFG
where the branch branches to one of its ancestors. A back-edge block is a block containing such a branch
instruction.
Note: For a given function, if all its loops are structured, then each back edge corresponds to exactly one
loop header, and vice versa. So the set of back-edges in the function is unique, regardless of the depth-first
search used to find them. This is equivalent to the function’s CFG being reducible.

Merge Instruction: One of the following, used before a branch instruction to declare structured control flow:

• OpSelectionMerge

• OpLoopMerge

Header Block: A block containing a merge instruction.

Loop Header: A header block whose merge instruction is an OpLoopMerge.

Merge Block: A block declared by the Merge Block operand of a merge instruction.

Break Block: A block containing a branch to the Merge Block of a loop header’s merge instruction.

Continue Block: A block containing a branch to an OpLoopMerge instruction’s Continue Target.

Return Block: A block containing an OpReturn or OpReturnValue branch.

Invocation: A single execution of an entry point in a SPIR-V module, operating only on the amount of data
explicitly exposed by the semantics of the instructions. (Any implicit operation on additional instances of
data would comprise additional invocations.) For example, in compute execution models, a single invocation
operates only on a single work item, or, in a vertex execution model, a single invocation operates only on a
single vertex.

Quad: The execution environment can partition invocations into quads, where invocations within a quad can
synchronize and share data with each other efficiently. See the client API specification for more details.

Quad index: The index of an invocation in a quad.

Subgroup: Invocations are partitioned into subgroups, where invocations within a subgroup can
synchronize and share data with each other efficiently. In compute models, the current workgroup is a
superset of the subgroup.

Invocation Group: The complete set of invocations collectively processing a particular compute workgroup
or graphical operation, where the scope of a "graphical operation" is implementation dependent, but at least
as large as a single point, line, triangle, or patch, and at most as large as a single rendering command, as
defined by the client API.

Derivative Group: Defined only for the Fragment Execution Model: The set of invocations collectively
processing derivatives, which is at most as large as a single point, line, or triangle, including any helper
invocations, as defined by the client API.

Tangled Instruction: One of:

• Group and subgroup instructions

16

• Non-uniform instructions

• OpControlBarrier

• Derivative instructions

• Image instructions that consume an implicit derivative

Tangled instructions communicate between invocations.

Dynamic Instance: Within a single invocation, a single static instruction can be executed multiple times,
giving multiple dynamic instances of that instruction. This can happen if the instruction is executed in a
loop, or in a function called from multiple call sites, or combinations of multiple of these. Different loop
iterations and different dynamic function-call-site chains yield different dynamic instances of such an
instruction.

Additionally, a single dynamic instance may be executed by multiple invocations. Only tangled instructions
are required to execute the dynamic instance as if all invocations that communicate together and share the
same dynamic instance execute simultaneously. Invocations that execute the same dynamic instance of an
instruction will continue to execute the same dynamic instances as long as they follow the same control flow
path. A dynamic instance of an instruction, tangled or not, is executed by one or more invocations.

Dynamically Uniform: An <id> is dynamically uniform for a dynamic instance consuming it if its value is the
same for all invocations (in the invocation group, unless otherwise stated) that execute that dynamic
instance.

Uniform Control Flow: Uniform control flow (or converged control flow) occurs if all invocations (in the
invocation group, unless otherwise stated) execute the same dynamic instance of an instruction. Uniform
control flow is the initial state at the entry point, and lasts until a conditional branch takes different control
paths for different invocations (non-uniform or divergent control flow). Such divergence can reconverge,
with all the invocations once again executing the same control-flow path, and this re-establishes the
existence of uniform control flow. If control flow is uniform upon entry into a structured loop or selection, and
all invocations leave that loop or selection via the header block’s declared merge block, then control flow
reconverges to be uniform at that merge block.

2.2.6. Validity and Defined Behavior

Most SPIR-V rules are expressed statically. These statically expressed rules are based on what can be
seen with a direct static examination of the module in the specific places the rule says to look. These are
expressed using terms like must, must not, valid, not valid, and invalid. Such rules establish whether the
module is classified as valid or not valid, which in turn provides terms that tools may use in labeling and
describing modules they process. A module is valid only if it does not violate any of these statically
expressed rules. Such rules might not be considered violated if a specialization constant is involved, as
described in the specialization constant section.

Some SPIR-V rules say that behavior is not defined, that something results in undefined behavior, or that
behavior is defined only under some circumstances. These all refer only to something that happens
dynamically while an invocation of a shader or kernel executes.

An invocation having undefined behavior is independent of a module being valid. Tools containing smart
transforms may be able to deduce from a static module that behavior will be undefined if some part were to
be executed. However, this does not allow the tool to classify the module as invalid.

Sometimes, SPIR-V refers to the client API to specify what is statically valid or dynamically defined for a
specific situation, in which case those rules come from the client API’s execution environment. Otherwise, a
SPIR-V client API can define an execution environment that adds additional statically expressed rules,
further constraining what SPIR-V itself said was valid. However, a client cannot remove any such statically
expressed rules. A client will not remove any undefined behavior specified by SPIR-V.

17

2.3. Physical Layout of a SPIR-V Module and Instruction
A SPIR-V module is a single linear stream of words. The first words are shown in the following table:

Table 1. First Words of Physical Layout

Word
Number Contents

0 Magic Number.

1 Version number. The bytes are, high-order to low-order:

0 | Major Number | Minor Number | 0

Hence, version 1.3 is the value 0x00010300.

2 Generator’s magic number. It is associated with the tool that
generated the module. Its value does not affect any semantics, and
is allowed to be 0. Using a non-0 value is encouraged, and can be
registered with Khronos at
https://github.com/KhronosGroup/SPIRV-Headers.

3 Bound; where all <id>s in this module are guaranteed to satisfy

0 < id < Bound

Bound should be small, smaller is better, with all <id> in a module
being densely packed and near 0.

4 0 (Reserved for instruction schema, if needed.)

5 First word of instruction stream, see below.

All remaining words are a linear sequence of instructions.

Each instruction is a stream of words:

Table 2. Instruction Physical Layout

Instruction
Word Number Contents

0 Opcode: The 16 high-order bits are the WordCount of the
instruction. The 16 low-order bits are the opcode enumerant.

1 Optional instruction type <id> (presence determined by
opcode).

. Optional instruction Result <id> (presence determined by
opcode).

. Operand 1 (if needed)

. Operand 2 (if needed)

18

https://github.com/KhronosGroup/SPIRV-Headers

Instruction
Word Number Contents

… …

WordCount - 1 Operand N (N is determined by WordCount minus the 1 to 3
words used for the opcode, instruction type <id>, and
instruction Result <id>).

Instructions are variable length due both to having optional instruction type <id> and Result <id> words as
well as a variable number of operands. The details for each specific instruction are given in the Binary Form
section.

2.4. Logical Layout of a Module
The instructions of a SPIR-V module must be in the following order. For sections earlier than function
definitions, it is invalid to use instructions other than those indicated.

1. All OpCapability instructions.

2. Optional OpExtension instructions (extensions to SPIR-V).

3. Optional OpExtInstImport instructions.

4. The single required OpMemoryModel instruction.

5. All entry point declarations, using OpEntryPoint.

6. All execution-mode declarations, using OpExecutionMode or OpExecutionModeId.

7. These debug instructions, which must be grouped in the following order:

a. All OpString, OpSourceExtension, OpSource, and OpSourceContinued, without forward
references.

b. All OpName and all OpMemberName.

c. All OpModuleProcessed instructions.

8. All annotation instructions:

a. All decoration instructions.

9. All type declarations (OpTypeXXX instructions), all constant instructions, and all global variable
declarations (all OpVariable instructions whose Storage Class is not Function). This is the preferred
location for OpUndef instructions, though they can also appear in function bodies. All operands in all
these instructions must be declared before being used. Otherwise, they can be in any order. This
section is the first section to allow use of:

a. OpLine and OpNoLine debug information.

b. Non-semantic instructions with OpExtInst.

10. All function declarations ("declarations" are functions without a body; there is no forward declaration to
a function with a body). A function declaration is as follows.

a. Function declaration, using OpFunction.

b. Function parameter declarations, using OpFunctionParameter.

c. Function end, using OpFunctionEnd.

11. All function definitions (functions with a body). A function definition is as follows.

a. Function definition, using OpFunction.

19

b. Function parameter declarations, using OpFunctionParameter.

c. Block.

d. Block.

e. …

f. Function end, using OpFunctionEnd.

Within a function definition:

• A block always starts with an OpLabel instruction. This may be immediately preceded by an OpLine
instruction, but the OpLabel is considered as the beginning of the block.

• A block always ends with a termination instruction (see validation rules for more detail).

• All OpVariable instructions in a function must have a Storage Class of Function.

• All OpVariable instructions in a function must be in the first block in the function. These instructions,
together with any intermixed OpLine and OpNoLine instructions, must be the first instructions in that
block. (Note the validation rules prevent OpPhi instructions in the first block of a function.)

• A function definition (starts with OpFunction) can be immediately preceded by an OpLine instruction.

Forward references (an operand <id> that appears before the Result <id> defining it) are allowed for:

• Operands that are an OpFunction. This allows for recursion and early declaration of entry points.

• Annotation-instruction operands. This is required to fully know everything about a type or variable once
it is declared.

• Labels.

• OpPhi can contain forward references.

• OpTypeForwardPointer:

- An OpTypeForwardPointer Pointer Type is a forward reference to an OpTypePointer.

- Subsequent consumption of an OpTypeForwardPointer Pointer Type can be a forward reference.

• The list of <id> provided in the OpEntryPoint instruction.

• OpExecutionModeId.

In all cases, there is enough type information to enable a single simple pass through a module to transform
it. For example, function calls have all the type information in the call, phi-functions don’t change type, and
labels don’t have type. The pointer forward reference allows structures to contain pointers to themselves or
to be mutually recursive (through pointers), without needing additional type information.

The Validation Rules section lists additional rules.

2.5. Instructions
Most instructions create a Result <id>, as provided in the Result <id> field of the instruction. These Result
<id>s are then referred to by other instructions through their <id> operands. All instruction operands are
specified in the Binary Form section.

Instructions are explicit about whether an operand is (or is part of) a self-contained literal or an <id>
referring to another instruction’s result. While an <id> always takes one operand, one literal takes one or
more operands. Some common examples of literals:

• A literal 32-bit (or smaller) integer is always one operand directly holding a 32-bit two’s-complement

20

value.

• A literal 32-bit float is always one operand, directly holding a 32-bit IEEE 754 floating-point
representation.

• A literal 64-bit float is always two operands, directly holding a 64-bit IEEE 754 representation. The low-
order 32 bits appear in the first operand.

2.5.1. SSA Form

A module is always in static single assignment (SSA) form. That is, there is always exactly one instruction
resulting in any particular Result <id>. Storing into variables declared in memory is not subject to this; such
stores do not create Result <id>s. Accessing declared variables is done through:

• OpVariable to allocate an object in memory and create a Result <id> that is the name of a pointer to it.

• OpAccessChain or OpInBoundsAccessChain to create a pointer to a subpart of a composite object
in memory.

• OpLoad through a pointer, giving the loaded object a Result <id> that can then be used as an operand
in other instructions.

• OpStore through a pointer, to write a value. There is no Result <id> for an OpStore.

OpLoad and OpStore instructions can often be eliminated, using intermediate results instead. If this
happens in multiple control-flow paths, these values need to be merged again at the path’s merge point.
Use OpPhi to merge such values together.

2.6. Entry Point and Execution Model
The OpEntryPoint instruction identifies an entry point with two key things: an execution model and a
function definition. Execution models include Vertex, GLCompute, etc. (one for each graphical stage), as
well as Kernel for OpenCL kernels. For the complete list, see Execution Model. An OpEntryPoint also
supplies a name that can be used externally to identify the entry point, and a declaration of all the Input
and Output variables that form its input/output interface.

The static function call graphs rooted at two entry points are allowed to overlap, so that function definitions
and global variable definitions can be shared. The execution model and any execution modes associated
with an entry point apply to the entire static function call graph rooted at that entry point. This rule implies
that a function appearing in both call graphs of two distinct entry points may behave differently in each
case. Similarly, variables whose semantics depend on properties of an entry point, e.g. those using the
Input Storage Class, may behave differently if used in call graphs rooted in two different entry points.

2.7. Execution Modes
Information like the following is declared with OpExecutionMode instructions. For example,

• number of invocations (Invocations)

• vertex-order CCW (VertexOrderCcw)

• triangle strip generation (OutputTriangleStrip)

• number of output vertices (OutputVertices)

• etc.

For a complete list, see Execution Mode.

21

2.8. Types and Variables
Types are built up hierarchically, using OpTypeXXX instructions. The Result <id> of an OpTypeXXX
instruction becomes a type <id> for future use where type <id>s are needed (therefore, OpTypeXXX
instructions do not have a type <id>, like most other instructions do).

The "leaves" to start building with are types like OpTypeFloat, OpTypeInt, OpTypeImage, OpTypeEvent,
etc. Other types are built up from the Result <id> of these. The numerical types are parameterized to
specify bit width and signed vs. unsigned.

Higher-level types are then constructed using opcodes like OpTypeVector, OpTypeMatrix, OpTypeImage,
OpTypeArray, OpTypeRuntimeArray, OpTypeStruct, and OpTypePointer. These are parameterized by
number of components, array size, member lists, etc. The image types are parameterized by their sampling
result type, dimensionality, arrayness, etc. To do sampling or filtering operations, a type from
OpTypeSampledImage is used that contains both an image and a sampler. Such a sampled image can be
set directly by the client API or combined in a SPIR-V module from an independent image and an
independent sampler.

Types are built bottom up: A parameterizing operand in a type must be defined before being used.

Some additional information about the type of an <id> can be provided using the decoration instructions
(OpDecorate, OpMemberDecorate, OpGroupDecorate, OpGroupMemberDecorate, and
OpDecorationGroup). These can add, for example, Invariant to an <id> created by another instruction.
See the full list of Decorations in the Binary Form section.

Two different type <id>s form, by definition, two different types. It is invalid to declare multiple non-
aggregate, non-pointer type <id>s having the same opcode and operands. It is valid to declare multiple
aggregate type <id>s having the same opcode and operands. This is to allow multiple instances of
aggregate types with the same structure to be decorated differently. (Different decorations are not required;
two different aggregate type <id>s are allowed to have identical declarations and decorations, and will still
be two different types.) Pointer types are also allowed to have multiple <id>s for the same opcode and
operands, to allow for differing decorations (e.g., Volatile) or different decoration values (e.g., different
Array Stride values for the ArrayStride). If new pointers are formed, their types must be decorated as
needed, so the consumer knows how to generate an access through the pointer.

Variables are declared to be of an already built type, and placed in a Storage Class. Storage classes
include UniformConstant, Input, Workgroup, etc. and are fully specified in Storage Class. Variables
declared with the Function Storage Class can have their lifetime’s specified within their function using the
OpLifetimeStart and OpLifetimeStop instructions.

Intermediate results are typed by the instruction’s type <id>, which is constrained by each instruction’s
description.

Built-in variables have special semantics and are declared using OpDecorate or OpMemberDecorate with
the BuiltIn Decoration, followed by a BuiltIn enumerant. See the BuiltIn section for details on what can be
decorated as a built-in variable.

2.8.1. Unsigned Versus Signed Integers

The integer type, OpTypeInt, is parameterized not only with a size, but also with signedness. There are two
different ways to think about signedness in SPIR-V, both are internally consistent and acceptable:

1. As if all integers are "signless", meaning they are neither signed nor unsigned: All OpTypeInt
instructions select a signedness of 0 to conceptually mean "no sign" (rather than "unsigned"). This is
useful if translating from a language that does not distinguish between signed and unsigned types. The

22

type of operation (signed or unsigned) to perform is always selected by the choice of opcode.

2. As if some integers are signed, and some are unsigned: Some OpTypeInt instructions select
signedness of 0 to mean "unsigned" and some select signedness of 1 to mean "signed". This is useful if
signedness matters to external interface, or if targeting a higher-level language that cares about types
being signed and unsigned. The type of operation (signed or unsigned) to perform is still always
selected by the choice of opcode, but a small amount of validation can be done where it is non-sensible
to use a signed type.

Note in both cases all signed and unsigned operations always work on unsigned types, and the semantics
of operation come from the opcode. SPIR-V does not know which way is being used; it is set up to support
both ways of thinking.

Note that while SPIR-V aims to not assign semantic meaning to the signedness bit in choosing how to
operate on values, there are a few cases known to do this, all confined to modules declaring the Shader
capability:

• validation for consistency checking for front ends for directly contradictory usage, where explicitly
indicated in this specification

• interfaces that might require widening of an input value, and otherwise don’t know whether to sign
extend or zero extend, including the following bullet

• an image read that might require widening of an operand, in versions where the SignExtend and
ZeroExtend image operands are not available (if available, these operands are the supported way to
communicate this).

2.9. Function Calling
To call a function defined in the current module or a function declared to be imported from another module,
use OpFunctionCall with an operand that is the <id> of the OpFunction to call, and the <id>s of the
arguments to pass. All arguments are passed by value into the called function. This includes pointers,
through which a callee object could be modified.

2.10. Extended Instruction Sets
Many operations and/or built-in function calls from high-level languages are represented through extended
instruction sets. Extended instruction sets include things like

• trigonometric functions: sin(), cos(), …

• exponentiation functions: exp(), pow(), …

• geometry functions: reflect(), smoothstep(), …

• functions having rich performance/accuracy trade-offs

• etc.

Non-extended instructions, those that are core SPIR-V instructions, are listed in the Binary Form section.
Native operations include:

• Basic arithmetic: +, -, *, min(), scalar * vector, etc.

• Texturing, to help with back-end decoding and support special code-motion rules.

• Derivatives, due to special code-motion rules.

Extended instruction sets are specified in independent specifications, not in this specification. The separate
extended instruction set specification specifies instruction opcodes, semantics, and instruction names.

23

To use an extended instruction set, first import it by name string using OpExtInstImport and giving it a
Result <id>:

<extinst-id> OpExtInstImport "name-of-extended-instruction-set"

Where "name-of-extended-instruction-set" is a literal string. The standard convention for this string is

"<source language name>.<package name>.<version>"

For example "GLSL.std.450" could be the name of the core built-in functions for GLSL versions 450 and
earlier.

NOTE
There is nothing precluding having two "mirror" sets of instructions with different names but
the same opcode values, which could, for example, let modifying just the import statement
to change a performance/accuracy trade off.

Then, to call a specific extended instruction, use OpExtInst:

OpExtInst <extinst-id> instruction-number operand0, operand1, ...

Extended instruction-set specifications provide semantics for each "instruction-number". It is up to the
specific specification what the overloading rules are on operand type. The specification will be clear on its
semantics, and producers/consumers of it must follow those semantics.

By convention, it is recommended that all external specifications include an enum {…} listing all the
"instruction-numbers", and a mapping between these numbers and a string representing the instruction
name. However, there are no requirements that instruction name strings are provided or mangled.

NOTE

Producing and consuming extended instructions can be done entirely through numbers (no
string parsing). An extended instruction set specification provides opcode enumerant
values for the instructions, and these are produced by the front end and consumed by the
back end.

2.11. Structured Control Flow
SPIR-V can explicitly declare structured control-flow constructs using merge instructions. These explicitly
declare a header block before the control flow diverges and a merge block where control flow subsequently
converges. (Control flow may partially or fully reconverge before reaching the merge block so long as it
converges by the time the merge block is reached.) These blocks delimit constructs that must nest, and
must be entered and exited in structured ways, as per the following.

Structured control-flow declarations must satisfy the following rules:

• the merge block declared by a header block must not be a merge block declared by any other header
block

• each header block must strictly dominate its merge block, unless the merge block is unreachable in the
CFG

• all CFG back edges must branch to a loop header, with each loop header having exactly one back edge
branching to it

24

• for a given loop header, its OpLoopMerge Continue Target, and corresponding back-edge block:

- the loop header must dominate the Continue Target, unless the Continue Target is unreachable in
the CFG

- the Continue Target must dominate the back-edge block

- the back-edge block must post dominate the Continue Target

A structured control-flow construct is then defined as one of:

• a selection construct: includes the blocks dominated by a selection header, while excluding blocks
dominated by the selection construct’s merge block

• a continue construct: includes the blocks dominated by an OpLoopMerge Continue Target and post
dominated by the corresponding loop’s back-edge block, while excluding blocks dominated by that
loop’s merge block

• a loop construct: includes the blocks dominated by a loop header, while excluding both that header’s
continue construct and the blocks dominated by the loop’s merge block

• a case construct: the blocks dominated by an OpSwitch Target or Default (this construct is only defined
for those OpSwitch Target or Default that are not equal to the OpSwitch’s corresponding merge block)

Furthermore, these structured control-flow constructs are additionally defined to exclude all outer
constructs' continue constructs and exclude all blocks dominated by all outer constructs' merge blocks.

The above structured control-flow constructs must satisfy the following rules:

• if a construct contains another header block, it also contains that header’s corresponding merge block if
that merge block is reachable in the CFG

• a continue construct must include its loop’s back-edge block

• a break block is valid only for the innermost loop it is nested inside of

• a continue block is valid only for the innermost loop it is nested inside of

• a branch to an outer OpSwitch merge block is

- valid only for the innermost OpSwitch the branch is nested inside of

- not valid if it is nested in a loop that is nested in that OpSwitch

• a branch from one case construct to another must be for the same OpSwitch

• all branches into a construct from reachable blocks outside the construct must be to the header block

• additionally for switches:

- an OpSwitch block dominates all its defined case constructs

- each case construct has at most one branch to another case construct

- each case construct is branched to by at most one other case construct

- if Target T1 branches to Target T2, or if Target T1 branches to the Default and the Default branches
to Target T2, then T1 must immediately precede T2 in the list of the OpSwitch Target operands

- none of the Targets nor the Default may be the declared merge block or Continue Target of a loop
the switch is nested within

2.12. Specialization
Specialization is intended for constant objects that will not have known constant values until after initial
generation of a SPIR-V module. Such objects are called specialization constants.

25

A SPIR-V module containing specialization constants can consume one or more externally provided
specializations: A set of final constant values for some subset of the module’s specialization constants.
Applying these final constant values yields a new module having fewer remaining specialization constants.
A module also contains default values for any specialization constants that never get externally specialized.

NOTE
No optimizing transforms are required to make a specialized module functionally correct.
The specializing transform is straightforward and explicitly defined below.

NOTE

Ad hoc specializing should not be done through constants (OpConstant or
OpConstantComposite) that get overwritten: A SPIR-V ¬ SPIR-V transform might want to
do something irreversible with the value of such a constant, unconstrained from the
possibility that its value could be later changed.

Within a module, a Specialization Constant is declared with one of these instructions:

• OpSpecConstantTrue

• OpSpecConstantFalse

• OpSpecConstant

• OpSpecConstantComposite

• OpSpecConstantOp

The literal operands to OpSpecConstant are the default numerical specialization constants. Similarly, the
"True" and "False" parts of OpSpecConstantTrue and OpSpecConstantFalse provide the default
Boolean specialization constants. These default values make an external specialization optional. However,
such a default constant is applied only after all external specializations are complete, and none contained a
specialization for it.

An external specialization is provided as a logical list of pairs. Each pair is a SpecId Decoration of a scalar
specialization instruction along with its specialization constant. The numeric values are exactly what the
operands would be to a corresponding OpConstant instruction. Boolean values are true if non-zero and
false if zero.

Specializing a module is straightforward. The following specialization-constant instructions can be updated
with specialization constants. These can be replaced in place, leaving everything else in the module exactly
the same:

 OpSpecConstantTrue -> OpConstantTrue or OpConstantFalse
 OpSpecConstantFalse -> OpConstantTrue or OpConstantFalse
 OpSpecConstant -> OpConstant
 OpSpecConstantComposite -> OpConstantComposite

Note that the OpSpecConstantOp instruction is not one that can be updated with a specialization
constant.

The OpSpecConstantOp instruction is specialized by executing the operation and replacing the instruction
with the result. The result can be expressed in terms of a constant instruction that is not a specialization-
constant instruction. (Note, however, this resulting instruction might not have the same size as the original
instruction, so is not a "replaced in place" operation.)

When applying an external specialization, the following (and only the following) will be modified to be non-
specialization-constant instructions:

26

• specialization-constant instructions with values provided by the specialization

• specialization-constant instructions that consume nothing but non-specialization constant instructions
(including those that the partial specialization transformed from specialization-constant instructions;
these are in order, so it is a single pass to do so)

A full specialization can also be done, when requested or required, in which all specialization-constant
instructions will be modified to non-specialization-constant instructions, using the default values where
required.

If a statically expressed rule would be broken due to the value of a constant, and that constant is a
specialization constant, then that rule is not violated. (Consequently, specialization-constant default values
are not relevant to the validity of the module.)

2.13. Linkage
The ability to have partially linked modules and libraries is provided as part of the Linkage capability.

By default, functions and global variables are private to a module and cannot be accessed by other
modules. However, a module may be written to export or import functions and global (module scope)
variables. Imported functions and global variable definitions are resolved at linkage time. A module is
considered to be partially linked if it depends on imported values.

Within a module, imported or exported values are decorated using the Linkage Attributes Decoration.
This decoration assigns the following linkage attributes to decorated values:

• A Linkage Type.

• A name, interpreted is a literal string, is used to uniquely identify exported values.

NOTE
When resolving imported functions, the Function Control and all Function Parameter
Attributes are taken from the function definition, and not from the function declaration.

2.14. Relaxed Precision
The RelaxedPrecision Decoration allows 32-bit integer and 32-bit floating-point operations to execute with
a relaxed precision of somewhere between 16 and 32 bits.

For a floating-point operation, operating at relaxed precision means that the minimum requirements for
range and precision are as follows:

• the floating point range may be as small as (-214, 214)

• the floating point magnitude range includes 0.0 and [2-14, 214)

• the relative floating point precision may be as small as 2-10

The range notation here means the largest required magnitude is half of the relative precision less than the
value given.

Relative floating-point precision is defined as the worst case (i.e. largest) ratio of the smallest step in
relation to the value for all non-zero values in the required range:

Precisionrelative = (abs(v1 - v2)min / abs(v1))max for v1 ¬ 0, v2 ¬ 0, v1 ¬ v2

It is therefore twice the maximum rounding error when converting from a real number. Subnormal numbers
may be supported and may have lower relative precision.

27

For integer operations, operating at relaxed precision means that the operation is evaluated by an operation
in which, for some N, 16 ¬ N ¬ 32:

• the operation is executed as though its type were N bits in size, and

• the result is zero or sign extended to 32 bits as determined by the signedness of the result type of the
operation.

The RelaxedPrecision Decoration must only be applied to:

• The <id> of an OpVariable, where it refers to the value of the variable.

• The <id> of an OpFunctionParameter, where it refers to the value of the parameter.

• The Result <id> of an instruction that reads or filters from an image. E.g. OpImageSampleExplicitLod,
meaning the instruction is to operate at relaxed precision.

• The Result <id> of an OpFunction, where it refers to the value returned by the function.

• A structure-type member (through OpMemberDecorate).

• The Result <id> of an OpFunctionCall, where it refers to the result of the function call.

• The Result <id> of other instructions that operate on numerical types, meaning the instruction is to
operate at relaxed precision. The instruction’s operands may also be truncated to the relaxed precision.

In all cases, the types of the values that the RelaxedPrecision Decoration refers to must be:

• a scalar, vector, or matrix, or array of scalars, vectors, or matrices, and all the components in the types
must be a 32-bit numerical type,

• a pointer to such a type, where it refers to the value pointed to.

The values that the RelaxedPrecision Decoration refers to can be truncated to relaxed precision.

When applied to a variable, function parameter, or structure member, all loads and stores from the
decorated object may be treated as though they were decorated with RelaxedPrecision. Loads may also
be decorated with RelaxedPrecision, in which case they are treated as operating at relaxed precision.

All loads and stores involving relaxed precision still read and write 32 bits of data, respectively. Floating-
point data read or written in such a manner is written in full 32-bit floating-point format. However, a load or
store might reduce the precision (as allowed by RelaxedPrecision) of the destination value.

For debugging portability of floating-point operations, OpQuantizeToF16 may be used to explicitly reduce
the precision of a relaxed-precision result to 16-bit precision. (Integer-result precision can be reduced, for
example, using left- and right-shift opcodes.)

For image-sampling operations, decorations can appear on both the sampling instruction and the image
variable being sampled. If either is decorated, they both should be decorated, and if both are decorated
their decorations must match. If only one is decorated, the sampling instruction can behave either as if both
were decorated or neither were decorated.

2.15. Debug Information
Debug information is supplied with:

• Source-code text through OpString, OpSource, and OpSourceContinued.

• Object names through OpName and OpMemberName.

• Line numbers through OpLine and OpNoLine.

28

A module does not lose any semantics when all such instructions are removed.

2.15.1. Function-Name Mangling

There is no functional dependency on how functions are named. Signature-typing information is explicitly
provided, without any need for name "unmangling".

By convention, for debugging purposes, modules with OpSource Source Language of OpenCL use the
Itanium name-mangling standard.

2.16. Validation Rules

2.16.1. Universal Validation Rules

• When using OpBitcast to convert pointers to/from vectors of integers, only vectors of 32-bit integers
are allowed.

• If neither the VariablePointers nor VariablePointersStorageBuffer capabilities are declared, the
following rules apply to logical pointer types:

- OpVariable must not allocate an object whose type is or contains a logical pointer type.

- It is invalid for a pointer to be an operand to any instruction other than:

· OpLoad

· OpStore

· OpAccessChain

· OpInBoundsAccessChain

· OpFunctionCall

· OpImageTexelPointer

· OpCopyMemory

· OpCopyObject

· all OpAtomic instructions

· extended instruction-set instructions that are explicitly identified as taking pointer operands

- It is invalid for a pointer to be the Result <id> of any instruction other than:

· OpVariable

· OpAccessChain

· OpInBoundsAccessChain

· OpFunctionParameter

· OpImageTexelPointer

· OpCopyObject

- All indexes in OpAccessChain and OpInBoundsAccessChain that are OpConstant with type of
OpTypeInt with a signedness of 1 must not have their sign bit set.

- Any pointer operand to an OpFunctionCall must point into one of the following storage classes:

· UniformConstant

· Function

· Private

29

· Workgroup

· AtomicCounter

- Any pointer operand to an OpFunctionCall must be

· a memory object declaration, or

· a pointer to an element in an array that is a memory object declaration, where the element type
is OpTypeSampler or OpTypeImage.

- The instructions OpPtrEqual and OpPtrNotEqual must not be used.

• If the VariablePointers or VariablePointersStorageBuffer capability is declared, the following are
additionally allowed for logical pointer types, while other prohibitions remain:

- If OpVariable allocates an object whose type is or contains a logical pointer type, the Storage Class
operand of the OpVariable must be one of the following:

· Function

· Private

- If a pointer is the Object operand of OpStore or result of OpLoad, the storage class the pointer is
stored to or loaded from must be one of the following:

· Function

· Private

- A pointer type can be the:

· Result Type of OpFunction

· Result Type of OpFunctionCall

· Return Type of OpTypeFunction

- A pointer can be a variable pointer

- A pointer can be an operand to one of:

· OpReturnValue

· OpPtrAccessChain

· OpPtrEqual

· OpPtrNotEqual

· OpPtrDiff

- A variable pointer must point to one of the following storage classes:

· StorageBuffer

· Workgroup (if the VariablePointers capability is declared)

- If the VariablePointers capability is not declared, a variable pointer must be selected from pointers
pointing into the same structure or be OpConstantNull.

- A pointer operand to OpFunctionCall can point into the storage class:

· StorageBuffer

- For pointer operands to OpFunctionCall, the memory object declaration-restriction is removed for
the following storage classes:

· StorageBuffer

· Workgroup

- The instructions OpPtrEqual and OpPtrNotEqual can be used only if the Storage Class of the

30

operands' OpTypePointer declaration is

· StorageBuffer if the VariablePointersStorageBuffer capability is explicitly or implicitly
declared, whether or not operands point into the same buffer, or

· Workgroup, which can be used only if the VariablePointers capability was declared.

• A variable pointer must not:

- be an operand to an OpArrayLength instruction

- point to an object that is or contains an OpTypeMatrix

- point to a column, or a component in a column, within an OpTypeMatrix

• Memory model

- If OpLoad, OpStore, OpCopyMemory, or OpCopyMemorySized use MakePointerAvailable or
MakePointerVisible, the optional scope operand must be present.

- If OpImageRead, OpImageSparseRead, or OpImageWrite use MakeTexelAvailable or
MakeTexelVisible, the optional scope operand must be present.

- Memory accesses that use NonPrivatePointer must use pointers in the Uniform, Workgroup,
CrossWorkgroup, Generic, Image, or StorageBuffer storage classes.

- If the Vulkan memory model is declared and any instruction uses Device scope, the
VulkanMemoryModelDeviceScope capability must be declared.

• Physical storage buffer

- If the addressing model is not PhysicalStorageBuffer64, then the PhysicalStorageBuffer storage
class must not be used.

- OpVariable must not use the PhysicalStorageBuffer storage class.

- If the type an OpVariable points to is a pointer (or array of pointers) in the PhysicalStorageBuffer
storage class, the OpVariable must be decorated with exactly one of AliasedPointer or
RestrictPointer.

- If an OpFunctionParameter is a pointer (or array of pointers) in the PhysicalStorageBuffer
storage class, the function parameter must be decorated with exactly one of Aliased or Restrict.

- If an OpFunctionParameter is a pointer (or array of pointers) and the type it points to is a pointer in
the PhysicalStorageBuffer storage class, the function parameter must be decorated with exactly
one of AliasedPointer or RestrictPointer.

- Any pointer value whose storage class is PhysicalStorageBuffer and that points to a matrix, an
array of matrices, or a row or element of a matrix must be the result of an OpAccessChain or
OpPtrAccessChain instruction whose Base operand is a structure type (or recursively must be the
result of a sequence of only access chains from a structure to the final value). Such a pointer must
only be used as the Pointer operand to OpLoad or OpStore.

- The result of OpConstantNull must not be a pointer into the PhysicalStorageBuffer storage
class.

- Operands to OpPtrEqual, OpPtrNotEqual, and OpPtrDiff must not be pointers into the
PhysicalStorageBuffer storage class.

• SSA

- Each <id> must appear exactly once as the Result <id> of an instruction.

- The definition of an SSA <id> should dominate all uses of it, with the following exceptions:

· Function calls may call functions not yet defined. However, note that the function’s operand and
return types are already known at the call site.

31

· An OpPhi can consume definitions that do not dominate it.

• Entry Point

- There is at least one OpEntryPoint instruction, unless the Linkage capability is being used.

- It is invalid for any function to be targeted by both an OpEntryPoint instruction and an
OpFunctionCall instruction.

- Each OpEntryPoint must not set more than one of the DenormFlushToZero or DenormPreserve
execution modes for any given Target Width.

- Each OpEntryPoint must not set more than one of the RoundingModeRTE or
RoundingModeRTZ execution modes for any given Target Width.

- Each OpEntryPoint must contain at most one of LocalSize, LocalSizeId, LocalSizeHint, or
LocalSizeHintId Execution Modes.

• Functions

- A function declaration (an OpFunction with no basic blocks), must have a Linkage Attributes
Decoration with the Import Linkage Type.

- A function definition (an OpFunction with basic blocks) must not be decorated with the Import
Linkage Type.

- A function must not have both a declaration and a definition (no forward declarations).

• Global (Module Scope) Variables

- A module-scope OpVariable with an Initializer operand must not be decorated with the Import
Linkage Type.

• Control-Flow Graph (CFG)

- Blocks exist only within a function.

- The first block in a function definition is the entry point of that function and must not be the target of
any branch. (Note this means it has no OpPhi instructions.)

- The order of blocks in a function must satisfy the rule that blocks appear before all blocks they
dominate.

- Each block starts with a label.

· A label is made by OpLabel.

· This includes the first block of a function (OpFunction is not a label).

· Labels are used only to form blocks.

- The last instruction of each block is a termination instruction.

- Each Termination instruction must be the last instruction in a block.

- Each OpLabel instruction must be within a function.

- All branches within a function must be to labels in that function.

• All OpFunctionCall Function operands are an <id> of an OpFunction in the same module.

• Data rules

- Scalar floating-point types must be parameterized only as 32 bit, plus any additional sizes enabled
by capabilities.

- Scalar integer types must be parameterized only as 32 bit, plus any additional sizes enabled by
capabilities.

- Vector types must be parameterized only with numerical types or the OpTypeBool type.

32

- Vector types must be parameterized only with 2, 3, or 4 components, plus any additional sizes
enabled by capabilities.

- Matrix types must be parameterized only with floating-point types.

- Matrix types must be parameterized only with 2, 3, or 4 columns.

- Specialization constants (see Specialization) are limited to integers, Booleans, floating-point
numbers, and vectors of these.

- All OpSampledImage instructions must be in the same block in which their Result <id> are
consumed. Result <id> from OpSampledImage instructions must not appear as operands to
OpPhi instructions or OpSelect instructions, or any instructions other than the image lookup and
query instructions specified to take an operand whose type is OpTypeSampledImage.

- If instructions dereference a composite to get an image or a sampler, behavior is undefined unless
all the dereferencing Indexes are dynamically-uniform. Such instructions must be in the same block
in which their Result <id> are consumed. Such Result <id> must not appear as operands to OpPhi
instructions or OpSelect instructions, or any instructions other than the image instructions specified
to operate on them.

- The capabilities StorageBuffer16BitAccess, UniformAndStorageBuffer16BitAccess,
StoragePushConstant16, and StorageInputOutput16 do not generally add 16-bit operations.
Rather, they add only the following specific abilities:

· An OpTypePointer pointing to a 16-bit scalar, a 16-bit vector, or a composite containing a 16-bit
member can be used as the result type of OpVariable, or OpAccessChain, or
OpInBoundsAccessChain.

· OpLoad can load 16-bit scalars, 16-bit vectors, and 16-bit matrices.

· OpStore can store 16-bit scalars, 16-bit vectors, and 16-bit matrices.

· OpCopyObject can be used for 16-bit scalars or composites containing 16-bit members.

· 16-bit scalars or 16-bit vectors can be used as operands to a width-only conversion instruction
to another allowed type (OpFConvert, OpSConvert, or OpUConvert), and can be produced as
results of a width-only conversion instruction from another allowed type.

· A structure containing a 16-bit member can be an operand to OpArrayLength.

- The capabilities StorageBuffer8BitAccess, UniformAndStorageBuffer8BitAccess, and
StoragePushConstant8, do not generally add 8-bit operations. Rather, they add only the following
specific abilities:

· An OpTypePointer pointing to an 8-bit scalar, an 8-bit vector, or a composite containing an 8-bit
member can be used as the result type of OpVariable, or OpAccessChain, or
OpInBoundsAccessChain.

· OpLoad can load 8-bit scalars and vectors.

· OpStore can store 8-bit scalars and 8-bit vectors.

· OpCopyObject can be used for 8-bit scalars or composites containing 8-bit members.

· 8-bit scalars and vectors can be used as operands to a width-only conversion instruction to
another allowed type (OpSConvert, or OpUConvert), and can be produced as results of a
width-only conversion instruction from another allowed type.

· A structure containing an 8-bit member can be an operand to OpArrayLength.

• Decoration rules

- The Linkage Attributes Decoration must not be applied to functions targeted by an OpEntryPoint
instruction.

- A BuiltIn Decoration must be applied only as follows:

33

· If applied to a structure-type member, all members of that structure type must also be
decorated with BuiltIn. (No allowed mixing of built-in variables and non-built-in variables within
a single structure.)

· If applied to a structure-type member, that structure type must not be contained as a member of
another structure type.

· There must be no more than one object per Storage Class that contains a structure type
containing members decorated with BuiltIn, consumed per entry-point.

• OpLoad and OpStore must consume only objects whose type is a pointer.

• A Result <id> resulting from an instruction within a function must be used only in that function.

• A function call must have the same number of arguments as the function definition (or declaration) has
parameters, and their respective types must match.

• An instruction requiring a specific number of operands must have that many operands. The word count
must agree.

• Each opcode specifies its own requirements for number and type of operands, and these must be
followed.

• Atomic access rules

- The pointers taken by atomic operation instructions must be a pointer into one of the following
Storage Classes:

· Uniform when used with the BufferBlock Decoration

· StorageBuffer

· PhysicalStorageBuffer

· Workgroup

· CrossWorkgroup

· Generic

· AtomicCounter

· Image

· Function

• It is invalid to have a construct that uses the StorageBuffer Storage Class and a construct that uses
the Uniform Storage Class with the BufferBlock Decoration in the same SPIR-V module.

• All XfbStride Decorations must be the same for all objects decorated with the same XfbBuffer XFB
Buffer Number.

• All Stream Decorations must be the same for all objects decorated with the same XfbBuffer XFB
Buffer Number.

• If the workgroup size is statically specified (using the LocalSize, LocalSizeId execution modes, or the
WorkgroupSize BuiltIn), the product of all workgroup size dimensions must not be zero.

2.16.2. Validation Rules for Shader Capabilities

• CFG:

- Loops must be structured. That is, the target basic block of a back edge must contain an
OpLoopMerge instruction.

- Selections must be structured. That is, an OpSelectionMerge instruction is required to precede:

· an OpSwitch instruction

34

· an OpBranchConditional instruction that has different True Label and False Label operands
where neither are declared merge blocks or Continue Targets.

• Entry point and execution model

- Each entry point in a module, along with its corresponding static call tree within that module, forms
a complete pipeline stage.

- Each OpEntryPoint with the Fragment Execution Model must have an OpExecutionMode for
either the OriginLowerLeft or the OriginUpperLeft Execution Mode. (Exactly one of these is
required.)

- An OpEntryPoint with the Fragment Execution Model must not set more than one of the
DepthGreater, DepthLess, or DepthUnchanged Execution Modes.

- An OpEntryPoint with one of the Tessellation Execution Models must not set more than one of the
SpacingEqual, SpacingFractionalEven, or SpacingFractionalOdd Execution Modes.

- An OpEntryPoint with one of the Tessellation Execution Models must not set more than one of the
Triangles, Quads, or Isolines Execution Modes.

- An OpEntryPoint with one of the Tessellation Execution Models must not set more than one of the
VertexOrderCw or VertexOrderCcw Execution Modes.

- An OpEntryPoint with the Geometry Execution Model must set exactly one of the InputPoints,
InputLines, InputLinesAdjacency, Triangles, or TrianglesAdjacency Execution Modes.

- An OpEntryPoint with the Geometry Execution Model must set exactly one of the OutputPoints,
OutputLineStrip, or OutputTriangleStrip Execution Modes.

• Composite objects in the StorageBuffer, PhysicalStorageBuffer, Uniform, and PushConstant
Storage Classes must be explicitly laid out. The following apply to all the aggregate and matrix types
describing such an object, recursively through their nested types:

- Each structure-type member must have an Offset decoration.

- Each array type must have an ArrayStride decoration, unless it is an array that contains a structure
decorated with Block or BufferBlock, in which case it must not have an ArrayStride decoration.

- Each structure-type member that is a matrix or array-of-matrices must be decorated with

· a MatrixStride Decoration, and

· one of the RowMajor or ColMajor decorations.

- The ArrayStride, MatrixStride, and Offset decorations must be large enough to hold the size of
the objects they affect (that is, specifying overlap is invalid). Each ArrayStride and MatrixStride
must be greater than zero, and it is invalid for two members of a given structure to be assigned the
same Offset.

- Each OpPtrAccessChain must have a Base whose type is decorated with ArrayStride.

- If an array-element pointer is derived from an array (e.g., using OpAccessChain), and the resulting
element-pointer type is decorated with ArrayStride, its Array Stride must match the Array Stride of
the array’s type. If the array’s type is not decorated with ArrayStride, the derived array-element
pointer also must not be decorated with ArrayStride.

• For structure objects in the Input and Output Storage Classes, the following apply:

- If applied to structure-type members, the decorations Noperspective, Flat, Patch, Centroid, and
Sample must be applied only to the top-level members of the structure type. (Nested objects' types
must not be structures whose members are decorated with these decorations.)

• Type Rules

- All declared types are restricted to those types that are, or are contained within, valid types for an
OpVariable Result Type or an OpTypeFunction Return Type.

35

- Aggregate types for intermediate objects are restricted to those types that are a valid Type of an
OpVariable Result Type in the global storage classes.

• Decorations

- It is invalid to apply more than one of Noperspective or Flat decorations to the same object or
member.

- It is invalid to apply more than one of Patch, Centroid, or Sample decorations to the same object
or member.

- It is invalid to apply more than one of Block and BufferBlock decorations to a structure type.

- Block and BufferBlock decorations must not decorate a structure type that is nested at any level
inside another structure type decorated with Block or BufferBlock.

- The FPRoundingMode decoration must be applied only to a width-only conversion instruction
whose only uses are Object operands of OpStore instructions storing through a pointer to a 16-bit
floating-point object in the StorageBuffer, PhysicalStorageBuffer, Uniform, or Output Storage
Classes.

• All <id> used for Scope <id> and Memory Semantics <id> must be of an OpConstant.

• Atomic access rules

- The pointers taken by atomic operation instructions are further restricted to not point into the
Function storage class.

2.16.3. Validation Rules for Kernel Capabilities

• The Signedness in OpTypeInt must always be 0.

36

2.17. Universal Limits
These quantities are minimum limits for all implementations and validators. Implementations are allowed to
support larger quantities. Client APIs may impose larger minimums. See Language Capabilities.

Validators inform when these limits (or explicitly parameterized limits) are crossed.

Table 3. Limits

Limited Entity
Minimum Limit

Decimal Hexadecimal

Characters in a literal string 65,535 FFFF

Result <id> bound

See Physical Layout for the shader-specific bound.
4,194,303 3FFFFF

Control-flow nesting depth

Measured per function, in program order, counting
the maximum number of OpBranch,
OpBranchConditional, or OpSwitch that are seen
without yet seeing their corresponding Merge Block,
as declared by OpSelectionMerge or
OpLoopMerge.

1023 3FF

Global variables (Storage Class other than Function) 65,535 FFFF

Local variables (Function Storage Class) 524,287 7FFFF

Decorations per target <id>
Number of entries in the

Decoration table.

Execution modes per entry point 255 FF

Indexes for OpAccessChain,
OpInBoundsAccessChain, OpPtrAccessChain,
OpInBoundsPtrAccessChain,
OpCompositeExtract, and OpCompositeInsert

255 FF

Number of function parameters, per function
declaration

255 FF

OpFunctionCall actual arguments 255 FF

OpExtInst actual arguments 255 FF

OpSwitch (literal, label) pairs 16,383 3FFF

OpTypeStruct members 16,383 3FFF

Structure nesting depth 255 FF

2.18. Memory Model
A memory model is chosen using a single OpMemoryModel instruction near the beginning of the module.
This selects both an addressing model and a memory model.

37

The Logical addressing model means pointers are abstract, having no physical size or numeric value. In
this mode, pointers must be created only from existing objects, and they must not be stored into an object,
unless additional capabilities, e.g., VariablePointers, are declared to add such functionality.

The non-Logical addressing models allow physical pointers to be formed. OpVariable can be used to
create objects that hold pointers. These are declared for a specific Storage Class. Pointers for one Storage
Class must not be used to access objects in another Storage Class. However, they can be converted with
conversion opcodes. Any particular addressing model describes the bit width of pointers for each of the
storage classes.

2.18.1. Memory Layout

Offset, MatrixStride, and ArrayStride Decorations partially define how a memory buffer is laid out. In
addition, the following also define layout of a memory buffer, applied recursively as needed:

• a vector consumes contiguous memory with lower-numbered components appearing in smaller offsets
than higher-numbered components, and with component 0 starting at the vector’s Offset Decoration, if
present

• in an array, lower-numbered elements appear at smaller offsets than higher-numbered elements, with
element 0 starting at the Offset Decoration for the array, if present

• in a matrix, lower-numbered columns appear at smaller offsets than higher-numbered columns, and
lower-numbered components within the matrix’s vectors appearing at smaller offsets than high-
numbered components, with component 0 of column 0 starting at the Offset Decoration, if present (the
RowMajor and ColMajor Decorations dictate what is contiguous)

2.18.2. Aliasing

Two memory object declarations are said to alias if they can be accessed (in bounds) such that both
accesses address the same memory locations. If two memory operations access the same locations, and
at least one of them performs a write, the memory consistency model specified by the client API defines the
results based on the ordering of the accesses.

How aliasing is managed depends on the memory model:

• The Simple, GLSL, and Vulkan memory models can assume that aliasing is generally not present
between the memory object declarations. Specifically, the consumer is free to assume aliasing is not
present between memory object declarations, unless the memory object declarations explicitly indicate
they alias. Aliasing is indicated by applying the Aliased decoration to a memory object declaration’s
<id>, for OpVariable and OpFunctionParameter. Applying Restrict is allowed, but has no effect. For
variables holding PhysicalStorageBuffer pointers, applying the AliasedPointer decoration on the
OpVariable indicates that the PhysicalStorageBuffer pointers are potentially aliased. Applying
RestrictPointer is allowed, but has no effect. Variables holding PhysicalStorageBuffer pointers must
be decorated as either AliasedPointer or RestrictPointer. Only those memory object declarations
decorated with Aliased or AliasedPointer may alias each other.

• The OpenCL memory model assumes that memory object declarations might alias each other. An
implementation may assume that memory object declarations decorated with Restrict will not alias any
other memory object declaration. Applying Aliased is allowed, but has no effect.

The Aliased decoration can be used to express that certain memory object declarations may alias.
Referencing the following table, a memory object declaration P may alias another declared pointer Q if
within a single row:

• P is an instruction with opcode and storage class from the first pair of columns, and

38

• Q is an instruction with opcode and storage class from the second pair of columns.

First Storage Class First Instruction(s) Second Instructions Second Storage Classes

CrossWorkgroup OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

CrossWorkgroup,
Generic

Function OpFunctionParameter OpFunctionParameter,
OpVariable

Function, Generic

Function OpVariable OpFunctionParameter Function, Generic

Generic OpFunctionParameter OpFunctionParameter,
OpVariable

CrossWorkgroup,
Function, Generic,
Workgroup

Image OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

Image, StorageBuffer,
PhysicalStorageBuffer,
Uniform,
UniformConstant

Output OpFunctionParameter OpFunctionParameter,
OpVariable

Output

Private OpFunctionParameter OpFunctionParameter,
OpVariable

Private

StorageBuffer OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

Image, StorageBuffer,
PhysicalStorageBuffer,
Uniform,
UniformConstant

PhysicalStorageBuffer OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

Image, StorageBuffer,
PhysicalStorageBuffer,
Uniform,
UniformConstant

Uniform OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

Image, StorageBuffer,
PhysicalStorageBuffer,
Uniform,
UniformConstant

UniformConstant OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

Image, StorageBuffer,
PhysicalStorageBuffer,
Uniform,
UniformConstant

Workgroup OpFunctionParameter OpFunctionParameter,
OpVariable

Workgroup, Generic

Workgroup OpVariable OpFunctionParameter Workgroup, Generic

In addition to the above table, memory object declarations in the CrossWorkgroup, Function, Input,
Output, Private, or Workgroup storage classes must also have matching pointee types for aliasing to be
present. In all other cases the decoration is ignored.

Because aliasing, as described above, only applies to memory object declarations, a consumer does not
make any assumptions about whether or not memory regions of non memory object declarations overlap.
As such, a consumer needs to perform dependency analysis on non memory object declarations if it

39

wishes to reorder instructions affecting memory. Behavior is undefined if operations on two memory object
declarations access the same memory location, with at least one of them performing a write, and at least
one of the memory object declarations does not have the Aliased decoration.

For the PhysicalStorageBuffer storage class, OpVariable is understood to mean the
PhysicalStorageBuffer pointer value(s) stored in the variable. An Aliased PhysicalStorageBuffer pointer
stored in a Function variable can alias with other variables in the same function, global variables, or
function parameters.

It is invalid to apply both Restrict and Aliased to the same <id>.

2.18.3. Null pointers

A "null pointer" can be formed from an OpConstantNull instruction with a pointer result type. The resulting
pointer value is abstract, and will not equal the pointer value formed from any declared object or access
chain into a declared object. Behavior is undefined if a load or store through OpConstantNull is executed.

2.19. Derivatives
Derivatives appear only in the Fragment Execution Model. They are either implicit or explicit. Some image
instructions consume implicit derivatives, while the derivative instructions compute explicit derivatives. In all
cases, derivatives are well defined when the derivative group has uniform control flow, otherwise see the
client API specification for what behavior is allowed.

2.20. Code Motion
Texturing instructions in the Fragment Execution Model that rely on an implicit derivative won’t be moved
into control flow that is not known to be uniform control flow within each derivative group.

2.21. Deprecation
A feature may be marked as deprecated by a version of the specification or extension to the specification.
Features marked as deprecated in one version of the specification are still present in that version, but future
versions may reduce their support or completely remove them. Deprecating before removing allows
applications time to transition away from the deprecated feature. Once the feature is removed, all tokens
used exclusively by that feature will be reserved and any use of those tokens will become invalid.

2.22. Unified Specification
This document specifies all versions of SPIR-V.

There are three kinds of entries in the tables of enumerated tokens:

• Reservation: These say Reserved in the enabling capabilities. They often contain token names only,
lacking a semantic description. They are invalid SPIR-V for any version, serving only to reserve the
tokens. They may identify enabling capabilities and extensions, in which case any listed extensions
might add the tokens. See the listed extensions for additional information.

• Conditional: These say Missing before or Missing after in the enabling capabilities. They are invalid
SPIR-V for the missing versions. They may identify enabling capabilities and extensions, in which case
any listed extensions might add the tokens for some of the missing versions. See the listed extensions
for additional information. For versions not identified as missing, the tokens are valid SPIR-V, subject to
any listed enabling capabilities.

40

• Universal: These have no mention of what version they are missing in, or of being reserved. They are
valid in all versions of SPIR-V.

2.23. Uniformity
SPIR-V has multiple notions of uniformity of values. A Result <id> decorated as Uniform (for a particular
scope) is a contract that all invocations within that scope compute the same value for that result, for a given
dynamic instance of an instruction. This is useful to enable implementations to store results in a scalar
register file (scalarization), for example. Results are assumed not to be uniform unless decorated as such.

An <id> is defined to be dynamically uniform for a dynamic instance of an instruction if all invocations (in an
invocation group) that execute the dynamic instance have the same value for that <id>. This is not
something that is explicitly decorated, it is just a property that arises. This property is assumed to hold for
operands of certain instructions, such as the Image operand of image instructions, unless that operand is
decorated as NonUniform. Some implementations require more complex instruction expansions to handle
non-dynamically uniform values in certain instructions, and thus it is mandatory for certain operands to be
decorated as NonUniform if they are not guaranteed to be dynamically uniform.

While the names may suggest otherwise, nothing forbids an <id> from being decorated as both Uniform
and NonUniform. Because dynamically uniform is at a larger scope (invocation group) than the default
Uniform scope (subgroup), it is even possible for the <id> to be uniform at the subgroup scope but not
dynamically uniform.

41

Chapter 3. Binary Form
This section contains the exact form for all instructions, starting with the numerical values for all fields. See
Physical Layout for the order words appear in.

3.1. Magic Number
Magic number for a SPIR-V module.

TIP
Endianness: A module is defined as a stream of words, not a stream of bytes. However, if
stored as a stream of bytes (e.g., in a file), the magic number can be used to deduce what
endianness to apply to convert the byte stream back to a word stream.

Magic Number

0x07230203

3.2. Source Language
The source language is for debug purposes only, with no semantics that affect the meaning of other parts
of the module.

Used by OpSource.

Source Language

0 Unknown

1 ESSL

2 GLSL

3 OpenCL_C

4 OpenCL_CPP

5 HLSL

6 CPP_for_OpenCL

3.3. Execution Model
Used by OpEntryPoint.

Execution Model Enabling Capabilities

0
Vertex
Vertex shading stage.

Shader

1
TessellationControl
Tessellation control (or hull) shading stage.

Tessellation

2
TessellationEvaluation
Tessellation evaluation (or domain) shading stage.

Tessellation

42

Execution Model Enabling Capabilities

3
Geometry
Geometry shading stage.

Geometry

4
Fragment
Fragment shading stage.

Shader

5
GLCompute
Graphical compute shading stage.

Shader

6
Kernel
Compute kernel.

Kernel

5267

TaskNV MeshShadingNV

Reserved.

5268

MeshNV MeshShadingNV

Reserved.

5313

RayGenerationNV RayTracingNV, RayTracingKHR

Reserved.

5313

RayGenerationKHR RayTracingNV, RayTracingKHR

Reserved.

5314

IntersectionNV RayTracingNV, RayTracingKHR

Reserved.

5314

IntersectionKHR RayTracingNV, RayTracingKHR

Reserved.

5315

AnyHitNV RayTracingNV, RayTracingKHR

Reserved.

5315

AnyHitKHR RayTracingNV, RayTracingKHR

Reserved.

5316

ClosestHitNV RayTracingNV, RayTracingKHR

Reserved.

5316

ClosestHitKHR RayTracingNV, RayTracingKHR

Reserved.

5317

MissNV RayTracingNV, RayTracingKHR

Reserved.

43

Execution Model Enabling Capabilities

5317

MissKHR RayTracingNV, RayTracingKHR

Reserved.

5318

CallableNV RayTracingNV, RayTracingKHR

Reserved.

5318

CallableKHR RayTracingNV, RayTracingKHR

Reserved.

3.4. Addressing Model
Used by OpMemoryModel.

Addressing Model Enabling Capabilities

0 Logical

1

Physical32
Indicates a 32-bit module, where the address width
is equal to 32 bits.

Addresses

2

Physical64
Indicates a 64-bit module, where the address width
is equal to 64 bits.

Addresses

5348

PhysicalStorageBuffer64
Indicates that pointers with a storage class of
PhysicalStorageBuffer are physical pointer types
with an address width of 64 bits, while pointers to
all other storage classes are logical.

PhysicalStorageBufferAddresses

Missing before version 1.5.

Also see extensions:
SPV_EXT_physical_storage_buffer,
SPV_KHR_physical_storage_buffer

5348

PhysicalStorageBuffer64EXT PhysicalStorageBufferAddresses

Missing before version 1.5.

Also see extension:
SPV_EXT_physical_storage_buffer

3.5. Memory Model
Used by OpMemoryModel.

Memory Model Enabling Capabilities

0
Simple
No shared memory consistency issues.

Shader

44

Memory Model Enabling Capabilities

1

GLSL450
Memory model needed by later versions of GLSL
and ESSL. Works across multiple versions.

Shader

2
OpenCL
OpenCL memory model.

Kernel

3

Vulkan
Vulkan memory model, as specified by the client
API. This memory model must be declared if and
only if the VulkanMemoryModel capability is
declared.

VulkanMemoryModel

Missing before version 1.5.

3

VulkanKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

3.6. Execution Mode
Declare the modes an entry point executes in.

Used by OpExecutionMode and OpExecutionModeId.

Execution Mode Extra Operands Enabling Capabilities

0 Invocations
Number of invocations is an
unsigned 32-bit integer number of
times to invoke the geometry
stage for each input primitive
received. The default is to run
once for each input primitive. It is
invalid to specify a value greater
than the target-dependent
maximum. Only valid with the
Geometry Execution Model.

Literal
Number of invocations

Geometry

1 SpacingEqual
Requests the tessellation
primitive generator to divide
edges into a collection of equal-
sized segments. Only valid with
one of the tessellation Execution
Models.

Tessellation

45

Execution Mode Extra Operands Enabling Capabilities

2 SpacingFractionalEven
Requests the tessellation
primitive generator to divide
edges into an even number of
equal-length segments plus two
additional shorter fractional
segments. Only valid with one of
the tessellation Execution Models.

Tessellation

3 SpacingFractionalOdd
Requests the tessellation
primitive generator to divide
edges into an odd number of
equal-length segments plus two
additional shorter fractional
segments. Only valid with one of
the tessellation Execution Models.

Tessellation

4 VertexOrderCw
Requests the tessellation
primitive generator to generate
triangles in clockwise order. Only
valid with one of the tessellation
Execution Models.

Tessellation

5 VertexOrderCcw
Requests the tessellation
primitive generator to generate
triangles in counter-clockwise
order. Only valid with one of the
tessellation Execution Models.

Tessellation

6 PixelCenterInteger
Pixels appear centered on whole-
number pixel offsets. E.g., the
coordinate (0.5, 0.5) appears to
move to (0.0, 0.0). Only valid with
the Fragment Execution Model. If
a Fragment entry point does not
have this set, pixels appear
centered at offsets of (0.5, 0.5)
from whole numbers

Shader

7 OriginUpperLeft
The coordinates decorated by
FragCoord appear to originate in
the upper left, and increase
toward the right and downward.
Only valid with the Fragment
Execution Model.

Shader

46

Execution Mode Extra Operands Enabling Capabilities

8 OriginLowerLeft
The coordinates decorated by
FragCoord appear to originate in
the lower left, and increase
toward the right and upward. Only
valid with the Fragment
Execution Model.

Shader

9 EarlyFragmentTests
Fragment tests are to be
performed before fragment
shader execution. Only valid with
the Fragment Execution Model.

Shader

10 PointMode
Requests the tessellation
primitive generator to generate a
point for each distinct vertex in
the subdivided primitive, rather
than to generate lines or
triangles. Only valid with one of
the tessellation Execution Models.

Tessellation

11 Xfb
This stage runs in transform
feedback-capturing mode and this
module is responsible for
describing the transform-feedback
setup. See the XfbBuffer, Offset,
and XfbStride Decorations.

TransformFeedback

12 DepthReplacing
This mode declares that this entry
point dynamically writes the
FragDepth-decorated variable.
Behavior is undefined if this mode
is declared and an invocation
does not write to FragDepth, or
vice versa. Only valid with the
Fragment Execution Model.

Shader

14 DepthGreater
Indicates that per-fragment tests
may assume that any FragDepth
built in-decorated value written by
the shader is greater-than-or-
equal to the fragment’s
interpolated depth value (given by
the z component of the
FragCoord built in-decorated
variable). Other stages of the
pipeline use the written value as
normal. Only valid with the
Fragment execution model.

Shader

47

Execution Mode Extra Operands Enabling Capabilities

15 DepthLess
Indicates that per-fragment tests
may assume that any FragDepth
built in-decorated value written by
the shader is less-than-or-equal
to the fragment’s interpolated
depth value (given by the z
component of the FragCoord
built in-decorated variable). Other
stages of the pipeline use the
written value as normal. Only
valid with the Fragment execution
model.

Shader

16 DepthUnchanged
Indicates that per-fragment tests
may assume that any FragDepth
built in-decorated value written by
the shader is the same as the
fragment’s interpolated depth
value (given by the z component
of the FragCoord built in
-decorated variable). Other
stages of the pipeline use the
written value as normal. Only
valid with the Fragment execution
model.

Shader

17 LocalSize
Indicates the work-group size in
the x, y, and z dimensions. x size,
y size, and z size are unsigned
32-bit integers. Only valid with the
GLCompute or Kernel Execution
Models.

Literal
x size

Literal
y size

Literal
z size

18 LocalSizeHint
A hint to the compiler, which
indicates the most likely to be
used work-group size in the x, y,
and z dimensions. x size, y size,
and z size are unsigned 32-bit
integers. Only valid with the
Kernel Execution Model.

Literal
x size

Literal
y size

Literal
z size

Kernel

19 InputPoints
Stage input primitive is points.
Only valid with the Geometry
Execution Model.

Geometry

20 InputLines
Stage input primitive is lines. Only
valid with the Geometry
Execution Model.

Geometry

48

Execution Mode Extra Operands Enabling Capabilities

21 InputLinesAdjacency
Stage input primitive is lines
adjacency. Only valid with the
Geometry Execution Model.

Geometry

22 Triangles
For a geometry stage, input
primitive is triangles. For a
tessellation stage, requests the
tessellation primitive generator to
generate triangles. Only valid with
the Geometry or one of the
tessellation Execution Models.

Geometry, Tessellation

23 InputTrianglesAdjacency
Geometry stage input primitive is
triangles adjacency. Only valid
with the Geometry Execution
Model.

Geometry

24 Quads
Requests the tessellation
primitive generator to generate
quads. Only valid with one of the
tessellation Execution Models.

Tessellation

25 Isolines
Requests the tessellation
primitive generator to generate
isolines. Only valid with one of the
tessellation Execution Models.

Tessellation

26 OutputVertices
Vertex Count is an unsigned 32-
bit integer. For a geometry stage,
it is the maximum number of
vertices the shader will ever emit
in a single invocation. For a
tessellation-control stage, it is the
number of vertices in the output
patch produced by the
tessellation control shader, which
also specifies the number of
times the tessellation control
shader is invoked. Only valid with
the Geometry or one of the
tessellation Execution Models.

Literal
Vertex count

Geometry, Tessellation,
MeshShadingNV

27 OutputPoints
Stage output primitive is points.
Only valid with the Geometry
Execution Model.

Geometry, MeshShadingNV

49

Execution Mode Extra Operands Enabling Capabilities

28 OutputLineStrip
Stage output primitive is line strip.
Only valid with the Geometry
Execution Model.

Geometry

29 OutputTriangleStrip
Stage output primitive is triangle
strip. Only valid with the
Geometry Execution Model.

Geometry

30 VecTypeHint
A hint to the compiler, which
indicates that most operations
used in the entry point are
explicitly vectorized using a
particular vector type. The 16
high-order bits of the Vector Type
operand specify the number of
components of the vector. The 16
low-order bits of the Vector Type
operand specify the data type of
the vector.

These are the legal data type
values:
0 represents an 8-bit integer
value.
1 represents a 16-bit integer
value.
2 represents a 32-bit integer
value.
3 represents a 64-bit integer
value.
4 represents a 16-bit float value.
5 represents a 32-bit float value.
6 represents a 64-bit float value.

Only valid with the Kernel
Execution Model.

Literal
Vector type

Kernel

31 ContractionOff
Indicates that floating-point-
expressions contraction is
disallowed. Only valid with the
Kernel Execution Model.

Kernel

33 Initializer
Indicates that this entry point is a
module initializer.

Kernel

Missing before version 1.1.

34 Finalizer
Indicates that this entry point is a
module finalizer.

Kernel

Missing before version 1.1.

50

Execution Mode Extra Operands Enabling Capabilities

35 SubgroupSize
Indicates that this entry point
requires the specified Subgroup
Size. Subgroup Size is an
unsigned 32-bit integer.

Literal
Subgroup Size

SubgroupDispatch

Missing before version 1.1.

36 SubgroupsPerWorkgroup
Indicates that this entry point
requires the specified number of
Subgroups Per Workgroup.
Subgroups Per Workgroup is an
unsigned 32-bit integer.

Literal
Subgroups Per
Workgroup

SubgroupDispatch

Missing before version 1.1.

37 SubgroupsPerWorkgroupId
Same as the
SubgroupsPerWorkgroup
mode, but using an <id> operand
instead of a literal. The operand is
consumed as unsigned and must
be an integer type scalar.

<id>
Subgroups Per
Workgroup

SubgroupDispatch

Missing before version 1.2.

38 LocalSizeId
Same as the LocalSize Mode,
but using <id> operands instead
of literals. The operands are
consumed as unsigned and each
must be an integer type scalar.

<id>
x size

<id>
y size

<id>
z size

Missing before version 1.2.

39 LocalSizeHintId
Same as the LocalSizeHint
Mode, but using <id> operands
instead of literals. The operands
are consumed as unsigned and
each must be an integer type
scalar.

<id>
x size
hint

<id>
y size
hint

<id>
z size
hint

Kernel

Missing before version 1.2.

4421 SubgroupUniformControlFlow
KHR

Shader

Reserved.

Also see extension:
SPV_KHR_subgroup_uniform_con
trol_flow

4446 PostDepthCoverage SampleMaskPostDepthCoverage

Reserved.

Also see extension:
SPV_KHR_post_depth_coverage

51

Execution Mode Extra Operands Enabling Capabilities

4459 DenormPreserve
Any denormalized value input into
a shader or potentially generated
by any instruction in a shader is
preserved. Denormalized values
obtained via unpacking an integer
into a vector of values with
smaller bit width and interpreting
those values as floating-point
numbers is preserved.

Only affects instructions operating
on a floating-point type whose
component width is Target Width.
Target Width is an unsigned 32-
bit integer.

Literal
Target Width

DenormPreserve

Missing before version 1.4.

Also see extension:
SPV_KHR_float_controls

4460 DenormFlushToZero
Any denormalized value input into
a shader or potentially generated
by any instruction in a shader is
flushed to zero. Denormalized
values obtained via unpacking an
integer into a vector of values with
smaller bit width and interpreting
those values as floating-point
numbers is flushed to zero.

Only affects instructions operating
on a floating-point type whose
component width is Target Width.
Target Width is an unsigned 32-
bit integer.

Literal
Target Width

DenormFlushToZero

Missing before version 1.4.

Also see extension:
SPV_KHR_float_controls

4461 SignedZeroInfNanPreserve
The implementation does not
perform optimizations on floating-
point instructions that do not
preserve sign of a zero, or
assume that operands and results
are not NaNs or infinities. Bit
patterns for NaNs might not be
preserved.

Only affects instructions operating
on a floating-point type whose
component width is Target Width.
Target Width is an unsigned 32-
bit integer.

Literal
Target Width

SignedZeroInfNanPreserve

Missing before version 1.4.

Also see extension:
SPV_KHR_float_controls

52

Execution Mode Extra Operands Enabling Capabilities

4462 RoundingModeRTE
The default rounding mode for
floating-point arithmetic and
conversions instructions is round
to nearest even. If an instruction
is decorated with
FPRoundingMode or defines a
rounding mode in its description,
that rounding mode is applied and
RoundingModeRTE is ignored.

Only affects instructions operating
on a floating-point type whose
component width is Target Width.
Target Width is an unsigned 32-
bit integer.

Literal
Target Width

RoundingModeRTE

Missing before version 1.4.

Also see extension:
SPV_KHR_float_controls

4463 RoundingModeRTZ
The default rounding mode for
floating-point arithmetic and
conversions instructions is round
toward zero. If an instruction is
decorated with
FPRoundingMode or defines a
rounding mode in its description,
that rounding mode is applied and
RoundingModeRTZ is ignored.

Only affects instructions operating
on a floating-point type whose
component width is Target Width.
Target Width is an unsigned 32-
bit integer.

Literal
Target Width

RoundingModeRTZ

Missing before version 1.4.

Also see extension:
SPV_KHR_float_controls

5027 StencilRefReplacingEXT StencilExportEXT

Reserved.

Also see extension:
SPV_EXT_shader_stencil_export

5269 OutputLinesNV MeshShadingNV

Reserved.

Also see extension:
SPV_NV_mesh_shader

5270 OutputPrimitivesNV Literal
Primitive count

MeshShadingNV

Reserved.

Also see extension:
SPV_NV_mesh_shader

53

Execution Mode Extra Operands Enabling Capabilities

5289 DerivativeGroupQuadsNV ComputeDerivativeGroupQuadsNV

Reserved.

Also see extension:
SPV_NV_compute_shader_derivati
ves

5290 DerivativeGroupLinearNV ComputeDerivativeGroupLinearNV

Reserved.

Also see extension:
SPV_NV_compute_shader_derivati
ves

5298 OutputTrianglesNV MeshShadingNV

Reserved.

Also see extension:
SPV_NV_mesh_shader

5366 PixelInterlockOrderedEXT FragmentShaderPixelInterlockEXT

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interl
ock

5367 PixelInterlockUnorderedEXT FragmentShaderPixelInterlockEXT

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interl
ock

5368 SampleInterlockOrderedEXT FragmentShaderSampleInterlockE
XT

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interl
ock

54

Execution Mode Extra Operands Enabling Capabilities

5369 SampleInterlockUnorderedEXT FragmentShaderSampleInterlockE
XT

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interl
ock

5370 ShadingRateInterlockOrderedE
XT

FragmentShaderShadingRateInterl
ockEXT

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interl
ock

5371 ShadingRateInterlockUnordere
dEXT

FragmentShaderShadingRateInterl
ockEXT

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interl
ock

5618 SharedLocalMemorySizeINTEL Literal
Size

VectorComputeINTEL

Reserved.

5620 RoundingModeRTPINTEL Literal
Target Width

RoundToInfinityINTEL

Reserved.

5621 RoundingModeRTNINTEL Literal
Target Width

RoundToInfinityINTEL

Reserved.

5622 FloatingPointModeALTINTEL Literal
Target Width

RoundToInfinityINTEL

Reserved.

5623 FloatingPointModeIEEEINTEL Literal
Target Width

RoundToInfinityINTEL

Reserved.

5893 MaxWorkgroupSizeINTEL Literal
max_x
_size

Literal
max_y
_size

Literal
max_z
_size

KernelAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

55

Execution Mode Extra Operands Enabling Capabilities

5894 MaxWorkDimINTEL Literal
max_dimensions

KernelAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

5895 NoGlobalOffsetINTEL KernelAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

5896 NumSIMDWorkitemsINTEL Literal
vector_width

FPGAKernelAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

5903 SchedulerTargetFmaxMhzINTE
L

Literal
target_fmax

FPGAKernelAttributesINTEL

Reserved.

3.7. Storage Class
Class of storage for declared variables. Intermediate values do not form a storage class, and unless stated
otherwise, storage class-based restrictions are not restrictions on intermediate objects and their types.

Used by:

• OpTypePointer

• OpTypeForwardPointer

• OpVariable

• OpGenericCastToPtrExplicit

Storage Class Enabling Capabilities

0

UniformConstant
Shared externally, visible across all functions in all
invocations in all work groups. Graphics uniform
memory. OpenCL constant memory. Variables
declared with this storage class are read-only.
They may have initializers, as allowed by the client
API.

1

Input
Input from pipeline. Visible across all functions in
the current invocation. Variables declared with this
storage class are read-only, and must not have
initializers.

56

Storage Class Enabling Capabilities

2

Uniform
Shared externally, visible across all functions in all
invocations in all work groups. Graphics uniform
blocks and buffer blocks.

Shader

3

Output
Output to pipeline. Visible across all functions in
the current invocation.

Shader

4

Workgroup
Shared across all invocations within a work group.
Visible across all functions. The OpenGL "shared"
storage qualifier. OpenCL local memory.

5

CrossWorkgroup
Visible across all functions of all invocations of all
work groups. OpenCL global memory.

6

Private
Visible to all functions in the current invocation.
Regular global memory.

Shader, VectorComputeINTEL

7

Function
Visible only within the declaring function of the
current invocation. Regular function memory.

8

Generic
For generic pointers, which overload the Function,
Workgroup, and CrossWorkgroup Storage
Classes.

GenericPointer

9

PushConstant
For holding push-constant memory, visible across
all functions in all invocations in all work groups.
Intended to contain a small bank of values pushed
from the client API. Variables declared with this
storage class are read-only, and must not have
initializers.

Shader

10

AtomicCounter
For holding atomic counters. Visible across all
functions of the current invocation. Atomic counter-
specific memory.

AtomicStorage

11
Image
For holding image memory.

12

StorageBuffer
Shared externally, readable and writable, visible
across all functions in all invocations in all work
groups. Graphics storage buffers (buffer blocks).

Shader

Missing before version 1.3.

Also see extensions:
SPV_KHR_storage_buffer_storage_class,
SPV_KHR_variable_pointers

57

Storage Class Enabling Capabilities

5328

CallableDataNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5328

CallableDataKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5329

IncomingCallableDataNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5329

IncomingCallableDataKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5338

RayPayloadNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5338

RayPayloadKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5339

HitAttributeNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5339

HitAttributeKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

58

Storage Class Enabling Capabilities

5342

IncomingRayPayloadNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5342

IncomingRayPayloadKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5343

ShaderRecordBufferNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5343

ShaderRecordBufferKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5349

PhysicalStorageBuffer
Shared externally, readable and writable, visible
across all functions in all invocations in all work
groups. Graphics storage buffers using physical
addressing.

PhysicalStorageBufferAddresses

Missing before version 1.5.

Also see extensions:
SPV_EXT_physical_storage_buffer,
SPV_KHR_physical_storage_buffer

5349

PhysicalStorageBufferEXT PhysicalStorageBufferAddresses

Missing before version 1.5.

Also see extension:
SPV_EXT_physical_storage_buffer

5605

CodeSectionINTEL FunctionPointersINTEL

Reserved.

Also see extension:
SPV_INTEL_function_pointers

59

Storage Class Enabling Capabilities

5936

DeviceOnlyINTEL USMStorageClassesINTEL

Reserved.

Also see extension:
SPV_INTEL_usm_storage_classes

5937

HostOnlyINTEL USMStorageClassesINTEL

Reserved.

Also see extension:
SPV_INTEL_usm_storage_classes

3.8. Dim
Dimensionality of an image. The listed Array capabilities are required if the type’s Arrayed operand is 1.
The listed Image capabilities are required if the type’s Sampled operand is 2.

Used by OpTypeImage.

Dim Enabling Capabilities

0 1D Sampled1D, Image1D

1 2D Shader, Kernel, ImageMSArray

2 3D

3 Cube Shader, ImageCubeArray

4 Rect SampledRect, ImageRect

5 Buffer SampledBuffer, ImageBuffer

6 SubpassData InputAttachment

3.9. Sampler Addressing Mode
Addressing mode for creating constant samplers.

Used by OpConstantSampler.

Sampler Addressing Mode Enabling Capabilities

0

None
The image coordinates used to sample elements
of the image refer to a location inside the image,
otherwise the results are undefined.

Kernel

1

ClampToEdge
Out-of-range image coordinates are clamped to
the extent.

Kernel

60

Sampler Addressing Mode Enabling Capabilities

2

Clamp
Out-of-range image coordinates result in a border
color.

Kernel

3

Repeat
Out-of-range image coordinates are wrapped to
the valid range. Must only be used with normalized
coordinates.

Kernel

4

RepeatMirrored
Flip the image coordinate at every integer junction.
Must only be used with normalized coordinates.

Kernel

3.10. Sampler Filter Mode
Filter mode for creating constant samplers.

Used by OpConstantSampler.

Sampler Filter Mode Enabling Capabilities

0

Nearest
Use filter nearest mode when performing a read
image operation.

Kernel

1

Linear
Use filter linear mode when performing a read
image operation.

Kernel

3.11. Image Format
Declarative image format.

Used by OpTypeImage.

Image Format Enabling Capabilities

0 Unknown

1 Rgba32f Shader

2 Rgba16f Shader

3 R32f Shader

4 Rgba8 Shader

5 Rgba8Snorm Shader

6 Rg32f StorageImageExtendedFormats

7 Rg16f StorageImageExtendedFormats

8 R11fG11fB10f StorageImageExtendedFormats

9 R16f StorageImageExtendedFormats

61

Image Format Enabling Capabilities

10 Rgba16 StorageImageExtendedFormats

11 Rgb10A2 StorageImageExtendedFormats

12 Rg16 StorageImageExtendedFormats

13 Rg8 StorageImageExtendedFormats

14 R16 StorageImageExtendedFormats

15 R8 StorageImageExtendedFormats

16 Rgba16Snorm StorageImageExtendedFormats

17 Rg16Snorm StorageImageExtendedFormats

18 Rg8Snorm StorageImageExtendedFormats

19 R16Snorm StorageImageExtendedFormats

20 R8Snorm StorageImageExtendedFormats

21 Rgba32i Shader

22 Rgba16i Shader

23 Rgba8i Shader

24 R32i Shader

25 Rg32i StorageImageExtendedFormats

26 Rg16i StorageImageExtendedFormats

27 Rg8i StorageImageExtendedFormats

28 R16i StorageImageExtendedFormats

29 R8i StorageImageExtendedFormats

30 Rgba32ui Shader

31 Rgba16ui Shader

32 Rgba8ui Shader

33 R32ui Shader

34 Rgb10a2ui StorageImageExtendedFormats

35 Rg32ui StorageImageExtendedFormats

36 Rg16ui StorageImageExtendedFormats

37 Rg8ui StorageImageExtendedFormats

38 R16ui StorageImageExtendedFormats

39 R8ui StorageImageExtendedFormats

40 R64ui Int64ImageEXT

41 R64i Int64ImageEXT

62

3.12. Image Channel Order
The image channel orders that result from OpImageQueryOrder.

Image Channel Order Enabling Capabilities

0 R Kernel

1 A Kernel

2 RG Kernel

3 RA Kernel

4 RGB Kernel

5 RGBA Kernel

6 BGRA Kernel

7 ARGB Kernel

8 Intensity Kernel

9 Luminance Kernel

10 Rx Kernel

11 RGx Kernel

12 RGBx Kernel

13 Depth Kernel

14 DepthStencil Kernel

15 sRGB Kernel

16 sRGBx Kernel

17 sRGBA Kernel

18 sBGRA Kernel

19 ABGR Kernel

3.13. Image Channel Data Type
Image channel data types that result from OpImageQueryFormat.

Image Channel Data Type Enabling Capabilities

0 SnormInt8 Kernel

1 SnormInt16 Kernel

2 UnormInt8 Kernel

3 UnormInt16 Kernel

4 UnormShort565 Kernel

63

Image Channel Data Type Enabling Capabilities

5 UnormShort555 Kernel

6 UnormInt101010 Kernel

7 SignedInt8 Kernel

8 SignedInt16 Kernel

9 SignedInt32 Kernel

10 UnsignedInt8 Kernel

11 UnsignedInt16 Kernel

12 UnsignedInt32 Kernel

13 HalfFloat Kernel

14 Float Kernel

15 UnormInt24 Kernel

16 UnormInt101010_2 Kernel

3.14. Image Operands
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Provides additional operands to sampling, or getting texels from, an image. Bits that are set indicate
whether an additional operand follows, as described by the table. If there are multiple following operands
indicated, they are ordered: Those indicated by smaller-numbered bits appear first. At least one bit must be
set (None is invalid).

Used by:

• OpImageSampleImplicitLod

• OpImageSampleExplicitLod

• OpImageSampleDrefImplicitLod

• OpImageSampleDrefExplicitLod

• OpImageSampleProjImplicitLod

• OpImageSampleProjExplicitLod

• OpImageSampleProjDrefImplicitLod

• OpImageSampleProjDrefExplicitLod

• OpImageFetch

• OpImageGather

• OpImageDrefGather

• OpImageRead

• OpImageWrite

• OpImageSparseSampleImplicitLod

• OpImageSparseSampleExplicitLod

64

• OpImageSparseSampleDrefImplicitLod

• OpImageSparseSampleDrefExplicitLod

• OpImageSparseSampleProjImplicitLod

• OpImageSparseSampleProjExplicitLod

• OpImageSparseSampleProjDrefImplicitLod

• OpImageSparseSampleProjDrefExplicitLod

• OpImageSparseFetch

• OpImageSparseGather

• OpImageSparseDrefGather

• OpImageSparseRead

• OpImageSampleFootprintNV

Image Operands Enabling Capabilities

0x0 None

0x1

Bias
A following operand is the bias added to the
implicit level of detail. Only valid with implicit-lod
instructions. It must be a floating-point type
scalar. This must only be used with an
OpTypeImage that has a Dim operand of 1D,
2D, 3D, or Cube, and the MS operand must be
0.

Shader

0x2

Lod
A following operand is the explicit level-of-detail
to use. Only valid with explicit-lod instructions.
For sampling operations, it must be a floating-
point type scalar. For fetch operations, it must
be an integer type scalar. This must only be
used with an OpTypeImage that has a Dim
operand of 1D, 2D, 3D, or Cube, and the MS
operand must be 0.

0x4

Grad
Two following operands are dx followed by dy.
These are explicit derivatives in the x and y
direction to use in computing level of detail.
Each is a scalar or vector containing (du/dx[,
dv/dx] [, dw/dx]) and (du/dy[, dv/dy] [, dw/dy]).
The number of components of each must equal
the number of components in Coordinate,
minus the array layer component, if present.
Only valid with explicit-lod instructions. They
must be a scalar or vector of floating-point type.
This must only be used with an OpTypeImage
that has an MS operand of 0. It is invalid to set
both the Lod and Grad bits.

65

Image Operands Enabling Capabilities

0x8

ConstOffset
A following operand is added to (u, v, w) before
texel lookup. It must be an <id> of an integer-
based constant instruction of scalar or vector
type. It is invalid for these to be outside a target-
dependent allowed range. The number of
components must equal the number of
components in Coordinate, minus the array
layer component, if present. Not valid with the
Cube dimension. An instruction must specify at
most one of the ConstOffset, Offset, and
ConstOffsets image operands.

0x10

Offset
A following operand is added to (u, v, w) before
texel lookup. It must be a scalar or vector of
integer type. It is invalid for these to be outside
a target-dependent allowed range. The number
of components must equal the number of
components in Coordinate, minus the array
layer component, if present. Not valid with the
Cube dimension. An instruction must specify at
most one of the ConstOffset, Offset, and
ConstOffsets image operands.

ImageGatherExtended

0x20

ConstOffsets
A following operand is Offsets. Offsets must be
an <id> of a constant instruction making an
array of size four of vectors of two integer
components. Each gathered texel is identified
by adding one of these array elements to the (u,
v) sampled location. It is invalid for these to be
outside a target-dependent allowed range. Only
valid with OpImageGather or
OpImageDrefGather. Not valid with the Cube
dimension. An instruction must specify at most
one of the ConstOffset, Offset, and
ConstOffsets image operands.

ImageGatherExtended

0x40

Sample
A following operand is the sample number of
the sample to use. Only valid with
OpImageFetch, OpImageRead,
OpImageWrite, OpImageSparseFetch, and
OpImageSparseRead. The Sample operand
must be used if and only if the underlying
OpTypeImage has MS of 1. It must be an
integer type scalar.

66

Image Operands Enabling Capabilities

0x80

MinLod
A following operand is the minimum level-of-
detail to use when accessing the image. Only
valid with Implicit instructions and Grad
instructions. It must be a floating-point type
scalar. This must only be used with an
OpTypeImage that has a Dim operand of 1D,
2D, 3D, or Cube, and the MS operand must be
0.

MinLod

0x100

MakeTexelAvailable
Perform an availability operation on the texel
locations after the store. A following operand is
the memory scope that controls the availability
operation. Requires NonPrivateTexel to also
be set. Only valid with OpImageWrite.

VulkanMemoryModel

Missing before version 1.5.

0x100

MakeTexelAvailableKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

0x200

MakeTexelVisible
Perform a visibility operation on the texel
locations before the load. A following operand is
the memory scope that controls the visibility
operation. Requires NonPrivateTexel to also
be set. Only valid with OpImageRead and
OpImageSparseRead.

VulkanMemoryModel

Missing before version 1.5.

0x200

MakeTexelVisibleKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

0x400

NonPrivateTexel
The image access obeys inter-thread ordering,
as specified by the client API.

VulkanMemoryModel

Missing before version 1.5.

0x400

NonPrivateTexelKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

0x800

VolatileTexel
This access cannot be eliminated, duplicated,
or combined with other accesses.

VulkanMemoryModel

Missing before version 1.5.

67

Image Operands Enabling Capabilities

0x800

VolatileTexelKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

0x1000

SignExtend
The texel value is converted to the target value
via sign extension. Only valid if the result type is
a scalar or vector of integer type.

Missing before version 1.4.

0x2000

ZeroExtend
The texel value is converted to the target value
via zero extension. Only valid if the result type
is a scalar or vector of integer type with
signedness of 0.

Missing before version 1.4.

0x4000

Nontemporal
Hints that the accessed texels are not likely to
be accessed again in the near future.

Missing before version 1.6.

0x10000 Offsets

3.15. FP Fast Math Mode
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Enables fast math operations which are otherwise unsafe.

Only valid on

• OpFAdd, OpFSub, OpFMul, OpFDiv, OpFRem, and OpFMod instructions

• Missing before version 1.6:

- the OpFNegate instruction

- the OpOrdered, OpUnordered, OpFOrdEqual, OpFUnordEqual, OpFOrdNotEqual,
OpFUnordNotEqual, OpFOrdLessThan, OpFUnordLessThan, OpFOrdGreaterThan,
OpFUnordGreaterThan, OpFOrdLessThanEqual, OpFUnordLessThanEqual,
OpFOrdGreaterThanEqual, and OpFUnordGreaterThanEqual instructions

- OpExtInst extended instructions, where expressly permitted by the extended instruction set in use.

FP Fast Math Mode Enabling Capabilities

0x0 None

0x1
NotNaN
Assume parameters and result are not NaN.

0x2
NotInf
Assume parameters and result are not +/- Inf.

68

FP Fast Math Mode Enabling Capabilities

0x4

NSZ
Treat the sign of a zero parameter or result as
insignificant.

0x8

AllowRecip
Allow the usage of reciprocal rather than
perform a division.

0x10

Fast
Allow algebraic transformations according to
real-number associative and distributive
algebra. This flag implies all the others.

0x10000

AllowContractFastINTEL FPFastMathModeINTEL

Reserved.

0x20000

AllowReassocINTEL FPFastMathModeINTEL

Reserved.

3.16. FP Rounding Mode
Associate a rounding mode to a floating-point conversion instruction.

FP Rounding Mode

0
RTE
Round to nearest even.

1
RTZ
Round towards zero.

2
RTP
Round towards positive infinity.

3
RTN
Round towards negative infinity.

3.17. Linkage Type
Associate a linkage type to functions or global variables. See linkage.

Linkage Type Enabling Capabilities

0
Export
Accessible by other modules as well.

Linkage

1

Import
A declaration of a global variable or a function that
exists in another module.

Linkage

69

Linkage Type Enabling Capabilities

2

LinkOnceODR Linkage

Reserved.

Also see extension: SPV_KHR_linkonce_odr

3.18. Access Qualifier
Defines the access permissions.

Used by OpTypeImage, OpTypePipe, and OpTypeBufferSurfaceINTEL.

Access Qualifier Enabling Capabilities

0
ReadOnly
A read-only object.

Kernel

1
WriteOnly
A write-only object.

Kernel

2
ReadWrite
A readable and writable object.

Kernel

3.19. Function Parameter Attribute
Adds additional information to the return type and to each parameter of a function.

Function Parameter Attribute Enabling Capabilities

0
Zext
Zero extend the value, if needed.

Kernel

1
Sext
Sign extend the value, if needed.

Kernel

2

ByVal
Pass the parameter by value to the function. Only
valid for pointer parameters (not for ret value).

Kernel

3

Sret
The parameter is the address of a structure that is
the return value of the function in the source
program. Only applicable to the first parameter,
which must be a pointer parameter.

Kernel

4

NoAlias
The memory pointed to by a pointer parameter is
not accessed via pointer values that are not
derived from this pointer parameter. Only valid for
pointer parameters. Not valid on return values.

Kernel

70

Function Parameter Attribute Enabling Capabilities

5

NoCapture
The parameter is not copied into a location that is
accessible after returning from the callee. Only
valid for pointer parameters. Not valid on return
values.

Kernel

6

NoWrite
The parameter is not used to write to the memory
pointed to. Only valid for pointer parameters. Not
valid on return values.

Kernel

7

NoReadWrite
The parameter is not dereferenced, either to read
or write the memory pointed to. Only valid for
pointer parameters. Not valid on return values.

Kernel

3.20. Decoration
Used by:

• OpDecorate

• OpMemberDecorate

• OpDecorateId

• OpDecorateString

• OpDecorateStringGOOGLE

• OpMemberDecorateString

• OpMemberDecorateStringGOOGLE

Decoration Extra Operands Enabling Capabilities

0 RelaxedPrecision
Allow reduced precision operations.
To be used as described in Relaxed
Precision.

Shader

1 SpecId
Apply only to a scalar specialization
constant. Specialization Constant ID
is an unsigned 32-bit integer forming
the external linkage for setting a
specialized value. See specialization.

Literal
Specialization
Constant ID

Shader, Kernel

2 Block
Apply only to a structure type to
establish it is a memory interface
block.

Shader

71

Decoration Extra Operands Enabling Capabilities

3 BufferBlock
Deprecated (use Block-decorated
StorageBuffer Storage Class
objects).
Apply only to a structure type to
establish it is a memory interface
block. When the type is used for a
variable in the Uniform Storage
Class the memory interface is a
StorageBuffer-like interface, distinct
from those variables decorated with
Block. In all other Storage Classes
the decoration is meaningless.

Shader

Missing after version 1.3.

4 RowMajor
Applies only to a member of a
structure type. Only valid on a matrix
or array whose most basic element is
a matrix. Indicates that components
within a row are contiguous in
memory. Must not be used with
ColMajor on the same matrix or
matrix aggregate.

Matrix

5 ColMajor
Applies only to a member of a
structure type. Only valid on a matrix
or array whose most basic element is
a matrix. Indicates that components
within a column are contiguous in
memory. Must not be used with
RowMajor on the same matrix or
matrix aggregate.

Matrix

6 ArrayStride
Apply to an array type to specify the
stride, in bytes, of the array’s
elements. Can also apply to a
pointer type to an array element.
Array Stride is an unsigned 32-bit
integer specifying the stride of the
array that the element resides in.
Must not be applied to any other
type.

Literal
Array Stride

Shader

7 MatrixStride
Applies only to a member of a
structure type. Only valid on a matrix
or array whose most basic element is
a matrix. Matrix Stride is an
unsigned 32-bit integer specifying
the stride of the rows in a RowMajor
-decorated matrix or columns in a
ColMajor-decorated matrix.

Literal
Matrix Stride

Matrix

72

Decoration Extra Operands Enabling Capabilities

8 GLSLShared
Apply only to a structure type to get
GLSL shared memory layout.

Shader

9 GLSLPacked
Apply only to a structure type to get
GLSL packed memory layout.

Shader

10 CPacked
Apply only to a structure type, to
marks it as "packed", indicating that
the alignment of the structure is one
and that there is no padding between
structure members.

Kernel

11 BuiltIn
Indicates which built-in variable an
object represents. See BuiltIn for
more information.

BuiltIn

13 NoPerspective
Must only be used on a memory
object declaration or a member of a
structure type. Requests linear, non-
perspective correct, interpolation.
Only valid for the Input and Output
Storage Classes.

Shader

14 Flat
Must only be used on a memory
object declaration or a member of a
structure type. Indicates no
interpolation is done. The non-
interpolated value comes from a
vertex, as specified by the client API.
Only valid for the Input and Output
Storage Classes.

Shader

15 Patch
Must only be used on a memory
object declaration or a member of a
structure type. Indicates a
tessellation patch. Only valid for the
Input and Output Storage Classes.
Invalid to use on objects or types
referenced by non-tessellation
Execution Models.

Tessellation

73

Decoration Extra Operands Enabling Capabilities

16 Centroid
Must only be used on a memory
object declaration or a member of a
structure type. If used with multi-
sampling rasterization, allows a
single interpolation location for an
entire pixel. The interpolation
location lies in both the pixel and in
the primitive being rasterized. Only
valid for the Input and Output
Storage Classes.

Shader

17 Sample
Must only be used on a memory
object declaration or a member of a
structure type. If used with multi-
sampling rasterization, requires per-
sample interpolation. The
interpolation locations are the
locations of the samples lying in both
the pixel and in the primitive being
rasterized. Only valid for the Input
and Output Storage Classes.

SampleRateShading

18 Invariant
Apply only to a variable or member
of a block-decorated structure type to
indicate that expressions computing
its value be computed invariantly
with respect to other shaders
computing the same expressions.

Shader

19 Restrict
Apply only to a memory object
declaration, to indicate the compiler
may compile as if there is no
aliasing. See the Aliasing section for
more detail.

20 Aliased
Apply only to a memory object
declaration, to indicate the compiler
is to generate accesses to the
variable that work correctly in the
presence of aliasing. See the
Aliasing section for more detail.

74

Decoration Extra Operands Enabling Capabilities

21 Volatile
Must be applied only to memory
object declarations or members of a
structure type. Any such memory
object declaration, or any memory
object declaration that contains such
a structure type, must be one of:
- A storage image (see
OpTypeImage).
- A block in the StorageBuffer
storage class, or in the Uniform
storage class with the BufferBlock
decoration.
This indicates the memory holding
the variable is volatile memory.
Accesses to volatile memory cannot
be eliminated, duplicated, or
combined with other accesses.
Volatile applies only to a single
invocation and does not guarantee
each invocation performs the access.
Volatile is not allowed if the declared
memory model is Vulkan. The
memory operand bit Volatile, the
image operand bit VolatileTexel, or
the memory semantic bit Volatile
can be used instead.

22 Constant
Indicates that a global variable is
constant and never modified. Only
allowed on global variables.

Kernel

75

Decoration Extra Operands Enabling Capabilities

23 Coherent
Must be applied only to memory
object declarations or members of a
structure type. Any such memory
object declaration, or any memory
object declaration that contains such
a structure type, must be one of:
- A storage image (see
OpTypeImage).
- A block in the StorageBuffer
storage class, or in the Uniform
storage class with the BufferBlock
decoration.
This indicates the memory backing
the object is coherent.
Coherent is not allowed if the
declared memory model is Vulkan.
The memory operand bits
MakePointerAvailable and
MakePointerVisible or the image
operand bits MakeTexelAvailable
and MakeTexelVisible can be used
instead.

24 NonWritable
Must be applied only to memory
object declarations or members of a
structure type. Any such memory
object declaration, or any memory
object declaration that contains such
a structure type, must be one of:
- A storage image (see
OpTypeImage).
- A block in the StorageBuffer
storage class, or in the Uniform
storage class with the BufferBlock
decoration.
- Missing before version 1.4: An
object in the Private or Function
storage classes.
This indicates that this module does
not write to the memory holding the
variable. It does not prevent the use
of initializers on a declaration.

76

Decoration Extra Operands Enabling Capabilities

25 NonReadable
Must be applied only to memory
object declarations or members of a
structure type. Any such memory
object declaration, or any memory
object declaration that contains such
a structure type, must be one of:
- A storage image (see
OpTypeImage).
- A block in the StorageBuffer
storage class, or in the Uniform
storage class with the BufferBlock
decoration.
This indicates that this module does
not read from the memory holding
the variable. For image variables, it
does not prevent query operations
from reading metadata associated
with the image.

26 Uniform
Apply only to an object. Asserts that,
for each dynamic instance of the
instruction that computes the result,
all active invocations in the
invocation’s Subgroup scope
compute the same result value.

Shader, UniformDecoration

27 UniformId
Apply only to an object. Asserts that,
for each dynamic instance of the
instruction that computes the result,
all active invocations in the Execution
scope compute the same result
value. Execution must not be
Invocation.

Scope <id>
Execution

Shader, UniformDecoration

Missing before version 1.4.

28 SaturatedConversion
Indicates that a conversion to an
integer type which is outside the
representable range of Result Type
is clamped to the nearest
representable value of Result Type.
NaN is converted to 0.

This decoration must be applied only
to conversion instructions to integer
types, not including the
OpSatConvertUToS and
OpSatConvertSToU instructions.

Kernel

77

Decoration Extra Operands Enabling Capabilities

29 Stream
Must only be used on a memory
object declaration or a member of a
structure type. Stream Number is an
unsigned 32-bit integer indicating the
stream number to put an output on.
Only valid for the Output Storage
Class and the Geometry Execution
Model.

Literal
Stream Number

GeometryStreams

30 Location
Apply only to a variable or a
structure-type member. Location is
an unsigned 32-bit integer that forms
the main linkage for Storage Class
Input and Output variables:
- between the client API and vertex-
stage inputs,
- between consecutive
programmable stages, or
- between fragment-stage outputs
and the client API.
It can also tag variables or structure-
type members in the
UniformConstant Storage Class for
linkage with the client API.
Only valid for the Input, Output, and
UniformConstant Storage Classes.

Literal
Location

Shader

31 Component
Must only be used on a memory
object declaration or a member of a
structure type. Component is an
unsigned 32-bit integer indicating
which component within a Location
is taken by the decorated entity. Only
valid for the Input and Output
Storage Classes.

Literal
Component

Shader

32 Index
Apply only to a variable. Index is an
unsigned 32-bit integer identifying a
blend equation input index, used as
specified by the client API. Only valid
for the Output Storage Class and
the Fragment Execution Model.

Literal
Index

Shader

33 Binding
Apply only to a variable.Binding Point
is an unsigned 32-bit integer forming
part of the linkage between the client
API and SPIR-V memory buffers,
images, etc. See the client API
specification for more detail.

Literal
Binding Point

Shader

78

Decoration Extra Operands Enabling Capabilities

34 DescriptorSet
Apply only to a variable.Descriptor
Set is an unsigned 32-bit integer
forming part of the linkage between
the client API and SPIR-V memory
buffers, images, etc. See the client
API specification for more detail.

Literal
Descriptor Set

Shader

35 Offset
Apply only to a structure-type
member. Byte Offset is an unsigned
32-bit integer. It dictates the byte
offset of the member relative to the
beginning of the structure. It can be
used, for example, by both uniform
and transform-feedback buffers. It
must not cause any overlap of the
structure’s members, or overflow of a
transform-feedback buffer’s
XfbStride.

Literal
Byte Offset

Shader

36 XfbBuffer
Must only be used on a memory
object declaration or a member of a
structure type. XFB Buffer is an
unsigned 32-bit integer indicating
which transform-feedback buffer an
output is written to. Only valid for the
Output Storage Classes of vertex
processing Execution Models.

Literal
XFB Buffer
Number

TransformFeedback

37 XfbStride
Apply to anything XfbBuffer is
applied to. XFB Stride is an unsigned
32-bit integer specifying the stride, in
bytes, of transform-feedback buffer
vertices. If the transform-feedback
buffer is capturing any double-
precision components, the stride
must be a multiple of 8, otherwise it
must be a multiple of 4.

Literal
XFB Stride

TransformFeedback

38 FuncParamAttr
Indicates a function return value or
parameter attribute.

Function
Parameter
Attribute
Function
Parameter
Attribute

Kernel

39 FPRoundingMode
Indicates a floating-point rounding
mode.

FP Rounding
Mode
Floating-Point
Rounding Mode

79

Decoration Extra Operands Enabling Capabilities

40 FPFastMathMode
Indicates a floating-point fast math
flag.

FP Fast Math
Mode
Fast-Math Mode

Kernel

41 LinkageAttributes
Associate linkage attributes to
values. Name is a string specifying
what name the Linkage Type applies
to. Only valid on OpFunction or
global (module scope) OpVariable.
See linkage.

Literal
Name

Linkage
Type
Linkage
Type

Linkage

42 NoContraction
Apply only to an arithmetic
instruction to indicate the operation
cannot be combined with another
instruction to form a single operation.
For example, if applied to an
OpFMul, that multiply can’t be
combined with an addition to yield a
fused multiply-add operation.
Furthermore, such operations are
not allowed to reassociate; e.g.,
add(a + add(b+c)) cannot be
transformed to add(add(a+b) + c).

Shader

43 InputAttachmentIndex
Apply only to a variable. Attachment
Index is an unsigned 32-bit integer
providing an input-target index (as
specified by the client API). Only
valid in the Fragment Execution
Model and for variables of type
OpTypeImage with a Dim operand
of SubpassData.

Literal
Attachment Index

InputAttachment

44 Alignment
Apply only to a pointer. Alignment is
an unsigned 32-bit integer declaring
a known minimum alignment the
pointer has.

Literal
Alignment

Kernel

45 MaxByteOffset
Apply only to a pointer.Max Byte
Offset is an unsigned 32-bit integer
declaring a known maximum byte
offset this pointer will be incremented
by from the point of the decoration.
This is a guaranteed upper bound
when applied to
OpFunctionParameter.

Literal
Max Byte Offset

Addresses

Missing before version 1.1.

80

Decoration Extra Operands Enabling Capabilities

46 AlignmentId
Same as the Alignment decoration,
but using an <id> operand instead of
a literal. The operand is consumed
as unsigned and must be an integer
type scalar.

<id>
Alignment

Kernel

Missing before version 1.2.

47 MaxByteOffsetId
Same as the MaxByteOffset
decoration, but using an <id>
operand instead of a literal. The
operand is consumed as unsigned
and must be an integer type scalar.

<id>
Max Byte Offset

Addresses

Missing before version 1.2.

4469 NoSignedWrap
Apply to an instruction to indicate
that it does not cause signed integer
wrapping to occur, in the form of
overflow or underflow.

It must decorate only the following
instructions:
- OpIAdd
- OpISub
- OpIMul
- OpShiftLeftLogical
- OpSNegate
- OpExtInst for instruction numbers
specified in the extended instruction-
set specifications as accepting this
decoration.

If an instruction decorated with
NoSignedWrap does overflow or
underflow, behavior is undefined.

Missing before version 1.4.

Also see extension:
SPV_KHR_no_integer_wrap_decorati
on

81

Decoration Extra Operands Enabling Capabilities

4470 NoUnsignedWrap
Apply to an instruction to indicate
that it does not cause unsigned
integer wrapping to occur, in the form
of overflow or underflow.

It must decorate only the following
instructions:
- OpIAdd
- OpISub
- OpIMul
- OpShiftLeftLogical
- OpExtInst for instruction numbers
specified in the extended instruction-
set specifications as accepting this
decoration.

If an instruction decorated with
NoUnsignedWrap does overflow or
underflow, behavior is undefined.

Missing before version 1.4.

Also see extension:
SPV_KHR_no_integer_wrap_decorati
on

4999 ExplicitInterpAMD Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_pa
rameter

5248 OverrideCoverageNV SampleMaskOverrideCoverageNV

Reserved.

Also see extension:
SPV_NV_sample_mask_override_cov
erage

5250 PassthroughNV GeometryShaderPassthroughNV

Reserved.

Also see extension:
SPV_NV_geometry_shader_passthro
ugh

5252 ViewportRelativeNV ShaderViewportMaskNV

Reserved.

5256 SecondaryViewportRelativeNV Literal
Offset

ShaderStereoViewNV

Reserved.

Also see extension:
SPV_NV_stereo_view_rendering

82

Decoration Extra Operands Enabling Capabilities

5271 PerPrimitiveNV MeshShadingNV

Reserved.

Also see extension:
SPV_NV_mesh_shader

5272 PerViewNV MeshShadingNV

Reserved.

Also see extension:
SPV_NV_mesh_shader

5273 PerTaskNV MeshShadingNV

Reserved.

Also see extension:
SPV_NV_mesh_shader

5285 PerVertexKHR FragmentBarycentricNV,
FragmentBarycentricKHR

Reserved.

Also see extensions:
SPV_NV_fragment_shader_barycentri
c,
SPV_KHR_fragment_shader_barycent
ric

5285 PerVertexNV FragmentBarycentricNV,
FragmentBarycentricKHR

Reserved.

Also see extensions:
SPV_NV_fragment_shader_barycentri
c,
SPV_KHR_fragment_shader_barycent
ric

5300 NonUniform
Apply only to an object. Asserts that
the value backing the decorated <id>
is not dynamically uniform. See the
client API specification for more
detail.

ShaderNonUniform

Missing before version 1.5.

83

Decoration Extra Operands Enabling Capabilities

5300 NonUniformEXT ShaderNonUniform

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5355 RestrictPointer
Apply only to a memory object
declaration, to indicate the compiler
may compile as if there is no aliasing
of the pointer stored in the variable.
See the aliasing section for more
detail.

PhysicalStorageBufferAddresses

Missing before version 1.5.

Also see extensions:
SPV_EXT_physical_storage_buffer,
SPV_KHR_physical_storage_buffer

5355 RestrictPointerEXT PhysicalStorageBufferAddresses

Missing before version 1.5.

Also see extension:
SPV_EXT_physical_storage_buffer

5356 AliasedPointer
Apply only to a memory object
declaration, to indicate the compiler
is to generate accesses to the
pointer stored in the variable that
work correctly in the presence of
aliasing. See the aliasing section for
more detail.

PhysicalStorageBufferAddresses

Missing before version 1.5.

Also see extensions:
SPV_EXT_physical_storage_buffer,
SPV_KHR_physical_storage_buffer

5356 AliasedPointerEXT PhysicalStorageBufferAddresses

Missing before version 1.5.

Also see extension:
SPV_EXT_physical_storage_buffer

5398 BindlessSamplerNV BindlessTextureNV

Reserved.

5399 BindlessImageNV BindlessTextureNV

Reserved.

5400 BoundSamplerNV BindlessTextureNV

Reserved.

5401 BoundImageNV BindlessTextureNV

Reserved.

84

Decoration Extra Operands Enabling Capabilities

5599 SIMTCallINTEL Literal
N

VectorComputeINTEL

Reserved.

5602 ReferencedIndirectlyINTEL IndirectReferencesINTEL

Reserved.

Also see extension:
SPV_INTEL_function_pointers

5607 ClobberINTEL Literal
Register

AsmINTEL

Reserved.

5608 SideEffectsINTEL AsmINTEL

Reserved.

5624 VectorComputeVariableINTEL VectorComputeINTEL

Reserved.

5625 FuncParamIOKindINTEL Literal
Kind

VectorComputeINTEL

Reserved.

5626 VectorComputeFunctionINTEL VectorComputeINTEL

Reserved.

5627 StackCallINTEL VectorComputeINTEL

Reserved.

5628 GlobalVariableOffsetINTEL Literal
Offset

VectorComputeINTEL

Reserved.

5634 CounterBuffer
The <id> of a counter buffer
associated with the decorated buffer.
It must decorate only a variable in
the Uniform storage class. Counter
Buffer must be a variable in the
Uniform storage class.

<id>
Counter Buffer

Missing before version 1.4.

5634 HlslCounterBufferGOOGLE <id>
Counter Buffer

Reserved.

Also see extension:
SPV_GOOGLE_hlsl_functionality1

85

Decoration Extra Operands Enabling Capabilities

5635 UserSemantic
Semantic is a string describing a
user-defined semantic intent of what
it decorates. User-defined semantics
are case insensitive. It must decorate
only a variable or a member of a
structure type. If decorating a
variable, it must be in the Input or
Output storage classes.

Literal
Semantic

Missing before version 1.4.

5635 HlslSemanticGOOGLE Literal
Semantic

Reserved.

Also see extension:
SPV_GOOGLE_hlsl_functionality1

5636 UserTypeGOOGLE Literal
User Type

Reserved.

Also see extension:
SPV_GOOGLE_user_type

5822 FunctionRoundingModeINTEL Literal
Target
Width

FP
Roundin
g Mode
FP
Roundin
g Mode

FunctionFloatControlINTEL

Reserved.

5823 FunctionDenormModeINTEL Literal
Target
Width

Reserve
d FP
Denorm
Mode
FP
Denorm
Mode

FunctionFloatControlINTEL

Reserved.

5825 RegisterINTEL FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5826 MemoryINTEL Literal
Memory Type

FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5827 NumbanksINTEL Literal
Banks

FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

86

Decoration Extra Operands Enabling Capabilities

5828 BankwidthINTEL Literal
Bank Width

FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5829 MaxPrivateCopiesINTEL Literal
Maximum Copies

FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5830 SinglepumpINTEL FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5831 DoublepumpINTEL FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5832 MaxReplicatesINTEL Literal
Maximum
Replicates

FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5833 SimpleDualPortINTEL FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5834 MergeINTEL Literal
Merge
Key

Literal
Merge
Type

FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5835 BankBitsINTEL Literal
Bank Bits

FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

87

Decoration Extra Operands Enabling Capabilities

5836 ForcePow2DepthINTEL Literal
Force Key

FPGAMemoryAttributesINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5899 BurstCoalesceINTEL FPGAMemoryAccessesINTEL

Reserved.

5900 CacheSizeINTEL Literal
Cache Size in
bytes

FPGAMemoryAccessesINTEL

Reserved.

5901 DontStaticallyCoalesceINTEL FPGAMemoryAccessesINTEL

Reserved.

5902 PrefetchINTEL Literal
Prefetcher Size in
bytes

FPGAMemoryAccessesINTEL

Reserved.

5905 StallEnableINTEL FPGAClusterAttributesINTEL

Reserved.

5907 FuseLoopsInFunctionINTEL LoopFuseINTEL

Reserved.

5921 BufferLocationINTEL Literal
Buffer Location ID

FPGABufferLocationINTEL

Reserved.

5944 IOPipeStorageINTEL Literal
IO Pipe ID

IOPipesINTEL

Reserved.

6080 FunctionFloatingPointModeINTEL Literal
Target
Width

Reserve
d FP
Operati
on
Mode
FP
Operati
on
Mode

FunctionFloatControlINTEL

Reserved.

6085 SingleElementVectorINTEL VectorComputeINTEL

Reserved.

6087 VectorComputeCallableFunctionI
NTEL

VectorComputeINTEL

Reserved.

88

Decoration Extra Operands Enabling Capabilities

6140 MediaBlockIOINTEL VectorComputeINTEL

Reserved.

3.21. BuiltIn
Used when Decoration is BuiltIn. Apply to:

• the result <id> of the OpVariable declaration of the built-in variable, or

• a structure-type member, if the built-in is a member of a structure, or

• a constant instruction, if the built-in is a constant.

As stated per entry below, these have additional semantics and constraints specified by the client API.

For all the declarations of all the global variables and constants statically referenced by the entry-point’s call
tree, within any specific storage class it is invalid to decorate with a specific BuiltIn more than once.

BuiltIn Enabling Capabilities

0

Position
Output vertex position from a vertex processing
Execution Model. See the client API specification
for more detail.

Shader

1

PointSize
Output point size from a vertex processing
Execution Model. See the client API specification
for more detail.

Shader

3

ClipDistance
Array of clip distances. See the client API
specification for more detail.

ClipDistance

4

CullDistance
Array of clip distances. See the client API
specification for more detail.

CullDistance

5

VertexId
Input vertex ID to a Vertex Execution Model. See
the client API specification for more detail.

Shader

6

InstanceId
Input instance ID to a Vertex Execution Model.
See the client API specification for more detail.

Shader

7

PrimitiveId
Primitive ID in a Geometry Execution Model. See
the client API specification for more detail.

Geometry, Tessellation, RayTracingNV,
RayTracingKHR, MeshShadingNV

8

InvocationId
Invocation ID, input to Geometry and
TessellationControl Execution Model. See the
client API specification for more detail.

Geometry, Tessellation

89

BuiltIn Enabling Capabilities

9

Layer
Layer selection for multi-layer framebuffer. See the
client API specification for more detail.

The Geometry capability allows for a Layer output
by a Geometry Execution Model, input to a
Fragment Execution Model.

The ShaderLayer capability allows for Layer
output by a Vertex or Tessellation Execution
Model.

Geometry, ShaderLayer,
ShaderViewportIndexLayerEXT,
MeshShadingNV

10

ViewportIndex
Viewport selection for viewport transformation
when using multiple viewports. See the client API
specification for more detail.

The MultiViewport capability allows for a
ViewportIndex output by a Geometry Execution
Model, input to a Fragment Execution Model.

The ShaderViewportIndex capability allows for a
ViewportIndex output by a Vertex or Tessellation
Execution Model.

MultiViewport, ShaderViewportIndex,
ShaderViewportIndexLayerEXT,
MeshShadingNV

11

TessLevelOuter
Output patch outer levels in a TessellationControl
Execution Model. See the client API specification
for more detail.

Tessellation

12

TessLevelInner
Output patch inner levels in a TessellationControl
Execution Model. See the client API specification
for more detail.

Tessellation

13

TessCoord
Input vertex position in TessellationEvaluation
Execution Model. See the client API specification
for more detail.

Tessellation

14

PatchVertices
Input patch vertex count in a tessellation Execution
Model. See the client API specification for more
detail.

Tessellation

15

FragCoord
Coordinates (x, y, z, 1/w) of the current fragment,
input to the Fragment Execution Model. See the
client API specification for more detail.

Shader

16

PointCoord
Coordinates within a point, input to the Fragment
Execution Model. See the client API specification
for more detail.

Shader

90

BuiltIn Enabling Capabilities

17

FrontFacing
Face direction, input to the Fragment Execution
Model. See the client API specification for more
detail.

Shader

18

SampleId
Input sample number to the Fragment Execution
Model. See the client API specification for more
detail.

SampleRateShading

19

SamplePosition
Input sample position to the Fragment Execution
Model. See the client API specification for more
detail.

SampleRateShading

20

SampleMask
Input or output sample mask to the Fragment
Execution Model. See the client API specification
for more detail.

Shader

22

FragDepth
Output fragment depth from the Fragment
Execution Model. See the client API specification
for more detail.

Shader

23

HelperInvocation
Input whether a helper invocation, to the
Fragment Execution Model. See the client API
specification for more detail.

Shader

24

NumWorkgroups
Number of workgroups in GLCompute or Kernel
Execution Models. See the client API specification
for more detail.

25

WorkgroupSize
Deprecated (use LocalSizeId Execution Mode
instead).
Work-group size in GLCompute or Kernel
Execution Models. See the client API specification
for more detail.

26

WorkgroupId
Work-group ID in GLCompute or Kernel
Execution Models. See the client API specification
for more detail.

27

LocalInvocationId
Local invocation ID in GLCompute or Kernel
Execution Models. See the client API specification
for more detail.

28

GlobalInvocationId
Global invocation ID in GLCompute or Kernel
Execution Models. See the client API specification
for more detail.

91

BuiltIn Enabling Capabilities

29

LocalInvocationIndex
Local invocation index in GLCompute Execution
Models. See the client API specification for more
detail.

Work-group Linear ID in Kernel Execution Models.
See the client API specification for more detail.

30

WorkDim
Work dimensions in Kernel Execution Models.
See the client API specification for more detail.

Kernel

31

GlobalSize
Global size in Kernel Execution Models. See the
client API specification for more detail.

Kernel

32

EnqueuedWorkgroupSize
Enqueued work-group size in Kernel Execution
Models. See the client API specification for more
detail.

Kernel

33

GlobalOffset
Global offset in Kernel Execution Models. See the
client API specification for more detail.

Kernel

34

GlobalLinearId
Global linear ID in Kernel Execution Models. See
the client API specification for more detail.

Kernel

36

SubgroupSize
Subgroup size. See the client API specification for
more detail.

Kernel, GroupNonUniform,
SubgroupBallotKHR

37

SubgroupMaxSize
Subgroup maximum size in Kernel Execution
Models. See the client API specification for more
detail.

Kernel

38

NumSubgroups
Number of subgroups in GLCompute or Kernel
Execution Models. See the client API specification
for more detail.

Kernel, GroupNonUniform

39

NumEnqueuedSubgroups
Number of enqueued subgroups in Kernel
Execution Models. See the client API specification
for more detail.

Kernel

40

SubgroupId
Subgroup ID in GLCompute or Kernel Execution
Models. See the client API specification for more
detail.

Kernel, GroupNonUniform

41

SubgroupLocalInvocationId
Subgroup local invocation ID. See the client API
specification for more detail.

Kernel, GroupNonUniform,
SubgroupBallotKHR

92

BuiltIn Enabling Capabilities

42

VertexIndex
Vertex index. See the client API specification for
more detail.

Shader

43

InstanceIndex
Instance index. See the client API specification for
more detail.

Shader

4416

SubgroupEqMask
Subgroup invocations bitmask where bit index ==
SubgroupLocalInvocationId.
See the client API specification for more detail.

SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

4416

SubgroupEqMaskKHR SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

Also see extension: SPV_KHR_shader_ballot

4417

SubgroupGeMask
Subgroup invocations bitmask where bit index >=
SubgroupLocalInvocationId.
See the client API specification for more detail.

SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

4417

SubgroupGeMaskKHR SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

Also see extension: SPV_KHR_shader_ballot

4418

SubgroupGtMask
Subgroup invocations bitmask where bit index >
SubgroupLocalInvocationId.
See the client API specification for more detail.

SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

4418

SubgroupGtMaskKHR SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

Also see extension: SPV_KHR_shader_ballot

4419

SubgroupLeMask
Subgroup invocations bitmask where bit index <=
SubgroupLocalInvocationId.
See the client API specification for more detail.

SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

4419

SubgroupLeMaskKHR SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

Also see extension: SPV_KHR_shader_ballot

93

BuiltIn Enabling Capabilities

4420

SubgroupLtMask
Subgroup invocations bitmask where bit index <
SubgroupLocalInvocationId.
See the client API specification for more detail.

SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

4420

SubgroupLtMaskKHR SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

Also see extension: SPV_KHR_shader_ballot

4424

BaseVertex
Base vertex component of vertex ID.
See the client API specification for more detail.

DrawParameters

Missing before version 1.3.

Also see extension:
SPV_KHR_shader_draw_parameters

4425

BaseInstance
Base instance component of instance ID.
See the client API specification for more detail.

DrawParameters

Missing before version 1.3.

Also see extension:
SPV_KHR_shader_draw_parameters

4426

DrawIndex
Contains the index of the draw currently being
processed.
See the client API specification for more detail.

DrawParameters, MeshShadingNV

Missing before version 1.3.

Also see extensions:
SPV_KHR_shader_draw_parameters,
SPV_NV_mesh_shader

4432

PrimitiveShadingRateKHR FragmentShadingRateKHR

Reserved.

Also see extension:
SPV_KHR_fragment_shading_rate

4438

DeviceIndex
Input device index of the logical device.
See the client API specification for more detail.

DeviceGroup

Missing before version 1.3.

Also see extension: SPV_KHR_device_group

4440

ViewIndex
Input view index of the view currently being
rendered to.
See the client API specification for more detail.

MultiView

Missing before version 1.3.

Also see extension: SPV_KHR_multiview

94

BuiltIn Enabling Capabilities

4444

ShadingRateKHR FragmentShadingRateKHR

Reserved.

Also see extension:
SPV_KHR_fragment_shading_rate

4992

BaryCoordNoPerspAMD Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

4993

BaryCoordNoPerspCentroidAMD Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

4994

BaryCoordNoPerspSampleAMD Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

4995

BaryCoordSmoothAMD Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

4996

BaryCoordSmoothCentroidAMD Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

4997

BaryCoordSmoothSampleAMD Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

4998

BaryCoordPullModelAMD Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

5014

FragStencilRefEXT StencilExportEXT

Reserved.

Also see extension:
SPV_EXT_shader_stencil_export

95

BuiltIn Enabling Capabilities

5253

ViewportMaskNV ShaderViewportMaskNV, MeshShadingNV

Reserved.

Also see extensions:
SPV_NV_viewport_array2,
SPV_NV_mesh_shader

5257

SecondaryPositionNV ShaderStereoViewNV

Reserved.

Also see extension:
SPV_NV_stereo_view_rendering

5258

SecondaryViewportMaskNV ShaderStereoViewNV

Reserved.

Also see extension:
SPV_NV_stereo_view_rendering

5261

PositionPerViewNV PerViewAttributesNV, MeshShadingNV

Reserved.

Also see extensions:
SPV_NVX_multiview_per_view_attributes,
SPV_NV_mesh_shader

5262

ViewportMaskPerViewNV PerViewAttributesNV, MeshShadingNV

Reserved.

Also see extensions:
SPV_NVX_multiview_per_view_attributes,
SPV_NV_mesh_shader

5264

FullyCoveredEXT FragmentFullyCoveredEXT

Reserved.

Also see extension:
SPV_EXT_fragment_fully_covered

5274

TaskCountNV MeshShadingNV

Reserved.

Also see extension: SPV_NV_mesh_shader

96

BuiltIn Enabling Capabilities

5275

PrimitiveCountNV MeshShadingNV

Reserved.

Also see extension: SPV_NV_mesh_shader

5276

PrimitiveIndicesNV MeshShadingNV

Reserved.

Also see extension: SPV_NV_mesh_shader

5277

ClipDistancePerViewNV MeshShadingNV

Reserved.

Also see extension: SPV_NV_mesh_shader

5278

CullDistancePerViewNV MeshShadingNV

Reserved.

Also see extension: SPV_NV_mesh_shader

5279

LayerPerViewNV MeshShadingNV

Reserved.

Also see extension: SPV_NV_mesh_shader

5280

MeshViewCountNV MeshShadingNV

Reserved.

Also see extension: SPV_NV_mesh_shader

5281

MeshViewIndicesNV MeshShadingNV

Reserved.

Also see extension: SPV_NV_mesh_shader

5286

BaryCoordKHR FragmentBarycentricNV,
FragmentBarycentricKHR

Reserved.

Also see extensions:
SPV_NV_fragment_shader_barycentric,
SPV_KHR_fragment_shader_barycentric

97

BuiltIn Enabling Capabilities

5286

BaryCoordNV FragmentBarycentricNV,
FragmentBarycentricKHR

Reserved.

Also see extensions:
SPV_NV_fragment_shader_barycentric,
SPV_KHR_fragment_shader_barycentric

5287

BaryCoordNoPerspKHR FragmentBarycentricNV,
FragmentBarycentricKHR

Reserved.

Also see extensions:
SPV_NV_fragment_shader_barycentric,
SPV_KHR_fragment_shader_barycentric

5287

BaryCoordNoPerspNV FragmentBarycentricNV,
FragmentBarycentricKHR

Reserved.

Also see extensions:
SPV_NV_fragment_shader_barycentric,
SPV_KHR_fragment_shader_barycentric

5292

FragSizeEXT FragmentDensityEXT, ShadingRateNV

Reserved.

Also see extensions:
SPV_EXT_fragment_invocation_density,
SPV_NV_shading_rate

5292

FragmentSizeNV ShadingRateNV, FragmentDensityEXT

Reserved.

Also see extensions: SPV_NV_shading_rate,
SPV_EXT_fragment_invocation_density

5293

FragInvocationCountEXT FragmentDensityEXT, ShadingRateNV

Reserved.

Also see extensions:
SPV_EXT_fragment_invocation_density,
SPV_NV_shading_rate

98

BuiltIn Enabling Capabilities

5293

InvocationsPerPixelNV ShadingRateNV, FragmentDensityEXT

Reserved.

Also see extensions: SPV_NV_shading_rate,
SPV_EXT_fragment_invocation_density

5319

LaunchIdNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5319

LaunchIdKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5320

LaunchSizeNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5320

LaunchSizeKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5321

WorldRayOriginNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5321

WorldRayOriginKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5322

WorldRayDirectionNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

99

BuiltIn Enabling Capabilities

5322

WorldRayDirectionKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5323

ObjectRayOriginNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5323

ObjectRayOriginKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5324

ObjectRayDirectionNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5324

ObjectRayDirectionKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5325

RayTminNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5325

RayTminKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5326

RayTmaxNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

100

BuiltIn Enabling Capabilities

5326

RayTmaxKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5327

InstanceCustomIndexNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5327

InstanceCustomIndexKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5330

ObjectToWorldNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5330

ObjectToWorldKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5331

WorldToObjectNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5331

WorldToObjectKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5332

HitTNV RayTracingNV

Reserved.

Also see extension: SPV_NV_ray_tracing

101

BuiltIn Enabling Capabilities

5333

HitKindNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5333

HitKindKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5334

CurrentRayTimeNV RayTracingMotionBlurNV

Reserved.

Also see extension:
SPV_NV_ray_tracing_motion_blur

5351

IncomingRayFlagsNV RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5351

IncomingRayFlagsKHR RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

5352

RayGeometryIndexKHR RayTracingKHR

Reserved.

Also see extension: SPV_KHR_ray_tracing

5374

WarpsPerSMNV ShaderSMBuiltinsNV

Reserved.

Also see extension:
SPV_NV_shader_sm_builtins

5375

SMCountNV ShaderSMBuiltinsNV

Reserved.

Also see extension:
SPV_NV_shader_sm_builtins

102

BuiltIn Enabling Capabilities

5376

WarpIDNV ShaderSMBuiltinsNV

Reserved.

Also see extension:
SPV_NV_shader_sm_builtins

5377

SMIDNV ShaderSMBuiltinsNV

Reserved.

Also see extension:
SPV_NV_shader_sm_builtins

3.22. Selection Control
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpSelectionMerge.

Selection Control

0x0 None

0x1

Flatten
Strong request, to the extent possible, to
remove the control flow for this selection.

0x2

DontFlatten
Strong request, to the extent possible, to
keep this selection as control flow.

3.23. Loop Control
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Bits that are set indicate whether an additional operand follows, as described by the table. If there are
multiple following operands indicated, they are ordered: Those indicated by smaller-numbered bits appear
first.

Used by OpLoopMerge.

Loop Control Enabling Capabilities

0x0 None

0x1

Unroll
Strong request, to the extent possible, to unroll
or unwind this loop.
This must not be used with the DontUnroll bit.

103

Loop Control Enabling Capabilities

0x2

DontUnroll
Strong request, to the extent possible, to keep
this loop as a loop, without unrolling.

0x4

DependencyInfinite
Guarantees that there are no dependencies
between loop iterations.

Missing before version 1.1.

0x8

DependencyLength
Guarantees that there are no dependencies
between a number of loop iterations. The
dependency length is specified in a subsequent
unsigned 32-bit integer literal operand.

Missing before version 1.1.

0x10

MinIterations
Unchecked assertion that the loop executes at
least a given number of iterations. The iteration
count is specified in a subsequent unsigned 32-
bit integer literal operand.

Missing before version 1.4.

0x20

MaxIterations
Unchecked assertion that the loop executes at
most a given number of iterations. The iteration
count is specified in a subsequent unsigned 32-
bit integer literal operand.

Missing before version 1.4.

0x40

IterationMultiple
Unchecked assertion that the loop executes a
multiple of a given number of iterations. The
number is specified in a subsequent unsigned
32-bit integer literal operand. It must be greater
than 0.

Missing before version 1.4.

0x80

PeelCount
Request that the loop be peeled by a given
number of loop iterations. The peel count is
specified in a subsequent unsigned 32-bit
integer literal operand.
This must not be used with the DontUnroll bit.

Missing before version 1.4.

0x100

PartialCount
Request that the loop be partially unrolled by a
given number of loop iterations. The unroll
count is specified in a subsequent unsigned 32-
bit integer literal operand.
This must not be used with the DontUnroll bit.

Missing before version 1.4.

0x10000

InitiationIntervalINTEL FPGALoopControlsINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_loop_controls

104

Loop Control Enabling Capabilities

0x20000

MaxConcurrencyINTEL FPGALoopControlsINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_loop_controls

0x40000

DependencyArrayINTEL FPGALoopControlsINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_loop_controls

0x80000

PipelineEnableINTEL FPGALoopControlsINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_loop_controls

0x100000

LoopCoalesceINTEL FPGALoopControlsINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_loop_controls

0x200000

MaxInterleavingINTEL FPGALoopControlsINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_loop_controls

0x400000

SpeculatedIterationsINTEL FPGALoopControlsINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_loop_controls

0x800000

NoFusionINTEL FPGALoopControlsINTEL

Reserved.

Also see extension:
SPV_INTEL_fpga_loop_controls

3.24. Function Control
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpFunction.

105

Function Control Enabling Capabilities

0x0 None

0x1

Inline
Strong request, to the extent possible, to inline
the function.

0x2

DontInline
Strong request, to the extent possible, to not
inline the function.

0x4

Pure
Compiler can assume this function has no side
effect, but might read global memory or read
through dereferenced function parameters.
Always computes the same result when called
with the same argument values and the same
global state.

0x8

Const
Compiler assumes this function has no side
effects, and does not access global memory or
dereference function parameters. Always
computes the same result for the same
argument values.

0x10000

OptNoneINTEL OptNoneINTEL

Reserved.

3.25. Memory Semantics <id>
The <id>'s value is a mask; it can be formed by combining the bits from multiple rows in the table below.

The value’s type must be a 32-bit integer scalar. This value is expected to be formed only from the bits in
the table below, where at most one of these four bits can be set: Acquire, Release, AcquireRelease, or
SequentiallyConsistent. If validation rules or the client API require a constant <id>, it is invalid for the
value to not be formed this expected way. If non-constant <id> are allowed, behavior is undefined when the
value is not formed this expected way.

Requesting both Acquire and Release semantics is done by setting the AcquireRelease bit, not by setting
two bits.

Memory semantics define memory-order constraints, and on what storage classes those constraints apply
to. The memory order constrains the allowed orders in which memory operations in this invocation are
made visible to another invocation. The storage classes specify to which subsets of memory these
constraints are to be applied. Storage classes not selected are not being constrained.

Used by:

• OpControlBarrier

• OpMemoryBarrier

• OpAtomicLoad

• OpAtomicStore

106

• OpAtomicExchange

• OpAtomicCompareExchange

• OpAtomicCompareExchangeWeak

• OpAtomicIIncrement

• OpAtomicIDecrement

• OpAtomicIAdd

• OpAtomicISub

• OpAtomicSMin

• OpAtomicUMin

• OpAtomicSMax

• OpAtomicUMax

• OpAtomicAnd

• OpAtomicOr

• OpAtomicXor

• OpAtomicFlagTestAndSet

• OpAtomicFlagClear

• OpMemoryNamedBarrier

• OpAtomicFMinEXT

• OpAtomicFMaxEXT

• OpAtomicFAddEXT

Memory Semantics Enabling Capabilities

0x0 None (Relaxed)

0x2

Acquire
On an atomic instruction, orders memory
operations provided in program order after this
atomic instruction against this atomic
instruction. On a barrier, orders memory
operations provided in program order after this
barrier against atomic instructions before this
barrier. See the client API specification for more
detail.

0x4

Release
On an atomic instruction, orders memory
operations provided in program order before
this atomic instruction against this atomic
instruction. On a barrier, orders memory
operations provided in program order before
this barrier against atomic instructions after this
barrier. See the client API specification for more
detail.

107

Memory Semantics Enabling Capabilities

0x8

AcquireRelease
Has the properties of both Acquire and
Release semantics. It is used for read-modify-
write operations.

0x10

SequentiallyConsistent
All observers see this memory access in the
same order with respect to other sequentially-
consistent memory accesses from this
invocation.
If the declared memory model is Vulkan,
SequentiallyConsistent must not be used.

0x40

UniformMemory
Apply the memory-ordering constraints to
StorageBuffer, PhysicalStorageBuffer, or
Uniform Storage Class memory.

Shader

0x80

SubgroupMemory
Apply the memory-ordering constraints to
subgroup memory.

0x100

WorkgroupMemory
Apply the memory-ordering constraints to
Workgroup Storage Class memory.

0x200

CrossWorkgroupMemory
Apply the memory-ordering constraints to
CrossWorkgroup Storage Class memory.

0x400

AtomicCounterMemory
Apply the memory-ordering constraints to
AtomicCounter Storage Class memory.

AtomicStorage

0x800

ImageMemory
Apply the memory-ordering constraints to
image contents (types declared by
OpTypeImage), or to accesses done through
pointers to the Image Storage Class.

0x1000

OutputMemory
Apply the memory-ordering constraints to
Output storage class memory.

VulkanMemoryModel

Missing before version 1.5.

0x1000

OutputMemoryKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

0x2000

MakeAvailable
Perform an availability operation on all
references in the selected storage classes.

VulkanMemoryModel

Missing before version 1.5.

108

Memory Semantics Enabling Capabilities

0x2000

MakeAvailableKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

0x4000

MakeVisible
Perform a visibility operation on all references in
the selected storage classes.

VulkanMemoryModel

Missing before version 1.5.

0x4000

MakeVisibleKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

0x8000

Volatile
This access cannot be eliminated, duplicated,
or combined with other accesses.

VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

3.26. Memory Operands
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Provides additional operands to the listed memory instructions. Bits that are set indicate whether an
additional operand follows, as described by the table. If there are multiple following operands indicated, they
are ordered: Those indicated by smaller-numbered bits appear first. An instruction needing two masks must
first provide the first mask followed by the first mask’s additional operands, and then provide the second
mask followed by the second mask’s additional operands.

Used by:

• OpLoad

• OpStore

• OpCopyMemory

• OpCopyMemorySized

• OpCooperativeMatrixLoadNV

• OpCooperativeMatrixStoreNV

Memory Operands Enabling Capabilities

0x0 None

0x1

Volatile
This access cannot be eliminated, duplicated,
or combined with other accesses.

109

Memory Operands Enabling Capabilities

0x2

Aligned
This access has a known alignment. The
alignment is specified in a subsequent unsigned
32-bit integer literal operand. Valid values are
defined by the execution environment.

0x4

Nontemporal
Hints that the accessed address is not likely to
be accessed again in the near future.

0x8

MakePointerAvailable
Perform an availability operation on the
locations pointed to by the pointer operand,
after a store. A following operand is the memory
scope for the availability operation. Requires
NonPrivatePointer to also be set. Not valid
with OpLoad.

VulkanMemoryModel

Missing before version 1.5.

0x8

MakePointerAvailableKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

0x10

MakePointerVisible
Perform a visibility operation on the locations
pointed to by the pointer operand, before a
load. A following operand is the memory scope
for the visibility operation. Requires
NonPrivatePointer to also be set. Not valid
with OpStore.

VulkanMemoryModel

Missing before version 1.5.

0x10

MakePointerVisibleKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

0x20

NonPrivatePointer
The memory access obeys inter-thread
ordering, as specified by the client API.

VulkanMemoryModel

Missing before version 1.5.

0x20

NonPrivatePointerKHR VulkanMemoryModel

Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

3.27. Scope <id>
Must be an <id> of a 32-bit integer scalar. Its value is expected to be one of the values in the table below. If

110

validation rules or the client API require a constant <id>, it is invalid for it to not be one of these values. If
non-constant <id> are allowed, behavior is undefined if <id> is not one of these values.

If labeled as a memory scope, it specifies the distance of synchronization from the current invocation. If
labeled as an execution scope, it specifies the set of executing invocations taking part in the operation.
Other usages (neither memory nor execution) of scope are possible, and each such usage defines what
scope means in its context.

Used by:

• OpControlBarrier

• OpMemoryBarrier

• OpAtomicLoad

• OpAtomicStore

• OpAtomicExchange

• OpAtomicCompareExchange

• OpAtomicCompareExchangeWeak

• OpAtomicIIncrement

• OpAtomicIDecrement

• OpAtomicIAdd

• OpAtomicISub

• OpAtomicSMin

• OpAtomicUMin

• OpAtomicSMax

• OpAtomicUMax

• OpAtomicAnd

• OpAtomicOr

• OpAtomicXor

• OpGroupAsyncCopy

• OpGroupWaitEvents

• OpGroupAll

• OpGroupAny

• OpGroupBroadcast

• OpGroupIAdd

• OpGroupFAdd

• OpGroupFMin

• OpGroupUMin

• OpGroupSMin

• OpGroupFMax

• OpGroupUMax

• OpGroupSMax

• OpGroupReserveReadPipePackets

111

• OpGroupReserveWritePipePackets

• OpGroupCommitReadPipe

• OpGroupCommitWritePipe

• OpAtomicFlagTestAndSet

• OpAtomicFlagClear

• OpMemoryNamedBarrier

• OpGroupNonUniformElect

• OpGroupNonUniformAll

• OpGroupNonUniformAny

• OpGroupNonUniformAllEqual

• OpGroupNonUniformBroadcast

• OpGroupNonUniformBroadcastFirst

• OpGroupNonUniformBallot

• OpGroupNonUniformInverseBallot

• OpGroupNonUniformBallotBitExtract

• OpGroupNonUniformBallotBitCount

• OpGroupNonUniformBallotFindLSB

• OpGroupNonUniformBallotFindMSB

• OpGroupNonUniformShuffle

• OpGroupNonUniformShuffleXor

• OpGroupNonUniformShuffleUp

• OpGroupNonUniformShuffleDown

• OpGroupNonUniformIAdd

• OpGroupNonUniformFAdd

• OpGroupNonUniformIMul

• OpGroupNonUniformFMul

• OpGroupNonUniformSMin

• OpGroupNonUniformUMin

• OpGroupNonUniformFMin

• OpGroupNonUniformSMax

• OpGroupNonUniformUMax

• OpGroupNonUniformFMax

• OpGroupNonUniformBitwiseAnd

• OpGroupNonUniformBitwiseOr

• OpGroupNonUniformBitwiseXor

• OpGroupNonUniformLogicalAnd

• OpGroupNonUniformLogicalOr

• OpGroupNonUniformLogicalXor

112

• OpGroupNonUniformQuadBroadcast

• OpGroupNonUniformQuadSwap

• OpGroupIAddNonUniformAMD

• OpGroupFAddNonUniformAMD

• OpGroupFMinNonUniformAMD

• OpGroupUMinNonUniformAMD

• OpGroupSMinNonUniformAMD

• OpGroupFMaxNonUniformAMD

• OpGroupUMaxNonUniformAMD

• OpGroupSMaxNonUniformAMD

• OpReadClockKHR

• OpTypeCooperativeMatrixNV

• OpAtomicFMinEXT

• OpAtomicFMaxEXT

• OpAtomicFAddEXT

Scope Enabling Capabilities

0
CrossDevice
Scope crosses multiple devices.

1
Device
Scope is the current device.

2
Workgroup
Scope is the current workgroup.

3
Subgroup
Scope is the current subgroup.

4
Invocation
Scope is the current Invocation.

5

QueueFamily
Scope is the current queue family.

VulkanMemoryModel

Missing before version 1.5.

5

QueueFamilyKHR VulkanMemoryModel

Missing before version 1.5.

6

ShaderCallKHR RayTracingKHR

Reserved.

3.28. Group Operation
Defines the class of workgroup or subgroup operation.

Used by:

113

• OpGroupIAdd

• OpGroupFAdd

• OpGroupFMin

• OpGroupUMin

• OpGroupSMin

• OpGroupFMax

• OpGroupUMax

• OpGroupSMax

• OpGroupNonUniformBallotBitCount

• OpGroupNonUniformIAdd

• OpGroupNonUniformFAdd

• OpGroupNonUniformIMul

• OpGroupNonUniformFMul

• OpGroupNonUniformSMin

• OpGroupNonUniformUMin

• OpGroupNonUniformFMin

• OpGroupNonUniformSMax

• OpGroupNonUniformUMax

• OpGroupNonUniformFMax

• OpGroupNonUniformBitwiseAnd

• OpGroupNonUniformBitwiseOr

• OpGroupNonUniformBitwiseXor

• OpGroupNonUniformLogicalAnd

• OpGroupNonUniformLogicalOr

• OpGroupNonUniformLogicalXor

• OpGroupIAddNonUniformAMD

• OpGroupFAddNonUniformAMD

• OpGroupFMinNonUniformAMD

• OpGroupUMinNonUniformAMD

• OpGroupSMinNonUniformAMD

• OpGroupFMaxNonUniformAMD

• OpGroupUMaxNonUniformAMD

• OpGroupSMaxNonUniformAMD

Group Operation Enabling Capabilities

0

Reduce
A reduction operation for all values of a specific
value X specified by invocations within a
workgroup.

Kernel, GroupNonUniformArithmetic,
GroupNonUniformBallot

114

Group Operation Enabling Capabilities

1

InclusiveScan
A binary operation with an identity I and n (where n
is the size of the workgroup) elements[a0, a1, … an-

1] resulting in [a0, (a0 op a1), …(a0 op a1 op … op an-

1)]

Kernel, GroupNonUniformArithmetic,
GroupNonUniformBallot

2

ExclusiveScan
A binary operation with an identity I and n (where n
is the size of the workgroup) elements[a0, a1, … an-

1] resulting in [I, a0, (a0 op a1), … (a0 op a1 op … op
an-2)].

Kernel, GroupNonUniformArithmetic,
GroupNonUniformBallot

3

ClusteredReduce GroupNonUniformClustered

Missing before version 1.3.

6

PartitionedReduceNV GroupNonUniformPartitionedNV

Reserved.

Also see extension:
SPV_NV_shader_subgroup_partitioned

7

PartitionedInclusiveScanNV GroupNonUniformPartitionedNV

Reserved.

Also see extension:
SPV_NV_shader_subgroup_partitioned

8

PartitionedExclusiveScanNV GroupNonUniformPartitionedNV

Reserved.

Also see extension:
SPV_NV_shader_subgroup_partitioned

3.29. Kernel Enqueue Flags
Specify when the child kernel begins execution.

Note: Implementations are not required to honor this flag. Implementations may not schedule kernel launch
earlier than the point specified by this flag, however. Used by OpEnqueueKernel.

Kernel Enqueue Flags Enabling Capabilities

0

NoWait
Indicates that the enqueued kernels do not need to
wait for the parent kernel to finish execution before
they begin execution.

Kernel

115

Kernel Enqueue Flags Enabling Capabilities

1

WaitKernel
Indicates that all work-items of the parent kernel
finish executing and all immediate side effects
committed before the enqueued child kernel
begins execution.

Note: Immediate meaning not side effects
resulting from child kernels. The side effects would
include stores to global memory and pipe reads
and writes.

Kernel

2

WaitWorkGroup
Indicates that the enqueued kernels wait only for
the workgroup that enqueued the kernels to finish
before they begin execution.

Note: This acts as a memory synchronization
point between work-items in a work-group and
child kernels enqueued by work-items in the work-
group.

Kernel

3.30. Kernel Profiling Info
The <id>'s value is a mask; it can be formed by combining the bits from multiple rows in the table below.

Specifies the profiling information to be queried. Used by OpCaptureEventProfilingInfo.

Kernel Profiling Info Enabling Capabilities

0x0 None

0x1

CmdExecTime
Indicates that the profiling info queried is the
execution time.

Kernel

3.31. Capability
Capabilities a module can declare it uses.

All used capabilities need to be declared, either explicitly with OpCapability or implicitly through the
Implicitly Declares column: If a capability defined with statically expressed rules is used, it is invalid to not
declare it. If a capability defined in terms of dynamic behavior is used, behavior is undefined unless the
capability is declared. The Implicitly Declares column lists additional capabilities that are all implicitly
declared when the Capability entry is explicitly or implicitly declared. It is not necessary, but allowed, to
explicitly declare an implicitly declared capability.

See the capabilities section for more detail.

Used by OpCapability.

116

Capability Implicitly Declares

0
Matrix
Uses OpTypeMatrix.

1

Shader
Uses Vertex, Fragment, or GLCompute
Execution Models.

Matrix

2
Geometry
Uses the Geometry Execution Model.

Shader

3

Tessellation
Uses the TessellationControl or
TessellationEvaluation Execution Models.

Shader

4

Addresses
Uses physical addressing, non-logical addressing
modes.

5
Linkage
Uses partially linked modules and libraries.

6
Kernel
Uses the Kernel Execution Model.

7

Vector16
Uses OpTypeVector to declare 8 component or
16 component vectors.

Kernel

8

Float16Buffer
Allows a 16-bit OpTypeFloat instruction for
creating an OpTypePointer to a 16-bit float.
Pointers to a 16-bit float must not be dereferenced,
unless specifically allowed by a specific instruction.
All other uses of 16-bit OpTypeFloat are
disallowed.

Kernel

9

Float16
Uses OpTypeFloat to declare the 16-bit floating-
point type.

10

Float64
Uses OpTypeFloat to declare the 64-bit floating-
point type.

11
Int64
Uses OpTypeInt to declare 64-bit integer types.

12
Int64Atomics
Uses atomic instructions on 64-bit integer types.

Int64

13

ImageBasic
Uses OpTypeImage or OpTypeSampler in a
Kernel.

Kernel

14

ImageReadWrite
Uses OpTypeImage with the ReadWrite access
qualifier in a kernel.

ImageBasic

117

Capability Implicitly Declares

15
ImageMipmap
Uses non-zero Lod Image Operands in a kernel.

ImageBasic

17

Pipes
Uses OpTypePipe, OpTypeReserveId or pipe
instructions.

Kernel

18
Groups
Uses common group instructions.

Also see extension: SPV_AMD_shader_ballot

19

DeviceEnqueue
Uses OpTypeQueue, OpTypeDeviceEvent, and
device side enqueue instructions.

Kernel

20

LiteralSampler
Samplers are made from literals within the module.
See OpConstantSampler.

Kernel

21

AtomicStorage
Uses the AtomicCounter Storage Class, allowing
use of only the OpAtomicLoad,
OpAtomicIIncrement, and
OpAtomicIDecrement instructions.

Shader

22
Int16
Uses OpTypeInt to declare 16-bit integer types.

23
TessellationPointSize
Tessellation stage exports point size.

Tessellation

24
GeometryPointSize
Geometry stage exports point size

Geometry

25

ImageGatherExtended
Uses texture gather with non-constant or
independent offsets

Shader

27

StorageImageMultisample
An MS operand in OpTypeImage indicates
multisampled, used with an OpTypeImage having
Sampled == 2.

Shader

28

UniformBufferArrayDynamicIndexing
Block-decorated arrays in uniform storage classes
use dynamically uniform indexing.

Shader

29

SampledImageArrayDynamicIndexing
Arrays of sampled images, samplers, or images
with Sampled = 0 or 1 use dynamically uniform
indexing.

Shader

30

StorageBufferArrayDynamicIndexing
Arrays in the StorageBuffer Storage Class, or
BufferBlock-decorated arrays, use dynamically
uniform indexing.

Shader

118

Capability Implicitly Declares

31

StorageImageArrayDynamicIndexing
Arrays of images with Sampled = 2 are accessed
with dynamically uniform indexing.

Shader

32
ClipDistance
Uses the ClipDistance BuiltIn.

Shader

33
CullDistance
Uses the CullDistance BuiltIn.

Shader

34

ImageCubeArray
Uses the Cube Dim with the Arrayed operand in
OpTypeImage, with an OpTypeImage having
Sampled == 2.

SampledCubeArray

35
SampleRateShading
Uses per-sample rate shading.

Shader

36

ImageRect
Uses the Rect Dim with an OpTypeImage having
Sampled == 2.

SampledRect

37

SampledRect
Uses the Rect Dim with an OpTypeImage having
Sampled == 0 or 1.

Shader

38
GenericPointer
Uses the Generic Storage Class.

Addresses

39
Int8
Uses OpTypeInt to declare 8-bit integer types.

40
InputAttachment
Uses the SubpassData Dim.

Shader

41
SparseResidency
Uses OpImageSparse… instructions.

Shader

42
MinLod
Uses the MinLod Image Operand.

Shader

43

Sampled1D
Uses the 1D Dim with an OpTypeImage having
Sampled == 0 or 1.

44

Image1D
Uses the 1D Dim with an OpTypeImage having
Sampled == 2.

Sampled1D

45

SampledCubeArray
Uses the Cube Dim with the Arrayed operand in
OpTypeImage, with an OpTypeImage having
Sampled == 0 or 1.

Shader

46

SampledBuffer
Uses the Buffer Dim with an OpTypeImage
having Sampled == 0 or 1.

119

Capability Implicitly Declares

47

ImageBuffer
Uses the Buffer Dim with an OpTypeImage
having Sampled == 2.

SampledBuffer

48

ImageMSArray
An MS operand in OpTypeImage indicates
multisampled, used with an OpTypeImage having
Sampled == 2 and Arrayed == 1.

Shader

49

StorageImageExtendedFormats
One of a large set of more advanced image
formats are used, namely one of those in the
Image Format table listed as requiring this
capability.

Shader

50

ImageQuery
The sizes, number of samples, or lod, etc. are
queried.

Shader

51

DerivativeControl
Uses fine or coarse-grained derivatives, e.g.,
OpDPdxFine.

Shader

52

InterpolationFunction
Uses one of the InterpolateAtCentroid,
InterpolateAtSample, or InterpolateAtOffset
GLSL.std.450 extended instructions.

Shader

53
TransformFeedback
Uses the Xfb Execution Mode.

Shader

54

GeometryStreams
Uses multiple numbered streams for geometry-
stage output.

Geometry

55

StorageImageReadWithoutFormat
OpImageRead can use the Unknown Image
Format.

Shader

56

StorageImageWriteWithoutFormat
OpImageWrite can use the Unknown Image
Format.

Shader

57
MultiViewport
Multiple viewports are used.

Geometry

58

SubgroupDispatch
Uses subgroup dispatch instructions.

DeviceEnqueue

Missing before version 1.1.

59

NamedBarrier
Uses OpTypeNamedBarrier.

Kernel

Missing before version 1.1.

60

PipeStorage
Uses OpTypePipeStorage.

Pipes

Missing before version 1.1.

120

Capability Implicitly Declares

61 GroupNonUniform Missing before version 1.3.

62

GroupNonUniformVote GroupNonUniform

Missing before version 1.3.

63

GroupNonUniformArithmetic GroupNonUniform

Missing before version 1.3.

64

GroupNonUniformBallot GroupNonUniform

Missing before version 1.3.

65

GroupNonUniformShuffle GroupNonUniform

Missing before version 1.3.

66

GroupNonUniformShuffleRelative GroupNonUniform

Missing before version 1.3.

67

GroupNonUniformClustered GroupNonUniform

Missing before version 1.3.

68

GroupNonUniformQuad GroupNonUniform

Missing before version 1.3.

69 ShaderLayer Missing before version 1.5.

70 ShaderViewportIndex Missing before version 1.5.

71
UniformDecoration
Uses the Uniform or UniformId decoration

Missing before version 1.6.

4422

FragmentShadingRateKHR Shader

Reserved.

Also see extension:
SPV_KHR_fragment_shading_rate

4423

SubgroupBallotKHR Reserved.

Also see extension: SPV_KHR_shader_ballot

4427

DrawParameters Shader

Missing before version 1.3.

Also see extension:
SPV_KHR_shader_draw_parameters

121

Capability Implicitly Declares

4428

WorkgroupMemoryExplicitLayoutKHR Shader

Reserved.

Also see extension:
SPV_KHR_workgroup_memory_explicit_lay
out

4429

WorkgroupMemoryExplicitLayout8BitAccessK
HR

WorkgroupMemoryExplicitLayoutKHR

Reserved.

Also see extension:
SPV_KHR_workgroup_memory_explicit_lay
out

4430

WorkgroupMemoryExplicitLayout16BitAccess
KHR

Shader

Reserved.

Also see extension:
SPV_KHR_workgroup_memory_explicit_lay
out

4431

SubgroupVoteKHR Reserved.

Also see extension:
SPV_KHR_subgroup_vote

4433

StorageBuffer16BitAccess
Uses 16-bit OpTypeFloat and OpTypeInt
instructions for creating scalar, vector, and
composite types that become members of a block
residing in the StorageBuffer storage class, the
PhysicalStorageBuffer storage class, or the
Uniform storage class with the BufferBlock
decoration.

Missing before version 1.3.

Also see extension: SPV_KHR_16bit_storage

4433

StorageUniformBufferBlock16 Missing before version 1.3.

Also see extension: SPV_KHR_16bit_storage

4434

UniformAndStorageBuffer16BitAccess
Uses 16-bit OpTypeFloat and OpTypeInt
instructions for creating scalar, vector, and
composite types that become members of a block
residing in the StorageBuffer storage class, the
PhysicalStorageBuffer storage class, or the
Uniform storage class.

StorageBuffer16BitAccess,
StorageUniformBufferBlock16

Missing before version 1.3.

Also see extension: SPV_KHR_16bit_storage

122

Capability Implicitly Declares

4434

StorageUniform16 StorageBuffer16BitAccess,
StorageUniformBufferBlock16

Missing before version 1.3.

Also see extension: SPV_KHR_16bit_storage

4435

StoragePushConstant16
Uses 16-bit OpTypeFloat and OpTypeInt
instructions for creating scalar, vector, and
composite types that become members of a block
residing in the PushConstant storage class.

Missing before version 1.3.

Also see extension: SPV_KHR_16bit_storage

4436

StorageInputOutput16
Uses 16-bit OpTypeFloat and OpTypeInt
instructions for creating scalar, vector, and
composite types that become members of a block
residing in the Output storage class.

Missing before version 1.3.

Also see extension: SPV_KHR_16bit_storage

4437

DeviceGroup Missing before version 1.3.

Also see extension: SPV_KHR_device_group

4439

MultiView Shader

Missing before version 1.3.

Also see extension: SPV_KHR_multiview

4441

VariablePointersStorageBuffer
Allow variable pointers, each confined to a single
Block-decorated struct in the StorageBuffer
storage class.

Shader

Missing before version 1.3.

Also see extension:
SPV_KHR_variable_pointers

4442

VariablePointers
Allow variable pointers.

VariablePointersStorageBuffer

Missing before version 1.3.

Also see extension:
SPV_KHR_variable_pointers

4445

AtomicStorageOps Reserved.

Also see extension:
SPV_KHR_shader_atomic_counter_ops

4447

SampleMaskPostDepthCoverage Reserved.

Also see extension:
SPV_KHR_post_depth_coverage

123

Capability Implicitly Declares

4448

StorageBuffer8BitAccess
Uses 8-bit OpTypeInt instructions for creating
scalar, vector, and composite types that become
members of a block residing in the StorageBuffer
storage class or the PhysicalStorageBuffer
storage class.

Missing before version 1.5.

Also see extension: SPV_KHR_8bit_storage

4449

UniformAndStorageBuffer8BitAccess
Uses 8-bit OpTypeInt instructions for creating
scalar, vector, and composite types that become
members of a block residing in the StorageBuffer
storage class, the PhysicalStorageBuffer storage
class, or the Uniform storage class.

StorageBuffer8BitAccess

Missing before version 1.5.

Also see extension: SPV_KHR_8bit_storage

4450

StoragePushConstant8
Uses 8-bit OpTypeInt instructions for creating
scalar, vector, and composite types that become
members of a block residing in the PushConstant
storage class.

Missing before version 1.5.

Also see extension: SPV_KHR_8bit_storage

4464

DenormPreserve
Uses the DenormPreserve execution mode.

Missing before version 1.4.

Also see extension: SPV_KHR_float_controls

4465

DenormFlushToZero
Uses the DenormFlushToZero execution mode.

Missing before version 1.4.

Also see extension: SPV_KHR_float_controls

4466

SignedZeroInfNanPreserve
Uses the SignedZeroInfNanPreserve execution
mode.

Missing before version 1.4.

Also see extension: SPV_KHR_float_controls

4467

RoundingModeRTE
Uses the RoundingModeRTE execution mode.

Missing before version 1.4.

Also see extension: SPV_KHR_float_controls

4468

RoundingModeRTZ
Uses the RoundingModeRTZ execution mode.

Missing before version 1.4.

Also see extension: SPV_KHR_float_controls

4471

RayQueryProvisionalKHR Shader

Reserved.

Also see extension: SPV_KHR_ray_query

4472

RayQueryKHR Shader

Reserved.

Also see extension: SPV_KHR_ray_query

124

Capability Implicitly Declares

4478

RayTraversalPrimitiveCullingKHR RayQueryKHR, RayTracingKHR

Reserved.

Also see extensions: SPV_KHR_ray_query,
SPV_KHR_ray_tracing

4479

RayTracingKHR Shader

Reserved.

Also see extension: SPV_KHR_ray_tracing

5008

Float16ImageAMD Shader

Reserved.

Also see extension:
SPV_AMD_gpu_shader_half_float_fetch

5009

ImageGatherBiasLodAMD Shader

Reserved.

Also see extension:
SPV_AMD_texture_gather_bias_lod

5010

FragmentMaskAMD Shader

Reserved.

Also see extension:
SPV_AMD_shader_fragment_mask

5013

StencilExportEXT Shader

Reserved.

Also see extension:
SPV_EXT_shader_stencil_export

5015

ImageReadWriteLodAMD Shader

Reserved.

Also see extension:
SPV_AMD_shader_image_load_store_lod

5016

Int64ImageEXT Shader

Reserved.

Also see extension:
SPV_EXT_shader_image_int64

125

Capability Implicitly Declares

5055

ShaderClockKHR Shader

Reserved.

Also see extension: SPV_KHR_shader_clock

5249

SampleMaskOverrideCoverageNV SampleRateShading

Reserved.

Also see extension:
SPV_NV_sample_mask_override_coverage

5251

GeometryShaderPassthroughNV Geometry

Reserved.

Also see extension:
SPV_NV_geometry_shader_passthrough

5254

ShaderViewportIndexLayerEXT MultiViewport

Reserved.

Also see extension:
SPV_EXT_shader_viewport_index_layer

5254

ShaderViewportIndexLayerNV MultiViewport

Reserved.

Also see extension: SPV_NV_viewport_array2

5255

ShaderViewportMaskNV ShaderViewportIndexLayerNV

Reserved.

Also see extension: SPV_NV_viewport_array2

5259

ShaderStereoViewNV ShaderViewportMaskNV

Reserved.

Also see extension:
SPV_NV_stereo_view_rendering

5260

PerViewAttributesNV MultiView

Reserved.

Also see extension:
SPV_NVX_multiview_per_view_attributes

126

Capability Implicitly Declares

5265

FragmentFullyCoveredEXT Shader

Reserved.

Also see extension:
SPV_EXT_fragment_fully_covered

5266

MeshShadingNV Shader

Reserved.

Also see extension: SPV_NV_mesh_shader

5282

ImageFootprintNV Reserved.

Also see extension:
SPV_NV_shader_image_footprint

5284

FragmentBarycentricKHR Reserved.

Also see extensions:
SPV_NV_fragment_shader_barycentric,
SPV_KHR_fragment_shader_barycentric

5284

FragmentBarycentricNV Reserved.

Also see extensions:
SPV_NV_fragment_shader_barycentric,
SPV_KHR_fragment_shader_barycentric

5288

ComputeDerivativeGroupQuadsNV Reserved.

Also see extension:
SPV_NV_compute_shader_derivatives

5291

FragmentDensityEXT Shader

Reserved.

Also see extensions:
SPV_EXT_fragment_invocation_density,
SPV_NV_shading_rate

5291

ShadingRateNV Shader

Reserved.

Also see extensions: SPV_NV_shading_rate,
SPV_EXT_fragment_invocation_density

5297

GroupNonUniformPartitionedNV Reserved.

Also see extension:
SPV_NV_shader_subgroup_partitioned

127

Capability Implicitly Declares

5301

ShaderNonUniform
Uses the NonUniform decoration on a variable or
instruction.

Shader

Missing before version 1.5.

5301

ShaderNonUniformEXT Shader

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5302

RuntimeDescriptorArray
Uses arrays of resources which are sized at run-
time.

Shader

Missing before version 1.5.

5302

RuntimeDescriptorArrayEXT Shader

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5303

InputAttachmentArrayDynamicIndexing
Arrays of InputAttachments use dynamically
uniform indexing.

InputAttachment

Missing before version 1.5.

5303

InputAttachmentArrayDynamicIndexingEXT InputAttachment

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5304

UniformTexelBufferArrayDynamicIndexing
Arrays of SampledBuffers use dynamically
uniform indexing.

SampledBuffer

Missing before version 1.5.

5304

UniformTexelBufferArrayDynamicIndexingEXT SampledBuffer

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5305

StorageTexelBufferArrayDynamicIndexing
Arrays of ImageBuffers use dynamically uniform
indexing.

ImageBuffer

Missing before version 1.5.

5305

StorageTexelBufferArrayDynamicIndexingEXT ImageBuffer

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

128

Capability Implicitly Declares

5306

UniformBufferArrayNonUniformIndexing
Block-decorated arrays in uniform storage classes
use non-uniform indexing.

ShaderNonUniform

Missing before version 1.5.

5306

UniformBufferArrayNonUniformIndexingEXT ShaderNonUniform

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5307

SampledImageArrayNonUniformIndexing
Arrays of sampled images use non-uniform
indexing.

ShaderNonUniform

Missing before version 1.5.

5307

SampledImageArrayNonUniformIndexingEXT ShaderNonUniform

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5308

StorageBufferArrayNonUniformIndexing
Arrays in the StorageBuffer storage class or
BufferBlock-decorated arrays use non-uniform
indexing.

ShaderNonUniform

Missing before version 1.5.

5308

StorageBufferArrayNonUniformIndexingEXT ShaderNonUniform

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5309

StorageImageArrayNonUniformIndexing
Arrays of non-sampled images use non-uniform
indexing.

ShaderNonUniform

Missing before version 1.5.

5309

StorageImageArrayNonUniformIndexingEXT ShaderNonUniform

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5310

InputAttachmentArrayNonUniformIndexing
Arrays of InputAttachments use non-uniform
indexing.

InputAttachment, ShaderNonUniform

Missing before version 1.5.

5310

InputAttachmentArrayNonUniformIndexingEXT InputAttachment, ShaderNonUniform

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

129

Capability Implicitly Declares

5311

UniformTexelBufferArrayNonUniformIndexing
Arrays of SampledBuffers use non-uniform
indexing.

SampledBuffer, ShaderNonUniform

Missing before version 1.5.

5311

UniformTexelBufferArrayNonUniformIndexingE
XT

SampledBuffer, ShaderNonUniform

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5312

StorageTexelBufferArrayNonUniformIndexing
Arrays of ImageBuffers use non-uniform indexing.

ImageBuffer, ShaderNonUniform

Missing before version 1.5.

5312

StorageTexelBufferArrayNonUniformIndexingE
XT

ImageBuffer, ShaderNonUniform

Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

5340

RayTracingNV Shader

Reserved.

Also see extension: SPV_NV_ray_tracing

5341

RayTracingMotionBlurNV Shader

Reserved.

Also see extension:
SPV_NV_ray_tracing_motion_blur

5345

VulkanMemoryModel
Uses the Vulkan memory model. This capability
must be declared if and only if the Vulkan memory
model is declared.

Missing before version 1.5.

5345

VulkanMemoryModelKHR Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

5346

VulkanMemoryModelDeviceScope
Uses Device scope with any instruction when the
Vulkan memory model is declared.

Missing before version 1.5.

5346

VulkanMemoryModelDeviceScopeKHR Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

130

Capability Implicitly Declares

5347

PhysicalStorageBufferAddresses
Uses physical addressing on storage buffers.

Shader

Missing before version 1.5.

Also see extensions:
SPV_EXT_physical_storage_buffer,
SPV_KHR_physical_storage_buffer

5347

PhysicalStorageBufferAddressesEXT Shader

Missing before version 1.5.

Also see extension:
SPV_EXT_physical_storage_buffer

5350

ComputeDerivativeGroupLinearNV Reserved.

Also see extension:
SPV_NV_compute_shader_derivatives

5353

RayTracingProvisionalKHR Shader

Reserved.

Also see extension: SPV_KHR_ray_tracing

5357

CooperativeMatrixNV Shader

Reserved.

Also see extension:
SPV_NV_cooperative_matrix

5363

FragmentShaderSampleInterlockEXT Shader

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interlock

5372

FragmentShaderShadingRateInterlockEXT Shader

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interlock

5373

ShaderSMBuiltinsNV Shader

Reserved.

Also see extension:
SPV_NV_shader_sm_builtins

131

Capability Implicitly Declares

5378

FragmentShaderPixelInterlockEXT Shader

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interlock

5379

DemoteToHelperInvocation Shader

Missing before version 1.6.

5379

DemoteToHelperInvocationEXT Shader

Missing before version 1.6.

Also see extension:
SPV_EXT_demote_to_helper_invocation

5390

BindlessTextureNV Reserved.

Also see extension:
SPV_NV_bindless_texture

5568

SubgroupShuffleINTEL Reserved.

Also see extension: SPV_INTEL_subgroups

5569

SubgroupBufferBlockIOINTEL Reserved.

Also see extension: SPV_INTEL_subgroups

5570

SubgroupImageBlockIOINTEL Reserved.

Also see extension: SPV_INTEL_subgroups

5579

SubgroupImageMediaBlockIOINTEL Reserved.

Also see extension:
SPV_INTEL_media_block_io

5582

RoundToInfinityINTEL Reserved.

Also see extension:
SPV_INTEL_float_controls2

5583

FloatingPointModeINTEL Reserved.

Also see extension:
SPV_INTEL_float_controls2

5584

IntegerFunctions2INTEL Shader

Reserved.

Also see extension:
SPV_INTEL_shader_integer_functions2

132

Capability Implicitly Declares

5603

FunctionPointersINTEL Reserved.

Also see extension:
SPV_INTEL_function_pointers

5604

IndirectReferencesINTEL Reserved.

Also see extension:
SPV_INTEL_function_pointers

5606

AsmINTEL Reserved.

Also see extension:
SPV_INTEL_inline_assembly

5612

AtomicFloat32MinMaxEXT Reserved.

Also see extension:
SPV_EXT_shader_atomic_float_min_max

5613

AtomicFloat64MinMaxEXT Reserved.

Also see extension:
SPV_EXT_shader_atomic_float_min_max

5616

AtomicFloat16MinMaxEXT Reserved.

Also see extension:
SPV_EXT_shader_atomic_float_min_max

5617

VectorComputeINTEL VectorAnyINTEL

Reserved.

Also see extension:
SPV_INTEL_vector_compute

5619

VectorAnyINTEL Reserved.

Also see extension:
SPV_INTEL_vector_compute

5629

ExpectAssumeKHR Reserved.

Also see extension:
SPV_KHR_expect_assume

5696

SubgroupAvcMotionEstimationINTEL Reserved.

Also see extension:
SPV_INTEL_device_side_avc_motion_estim
ation

133

Capability Implicitly Declares

5697

SubgroupAvcMotionEstimationIntraINTEL Reserved.

Also see extension:
SPV_INTEL_device_side_avc_motion_estim
ation

5698

SubgroupAvcMotionEstimationChromaINTEL Reserved.

Also see extension:
SPV_INTEL_device_side_avc_motion_estim
ation

5817

VariableLengthArrayINTEL Reserved.

Also see extension:
SPV_INTEL_variable_length_array

5821

FunctionFloatControlINTEL Reserved.

Also see extension:
SPV_INTEL_float_controls2

5824

FPGAMemoryAttributesINTEL Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attributes

5837

FPFastMathModeINTEL Kernel

Reserved.

Also see extension:
SPV_INTEL_fp_fast_math_mode

5844

ArbitraryPrecisionIntegersINTEL Reserved.

Also see extension:
SPV_INTEL_arbitrary_precision_integers

5845

ArbitraryPrecisionFloatingPointINTEL Reserved.

Also see extension:
SPV_INTEL_arbitrary_precision_floating_po
int

5886

UnstructuredLoopControlsINTEL Reserved.

Also see extension:
SPV_INTEL_unstructured_loop_controls

5888

FPGALoopControlsINTEL Reserved.

Also see extension:
SPV_INTEL_fpga_loop_controls

134

Capability Implicitly Declares

5892

KernelAttributesINTEL Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

5897

FPGAKernelAttributesINTEL Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

5898

FPGAMemoryAccessesINTEL Reserved.

Also see extension:
SPV_INTEL_fpga_memory_accesses

5904

FPGAClusterAttributesINTEL Reserved.

Also see extension:
SPV_INTEL_fpga_cluster_attributes

5906

LoopFuseINTEL Reserved.

Also see extension: SPV_INTEL_loop_fuse

5920

FPGABufferLocationINTEL Reserved.

Also see extension:
SPV_INTEL_fpga_buffer_location

5922

ArbitraryPrecisionFixedPointINTEL Reserved.

Also see extension:
SPV_INTEL_arbitrary_precision_fixed_point

5935

USMStorageClassesINTEL Reserved.

Also see extension:
SPV_INTEL_usm_storage_classes

5943

IOPipesINTEL Reserved.

Also see extension: SPV_INTEL_io_pipes

5945

BlockingPipesINTEL Reserved.

Also see extension:
SPV_INTEL_blocking_pipes

5948

FPGARegINTEL Reserved.

Also see extension: SPV_INTEL_fpga_reg

6016

DotProductInputAll
Uses vector of any integer type as input to the dot
product instructions

Missing before version 1.6.

135

Capability Implicitly Declares

6016

DotProductInputAllKHR Missing before version 1.6.

Also see extension:
SPV_KHR_integer_dot_product

6017

DotProductInput4x8Bit
Uses vectors of four components of 8-bit integer
type as inputs to the dot product instructions

Int8

Missing before version 1.6.

6017

DotProductInput4x8BitKHR Int8

Missing before version 1.6.

Also see extension:
SPV_KHR_integer_dot_product

6018

DotProductInput4x8BitPacked
Uses 32-bit integer scalars packing 4-component
vectors of 8-bit integers as inputs to the dot
product instructions

Missing before version 1.6.

6018

DotProductInput4x8BitPackedKHR Missing before version 1.6.

Also see extension:
SPV_KHR_integer_dot_product

6019
DotProduct
Uses dot product instructions

Missing before version 1.6.

6019

DotProductKHR Missing before version 1.6.

Also see extension:
SPV_KHR_integer_dot_product

6025

BitInstructions Reserved.

Also see extension:
SPV_KHR_bit_instructions

6033

AtomicFloat32AddEXT Reserved.

Also see extension:
SPV_EXT_shader_atomic_float_add

6034

AtomicFloat64AddEXT Reserved.

Also see extension:
SPV_EXT_shader_atomic_float_add

6089

LongConstantCompositeINTEL Reserved.

Also see extension:
SPV_INTEL_long_constant_composite

136

Capability Implicitly Declares

6094

OptNoneINTEL Reserved.

Also see extension: SPV_INTEL_optnone

6095

AtomicFloat16AddEXT Reserved.

Also see extension:
SPV_EXT_shader_atomic_float16_add

6114

DebugInfoModuleINTEL Reserved.

Also see extension:
SPV_INTEL_debug_module

3.32. Reserved Ray Flags
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Reserved Ray Flags Enabling Capabilities

0x0 None

0x1

OpaqueKHR RayQueryKHR, RayTracingKHR

Reserved.

0x2

NoOpaqueKHR RayQueryKHR, RayTracingKHR

Reserved.

0x4

TerminateOnFirstHitKHR RayQueryKHR, RayTracingKHR

Reserved.

0x8

SkipClosestHitShaderKHR RayQueryKHR, RayTracingKHR

Reserved.

0x10

CullBackFacingTrianglesKHR RayQueryKHR, RayTracingKHR

Reserved.

0x20

CullFrontFacingTrianglesKHR RayQueryKHR, RayTracingKHR

Reserved.

0x40

CullOpaqueKHR RayQueryKHR, RayTracingKHR

Reserved.

0x80

CullNoOpaqueKHR RayQueryKHR, RayTracingKHR

Reserved.

137

Reserved Ray Flags Enabling Capabilities

0x100

SkipTrianglesKHR RayTraversalPrimitiveCullingKHR

Reserved.

0x200

SkipAABBsKHR RayTraversalPrimitiveCullingKHR

Reserved.

3.33. Reserved Ray Query Intersection

Reserved Ray Query Intersection Enabling Capabilities

0

RayQueryCandidateIntersectionKHR RayQueryKHR

Reserved.

1

RayQueryCommittedIntersectionKHR RayQueryKHR

Reserved.

3.34. Reserved Ray Query Committed Type

Reserved Ray Query Committed Type Enabling Capabilities

0

RayQueryCommittedIntersectionNoneKHR RayQueryKHR

Reserved.

1

RayQueryCommittedIntersectionTriangleKHR RayQueryKHR

Reserved.

2

RayQueryCommittedIntersectionGeneratedKH
R

RayQueryKHR

Reserved.

3.35. Reserved Ray Query Candidate Type

Reserved Ray Query Candidate Type Enabling Capabilities

0

RayQueryCandidateIntersectionTriangleKHR RayQueryKHR

Reserved.

1

RayQueryCandidateIntersectionAABBKHR RayQueryKHR

Reserved.

138

3.36. Reserved Fragment Shading Rate
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Reserved Fragment Shading Rate Enabling Capabilities

0x0 None

0x1

Vertical2Pixels FragmentShadingRateKHR

Reserved.

0x2

Vertical4Pixels FragmentShadingRateKHR

Reserved.

0x4

Horizontal2Pixels FragmentShadingRateKHR

Reserved.

0x8

Horizontal4Pixels FragmentShadingRateKHR

Reserved.

3.37. Reserved FP Denorm Mode
Floating point denormalized handling mode.

Reserved FP Denorm Mode Enabling Capabilities

0

Preserve FunctionFloatControlINTEL

Reserved.

1

FlushToZero FunctionFloatControlINTEL

Reserved.

3.38. Reserved FP Operation Mode
Floating point operation mode.

Reserved FP Operation Mode Enabling Capabilities

0

IEEE FunctionFloatControlINTEL

Reserved.

1

ALT FunctionFloatControlINTEL

Reserved.

139

3.39. Quantization Mode

Quantization Mode Enabling Capabilities

0

TRN ArbitraryPrecisionFixedPointINTEL

Reserved.

1

TRN_ZERO ArbitraryPrecisionFixedPointINTEL

Reserved.

2

RND ArbitraryPrecisionFixedPointINTEL

Reserved.

3

RND_ZERO ArbitraryPrecisionFixedPointINTEL

Reserved.

4

RND_INF ArbitraryPrecisionFixedPointINTEL

Reserved.

5

RND_MIN_INF ArbitraryPrecisionFixedPointINTEL

Reserved.

6

RND_CONV ArbitraryPrecisionFixedPointINTEL

Reserved.

7

RND_CONV_ODD ArbitraryPrecisionFixedPointINTEL

Reserved.

3.40. Overflow Mode

Overflow Mode Enabling Capabilities

0

WRAP ArbitraryPrecisionFixedPointINTEL

Reserved.

1

SAT ArbitraryPrecisionFixedPointINTEL

Reserved.

2

SAT_ZERO ArbitraryPrecisionFixedPointINTEL

Reserved.

3

SAT_SYM ArbitraryPrecisionFixedPointINTEL

Reserved.

140

3.41. Packed Vector Format
Used by:

• OpSDot

• OpSDotKHR

• OpUDot

• OpUDotKHR

• OpSUDot

• OpSUDotKHR

• OpSDotAccSat

• OpSDotAccSatKHR

• OpUDotAccSat

• OpUDotAccSatKHR

• OpSUDotAccSat

• OpSUDotAccSatKHR

Packed Vector Format Enabling Capabilities

0

PackedVectorFormat4x8Bit
Interpret 32-bit scalar integer operands as vectors
of four 8-bit components. Vector components
follow byte significance order with the lowest-
numbered component stored in the least
significant byte.

Missing before version 1.6.

0

PackedVectorFormat4x8BitKHR Missing before version 1.6.

Also see extension:
SPV_KHR_integer_dot_product

141

3.42. Instructions
Form for each instruction:

Opcode Name (name-alias, name-alias, …)

Instruction description.

Word Count is the high-order 16 bits of word 0 of the
instruction, holding its total WordCount. If the
instruction takes a variable number of operands, Word
Count also says "+ variable", after stating the minimum
size of the instruction.

Opcode is the low-order 16 bits of word 0 of the
instruction, holding its opcode enumerant.

Results, when present, are any Result <id> or Result
Type created by the instruction. Each Result <id> is
always 32 bits.

Operands, when present, are any literals, other
instruction’s Result <id>, etc., consumed by the
instruction. Each operand is always 32 bits.

Capability
Enabling
Capabilities
(when needed)

Word Count Opcode Results Operands

3.42.1. Miscellaneous Instructions

OpNop

This has no semantic impact and can safely be removed from a module.

1 0

OpUndef

Make an intermediate object whose value is undefined.

Result Type is the type of object to make. Result Type can be any type except OpTypeVoid.

Each consumption of Result <id> yields an arbitrary, possibly different bit pattern or abstract value
resulting in possibly different concrete, abstract, or opaque values.

3 1 <id>
Result Type

Result <id>

142

OpSizeOf

Computes the run-time size of the type pointed to by Pointer

Result Type must be a 32-bit integer type scalar.

Pointer must point to a concrete type.

Capability:
Addresses

Missing before version
1.1.

4 321 <id>
Result Type

Result <id> <id>
Pointer

OpAssumeTrueKHR

TBD

Capability:
ExpectAssumeKHR

Reserved.

2 5630 <id>
Condition

OpExpectKHR

TBD

Capability:
ExpectAssumeKHR

Reserved.

5 5631 <id>
Result Type

Result <id> <id>
Value

<id>
ExpectedValue

143

3.42.2. Debug Instructions

OpSourceContinued

Continue specifying the Source text from the previous instruction. This has no semantic impact and can
safely be removed from a module.

Continued Source is a continuation of the source text in the previous Source.

The previous instruction must be an OpSource or an OpSourceContinued instruction. As is true for all
literal strings, the previous instruction’s string was nul terminated. That terminating nul from the previous
instruction is not part of the source text; the first character of Continued Source logically immediately
follows the last character of Source before its nul.

2 + variable 2 Literal
Continued Source

OpSource

Document what source language and text this module was translated from. This has no semantic impact
and can safely be removed from a module.

Version is the version of the source language. It is an unsigned 32-bit integer.

File is an OpString instruction and is the source-level file name.

Source is the text of the source-level file.

Each client API specifies what form the Version operand takes, per source language.

3 + variable 3 Source Language Literal
Version

Optional
<id>
File

Optional
Literal
Source

OpSourceExtension

Document an extension to the source language. This has no semantic impact and can safely be removed
from a module.

Extension is a string describing a source-language extension. Its form is dependent on the how the source
language describes extensions.

2 + variable 4 Literal
Extension

144

OpName

Assign a name string to another instruction’s Result <id>. This has no semantic impact and can safely be
removed from a module.

Target is the Result <id> to assign a name to. It can be the Result <id> of any other instruction; a variable,
function, type, intermediate result, etc.

Name is the string to assign.

3 + variable 5 <id>
Target

Literal
Name

OpMemberName

Assign a name string to a member of a structure type. This has no semantic impact and can safely be
removed from a module.

Type is the <id> from an OpTypeStruct instruction.

Member is the number of the member to assign in the structure. The first member is member 0, the next is
member 1, … Member is an unsigned 32-bit integer.

Name is the string to assign to the member.

4 + variable 6 <id>
Type

Literal
Member

Literal
Name

OpString

Assign a Result <id> to a string for use by other debug instructions (see OpLine and OpSource). This has
no semantic impact and can safely be removed from a module. (Removal also requires removal of all
instructions referencing Result <id>.)

String is the string being assigned a Result <id>.

3 + variable 7 Result <id> Literal
String

145

OpLine

Add source-level location information. This has no semantic impact and can safely be removed from a
module.

This location information applies to the instructions physically following this instruction, up to the first
occurrence of any of the following: the next end of block, the next OpLine instruction, or the next
OpNoLine instruction.

File must be an OpString instruction and is the source-level file name.

Line is the source-level line number. Line is an unsigned 32-bit integer.

Column is the source-level column number. Column is an unsigned 32-bit integer.

OpLine can generally immediately precede other instructions, with the following exceptions:

- it may not be used until after the annotation instructions,
(see the Logical Layout section)

- must not be the last instruction in a block, which is defined to end with a termination instruction

- if a branch merge instruction is used, the last OpLine in the block must be before its merge instruction

4 8 <id>
File

Literal
Line

Literal
Column

OpNoLine

Discontinue any source-level location information that might be active from a previous OpLine instruction.
This has no semantic impact and can safely be removed from a module.

This instruction must only appear after the annotation instructions (see the Logical Layout section). It must
not be the last instruction in a block, or the second-to-last instruction if the block has a merge instruction.
There is not a requirement that there is a preceding OpLine instruction.

1 317

OpModuleProcessed

Document a process that was applied to a module. This has no
semantic impact and can safely be removed from a module.

Process is a string describing a process and/or tool (processor)
that did the processing. Its form is dependent on the processor.

Missing before version 1.1.

2 + variable 330 Literal
Process

146

3.42.3. Annotation Instructions

OpDecorate

Add a Decoration to another <id>.

Target is the <id> to decorate. It can potentially be any <id> that is a forward reference. A set of
decorations can be grouped together by having multiple decoration instructions targeting the same
OpDecorationGroup instruction.

This instruction is only valid if the Decoration operand is a decoration that takes no Extra Operands, or
takes Extra Operands that are not <id> operands.

3 + variable 71 <id>
Target

Decoration Literal, Literal, …
See Decoration.

OpMemberDecorate

Add a Decoration to a member of a structure type.

Structure type is the <id> of a type from OpTypeStruct.

Member is the number of the member to decorate in the type. The first member is member 0, the next is
member 1, …

Note: See OpDecorate for creating groups of decorations for consumption by OpGroupMemberDecorate

4 + variable 72 <id>
Structure Type

Literal
Member

Decoration Literal, Literal, …
See Decoration.

OpDecorationGroup

Deprecated (directly use non-group decoration instructions instead).

A collector for Decorations from OpDecorate and OpDecorateId instructions. All such decoration
instructions targeting this OpDecorationGroup instruction must precede it. Subsequent
OpGroupDecorate and OpGroupMemberDecorate instructions that consume this instruction’s Result
<id> will apply these decorations to their targets.

2 73 Result <id>

OpGroupDecorate

Deprecated (directly use non-group decoration instructions instead).

Add a group of Decorations to another <id>.

Decoration Group is the <id> of an OpDecorationGroup instruction.

Targets is a list of <id>s to decorate with the groups of decorations. The Targets list must not include the
<id> of any OpDecorationGroup instruction.

2 + variable 74 <id>
Decoration Group

<id>, <id>, …
Targets

147

OpGroupMemberDecorate

Deprecated (directly use non-group decoration instructions instead).

Add a group of Decorations to members of structure types.

Decoration Group is the <id> of an OpDecorationGroup instruction.

Targets is a list of (<id>, Member) pairs to decorate with the groups of decorations. Each <id> in the pair
must be a target structure type, and the associated Member is the number of the member to decorate in
the type. The first member is member 0, the next is member 1, …

2 + variable 75 <id>
Decoration Group

<id>, literal,
<id>, literal,
…
Targets

OpDecorateId

Add a Decoration to another <id>, using <id>s as Extra Operands.

Target is the <id> to decorate. It can potentially be any <id> that is a forward
reference. A set of decorations can be grouped together by having multiple
decoration instructions targeting the same OpDecorationGroup instruction.

This instruction is only valid if the Decoration operand is a decoration that takes
Extra Operands that are <id> operands. All such <id> Extra Operands must be
constant instructions or OpVariable instructions.

Missing before
version 1.2.

3 + variable 332 <id>
Target

Decoration <id>, <id>, …
See Decoration.

OpDecorateString (OpDecorateStringGOOGLE)

Add a string Decoration to another <id>.

Target is the <id> to decorate. It can potentially be any <id> that is a
forward reference, except it must not be the <id> of an
OpDecorationGroup.

Decoration is a decoration that takes at least one Literal operand,
and has only Literal string operands.

Missing before version 1.4.

4 + variable 5632 <id>
Target

Decoration Literal
See Decoration.

Optional Literals
See Decoration.

148

OpMemberDecorateString (OpMemberDecorateStringGOOGLE)

Add a string Decoration to a member of a structure type.

Structure Type is the <id> of an OpTypeStruct.

Member is the number of the member to decorate in the type. Member is
an unsigned 32-bit integer. The first member is member 0, the next is
member 1, …

Decoration is a decoration that takes at least one Literal operand, and has
only Literal string operands.

Missing before version 1.4.

5 + variable 5633 <id>
Struct Type

Literal
Member

Decoration Literal
See
Decoration.

Optional
Literals
See
Decoration.

149

3.42.4. Extension Instructions

OpExtension

Declare use of an extension to SPIR-V. This allows validation of additional instructions, tokens, semantics,
etc.

Name is the extension’s name string.

2 + variable 10 Literal
Name

OpExtInstImport

Import an extended set of instructions. It can be later referenced by the Result <id>.

Name is the extended instruction-set’s name string. Before version 1.6, there must be an external
specification defining the semantics for this extended instruction set. Starting with version 1.6, if Name
starts with "NonSemantic.", including the period that separates the namespace "NonSemantic" from the
rest of the name, it is encouraged for a specification to exist on the SPIR-V Registry, but it is not required.

Starting with version 1.6, an extended instruction-set name which is prefixed with "NonSemantic." is
guaranteed to contain only non-semantic instructions, and all OpExtInst instructions referencing this set
can be ignored. All instructions within such a set must have only <id> operands; no literals. When literals
are needed, then the Result <id> from an OpConstant or OpString instruction is referenced as
appropriate. Result <id>s from these non-semantic instruction-set instructions must be used only in other
non-semantic instructions.

See Extended Instruction Sets for more information.

3 + variable 11 Result <id> Literal
Name

OpExtInst

Execute an instruction in an imported set of extended instructions.

Result Type is defined, per Instruction, in the external specification for Set.

Set is the result of an OpExtInstImport instruction.

Instruction is the enumerant of the instruction to execute within Set. It is an unsigned 32-bit integer. The
semantics of the instruction are defined in the external specification for Set.

Operand 1, … are the operands to the extended instruction.

5 + variable 12 <id>
Result Type

Result <id> <id>
Set

Literal
Instruction

<id>, <id>, …
Operand 1,
Operand 2,
…

150

3.42.5. Mode-Setting Instructions

OpMemoryModel

Set addressing model and memory model for the entire module.

Addressing Model selects the module’s Addressing Model.

Memory Model selects the module’s memory model, see Memory Model.

3 14 Addressing Model Memory Model

OpEntryPoint

Declare an entry point, its execution model, and its interface.

Execution Model is the execution model for the entry point and its static call tree. See Execution Model.

Entry Point must be the Result <id> of an OpFunction instruction.

Name is a name string for the entry point. A module must not have two OpEntryPoint instructions with the
same Execution Model and the same Name string.

Interface is a list of <id> of global OpVariable instructions. These declare the set of global variables from a
module that form the interface of this entry point. The set of Interface <id> must be equal to or a superset
of the global OpVariable Result <id> referenced by the entry point’s static call tree, within the interface’s
storage classes. Before version 1.4, the interface’s storage classes are limited to the Input and Output
storage classes. Starting with version 1.4, the interface’s storage classes are all storage classes used in
declaring all global variables referenced by the entry point’s call tree.

Interface <id> are forward references. Before version 1.4, duplication of these <id> is tolerated. Starting
with version 1.4, an <id> must not appear more than once.

4 + variable 15 Execution Model <id>
Entry Point

Literal
Name

<id>, <id>, …
Interface

OpExecutionMode

Declare an execution mode for an entry point.

Entry Point must be the Entry Point <id> operand of an OpEntryPoint instruction.

Mode is the execution mode. See Execution Mode.

This instruction is only valid if the Mode operand is an execution mode that takes no Extra Operands, or
takes Extra Operands that are not <id> operands.

3 + variable 16 <id>
Entry Point

Execution Mode
Mode

Literal, Literal, …
See Execution Mode

151

OpCapability

Declare a capability used by this module.

Capability is the capability declared by this instruction. There are no restrictions on the order in which
capabilities are declared.

See the capabilities section for more detail.

2 17 Capability
Capability

OpExecutionModeId

Declare an execution mode for an entry point, using <id>s as Extra Operands.

Entry Point must be the Entry Point <id> operand of an OpEntryPoint instruction.

Mode is the execution mode. See Execution Mode.

This instruction is only valid if the Mode operand is an execution mode that takes
Extra Operands that are <id> operands. All such <id> Extra Operands must be
constant instructions.

Missing before
version 1.2.

3 + variable 331 <id>
Entry Point

Execution Mode
Mode

<id>, <id>, …
See Execution Mode

152

3.42.6. Type-Declaration Instructions

OpTypeVoid

Declare the void type.

2 19 Result <id>

OpTypeBool

Declare the Boolean type. Values of this type can only be either true or false. There is no physical size or
bit pattern defined for these values. If they are stored (in conjunction with OpVariable), they must only be
used with logical addressing operations, not physical, and only with non-externally visible shader Storage
Classes: Workgroup, CrossWorkgroup, Private, Function, Input, and Output.

2 20 Result <id>

OpTypeInt

Declare a new integer type.

Width specifies how many bits wide the type is. Width is an unsigned 32-bit integer. The bit pattern of a
signed integer value is two’s complement.

Signedness specifies whether there are signed semantics to preserve or validate.
0 indicates unsigned, or no signedness semantics
1 indicates signed semantics.
In all cases, the type of operation of an instruction comes from the instruction’s opcode, not the
signedness of the operands.

4 21 Result <id> Literal
Width

Literal
Signedness

OpTypeFloat

Declare a new floating-point type.

Width specifies how many bits wide the type is. Width is an unsigned 32-bit integer. The bit pattern of a
floating-point value is as described by the IEEE 754 standard.

3 22 Result <id> Literal
Width

153

OpTypeVector

Declare a new vector type.

Component Type is the type of each component in the resulting type. It must be a scalar type.

Component Count is the number of components in the resulting type. Component Count is an unsigned
32-bit integer. It must be at least 2.

Components are numbered consecutively, starting with 0.

4 23 Result <id> <id>
Component Type

Literal
Component Count

OpTypeMatrix

Declare a new matrix type.

Column Type is the type of each column in the matrix. It must be vector type.

Column Count is the number of columns in the new matrix type. Column Count
is an unsigned 32-bit integer. It must be at least 2.

Matrix columns are numbered consecutively, starting with 0. This is true
independently of any Decorations describing the memory layout of a matrix
(e.g., RowMajor or MatrixStride).

Capability:
Matrix

4 24 Result <id> <id>
Column Type

Literal
Column Count

154

OpTypeImage

Declare a new image type. Consumed, for example, by OpTypeSampledImage. This type is opaque:
values of this type have no defined physical size or bit pattern.

Sampled Type is the type of the components that result from sampling or reading from this image type.
Must be a scalar numerical type or OpTypeVoid.

Dim is the image dimensionality (Dim).

All the following literals are integers taking one operand each.

Depth is whether or not this image is a depth image. (Note that whether or not depth comparisons are
actually done is a property of the sampling opcode, not of this type declaration.)
0 indicates not a depth image
1 indicates a depth image
2 means no indication as to whether this is a depth or non-depth image

Arrayed must be one of the following indicated values:
0 indicates non-arrayed content
1 indicates arrayed content

MS must be one of the following indicated values:
0 indicates single-sampled content
1 indicates multisampled content

Sampled indicates whether or not this image is accessed in combination with a sampler, and must be one
of the following values:
0 indicates this is only known at run time, not at compile time
1 indicates an image compatible with sampling operations
2 indicates an image compatible with read/write operations (a storage or subpass data image).

Image Format is the Image Format, which can be Unknown, as specified by the client API.

If Dim is SubpassData, Sampled must be 2, Image Format must be Unknown, and the Execution Model
must be Fragment.

Access Qualifier is an image Access Qualifier.

9 +
variable

25 Result
<id>

<id>
Sampled
Type

Dim Literal
Depth

Literal
Arrayed

Literal
MS

Literal
Sampled

Image
Format

Optional
Access
Qualifier

OpTypeSampler

Declare the sampler type. Consumed by OpSampledImage. This type is opaque: values of this type have
no defined physical size or bit pattern.

2 26 Result <id>

155

OpTypeSampledImage

Declare a sampled image type, the Result Type of OpSampledImage, or an externally combined sampler
and image. This type is opaque: values of this type have no defined physical size or bit pattern.

Image Type must be an OpTypeImage. It is the type of the image in the combined sampler and image
type. It must not have a Dim of SubpassData. Additionally, starting with version 1.6, it must not have a
Dim of Buffer.

3 27 Result <id> <id>
Image Type

OpTypeArray

Declare a new array type.

Element Type is the type of each element in the array.

Length is the number of elements in the array. It must be at least 1. Length must come from a constant
instruction of an integer-type scalar whose value is at least 1.

Array elements are numbered consecutively, starting with 0.

4 28 Result <id> <id>
Element Type

<id>
Length

OpTypeRuntimeArray

Declare a new run-time array type. Its length is not known at compile
time.

Element Type is the type of each element in the array.

See OpArrayLength for getting the Length of an array of this type.

Capability:
Shader

3 29 Result <id> <id>
Element Type

OpTypeStruct

Declare a new structure type.

Member N type is the type of member N of the structure. The first member is member 0, the next is
member 1, … It is valid for the structure to have no members.

If an operand is not yet defined, it must be defined by an OpTypePointer, where the type pointed to is an
OpTypeStruct.

2 + variable 30 Result <id> <id>, <id>, …
Member 0 type,
member 1 type,
…

156

OpTypeOpaque

Declare a structure type with no body specified.

Capability:
Kernel

3 + variable 31 Result <id> Literal
The name of the opaque
type.

OpTypePointer

Declare a new pointer type.

Storage Class is the Storage Class of the memory holding the object pointed to. If there was a forward
reference to this type from an OpTypeForwardPointer, the Storage Class of that instruction must equal
the Storage Class of this instruction.

Type is the type of the object pointed to.

4 32 Result <id> Storage Class <id>
Type

OpTypeFunction

Declare a new function type.

OpFunction uses this to declare the return type and parameter types of a function.

Return Type is the type of the return value of functions of this type. It must be a concrete or abstract type,
or a pointer to such a type. If the function has no return value, Return Type must be OpTypeVoid.

Parameter N Type is the type <id> of the type of parameter N. It must not be OpTypeVoid

3 + variable 33 Result <id> <id>
Return Type

<id>, <id>, …
Parameter 0 Type,
Parameter 1 Type,
…

OpTypeEvent

Declare an OpenCL event type.

Capability:
Kernel

2 34 Result <id>

OpTypeDeviceEvent

Declare an OpenCL device-side event type.

Capability:
DeviceEnqueue

2 35 Result <id>

157

OpTypeReserveId

Declare an OpenCL reservation id type.

Capability:
Pipes

2 36 Result <id>

OpTypeQueue

Declare an OpenCL queue type.

Capability:
DeviceEnqueue

2 37 Result <id>

OpTypePipe

Declare an OpenCL pipe type.

Qualifier is the pipe access qualifier.

Capability:
Pipes

3 38 Result <id> Access Qualifier
Qualifier

OpTypeForwardPointer

Declare the storage class for a forward reference to a pointer.

Pointer Type is a forward reference to the result of an OpTypePointer.
That OpTypePointer instruction must declare Pointer Type to be a
pointer to an OpTypeStruct. Any consumption of Pointer Type before
its OpTypePointer declaration must be a type-declaration instruction.

Storage Class is the Storage Class of the memory holding the object
pointed to.

Capability:
Addresses,
PhysicalStorageBufferAddresse
s

3 39 <id>
Pointer Type

Storage Class

OpTypePipeStorage

Declare the OpenCL pipe-storage type.

Capability:
PipeStorage

Missing before version 1.1.

2 322 Result <id>

OpTypeNamedBarrier

Declare the named-barrier type.

Capability:
NamedBarrier

Missing before version 1.1.

2 327 Result <id>

158

OpTypeBufferSurfaceINTEL

TBD

Capability:
VectorComputeINTEL

Reserved.

3 6086 Result <id> Access Qualifier
AccessQualifier

OpTypeStructContinuedINTEL

TBD

Capability:
LongConstantCompositeINTEL

Reserved.

1 + variable 6090 <id>, <id>, …
Member 0 type,
member 1 type,
…

159

3.42.7. Constant-Creation Instructions

OpConstantTrue

Declare a true Boolean-type scalar constant.

Result Type must be the scalar Boolean type.

3 41 <id>
Result Type

Result <id>

OpConstantFalse

Declare a false Boolean-type scalar constant.

Result Type must be the scalar Boolean type.

3 42 <id>
Result Type

Result <id>

OpConstant

Declare a new integer-type or floating-point-type scalar constant.

Result Type must be a scalar integer type or floating-point type.

Value is the bit pattern for the constant. Types 32 bits wide or smaller take one word. Larger types take
multiple words, with low-order words appearing first.

4 + variable 43 <id>
Result Type

Result <id> Literal
Value

OpConstantComposite

Declare a new composite constant.

Result Type must be a composite type, whose top-level members/elements/components/columns have the
same type as the types of the Constituents. The ordering must be the same between the top-level types in
Result Type and the Constituents.

Constituents become members of a structure, or elements of an array, or components of a vector, or
columns of a matrix. There must be exactly one Constituent for each top-level
member/element/component/column of the result. The Constituents must appear in the order needed by
the definition of the Result Type. The Constituents must all be <id>s of non-specialization constant-
instruction declarations or an OpUndef.

3 + variable 44 <id>
Result Type

Result <id> <id>, <id>, …
Constituents

160

OpConstantSampler

Declare a new sampler constant.

Result Type must be OpTypeSampler.

Sampler Addressing Mode is the addressing mode; a literal from
Sampler Addressing Mode.

Param is a 32-bit integer and is one of:
0: Non Normalized
1: Normalized

Sampler Filter Mode is the filter mode; a literal from Sampler Filter
Mode.

Capability:
LiteralSampler

6 45 <id>
Result Type

Result <id> Sampler
Addressing
Mode

Literal
Param

Sampler Filter
Mode

OpConstantNull

Declare a new null constant value.

The null value is type dependent, defined as follows:
- Scalar Boolean: false
- Scalar integer: 0
- Scalar floating point: +0.0 (all bits 0)
- All other scalars: Abstract
- Composites: Members are set recursively to the null constant according to the null value of their
constituent types.

Result Type must be one of the following types:
- Scalar or vector Boolean type
- Scalar or vector integer type
- Scalar or vector floating-point type
- Pointer type
- Event type
- Device side event type
- Reservation id type
- Queue type
- Composite type

3 46 <id>
Result Type

Result <id>

161

OpSpecConstantTrue

Declare a Boolean-type scalar specialization constant with a default value of true.

This instruction can be specialized to become either an OpConstantTrue or OpConstantFalse
instruction.

Result Type must be the scalar Boolean type.

See Specialization.

3 48 <id>
Result Type

Result <id>

OpSpecConstantFalse

Declare a Boolean-type scalar specialization constant with a default value of false.

This instruction can be specialized to become either an OpConstantTrue or OpConstantFalse
instruction.

Result Type must be the scalar Boolean type.

See Specialization.

3 49 <id>
Result Type

Result <id>

OpSpecConstant

Declare a new integer-type or floating-point-type scalar specialization constant.

Result Type must be a scalar integer type or floating-point type.

Value is the bit pattern for the default value of the constant. Types 32 bits wide or smaller take one word.
Larger types take multiple words, with low-order words appearing first.

This instruction can be specialized to become an OpConstant instruction.

See Specialization.

4 + variable 50 <id>
Result Type

Result <id> Literal
Value

162

OpSpecConstantComposite

Declare a new composite specialization constant.

Result Type must be a composite type, whose top-level members/elements/components/columns have the
same type as the types of the Constituents. The ordering must be the same between the top-level types in
Result Type and the Constituents.

Constituents become members of a structure, or elements of an array, or components of a vector, or
columns of a matrix. There must be exactly one Constituent for each top-level
member/element/component/column of the result. The Constituents must appear in the order needed by
the definition of the type of the result. The Constituents must be the <id> of other specialization constants,
constant declarations, or an OpUndef.

This instruction will be specialized to an OpConstantComposite instruction.

See Specialization.

3 + variable 51 <id>
Result Type

Result <id> <id>, <id>, …
Constituents

163

OpSpecConstantOp

Declare a new specialization constant that results from doing an operation.

Result Type must be the type required by the Result Type of Opcode.

Opcode is an unsigned 32-bit integer. It must equal one of the following opcodes.
OpSConvert, OpUConvert (missing before version 1.4), OpFConvert
OpSNegate, OpNot, OpIAdd, OpISub
OpIMul, OpUDiv, OpSDiv, OpUMod, OpSRem, OpSMod
OpShiftRightLogical, OpShiftRightArithmetic, OpShiftLeftLogical
OpBitwiseOr, OpBitwiseXor, OpBitwiseAnd
OpVectorShuffle, OpCompositeExtract, OpCompositeInsert
OpLogicalOr, OpLogicalAnd, OpLogicalNot,
OpLogicalEqual, OpLogicalNotEqual
OpSelect
OpIEqual, OpINotEqual
OpULessThan, OpSLessThan
OpUGreaterThan, OpSGreaterThan
OpULessThanEqual, OpSLessThanEqual
OpUGreaterThanEqual, OpSGreaterThanEqual

If the Shader capability was declared, OpQuantizeToF16 is also valid.

If the Kernel capability was declared, the following opcodes are also valid:
OpConvertFToS, OpConvertSToF
OpConvertFToU, OpConvertUToF
OpUConvert, OpConvertPtrToU, OpConvertUToPtr
OpGenericCastToPtr, OpPtrCastToGeneric
OpBitcast
OpFNegate
OpFAdd, OpFSub, OpFMul, OpFDiv
OpFRem, OpFMod
OpAccessChain, OpInBoundsAccessChain
OpPtrAccessChain, OpInBoundsPtrAccessChain

Operands are the operands required by opcode, and satisfy the semantics of opcode. In addition, all
Operands that are <id>s must be either:
- the <id>s of other constant instructions, or
- OpUndef, when allowed by opcode, or
- for the AccessChain named opcodes, their Base is allowed to be a global (module scope) OpVariable
instruction.

See Specialization.

4 + variable 52 <id>
Result Type

Result <id> Literal
Opcode

<id>, <id>, …
Operands

164

OpConstantCompositeContinuedINTEL

TBD

Capability:
LongConstantCompositeINTEL

Reserved.

1 + variable 6091 <id>, <id>, …
Constituents

OpSpecConstantCompositeContinuedINTEL

TBD

Capability:
LongConstantCompositeINTEL

Reserved.

1 + variable 6092 <id>, <id>, …
Constituents

165

3.42.8. Memory Instructions

OpVariable

Allocate an object in memory, resulting in a pointer to it, which can be used with OpLoad and OpStore.

Result Type must be an OpTypePointer. Its Type operand is the type of object in memory.

Storage Class is the Storage Class of the memory holding the object. It must not be Generic. It must be
the same as the Storage Class operand of the Result Type.

Initializer is optional. If Initializer is present, it will be the initial value of the variable’s memory content.
Initializer must be an <id> from a constant instruction or a global (module scope) OpVariable instruction.
Initializer must have the same type as the type pointed to by Result Type.

4 + variable 59 <id>
Result Type

Result <id> Storage Class Optional
<id>
Initializer

OpImageTexelPointer

Form a pointer to a texel of an image. Use of such a pointer is limited to atomic operations.

Result Type must be an OpTypePointer whose Storage Class operand is Image. Its Type operand must
be a scalar numerical type or OpTypeVoid.

Image must have a type of OpTypePointer with Type OpTypeImage. The Sampled Type of the type of
Image must be the same as the Type pointed to by Result Type. The Dim operand of Type must not be
SubpassData.

Coordinate and Sample specify which texel and sample within the image to form a pointer to.

Coordinate must be a scalar or vector of integer type. It must have the number of components specified
below, given the following Arrayed and Dim operands of the type of the OpTypeImage.

If Arrayed is 0:
1D: scalar
2D: 2 components
3D: 3 components
Cube: 3 components
Rect: 2 components
Buffer: scalar

If Arrayed is 1:
1D: 2 components
2D: 3 components
Cube: 3 components; the face and layer combine into the 3rd component, layer_face, such that face is
layer_face % 6 and layer is floor(layer_face / 6)

Sample must be an integer type scalar. It specifies which sample to select at the given coordinate.
Behavior is undefined unless it is a valid <id> for the value 0 when the OpTypeImage has MS of 0.

6 60 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

<id>
Sample

166

OpLoad

Load through a pointer.

Result Type is the type of the loaded object. It must be a type with fixed size; i.e., it must not be, nor
include, any OpTypeRuntimeArray types.

Pointer is the pointer to load through. Its type must be an OpTypePointer whose Type operand is the
same as Result Type.

If present, any Memory Operands must begin with a memory operand literal. If not present, it is the same
as specifying the memory operand None.

4 + variable 61 <id>
Result Type

Result <id> <id>
Pointer

Optional
Memory
Operands

OpStore

Store through a pointer.

Pointer is the pointer to store through. Its type must be an OpTypePointer whose Type operand is the
same as the type of Object.

Object is the object to store.

If present, any Memory Operands must begin with a memory operand literal. If not present, it is the same
as specifying the memory operand None.

3 + variable 62 <id>
Pointer

<id>
Object

Optional
Memory Operands

OpCopyMemory

Copy from the memory pointed to by Source to the memory pointed to by Target. Both operands must be
non-void pointers and having the same <id> Type operand in their OpTypePointer type declaration.
Matching Storage Class is not required. The amount of memory copied is the size of the type pointed to.
The copied type must have a fixed size; i.e., it must not be, nor include, any OpTypeRuntimeArray types.

If present, any Memory Operands must begin with a memory operand literal. If not present, it is the same
as specifying the memory operand None. Before version 1.4, at most one memory operands mask can
be provided. Starting with version 1.4 two masks can be provided, as described in Memory Operands. If
no masks or only one mask is present, it applies to both Source and Target. If two masks are present, the
first applies to Target and must not include MakePointerVisible, and the second applies to Source and
must not include MakePointerAvailable.

3 + variable 63 <id>
Target

<id>
Source

Optional
Memory
Operands

Optional
Memory
Operands

167

OpCopyMemorySized

Copy from the memory pointed to by Source to the memory pointed to by
Target.

Size is the number of bytes to copy. It must have a scalar integer type. If it
is a constant instruction, the constant value must not be 0. It is invalid for
both the constant’s type to have Signedness of 1 and to have the sign bit
set. Otherwise, as a run-time value, Size is treated as unsigned, and if its
value is 0, no memory access is made.

If present, any Memory Operands must begin with a memory operand
literal. If not present, it is the same as specifying the memory operand
None. Before version 1.4, at most one memory operands mask can be
provided. Starting with version 1.4 two masks can be provided, as
described in Memory Operands. If no masks or only one mask is
present, it applies to both Source and Target. If two masks are present,
the first applies to Target and must not include MakePointerVisible, and
the second applies to Source and must not include
MakePointerAvailable.

Capability:
Addresses

4 + variable 64 <id>
Target

<id>
Source

<id>
Size

Optional
Memory
Operands

Optional
Memory
Operands

OpAccessChain

Create a pointer into a composite object.

Result Type must be an OpTypePointer. Its Type operand must be the type reached by walking the
Base’s type hierarchy down to the last provided index in Indexes, and its Storage Class operand must be
the same as the Storage Class of Base.

Base must be a pointer, pointing to the base of a composite object.

Indexes walk the type hierarchy to the desired depth, potentially down to scalar granularity. The first index
in Indexes selects the top-level member/element/component/element of the base composite. All composite
constituents use zero-based numbering, as described by their OpType… instruction. The second index
applies similarly to that result, and so on. Once any non-composite type is reached, there must be no
remaining (unused) indexes.

Each index in Indexes
- must have a scalar integer type
- is treated as signed
- if indexing into a structure, must be an OpConstant whose value is in bounds for selecting a member
- if indexing into a vector, array, or matrix, with the result type being a logical pointer type, causes
undefined behavior if not in bounds.

4 + variable 65 <id>
Result Type

Result <id> <id>
Base

<id>, <id>, …
Indexes

168

OpInBoundsAccessChain

Has the same semantics as OpAccessChain, with the addition that the resulting pointer is known to point
within the base object.

4 + variable 66 <id>
Result Type

Result <id> <id>
Base

<id>, <id>, …
Indexes

OpPtrAccessChain

Has the same semantics as OpAccessChain, with the addition of the
Element operand.

Element is used to do an initial dereference of Base: Base is treated as
the address of an element in an array, and a new element address is
computed from Base and Element to become the OpAccessChain Base
to dereference as per OpAccessChain. This computed Base has the
same type as the originating Base.

To compute the new element address, Element is treated as a signed
count of elements E, relative to the original Base element B, and the
address of element B + E is computed using enough precision to avoid
overflow and underflow. For objects in the Uniform, StorageBuffer, or
PushConstant storage classes, the element’s address or location is
calculated using a stride, which will be the Base-type’s Array Stride if the
Base type is decorated with ArrayStride. For all other objects, the
implementation calculates the element’s address or location.

With one exception, undefined behavior results when B + E is not an
element in the same array (same innermost array, if array types are
nested) as B. The exception being when B + E = L, where L is the length
of the array: the address computation for element L is done with the same
stride as any other B + E computation that stays within the array.

Note: If Base is typed to be a pointer to an array and the desired
operation is to select an element of that array, OpAccessChain should be
directly used, as its first Index selects the array element.

Capability:
Addresses, VariablePointers,
VariablePointersStorageBuff
er,
PhysicalStorageBufferAddre
sses

5 + variable 67 <id>
Result Type

Result <id> <id>
Base

<id>
Element

<id>, <id>, …
Indexes

169

OpArrayLength

Length of a run-time array.

Result Type must be an OpTypeInt with 32-bit Width and 0
Signedness.

Structure must be a logical pointer to an OpTypeStruct whose
last member is a run-time array.

Array member is an unsigned 32-bit integer index of the last
member of the structure that Structure points to. That
member’s type must be from OpTypeRuntimeArray.

Capability:
Shader

5 68 <id>
Result Type

Result <id> <id>
Structure

Literal
Array member

OpGenericPtrMemSemantics

Result is a valid Memory Semantics which includes mask bits set for the
Storage Class for the specific (non-Generic) Storage Class of Pointer.

Pointer must point to Generic Storage Class.

Result Type must be an OpTypeInt with 32-bit Width and 0 Signedness.

Capability:
Kernel

4 69 <id>
Result Type

Result <id> <id>
Pointer

OpInBoundsPtrAccessChain

Has the same semantics as OpPtrAccessChain, with the addition that
the resulting pointer is known to point within the base object.

Capability:
Addresses

5 + variable 70 <id>
Result Type

Result <id> <id>
Base

<id>
Element

<id>, <id>, …
Indexes

OpPtrEqual

Result is true if Operand 1 and Operand 2 have the same
value. Result is false if Operand 1 and Operand 2 have
different values.

Result Type must be a Boolean type scalar.

The types of Operand 1 and Operand 2 must be
OpTypePointer of the same type.

Missing before version 1.4.

5 401 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

170

OpPtrNotEqual

Result is true if Operand 1 and Operand 2 have different
values. Result is false if Operand 1 and Operand 2 have the
same value.

Result Type must be a Boolean type scalar.

The types of Operand 1 and Operand 2 must be
OpTypePointer of the same type.

Missing before version 1.4.

5 402 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpPtrDiff

Element-number subtraction: The number of elements to add
to Operand 2 to get to Operand 1.

Result Type must be an integer type scalar. It is computed as a
signed value, as negative differences are allowed,
independently of the signed bit in the type. The result equals
the low-order N bits of the correct result R, where R is
computed with enough precision to avoid overflow and
underflow and Result Type has a bitwidth of N bits.

The units of Result Type are a count of elements. I.e., the
same value you would use as the Element operand to
OpPtrAccessChain.

The types of Operand 1 and Operand 2 must be
OpTypePointer of exactly the same type, and point to a type
that can be aggregated into an array. For an array of length L,
Operand 1 and Operand 2 can point to any element in the
range [0, L], where element L is outside the array but has a
representative address computed with the same stride as
elements in the array. Additionally, Operand 1 must be a valid
Base operand of OpPtrAccessChain. Behavior is undefined if
Operand 1 and Operand 2 are not pointers to element numbers
in [0, L] in the same array.

Capability:
Addresses, VariablePointers,
VariablePointersStorageBuffer

Missing before version 1.4.

5 403 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

171

3.42.9. Function Instructions

OpFunction

Add a function. This instruction must be immediately followed by one OpFunctionParameter instruction
per each formal parameter of this function. This function’s body or declaration terminates with the next
OpFunctionEnd instruction.

Result Type must be the same as the Return Type declared in Function Type.

Function Type is the result of an OpTypeFunction, which declares the types of the return value and
parameters of the function.

5 54 <id>
Result Type

Result <id> Function Control <id>
Function Type

OpFunctionParameter

Declare a formal parameter of the current function.

Result Type is the type of the parameter.

This instruction must immediately follow an OpFunction or OpFunctionParameter instruction. The order
of contiguous OpFunctionParameter instructions is the same order arguments are listed in an
OpFunctionCall instruction to this function. It is also the same order in which Parameter Type operands
are listed in the OpTypeFunction of the Function Type operand for this function’s OpFunction instruction.

3 55 <id>
Result Type

Result <id>

OpFunctionEnd

Last instruction of a function.

1 56

OpFunctionCall

Call a function.

Result Type is the type of the return value of the function. It must be the same as the Return Type operand
of the Function Type operand of the Function operand.

Function is an OpFunction instruction. This could be a forward reference.

Argument N is the object to copy to parameter N of Function.

Note: A forward call is possible because there is no missing type information: Result Type must match the
Return Type of the function, and the calling argument types must match the formal parameter types.

4 + variable 57 <id>
Result Type

Result <id> <id>
Function

<id>, <id>, …
Argument 0,
Argument 1,
…

172

3.42.10. Image Instructions

OpSampledImage

Create a sampled image, containing both a sampler and an image.

Result Type must be the OpTypeSampledImage type whose Image Type operand is the type of Image.

Image is an object whose type is an OpTypeImage, whose Sampled operand is 0 or 1, and whose Dim
operand is not SubpassData. Additionally, starting with version 1.6, the Dim operand must not be Buffer.

Sampler must be an object whose type is OpTypeSampler.

5 86 <id>
Result Type

Result <id> <id>
Image

<id>
Sampler

OpImageSampleImplicitLod

Sample an image with an implicit level of detail.

Result Type must be a vector of four components of floating-point type or
integer type. Its components must be the same as Sampled Type of the
underlying OpTypeImage (unless that underlying Sampled Type is
OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must not have a Dim of Buffer. The MS operand of the
underlying OpTypeImage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v]
… [, array layer]) as needed by the definition of Sampled Image. It may be a
vector larger than needed, but all unused components appear after all used
components.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
Shader

5 + variable 87 <id>
Result Type

Result <id> <id>
Sampled
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
…

173

OpImageSampleExplicitLod

Sample an image using an explicit level of detail.

Result Type must be a vector of four components of floating-point type or integer type. Its components
must be the same as Sampled Type of the underlying OpTypeImage (unless that underlying Sampled
Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage. Its OpTypeImage must not
have a Dim of Buffer. The MS operand of the underlying OpTypeImage must be 0.

Coordinate must be a scalar or vector of floating-point type or integer type. It contains (u[, v] … [, array
layer]) as needed by the definition of Sampled Image. Unless the Kernel capability is being used, it must
be floating point. It may be a vector larger than needed, but all unused components appear after all used
components.

Image Operands encodes what operands follow, as per Image Operands. Either Lod or Grad image
operands must be present.

7 +
variable

88 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

Image
Operands

<id> Optional
<id>, <id>,
…

OpImageSampleDrefImplicitLod

Sample an image doing depth-comparison with an implicit level of detail.

Result Type must be a scalar of integer type or floating-point type. It must be the
same as Sampled Type of the underlying OpTypeImage.

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must not have a Dim of Buffer. The MS operand of the underlying
OpTypeImage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] … [,
array layer]) as needed by the definition of Sampled Image. It may be a vector
larger than needed, but all unused components appear after all used
components.

Dref is the depth-comparison reference value. It must be a 32-bit floating-point
type scalar.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
Shader

6 +
variable

89 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>, <id>,
…

174

OpImageSampleDrefExplicitLod

Sample an image doing depth-comparison using an explicit level of
detail.

Result Type must be a scalar of integer type or floating-point type. It
must be the same as Sampled Type of the underlying OpTypeImage.

Sampled Image must be an object whose type is
OpTypeSampledImage. Its OpTypeImage must not have a Dim of
Buffer. The MS operand of the underlying OpTypeImage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (
u[, v] … [, array layer]) as needed by the definition of Sampled Image. It
may be a vector larger than needed, but all unused components appear
after all used components.

Dref is the depth-comparison reference value. It must be a 32-bit floating-
point type scalar.

Image Operands encodes what operands follow, as per Image
Operands. Either Lod or Grad image operands must be present.

Capability:
Shader

8 +
variable

90 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinat
e

<id>
Dref

Image
Operands

<id> Optional
<id>,
<id>, …

OpImageSampleProjImplicitLod

Sample an image with with a project coordinate and an implicit level of detail.

Result Type must be a vector of four components of floating-point type or
integer type. Its components must be the same as Sampled Type of the
underlying OpTypeImage (unless that underlying Sampled Type is
OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage.
The Dim operand of the underlying OpTypeImage must be 1D, 2D, 3D, or
Rect, and the Arrayed and MS operands must be 0.

Coordinate is a floating-point vector containing (u [, v] [, w], q), as needed by
the definition of Sampled Image, with the q component consumed for the
projective division. That is, the actual sample coordinate is (u/q [, v/q] [, w/q]),
as needed by the definition of Sampled Image. It may be a vector larger than
needed, but all unused components appear after all used components.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
Shader

5 + variable 91 <id>
Result Type

Result <id> <id>
Sampled
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
…

175

OpImageSampleProjExplicitLod

Sample an image with a project coordinate using an explicit level of detail.

Result Type must be a vector of four components of floating-point type or integer
type. Its components must be the same as Sampled Type of the underlying
OpTypeImage (unless that underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage. The
Dim operand of the underlying OpTypeImage must be 1D, 2D, 3D, or Rect, and
the Arrayed and MS operands must be 0.

Coordinate is a floating-point vector containing (u [, v] [, w], q), as needed by the
definition of Sampled Image, with the q component consumed for the projective
division. That is, the actual sample coordinate is (u/q [, v/q] [, w/q]), as needed by
the definition of Sampled Image. It may be a vector larger than needed, but all
unused components appear after all used components.

Image Operands encodes what operands follow, as per Image Operands. Either
Lod or Grad image operands must be present.

Capability:
Shader

7 +
variable

92 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

Image
Operands

<id> Optional
<id>, <id>,
…

OpImageSampleProjDrefImplicitLod

Sample an image with a project coordinate, doing depth-comparison, with an
implicit level of detail.

Result Type must be a scalar of integer type or floating-point type. It must be the
same as Sampled Type of the underlying OpTypeImage.

Sampled Image must be an object whose type is OpTypeSampledImage. The
Dim operand of the underlying OpTypeImage must be 1D, 2D, 3D, or Rect, and
the Arrayed and MS operands must be 0.

Coordinate is a floating-point vector containing (u [, v] [, w], q), as needed by the
definition of Sampled Image, with the q component consumed for the projective
division. That is, the actual sample coordinate is (u/q [, v/q] [, w/q]), as needed by
the definition of Sampled Image. It may be a vector larger than needed, but all
unused components appear after all used components.

Dref /q is the depth-comparison reference value. Dref must be a 32-bit floating-point
type scalar.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
Shader

6 +
variable

93 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>, <id>,
…

176

OpImageSampleProjDrefExplicitLod

Sample an image with a project coordinate, doing depth-comparison,
using an explicit level of detail.

Result Type must be a scalar of integer type or floating-point type. It
must be the same as Sampled Type of the underlying OpTypeImage.

Sampled Image must be an object whose type is
OpTypeSampledImage. The Dim operand of the underlying
OpTypeImage must be 1D, 2D, 3D, or Rect, and the Arrayed and MS
operands must be 0.

Coordinate is a floating-point vector containing (u [, v] [, w], q), as
needed by the definition of Sampled Image, with the q component
consumed for the projective division. That is, the actual sample
coordinate is (u/q [, v/q] [, w/q]), as needed by the definition of Sampled
Image. It may be a vector larger than needed, but all unused
components appear after all used components.

Dref /q is the depth-comparison reference value. Dref must be a 32-bit
floating-point type scalar.

Image Operands encodes what operands follow, as per Image
Operands. Either Lod or Grad image operands must be present.

Capability:
Shader

8 +
variable

94 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinat
e

<id>
Dref

Image
Operands

<id> Optional
<id>,
<id>, …

OpImageFetch

Fetch a single texel from an image whose Sampled operand is 1.

Result Type must be a vector of four components of floating-point type or integer type. Its components
must be the same as Sampled Type of the underlying OpTypeImage (unless that underlying Sampled
Type is OpTypeVoid).

Image must be an object whose type is OpTypeImage. Its Dim operand must not be Cube, and its
Sampled operand must be 1.

Coordinate is an integer scalar or vector containing (u[, v] … [, array layer]) as needed by the definition of
Sampled Image.

Image Operands encodes what operands follow, as per Image Operands.

5 + variable 95 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
…

177

OpImageGather

Gathers the requested component from four texels.

Result Type must be a vector of four components of floating-point type or integer
type. Its components must be the same as Sampled Type of the underlying
OpTypeImage (unless that underlying Sampled Type is OpTypeVoid). It has one
component per gathered texel.

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must have a Dim of 2D, Cube, or Rect. The MS operand of the
underlying OpTypeImage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] … [,
array layer]) as needed by the definition of Sampled Image.

Component is the component number gathered from all four texels. It must be a
32-bit integer type scalar. Behavior is undefined if its value is not 0, 1, 2 or 3.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
Shader

6 +
variable

96 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Componen
t

Optional
Image
Operands

Optional
<id>, <id>,
…

OpImageDrefGather

Gathers the requested depth-comparison from four texels.

Result Type must be a vector of four components of floating-point type or integer
type. Its components must be the same as Sampled Type of the underlying
OpTypeImage (unless that underlying Sampled Type is OpTypeVoid). It has one
component per gathered texel.

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must have a Dim of 2D, Cube, or Rect. The MS operand of the
underlying OpTypeImage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] … [,
array layer]) as needed by the definition of Sampled Image.

Dref is the depth-comparison reference value. It must be a 32-bit floating-point
type scalar.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
Shader

6 +
variable

97 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>, <id>,
…

178

OpImageRead

Read a texel from an image without a sampler.

Result Type must be a scalar or vector of floating-point type or integer type. It must be a scalar or vector
with component type the same as Sampled Type of the OpTypeImage (unless that Sampled Type is
OpTypeVoid).

Image must be an object whose type is OpTypeImage with a Sampled operand of 0 or 2. If the Arrayed
operand is 1, then additional capabilities may be required; e.g., ImageCubeArray, or ImageMSArray.

Coordinate is an integer scalar or vector containing non-normalized texel coordinates (u[, v] … [, array
layer]) as needed by the definition of Image. See the client API specification for handling of coordinates
outside the image.

If the Image Dim operand is SubpassData, Coordinate is relative to the current fragment location. See the
client API specification for more detail on how these coordinates are applied.

If the Image Dim operand is not SubpassData, the Image Format must not be Unknown, unless the
StorageImageReadWithoutFormat Capability was declared.

Image Operands encodes what operands follow, as per Image Operands.

5 + variable 98 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
…

OpImageWrite

Write a texel to an image without a sampler.

Image must be an object whose type is OpTypeImage with a Sampled operand of 0 or 2. If the Arrayed
operand is 1, then additional capabilities may be required; e.g., ImageCubeArray, or ImageMSArray. Its
Dim operand must not be SubpassData.

Coordinate is an integer scalar or vector containing non-normalized texel coordinates (u[, v] … [, array
layer]) as needed by the definition of Image. See the client API specification for handling of coordinates
outside the image.

Texel is the data to write. It must be a scalar or vector with component type the same as Sampled Type of
the OpTypeImage (unless that Sampled Type is OpTypeVoid).

The Image Format must not be Unknown, unless the StorageImageWriteWithoutFormat Capability was
declared.

Image Operands encodes what operands follow, as per Image Operands.

4 + variable 99 <id>
Image

<id>
Coordinate

<id>
Texel

Optional
Image
Operands

Optional
<id>, <id>, …

179

OpImage

Extract the image from a sampled image.

Result Type must be OpTypeImage.

Sampled Image must have type OpTypeSampledImage whose Image Type is the same as Result Type.

4 100 <id>
Result Type

Result <id> <id>
Sampled Image

OpImageQueryFormat

Query the image format of an image created with an Unknown Image Format.

Result Type must be a scalar integer type. The resulting value is an enumerant
from Image Channel Data Type.

Image must be an object whose type is OpTypeImage.

Capability:
Kernel

4 101 <id>
Result Type

Result <id> <id>
Image

OpImageQueryOrder

Query the channel order of an image created with an Unknown Image Format.

Result Type must be a scalar integer type. The resulting value is an enumerant
from Image Channel Order.

Image must be an object whose type is OpTypeImage.

Capability:
Kernel

4 102 <id>
Result Type

Result <id> <id>
Image

180

OpImageQuerySizeLod

Query the dimensions of Image for mipmap level for Level of
Detail.

Result Type must be an integer type scalar or vector. The
number of components must be
1 for the 1D dimensionality,
2 for the 2D and Cube dimensionalities,
3 for the 3D dimensionality,
plus 1 more if the image type is arrayed. This vector is filled in
with (width [, height] [, depth] [, elements]) where elements is
the number of layers in an image array, or the number of cubes
in a cube-map array.

Image must be an object whose type is OpTypeImage. Its Dim
operand must be one of 1D, 2D, 3D, or Cube, and its MS must
be 0. See OpImageQuerySize for querying image types
without level of detail. See the client API specification for
additional image type restrictions.

Level of Detail is used to compute which mipmap level to query,
as specified by the client API.

Capability:
Kernel, ImageQuery

5 103 <id>
Result Type

Result <id> <id>
Image

<id>
Level of Detail

OpImageQuerySize

Query the dimensions of Image, with no level of detail.

Result Type must be an integer type scalar or vector. The number of
components must be:
1 for the 1D and Buffer dimensionalities,
2 for the 2D, Cube, and Rect dimensionalities,
3 for the 3D dimensionality,
plus 1 more if the image type is arrayed. This vector is filled in with (width [,
height] [, elements]) where elements is the number of layers in an image array
or the number of cubes in a cube-map array.

Image must be an object whose type is OpTypeImage. Its Dim operand must
be one of those listed under Result Type, above. Additionally, if its Dim is 1D,
2D, 3D, or Cube, it must also have either an MS of 1 or a Sampled of 0 or 2.
There is no implicit level-of-detail consumed by this instruction. See
OpImageQuerySizeLod for querying images having level of detail. See the
client API specification for additional image type restrictions.

Capability:
Kernel, ImageQuery

4 104 <id>
Result Type

Result <id> <id>
Image

181

OpImageQueryLod

Query the mipmap level and the level of detail for a
hypothetical sampling of Image at Coordinate using an implicit
level of detail.

Result Type must be a two-component floating-point type
vector.
The first component of the result contains the mipmap array
layer.
The second component of the result contains the implicit level
of detail relative to the base level.

Sampled Image must be an object whose type is
OpTypeSampledImage. Its Dim operand must be one of 1D,
2D, 3D, or Cube.

Coordinate must be a scalar or vector of floating-point type or
integer type. It contains (u[, v] …) as needed by the definition
of Sampled Image, not including any array layer index. Unless
the Kernel capability is being used, it must be floating point.

This instruction is only valid in the Fragment Execution Model.
In addition, it consumes an implicit derivative that can be
affected by code motion.

Capability:
ImageQuery

5 105 <id>
Result Type

Result <id> <id>
Sampled Image

<id>
Coordinate

OpImageQueryLevels

Query the number of mipmap levels accessible through Image.

Result Type must be a scalar integer type. The result is the number of mipmap
levels,as specified by the client API.

Image must be an object whose type is OpTypeImage. Its Dim operand must
be one of 1D, 2D, 3D, or Cube. See the client API specification for additional
image type restrictions.

Capability:
Kernel, ImageQuery

4 106 <id>
Result Type

Result <id> <id>
Image

OpImageQuerySamples

Query the number of samples available per texel fetch in a multisample image.

Result Type must be a scalar integer type. The result is the number of samples.

Image must be an object whose type is OpTypeImage. Its Dim operand must
be one of 2D and MS of 1.

Capability:
Kernel, ImageQuery

4 107 <id>
Result Type

Result <id> <id>
Image

182

OpImageSparseSampleImplicitLod

Sample a sparse image with an implicit level of detail.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OpImageSparseTexelsResident. The second member must be a
vector of four components of floating-point type or integer type. Its
components must be the same as Sampled Type of the underlying
OpTypeImage (unless that underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must not have a Dim of Buffer. The MS operand of the
underlying OpTypeImage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v]
… [, array layer]) as needed by the definition of Sampled Image. It may be a
vector larger than needed, but all unused components appear after all used
components.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
SparseResidency

5 + variable 305 <id>
Result Type

Result <id> <id>
Sampled
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
…

183

OpImageSparseSampleExplicitLod

Sample a sparse image using an explicit level of detail.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OpImageSparseTexelsResident. The second member must be a
vector of four components of floating-point type or integer type. Its components
must be the same as Sampled Type of the underlying OpTypeImage (unless that
underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must not have a Dim of Buffer. The MS operand of the underlying
OpTypeImage must be 0.

Coordinate must be a scalar or vector of floating-point type or integer type. It
contains (u[, v] … [, array layer]) as needed by the definition of Sampled Image.
Unless the Kernel capability is being used, it must be floating point. It may be a
vector larger than needed, but all unused components appear after all used
components.

Image Operands encodes what operands follow, as per Image Operands. Either
Lod or Grad image operands must be present.

Capability:
SparseResidency

7 +
variable

306 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

Image
Operands

<id> Optional
<id>, <id>,
…

OpImageSparseSampleDrefImplicitLod

Sample a sparse image doing depth-comparison with an implicit level of detail.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OpImageSparseTexelsResident. The second member must be a
scalar of integer type or floating-point type. It must be the same as Sampled Type
of the underlying OpTypeImage.

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must not have a Dim of Buffer. The MS operand of the underlying
OpTypeImage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] … [,
array layer]) as needed by the definition of Sampled Image. It may be a vector
larger than needed, but all unused components appear after all used
components.

Dref is the depth-comparison reference value. It must be a 32-bit floating-point
type scalar.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
SparseResidency

184

6 +
variable

307 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>, <id>,
…

OpImageSparseSampleDrefExplicitLod

Sample a sparse image doing depth-comparison using an explicit level of
detail.

Result Type must be an OpTypeStruct with two members. The first
member’s type must be an integer type scalar. It holds a Residency
Code that can be passed to OpImageSparseTexelsResident. The
second member must be a scalar of integer type or floating-point type. It
must be the same as Sampled Type of the underlying OpTypeImage.

Sampled Image must be an object whose type is
OpTypeSampledImage. Its OpTypeImage must not have a Dim of
Buffer. The MS operand of the underlying OpTypeImage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (
u[, v] … [, array layer]) as needed by the definition of Sampled Image. It
may be a vector larger than needed, but all unused components appear
after all used components.

Dref is the depth-comparison reference value. It must be a 32-bit floating-
point type scalar.

Image Operands encodes what operands follow, as per Image
Operands. Either Lod or Grad image operands must be present.

Capability:
SparseResidency

8 +
variable

308 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinat
e

<id>
Dref

Image
Operands

<id> Optional
<id>,
<id>, …

OpImageSparseSampleProjImplicitLod

Sample a sparse image with a projective coordinate and an implicit level of
detail.

Capability:
SparseResidency

Reserved.

5 + variable 309 <id>
Result Type

Result <id> <id>
Sampled
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
…

OpImageSparseSampleProjExplicitLod

Sample a sparse image with a projective coordinate using an explicit level of
detail.

Capability:
SparseResidency

Reserved.

7 +
variable

310 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

Image
Operands

<id> Optional
<id>, <id>,
…

185

OpImageSparseSampleProjDrefImplicitLod

Sample a sparse image with a projective coordinate, doing depth-comparison,
with an implicit level of detail.

Capability:
SparseResidency

Reserved.

6 +
variable

311 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>, <id>,
…

OpImageSparseSampleProjDrefExplicitLod

Sample a sparse image with a projective coordinate, doing depth-
comparison, using an explicit level of detail.

Capability:
SparseResidency

Reserved.

8 +
variable

312 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinat
e

<id>
Dref

Image
Operands

<id> Optional
<id>,
<id>, …

OpImageSparseFetch

Fetch a single texel from a sampled sparse image.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OpImageSparseTexelsResident. The second member must be a
vector of four components of floating-point type or integer type. Its
components must be the same as Sampled Type of the underlying
OpTypeImage (unless that underlying Sampled Type is OpTypeVoid).

Image must be an object whose type is OpTypeImage. Its Dim operand must
not be Cube.

Coordinate is an integer scalar or vector containing (u[, v] … [, array layer]) as
needed by the definition of Sampled Image.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
SparseResidency

5 + variable 313 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
…

186

OpImageSparseGather

Gathers the requested component from four texels of a sparse image.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OpImageSparseTexelsResident. The second member must be a
vector of four components of floating-point type or integer type. Its components
must be the same as Sampled Type of the underlying OpTypeImage (unless that
underlying Sampled Type is OpTypeVoid). It has one component per gathered
texel.

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must have a Dim of 2D, Cube, or Rect.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] … [,
array layer]) as needed by the definition of Sampled Image.

Component is the component number gathered from all four texels. It must be a
32-bit integer type scalar. Behavior is undefined if its value is not 0, 1, 2 or 3.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
SparseResidency

6 +
variable

314 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Componen
t

Optional
Image
Operands

Optional
<id>, <id>,
…

OpImageSparseDrefGather

Gathers the requested depth-comparison from four texels of a sparse image.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OpImageSparseTexelsResident. The second member must be a
vector of four components of floating-point type or integer type. Its components
must be the same as Sampled Type of the underlying OpTypeImage (unless that
underlying Sampled Type is OpTypeVoid). It has one component per gathered
texel.

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must have a Dim of 2D, Cube, or Rect.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] … [,
array layer]) as needed by the definition of Sampled Image.

Dref is the depth-comparison reference value. It must be a 32-bit floating-point
type scalar.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
SparseResidency

6 +
variable

315 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>, <id>,
…

187

OpImageSparseTexelsResident

Translates a Resident Code into a Boolean. Result is false if any of the texels
were in uncommitted texture memory, and true otherwise.

Result Type must be a Boolean type scalar.

Resident Code is a value from an OpImageSparse… instruction that results in
a resident code.

Capability:
SparseResidency

4 316 <id>
Result Type

Result <id> <id>
Resident Code

OpImageSparseRead

Read a texel from a sparse image without a sampler.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OpImageSparseTexelsResident. The second member must be a
scalar or vector of floating-point type or integer type. It must be a scalar or
vector with component type the same as Sampled Type of the OpTypeImage
(unless that Sampled Type is OpTypeVoid).

Image must be an object whose type is OpTypeImage with a Sampled
operand of 2.

Coordinate is an integer scalar or vector containing non-normalized texel
coordinates (u[, v] … [, array layer]) as needed by the definition of Image. See
the client API specification for handling of coordinates outside the image.

The Image Dim operand must not be SubpassData. The Image Format must
not be Unknown unless the StorageImageReadWithoutFormat Capability
was declared.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
SparseResidency

5 + variable 320 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
…

OpImageSampleFootprintNV

TBD

Capability:
ImageFootprintNV

Reserved.

7 +
variable

5283 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinat
e

<id>
Granularit
y

<id>
Coarse

Optional
Image
Operands

Optional
<id>,
<id>, …

188

3.42.11. Conversion Instructions

OpConvertFToU

Convert value numerically from floating point to unsigned integer, with round toward 0.0.

Result Type must be a scalar or vector of integer type, whose Signedness operand is 0. Behavior is
undefined if Result Type is not wide enough to hold the converted value.

Float Value must be a scalar or vector of floating-point type. It must have the same number of components
as Result Type.

Results are computed per component.

4 109 <id>
Result Type

Result <id> <id>
Float Value

OpConvertFToS

Convert value numerically from floating point to signed integer, with round toward 0.0.

Result Type must be a scalar or vector of integer type. Behavior is undefined if Result Type is not wide
enough to hold the converted value.

Float Value must be a scalar or vector of floating-point type. It must have the same number of components
as Result Type.

Results are computed per component.

4 110 <id>
Result Type

Result <id> <id>
Float Value

OpConvertSToF

Convert value numerically from signed integer to floating point.

Result Type must be a scalar or vector of floating-point type.

Signed Value must be a scalar or vector of integer type. It must have the same number of components as
Result Type.

Results are computed per component.

4 111 <id>
Result Type

Result <id> <id>
Signed Value

189

OpConvertUToF

Convert value numerically from unsigned integer to floating point.

Result Type must be a scalar or vector of floating-point type.

Unsigned Value must be a scalar or vector of integer type. It must have the same number of components
as Result Type.

Results are computed per component.

4 112 <id>
Result Type

Result <id> <id>
Unsigned Value

OpUConvert

Convert unsigned width. This is either a truncate or a zero extend.

Result Type must be a scalar or vector of integer type, whose Signedness operand is 0.

Unsigned Value must be a scalar or vector of integer type. It must have the same number of components
as Result Type. The component width must not equal the component width in Result Type.

Results are computed per component.

4 113 <id>
Result Type

Result <id> <id>
Unsigned Value

OpSConvert

Convert signed width. This is either a truncate or a sign extend.

Result Type must be a scalar or vector of integer type.

Signed Value must be a scalar or vector of integer type. It must have the same number of components as
Result Type. The component width must not equal the component width in Result Type.

Results are computed per component.

4 114 <id>
Result Type

Result <id> <id>
Signed Value

190

OpFConvert

Convert value numerically from one floating-point width to another width.

Result Type must be a scalar or vector of floating-point type.

Float Value must be a scalar or vector of floating-point type. It must have the same number of components
as Result Type. The component width must not equal the component width in Result Type.

Results are computed per component.

4 115 <id>
Result Type

Result <id> <id>
Float Value

OpQuantizeToF16

Quantize a floating-point value to what is expressible by a 16-bit floating-point
value.

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits.

Value is the value to quantize. The type of Value must be the same as Result
Type.

If Value is an infinity, the result is the same infinity. If Value is a NaN, the result
is a NaN, but not necessarily the same NaN. If Value is positive with a
magnitude too large to represent as a 16-bit floating-point value, the result is
positive infinity. If Value is negative with a magnitude too large to represent as a
16-bit floating-point value, the result is negative infinity. If the magnitude of
Value is too small to represent as a normalized 16-bit floating-point value, the
result may be either +0 or -0.

The RelaxedPrecision Decoration has no effect on this instruction.

Results are computed per component.

Capability:
Shader

4 116 <id>
Result Type

Result <id> <id>
Value

OpConvertPtrToU

Bit pattern-preserving conversion of a pointer to an unsigned scalar integer of
possibly different bit width.

Result Type must be a scalar of integer type, whose Signedness operand is 0.

Pointer must be a physical pointer type. If the bit width of Pointer is smaller than
that of Result Type, the conversion zero extends Pointer. If the bit width of
Pointer is larger than that of Result Type, the conversion truncates Pointer. For
same bit width Pointer and Result Type, this is the same as OpBitcast.

Capability:
Addresses,
PhysicalStorageBuffer
Addresses

4 117 <id>
Result Type

Result <id> <id>
Pointer

191

OpSatConvertSToU

Convert a signed integer to unsigned integer. Converted values outside the
representable range of Result Type are clamped to the nearest representable
value of Result Type.

Result Type must be a scalar or vector of integer type.

Signed Value must be a scalar or vector of integer type. It must have the same
number of components as Result Type.

Results are computed per component.

Capability:
Kernel

4 118 <id>
Result Type

Result <id> <id>
Signed Value

OpSatConvertUToS

Convert an unsigned integer to signed integer. Converted values outside the
representable range of Result Type are clamped to the nearest representable
value of Result Type.

Result Type must be a scalar or vector of integer type.

Unsigned Value must be a scalar or vector of integer type. It must have the
same number of components as Result Type.

Results are computed per component.

Capability:
Kernel

4 119 <id>
Result Type

Result <id> <id>
Unsigned Value

OpConvertUToPtr

Bit pattern-preserving conversion of an unsigned scalar integer to a pointer.

Result Type must be a physical pointer type.

Integer Value must be a scalar of integer type, whose Signedness operand is 0.
If the bit width of Integer Value is smaller than that of Result Type, the
conversion zero extends Integer Value. If the bit width of Integer Value is larger
than that of Result Type, the conversion truncates Integer Value. For same-
width Integer Value and Result Type, this is the same as OpBitcast.

Capability:
Addresses,
PhysicalStorageBuffer
Addresses

4 120 <id>
Result Type

Result <id> <id>
Integer Value

192

OpPtrCastToGeneric

Convert a pointer’s Storage Class to Generic.

Result Type must be an OpTypePointer. Its Storage Class must be Generic.

Pointer must point to the Workgroup, CrossWorkgroup, or Function Storage
Class.

Result Type and Pointer must point to the same type.

Capability:
Kernel

4 121 <id>
Result Type

Result <id> <id>
Pointer

OpGenericCastToPtr

Convert a pointer’s Storage Class to a non-Generic class.

Result Type must be an OpTypePointer. Its Storage Class must be
Workgroup, CrossWorkgroup, or Function.

Pointer must point to the Generic Storage Class.

Result Type and Pointer must point to the same type.

Capability:
Kernel

4 122 <id>
Result Type

Result <id> <id>
Pointer

OpGenericCastToPtrExplicit

Attempts to explicitly convert Pointer to Storage storage-class
pointer value.

Result Type must be an OpTypePointer. Its Storage Class
must be Storage.

Pointer must have a type of OpTypePointer whose Type is the
same as the Type of Result Type.Pointer must point to the
Generic Storage Class. If the cast fails, the instruction result is
an OpConstantNull pointer in the Storage Storage Class.

Storage must be one of the following literal values from Storage
Class: Workgroup, CrossWorkgroup, or Function.

Capability:
Kernel

5 123 <id>
Result Type

Result <id> <id>
Pointer

Storage Class
Storage

193

OpBitcast

Bit pattern-preserving type conversion.

Result Type must be an OpTypePointer, or a scalar or vector of numerical-type.

Operand must have a type of OpTypePointer, or a scalar or vector of numerical-type. It must be a
different type than Result Type.

Before version 1.5: If either Result Type or Operand is a pointer, the other must be a pointer or an integer
scalar.
Starting with version 1.5: If either Result Type or Operand is a pointer, the other must be a pointer, an
integer scalar, or an integer vector.

If Result Type has the same number of components as Operand, they must also have the same
component width, and results are computed per component.

If Result Type has a different number of components than Operand, the total number of bits in Result Type
must equal the total number of bits in Operand. Let L be the type, either Result Type or Operand’s type,
that has the larger number of components. Let S be the other type, with the smaller number of
components. The number of components in L must be an integer multiple of the number of components in
S. The first component (that is, the only or lowest-numbered component) of S maps to the first
components of L, and so on, up to the last component of S mapping to the last components of L. Within
this mapping, any single component of S (mapping to multiple components of L) maps its lower-ordered
bits to the lower-numbered components of L.

4 124 <id>
Result Type

Result <id> <id>
Operand

194

3.42.12. Composite Instructions

OpVectorExtractDynamic

Extract a single, dynamically selected, component of a vector.

Result Type must be a scalar type.

Vector must have a type OpTypeVector whose Component Type is Result Type.

Index must be a scalar integer. It is interpreted as a 0-based index of which component of Vector to
extract.

Behavior is undefined if Index’s value is less than zero or greater than or equal to the number of
components in Vector.

5 77 <id>
Result Type

Result <id> <id>
Vector

<id>
Index

OpVectorInsertDynamic

Make a copy of a vector, with a single, variably selected, component modified.

Result Type must be an OpTypeVector.

Vector must have the same type as Result Type and is the vector that the non-written components are
copied from.

Component is the value supplied for the component selected by Index. It must have the same type as the
type of components in Result Type.

Index must be a scalar integer. It is interpreted as a 0-based index of which component to modify.

Behavior is undefined if Index’s value is less than zero or greater than or equal to the number of
components in Vector.

6 78 <id>
Result Type

Result <id> <id>
Vector

<id>
Component

<id>
Index

195

OpVectorShuffle

Select arbitrary components from two vectors to make a new vector.

Result Type must be an OpTypeVector. The number of components in Result Type must be the same as
the number of Component operands.

Vector 1 and Vector 2 must both have vector types, with the same Component Type as Result Type. They
do not have to have the same number of components as Result Type or with each other. They are logically
concatenated, forming a single vector with Vector 1’s components appearing before Vector 2’s. The
components of this logical vector are logically numbered with a single consecutive set of numbers from 0
to N - 1, where N is the total number of components.

Components are these logical numbers (see above), selecting which of the logically numbered
components form the result. Each component is an unsigned 32-bit integer. They can select the
components in any order and can repeat components. The first component of the result is selected by the
first Component operand, the second component of the result is selected by the second Component
operand, etc. A Component literal may also be FFFFFFFF, which means the corresponding result
component has no source and is undefined. All Component literals must either be FFFFFFFF or in [0, N -
1] (inclusive).

Note: A vector “swizzle” can be done by using the vector for both Vector operands, or using an OpUndef
for one of the Vector operands.

5 + variable 79 <id>
Result Type

Result <id> <id>
Vector 1

<id>
Vector 2

Literal, Literal,
…
Components

OpCompositeConstruct

Construct a new composite object from a set of constituent objects.

Result Type must be a composite type, whose top-level members/elements/components/columns have the
same type as the types of the operands, with one exception. The exception is that for constructing a
vector, the operands may also be vectors with the same component type as the Result Type component
type. If constructing a vector, the total number of components in all the operands must equal the number
of components in Result Type.

Constituents become members of a structure, or elements of an array, or components of a vector, or
columns of a matrix. There must be exactly one Constituent for each top-level
member/element/component/column of the result, with one exception. The exception is that for
constructing a vector, a contiguous subset of the scalars consumed can be represented by a vector
operand instead. The Constituents must appear in the order needed by the definition of the type of the
result. If constructing a vector, there must be at least two Constituent operands.

3 + variable 80 <id>
Result Type

Result <id> <id>, <id>, …
Constituents

196

OpCompositeExtract

Extract a part of a composite object.

Result Type must be the type of object selected by the last provided index. The instruction result is the
extracted object.

Composite is the composite to extract from.

Indexes walk the type hierarchy, potentially down to component granularity, to select the part to extract. All
indexes must be in bounds. All composite constituents use zero-based numbering, as described by their
OpType… instruction. Each index is an unsigned 32-bit integer.

4 + variable 81 <id>
Result Type

Result <id> <id>
Composite

Literal, Literal, …
Indexes

OpCompositeInsert

Make a copy of a composite object, while modifying one part of it.

Result Type must be the same type as Composite.

Object is the object to use as the modified part.

Composite is the composite to copy all but the modified part from.

Indexes walk the type hierarchy of Composite to the desired depth, potentially down to component
granularity, to select the part to modify. All indexes must be in bounds. All composite constituents use
zero-based numbering, as described by their OpType… instruction. The type of the part selected to
modify must match the type of Object. Each index is an unsigned 32-bit integer.

5 + variable 82 <id>
Result Type

Result <id> <id>
Object

<id>
Composite

Literal, Literal,
…
Indexes

OpCopyObject

Make a copy of Operand. There are no pointer dereferences involved.

Result Type must equal Operand type. Result Type can be any type except OpTypeVoid.

4 83 <id>
Result Type

Result <id> <id>
Operand

197

OpTranspose

Transpose a matrix.

Result Type must be an OpTypeMatrix.

Matrix must be an object of type OpTypeMatrix. The number of columns and
the column size of Matrix must be the reverse of those in Result Type. The
types of the scalar components in Matrix and Result Type must be the same.

Matrix must have of type of OpTypeMatrix.

Capability:
Matrix

4 84 <id>
Result Type

Result <id> <id>
Matrix

OpCopyLogical

Make a logical copy of Operand. There are no pointer dereferences involved.

Result Type must not equal the type of Operand (see OpCopyObject), but
Result Type must logically match the Operand type.

Logically match is recursively defined by these three rules:
1. They must be either both be OpTypeArray or both be OpTypeStruct
2. If they are OpTypeArray:
- they must have the same Length operand, and
- their Element Type operands must be either the same or must logically match.
3. If they are OpTypeStruct:
- they must have the same number of Member type, and
- Member N type for the same N in the two types must be either the same or
must logically match.

Missing before version
1.4.

4 400 <id>
Result Type

Result <id> <id>
Operand

198

3.42.13. Arithmetic Instructions

OpSNegate

Signed-integer subtract of Operand from zero.

Result Type must be a scalar or vector of integer type.

Operand’s type must be a scalar or vector of integer type. It must have the same number of components
as Result Type. The component width must equal the component width in Result Type.

Results are computed per component.

4 126 <id>
Result Type

Result <id> <id>
Operand

OpFNegate

Inverts the sign bit of Operand. (Note, however, that OpFNegate is still considered a floating-point
instruction, and so is subject to the general floating-point rules regarding, for example, subnormals and
NaN propagation).

Result Type must be a scalar or vector of floating-point type.

The type of Operand must be the same as Result Type.

Results are computed per component.

4 127 <id>
Result Type

Result <id> <id>
Operand

OpIAdd

Integer addition of Operand 1 and Operand 2.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same number of components as Result Type. They must have the same component width as Result Type.

The resulting value equals the low-order N bits of the correct result R, where N is the component width
and R is computed with enough precision to avoid overflow and underflow.

Results are computed per component.

5 128 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

199

OpFAdd

Floating-point addition of Operand 1 and Operand 2.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component.

5 129 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpISub

Integer subtraction of Operand 2 from Operand 1.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same number of components as Result Type. They must have the same component width as Result Type.

The resulting value equals the low-order N bits of the correct result R, where N is the component width
and R is computed with enough precision to avoid overflow and underflow.

Results are computed per component.

5 130 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFSub

Floating-point subtraction of Operand 2 from Operand 1.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component.

5 131 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

200

OpIMul

Integer multiplication of Operand 1 and Operand 2.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same number of components as Result Type. They must have the same component width as Result Type.

The resulting value equals the low-order N bits of the correct result R, where N is the component width
and R is computed with enough precision to avoid overflow and underflow.

Results are computed per component.

5 132 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFMul

Floating-point multiplication of Operand 1 and Operand 2.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component.

5 133 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpUDiv

Unsigned-integer division of Operand 1 divided by Operand 2.

Result Type must be a scalar or vector of integer type, whose Signedness operand is 0.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component. Behavior is undefined if Operand 2 is 0.

5 134 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

201

OpSDiv

Signed-integer division of Operand 1 divided by Operand 2.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same number of components as Result Type. They must have the same component width as Result Type.

Results are computed per component. Behavior is undefined if Operand 2 is 0. Behavior is undefined if
Operand 2 is -1 and Operand 1 is the minimum representable value for the operands' type, causing signed
overflow.

5 135 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFDiv

Floating-point division of Operand 1 divided by Operand 2.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component.

5 136 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpUMod

Unsigned modulo operation of Operand 1 modulo Operand 2.

Result Type must be a scalar or vector of integer type, whose Signedness operand is 0.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component. Behavior is undefined if Operand 2 is 0.

5 137 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

202

OpSRem

Signed remainder operation for the remainder whose sign matches the sign of Operand 1.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same number of components as Result Type. They must have the same component width as Result Type.

Results are computed per component. Behavior is undefined if Operand 2 is 0. Behavior is undefined if
Operand 2 is -1 and Operand 1 is the minimum representable value for the operands' type, causing signed
overflow. Otherwise, the result is the remainder r of Operand 1 divided by Operand 2 where if r ¬ 0, the
sign of r is the same as the sign of Operand 1.

5 138 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpSMod

Signed remainder operation for the remainder whose sign matches the sign of Operand 2.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same number of components as Result Type. They must have the same component width as Result Type.

Results are computed per component. Behavior is undefined if Operand 2 is 0. Behavior is undefined if
Operand 2 is -1 and Operand 1 is the minimum representable value for the operands' type, causing signed
overflow. Otherwise, the result is the remainder r of Operand 1 divided by Operand 2 where if r ¬ 0, the
sign of r is the same as the sign of Operand 2.

5 139 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFRem

The floating-point remainder whose sign matches the sign of Operand 1.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component. The resulting value is undefined if Operand 2 is 0. Otherwise, the
result is the remainder r of Operand 1 divided by Operand 2 where if r ¬ 0, the sign of r is the same as the
sign of Operand 1.

5 140 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

203

OpFMod

The floating-point remainder whose sign matches the sign of Operand 2.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component. The resulting value is undefined if Operand 2 is 0. Otherwise, the
result is the remainder r of Operand 1 divided by Operand 2 where if r ¬ 0, the sign of r is the same as the
sign of Operand 2.

5 141 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpVectorTimesScalar

Scale a floating-point vector.

Result Type must be a vector of floating-point type.

The type of Vector must be the same as Result Type. Each component of Vector is multiplied by Scalar.

Scalar must have the same type as the Component Type in Result Type.

5 142 <id>
Result Type

Result <id> <id>
Vector

<id>
Scalar

OpMatrixTimesScalar

Scale a floating-point matrix.

Result Type must be an OpTypeMatrix whose Column Type is
a vector of floating-point type.

The type of Matrix must be the same as Result Type. Each
component in each column in Matrix is multiplied by Scalar.

Scalar must have the same type as the Component Type in
Result Type.

Capability:
Matrix

5 143 <id>
Result Type

Result <id> <id>
Matrix

<id>
Scalar

204

OpVectorTimesMatrix

Linear-algebraic Vector X Matrix.

Result Type must be a vector of floating-point type.

Vector must be a vector with the same Component Type as the
Component Type in Result Type. Its number of components
must equal the number of components in each column in
Matrix.

Matrix must be a matrix with the same Component Type as the
Component Type in Result Type. Its number of columns must
equal the number of components in Result Type.

Capability:
Matrix

5 144 <id>
Result Type

Result <id> <id>
Vector

<id>
Matrix

OpMatrixTimesVector

Linear-algebraic Matrix X Vector.

Result Type must be a vector of floating-point type.

Matrix must be an OpTypeMatrix whose Column Type is
Result Type.

Vector must be a vector with the same Component Type as the
Component Type in Result Type. Its number of components
must equal the number of columns in Matrix.

Capability:
Matrix

5 145 <id>
Result Type

Result <id> <id>
Matrix

<id>
Vector

OpMatrixTimesMatrix

Linear-algebraic multiply of LeftMatrix X RightMatrix.

Result Type must be an OpTypeMatrix whose Column Type is
a vector of floating-point type.

LeftMatrix must be a matrix whose Column Type is the same
as the Column Type in Result Type.

RightMatrix must be a matrix with the same Component Type
as the Component Type in Result Type. Its number of columns
must equal the number of columns in Result Type. Its columns
must have the same number of components as the number of
columns in LeftMatrix.

Capability:
Matrix

5 146 <id>
Result Type

Result <id> <id>
LeftMatrix

<id>
RightMatrix

205

OpOuterProduct

Linear-algebraic outer product of Vector 1 and Vector 2.

Result Type must be an OpTypeMatrix whose Column Type is
a vector of floating-point type.

Vector 1 must have the same type as the Column Type in
Result Type.

Vector 2 must be a vector with the same Component Type as
the Component Type in Result Type. Its number of components
must equal the number of columns in Result Type.

Capability:
Matrix

5 147 <id>
Result Type

Result <id> <id>
Vector 1

<id>
Vector 2

OpDot

Dot product of Vector 1 and Vector 2.

Result Type must be a floating-point type scalar.

Vector 1 and Vector 2 must be vectors of the same type, and their component type must be Result Type.

5 148 <id>
Result Type

Result <id> <id>
Vector 1

<id>
Vector 2

OpIAddCarry

Result is the unsigned integer addition of Operand 1 and Operand 2, including its carry.

Result Type must be from OpTypeStruct. The struct must have two members, and the two members must
be the same type. The member type must be a scalar or vector of integer type, whose Signedness
operand is 0.

Operand 1 and Operand 2 must have the same type as the members of Result Type. These are
consumed as unsigned integers.

Results are computed per component.

Member 0 of the result gets the low-order bits (full component width) of the addition.

Member 1 of the result gets the high-order (carry) bit of the result of the addition. That is, it gets the value
1 if the addition overflowed the component width, and 0 otherwise.

5 149 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

206

OpISubBorrow

Result is the unsigned integer subtraction of Operand 2 from Operand 1, and what it needed to borrow.

Result Type must be from OpTypeStruct. The struct must have two members, and the two members must
be the same type. The member type must be a scalar or vector of integer type, whose Signedness
operand is 0.

Operand 1 and Operand 2 must have the same type as the members of Result Type. These are
consumed as unsigned integers.

Results are computed per component.

Member 0 of the result gets the low-order bits (full component width) of the subtraction. That is, if Operand
1 is larger than Operand 2, member 0 gets the full value of the subtraction; if Operand 2 is larger than
Operand 1, member 0 gets 2w + Operand 1 - Operand 2, where w is the component width.

Member 1 of the result gets 0 if Operand 1 ¬ Operand 2, and gets 1 otherwise.

5 150 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpUMulExtended

Result is the full value of the unsigned integer multiplication of Operand 1 and Operand 2.

Result Type must be from OpTypeStruct. The struct must have two members, and the two members must
be the same type. The member type must be a scalar or vector of integer type, whose Signedness
operand is 0.

Operand 1 and Operand 2 must have the same type as the members of Result Type. These are
consumed as unsigned integers.

Results are computed per component.

Member 0 of the result gets the low-order bits of the multiplication.

Member 1 of the result gets the high-order bits of the multiplication.

5 151 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

207

OpSMulExtended

Result is the full value of the signed integer multiplication of Operand 1 and Operand 2.

Result Type must be from OpTypeStruct. The struct must have two members, and the two members must
be the same type. The member type must be a scalar or vector of integer type.

Operand 1 and Operand 2 must have the same type as the members of Result Type. These are
consumed as signed integers.

Results are computed per component.

Member 0 of the result gets the low-order bits of the multiplication.

Member 1 of the result gets the high-order bits of the multiplication.

5 152 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpSDot (OpSDotKHR)

Signed integer dot product of Vector 1 and Vector 2.

Result Type must be an integer type whose Width must be greater than or
equal to that of the components of Vector 1 and Vector 2.

Vector 1 and Vector 2 must have the same type.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductInput4x8BitPacked capability) or vectors of integer type
(enabled by the DotProductInput4x8Bit or DotProductInputAll
capability).

When Vector 1 and Vector 2 are scalar integer types, Packed Vector
Format must be specified to select how the integers are to be interpreted
as vectors.

All components of the input vectors are sign-extended to the bit width of
the result’s type. The sign-extended input vectors are then multiplied
component-wise and all components of the vector resulting from the
component-wise multiplication are added together. The resulting value will
equal the low-order N bits of the correct result R, where N is the result
width and R is computed with enough precision to avoid overflow and
underflow.

Capability:
DotProduct

Missing before version 1.6.

5 + variable 4450 <id>
Result Type

Result <id> <id>
Vector 1

<id>
Vector 2

Optional
Packed Vector
Format
Packed Vector
Format

208

OpUDot (OpUDotKHR)

Unsigned integer dot product of Vector 1 and Vector 2.

Result Type must be an integer type with Signedness of 0 whose Width
must be greater than or equal to that of the components of Vector 1 and
Vector 2.

Vector 1 and Vector 2 must have the same type.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductInput4x8BitPacked capability) or vectors of integer type with
Signedness of 0 (enabled by the DotProductInput4x8Bit or
DotProductInputAll capability).

When Vector 1 and Vector 2 are scalar integer types, Packed Vector
Format must be specified to select how the integers are to be interpreted
as vectors.

All components of the input vectors are zero-extended to the bit width of
the result’s type. The zero-extended input vectors are then multiplied
component-wise and all components of the vector resulting from the
component-wise multiplication are added together. The resulting value will
equal the low-order N bits of the correct result R, where N is the result
width and R is computed with enough precision to avoid overflow and
underflow.

Capability:
DotProduct

Missing before version 1.6.

5 + variable 4451 <id>
Result Type

Result <id> <id>
Vector 1

<id>
Vector 2

Optional
Packed Vector
Format
Packed Vector
Format

209

OpSUDot (OpSUDotKHR)

Mixed-signedness integer dot product of Vector 1 and Vector 2.
Components of Vector 1 are treated as signed, components of Vector 2
are treated as unsigned.

Result Type must be an integer type whose Width must be greater than or
equal to that of the components of Vector 1 and Vector 2.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductInput4x8BitPacked capability) or vectors of integer type with
the same number of components and same component Width (enabled
by the DotProductInput4x8Bit or DotProductInputAll capability). When
Vector 1 and Vector 2 are vectors, the components of Vector 2 must have
a Signedness of 0.

When Vector 1 and Vector 2 are scalar integer types, Packed Vector
Format must be specified to select how the integers are to be interpreted
as vectors.

All components of Vector 1 are sign-extended to the bit width of the
result’s type. All components of Vector 2 are zero-extended to the bit width
of the result’s type. The sign- or zero-extended input vectors are then
multiplied component-wise and all components of the vector resulting
from the component-wise multiplication are added together. The resulting
value will equal the low-order N bits of the correct result R, where N is the
result width and R is computed with enough precision to avoid overflow
and underflow.

Capability:
DotProduct

Missing before version 1.6.

5 + variable 4452 <id>
Result Type

Result <id> <id>
Vector 1

<id>
Vector 2

Optional
Packed Vector
Format
Packed Vector
Format

210

OpSDotAccSat (OpSDotAccSatKHR)

Signed integer dot product of Vector 1 and Vector 2 and signed saturating
addition of the result with Accumulator.

Result Type must be an integer type whose Width must be greater than or
equal to that of the components of Vector 1 and Vector 2.

Vector 1 and Vector 2 must have the same type.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductInput4x8BitPacked capability) or vectors of integer type (enabled
by the DotProductInput4x8Bit or DotProductInputAll capability).

The type of Accumulator must be the same as Result Type.

When Vector 1 and Vector 2 are scalar integer types, Packed Vector Format
must be specified to select how the integers are to be interpreted as vectors.

All components of the input vectors are sign-extended to the bit width of the
result’s type. The sign-extended input vectors are then multiplied component-
wise and all components of the vector resulting from the component-wise
multiplication are added together. Finally, the resulting sum is added to the
input accumulator. This final addition is saturating.

If any of the multiplications or additions, with the exception of the final
accumulation, overflow or underflow, the result of the instruction is undefined.

Capability:
DotProduct

Missing before version
1.6.

6 + variable 4453 <id>
Result Type

Result <id> <id>
Vector 1

<id>
Vector 2

<id>
Accumulator

Optional
Packed
Vector
Format
Packed
Vector
Format

211

OpUDotAccSat (OpUDotAccSatKHR)

Unsigned integer dot product of Vector 1 and Vector 2 and unsigned
saturating addition of the result with Accumulator.

Result Type must be an integer type with Signedness of 0 whose Width must
be greater than or equal to that of the components of Vector 1 and Vector 2.

Vector 1 and Vector 2 must have the same type.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductInput4x8BitPacked capability) or vectors of integer type with
Signedness of 0 (enabled by the DotProductInput4x8Bit or
DotProductInputAll capability).

The type of Accumulator must be the same as Result Type.

When Vector 1 and Vector 2 are scalar integer types, Packed Vector Format
must be specified to select how the integers are to be interpreted as vectors.

All components of the input vectors are zero-extended to the bit width of the
result’s type. The zero-extended input vectors are then multiplied component-
wise and all components of the vector resulting from the component-wise
multiplication are added together. Finally, the resulting sum is added to the
input accumulator. This final addition is saturating.

If any of the multiplications or additions, with the exception of the final
accumulation, overflow or underflow, the result of the instruction is undefined.

Capability:
DotProduct

Missing before version
1.6.

6 + variable 4454 <id>
Result Type

Result <id> <id>
Vector 1

<id>
Vector 2

<id>
Accumulator

Optional
Packed
Vector
Format
Packed
Vector
Format

212

OpSUDotAccSat (OpSUDotAccSatKHR)

Mixed-signedness integer dot product of Vector 1 and Vector 2 and signed
saturating addition of the result with Accumulator. Components of Vector 1 are
treated as signed, components of Vector 2 are treated as unsigned.

Result Type must be an integer type whose Width must be greater than or
equal to that of the components of Vector 1 and Vector 2.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductInput4x8BitPacked capability) or vectors of integer type with the
same number of components and same component Width (enabled by the
DotProductInput4x8Bit or DotProductInputAll capability). When Vector 1
and Vector 2 are vectors, the components of Vector 2 must have a
Signedness of 0.

The type of Accumulator must be the same as Result Type.

When Vector 1 and Vector 2 are scalar integer types, Packed Vector Format
must be specified to select how the integers are to be interpreted as vectors.

All components of Vector 1 are sign-extended to the bit width of the result’s
type. All components of Vector 2 are zero-extended to the bit width of the
result’s type. The sign- or zero-extended input vectors are then multiplied
component-wise and all components of the vector resulting from the
component-wise multiplication are added together. Finally, the resulting sum is
added to the input accumulator. This final addition is saturating.

If any of the multiplications or additions, with the exception of the final
accumulation, overflow or underflow, the result of the instruction is undefined.

Capability:
DotProduct

Missing before version
1.6.

6 + variable 4455 <id>
Result Type

Result <id> <id>
Vector 1

<id>
Vector 2

<id>
Accumulator

Optional
Packed
Vector
Format
Packed
Vector
Format

213

3.42.14. Bit Instructions

OpShiftRightLogical

Shift the bits in Base right by the number of bits specified in Shift. The most-significant bits are zero filled.

Result Type must be a scalar or vector of integer type.

The type of each Base and Shift must be a scalar or vector of integer type. Base and Shift must have the
same number of components. The number of components and bit width of the type of Base must be the
same as in Result Type.

Shift is consumed as an unsigned integer. The resulting value is undefined if Shift is greater than or equal
to the bit width of the components of Base.

Results are computed per component.

5 194 <id>
Result Type

Result <id> <id>
Base

<id>
Shift

OpShiftRightArithmetic

Shift the bits in Base right by the number of bits specified in Shift. The most-significant bits are filled with
the sign bit from Base.

Result Type must be a scalar or vector of integer type.

The type of each Base and Shift must be a scalar or vector of integer type. Base and Shift must have the
same number of components. The number of components and bit width of the type of Base must be the
same as in Result Type.

Shift is treated as unsigned. The resulting value is undefined if Shift is greater than or equal to the bit
width of the components of Base.

Results are computed per component.

5 195 <id>
Result Type

Result <id> <id>
Base

<id>
Shift

214

OpShiftLeftLogical

Shift the bits in Base left by the number of bits specified in Shift. The least-significant bits are zero filled.

Result Type must be a scalar or vector of integer type.

The type of each Base and Shift must be a scalar or vector of integer type. Base and Shift must have the
same number of components. The number of components and bit width of the type of Base must be the
same as in Result Type.

Shift is treated as unsigned. The resulting value is undefined if Shift is greater than or equal to the bit
width of the components of Base.

The number of components and bit width of Result Type must match those Base type. All types must be
integer types.

Results are computed per component.

5 196 <id>
Result Type

Result <id> <id>
Base

<id>
Shift

OpBitwiseOr

Result is 1 if either Operand 1 or Operand 2 is 1. Result is 0 if both Operand 1 and Operand 2 are 0.

Results are computed per component, and within each component, per bit.

Result Type must be a scalar or vector of integer type. The type of Operand 1 and Operand 2 must be a
scalar or vector of integer type. They must have the same number of components as Result Type. They
must have the same component width as Result Type.

5 197 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpBitwiseXor

Result is 1 if exactly one of Operand 1 or Operand 2 is 1. Result is 0 if Operand 1 and Operand 2 have the
same value.

Results are computed per component, and within each component, per bit.

Result Type must be a scalar or vector of integer type. The type of Operand 1 and Operand 2 must be a
scalar or vector of integer type. They must have the same number of components as Result Type. They
must have the same component width as Result Type.

5 198 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

215

OpBitwiseAnd

Result is 1 if both Operand 1 and Operand 2 are 1. Result is 0 if either Operand 1 or Operand 2 are 0.

Results are computed per component, and within each component, per bit.

Result Type must be a scalar or vector of integer type. The type of Operand 1 and Operand 2 must be a
scalar or vector of integer type. They must have the same number of components as Result Type. They
must have the same component width as Result Type.

5 199 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpNot

Complement the bits of Operand.

Results are computed per component, and within each component, per bit.

Result Type must be a scalar or vector of integer type.

Operand’s type must be a scalar or vector of integer type. It must have the same number of components
as Result Type. The component width must equal the component width in Result Type.

4 200 <id>
Result Type

Result <id> <id>
Operand

216

OpBitFieldInsert

Make a copy of an object, with a modified bit field that comes from another
object.

Results are computed per component.

Result Type must be a scalar or vector of integer type.

The type of Base and Insert must be the same as Result Type.

Any result bits numbered outside [Offset, Offset + Count - 1] (inclusive)
come from the corresponding bits in Base.

Any result bits numbered in [Offset, Offset + Count - 1] come, in order, from
the bits numbered [0, Count - 1] of Insert.

Count must be an integer type scalar. Count is the number of bits taken
from Insert. It is consumed as an unsigned value. Count can be 0, in which
case the result is Base.

Offset must be an integer type scalar. Offset is the lowest-order bit of the bit
field. It is consumed as an unsigned value.

The resulting value is undefined if Count or Offset or their sum is greater
than the number of bits in the result.

Capability:
Shader, BitInstructions

7 201 <id>
Result Type

Result <id> <id>
Base

<id>
Insert

<id>
Offset

<id>
Count

217

OpBitFieldSExtract

Extract a bit field from an object, with sign extension.

Results are computed per component.

Result Type must be a scalar or vector of integer type.

The type of Base must be the same as Result Type.

If Count is greater than 0: The bits of Base numbered in [Offset, Offset
+ Count - 1] (inclusive) become the bits numbered [0, Count - 1] of the
result. The remaining bits of the result will all be the same as bit Offset
+ Count - 1 of Base.

Count must be an integer type scalar. Count is the number of bits
extracted from Base. It is consumed as an unsigned value. Count can
be 0, in which case the result is 0.

Offset must be an integer type scalar. Offset is the lowest-order bit of
the bit field to extract from Base. It is consumed as an unsigned value.

The resulting value is undefined if Count or Offset or their sum is
greater than the number of bits in the result.

Capability:
Shader, BitInstructions

6 202 <id>
Result Type

Result <id> <id>
Base

<id>
Offset

<id>
Count

OpBitFieldUExtract

Extract a bit field from an object, without sign extension.

The semantics are the same as with OpBitFieldSExtract with the
exception that there is no sign extension. The remaining bits of the
result will all be 0.

Capability:
Shader, BitInstructions

6 203 <id>
Result Type

Result <id> <id>
Base

<id>
Offset

<id>
Count

218

OpBitReverse

Reverse the bits in an object.

Results are computed per component.

Result Type must be a scalar or vector of integer type.

The type of Base must be the same as Result Type.

The bit-number n of the result is taken from bit-number Width - 1 - n of Base,
where Width is the OpTypeInt operand of the Result Type.

Capability:
Shader, BitInstructions

4 204 <id>
Result Type

Result <id> <id>
Base

OpBitCount

Count the number of set bits in an object.

Results are computed per component.

Result Type must be a scalar or vector of integer type. The components must be wide enough to hold the
unsigned Width of Base as an unsigned value. That is, no sign bit is needed or counted when checking for
a wide enough result width.

Base must be a scalar or vector of integer type. It must have the same number of components as Result
Type.

The result is the unsigned value that is the number of bits in Base that are 1.

4 205 <id>
Result Type

Result <id> <id>
Base

219

3.42.15. Relational and Logical Instructions

OpAny

Result is true if any component of Vector is true, otherwise result is false.

Result Type must be a Boolean type scalar.

Vector must be a vector of Boolean type.

4 154 <id>
Result Type

Result <id> <id>
Vector

OpAll

Result is true if all components of Vector are true, otherwise result is false.

Result Type must be a Boolean type scalar.

Vector must be a vector of Boolean type.

4 155 <id>
Result Type

Result <id> <id>
Vector

OpIsNan

Result is true if x is an IEEE NaN, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same number of components as Result
Type.

Results are computed per component.

4 156 <id>
Result Type

Result <id> <id>
x

OpIsInf

Result is true if x is an IEEE Inf, otherwise result is false

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same number of components as Result
Type.

Results are computed per component.

4 157 <id>
Result Type

Result <id> <id>
x

220

OpIsFinite

Result is true if x is an IEEE finite number, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same
number of components as Result Type.

Results are computed per component.

Capability:
Kernel

4 158 <id>
Result Type

Result <id> <id>
x

OpIsNormal

Result is true if x is an IEEE normal number, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same
number of components as Result Type.

Results are computed per component.

Capability:
Kernel

4 159 <id>
Result Type

Result <id> <id>
x

OpSignBitSet

Result is true if x has its sign bit set, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same
number of components as Result Type.

Results are computed per component.

Capability:
Kernel

4 160 <id>
Result Type

Result <id> <id>
x

221

OpLessOrGreater

Deprecated (use OpFOrdNotEqual).

Has the same semantics as OpFOrdNotEqual.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have
the same number of components as Result Type.

y must have the same type as x.

Results are computed per component.

Capability:
Kernel

Missing after version 1.5.

5 161 <id>
Result Type

Result <id> <id>
x

<id>
y

OpOrdered

Result is true if both x == x and y == y are true, where IEEE
comparison is used, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have
the same number of components as Result Type.

y must have the same type as x.

Results are computed per component.

Capability:
Kernel

5 162 <id>
Result Type

Result <id> <id>
x

<id>
y

OpUnordered

Result is true if either x or y is an IEEE NaN, otherwise result
is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have
the same number of components as Result Type.

y must have the same type as x.

Results are computed per component.

Capability:
Kernel

5 163 <id>
Result Type

Result <id> <id>
x

<id>
y

222

OpLogicalEqual

Result is true if Operand 1 and Operand 2 have the same value. Result is false if Operand 1 and Operand
2 have different values.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 must be the same as Result Type.

The type of Operand 2 must be the same as Result Type.

Results are computed per component.

5 164 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpLogicalNotEqual

Result is true if Operand 1 and Operand 2 have different values. Result is false if Operand 1 and Operand
2 have the same value.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 must be the same as Result Type.

The type of Operand 2 must be the same as Result Type.

Results are computed per component.

5 165 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpLogicalOr

Result is true if either Operand 1 or Operand 2 is true. Result is false if both Operand 1 and Operand 2
are false.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 must be the same as Result Type.

The type of Operand 2 must be the same as Result Type.

Results are computed per component.

5 166 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

223

OpLogicalAnd

Result is true if both Operand 1 and Operand 2 are true. Result is false if either Operand 1 or Operand 2
are false.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 must be the same as Result Type.

The type of Operand 2 must be the same as Result Type.

Results are computed per component.

5 167 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpLogicalNot

Result is true if Operand is false. Result is false if Operand is true.

Result Type must be a scalar or vector of Boolean type.

The type of Operand must be the same as Result Type.

Results are computed per component.

4 168 <id>
Result Type

Result <id> <id>
Operand

OpSelect

Select between two objects. Before version 1.4, results are only computed per component.

Before version 1.4, Result Type must be a pointer, scalar, or vector. Starting with version 1.4, Result Type
can additionally be a composite type other than a vector.

The types of Object 1 and Object 2 must be the same as Result Type.

Condition must be a scalar or vector of Boolean type.

If Condition is a scalar and true, the result is Object 1. If Condition is a scalar and false, the result is
Object 2.

If Condition is a vector, Result Type must be a vector with the same number of components as Condition
and the result is a mix of Object 1 and Object 2: If a component of Condition is true, the corresponding
component in the result is taken from Object 1, otherwise it is taken from Object 2.

6 169 <id>
Result Type

Result <id> <id>
Condition

<id>
Object 1

<id>
Object 2

224

OpIEqual

Integer comparison for equality.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same component width, and they must have the same number of components as Result Type.

Results are computed per component.

5 170 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpINotEqual

Integer comparison for inequality.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same component width, and they must have the same number of components as Result Type.

Results are computed per component.

5 171 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpUGreaterThan

Unsigned-integer comparison if Operand 1 is greater than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same component width, and they must have the same number of components as Result Type.

Results are computed per component.

5 172 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

225

OpSGreaterThan

Signed-integer comparison if Operand 1 is greater than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same component width, and they must have the same number of components as Result Type.

Results are computed per component.

5 173 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpUGreaterThanEqual

Unsigned-integer comparison if Operand 1 is greater than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same component width, and they must have the same number of components as Result Type.

Results are computed per component.

5 174 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpSGreaterThanEqual

Signed-integer comparison if Operand 1 is greater than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same component width, and they must have the same number of components as Result Type.

Results are computed per component.

5 175 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

226

OpULessThan

Unsigned-integer comparison if Operand 1 is less than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same component width, and they must have the same number of components as Result Type.

Results are computed per component.

5 176 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpSLessThan

Signed-integer comparison if Operand 1 is less than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same component width, and they must have the same number of components as Result Type.

Results are computed per component.

5 177 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpULessThanEqual

Unsigned-integer comparison if Operand 1 is less than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same component width, and they must have the same number of components as Result Type.

Results are computed per component.

5 178 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpSLessThanEqual

Signed-integer comparison if Operand 1 is less than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the
same component width, and they must have the same number of components as Result Type.

Results are computed per component.

227

5 179 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFOrdEqual

Floating-point comparison for being ordered and equal.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 180 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFUnordEqual

Floating-point comparison for being unordered or equal.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 181 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFOrdNotEqual

Floating-point comparison for being ordered and not equal.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 182 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

228

OpFUnordNotEqual

Floating-point comparison for being unordered or not equal.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 183 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFOrdLessThan

Floating-point comparison if operands are ordered and Operand 1 is less than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 184 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFUnordLessThan

Floating-point comparison if operands are unordered or Operand 1 is less than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 185 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

229

OpFOrdGreaterThan

Floating-point comparison if operands are ordered and Operand 1 is greater than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 186 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFUnordGreaterThan

Floating-point comparison if operands are unordered or Operand 1 is greater than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 187 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFOrdLessThanEqual

Floating-point comparison if operands are ordered and Operand 1 is less than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 188 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

230

OpFUnordLessThanEqual

Floating-point comparison if operands are unordered or Operand 1 is less than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 189 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFOrdGreaterThanEqual

Floating-point comparison if operands are ordered and Operand 1 is greater than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 190 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpFUnordGreaterThanEqual

Floating-point comparison if operands are unordered or Operand 1 is greater than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have
the same type, and they must have the same number of components as Result Type.

Results are computed per component.

5 191 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

231

3.42.16. Derivative Instructions

OpDPdx

Same result as either OpDPdxFine or OpDPdxCoarse on P. Selection of
which one is based on external factors.

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
Shader

4 207 <id>
Result Type

Result <id> <id>
P

OpDPdy

Same result as either OpDPdyFine or OpDPdyCoarse on P. Selection of
which one is based on external factors.

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
Shader

4 208 <id>
Result Type

Result <id> <id>
P

OpFwidth

Result is the same as computing the sum of the absolute values of OpDPdx
and OpDPdy on P.

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
Shader

4 209 <id>
Result Type

Result <id> <id>
P

232

OpDPdxFine

Result is the partial derivative of P with respect to the window x
coordinate.Uses local differencing based on the value of P for the current
fragment and its immediate neighbor(s).

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 210 <id>
Result Type

Result <id> <id>
P

OpDPdyFine

Result is the partial derivative of P with respect to the window y
coordinate.Uses local differencing based on the value of P for the current
fragment and its immediate neighbor(s).

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 211 <id>
Result Type

Result <id> <id>
P

OpFwidthFine

Result is the same as computing the sum of the absolute values of
OpDPdxFine and OpDPdyFine on P.

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 212 <id>
Result Type

Result <id> <id>
P

233

OpDPdxCoarse

Result is the partial derivative of P with respect to the window x coordinate.
Uses local differencing based on the value of P for the current fragment’s
neighbors, and possibly, but not necessarily, includes the value of P for the
current fragment. That is, over a given area, the implementation can compute x
derivatives in fewer unique locations than would be allowed for OpDPdxFine.

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 213 <id>
Result Type

Result <id> <id>
P

OpDPdyCoarse

Result is the partial derivative of P with respect to the window y coordinate.
Uses local differencing based on the value of P for the current fragment’s
neighbors, and possibly, but not necessarily, includes the value of P for the
current fragment. That is, over a given area, the implementation can compute y
derivatives in fewer unique locations than would be allowed for OpDPdyFine.

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 214 <id>
Result Type

Result <id> <id>
P

OpFwidthCoarse

Result is the same as computing the sum of the absolute values of
OpDPdxCoarse and OpDPdyCoarse on P.

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 215 <id>
Result Type

Result <id> <id>
P

234

3.42.17. Control-Flow Instructions

OpPhi

The SSA phi function.

The result is selected based on control flow: If control reached the current block from Parent i, Result Id
gets the value that Variable i had at the end of Parent i.

Result Type can be any type except OpTypeVoid.

Operands are a sequence of pairs: (Variable 1, Parent 1 block), (Variable 2, Parent 2 block), … Each
Parent i block is the label of an immediate predecessor in the CFG of the current block. There must be
exactly one Parent i for each parent block of the current block in the CFG. If Parent i is reachable in the
CFG and Variable i is defined in a block, that defining block must dominate Parent i. All Variables must
have a type matching Result Type.

Within a block, this instruction must appear before all non-OpPhi instructions (except for OpLine and
OpNoLine, which can be mixed with OpPhi).

3 + variable 245 <id>
Result Type

Result <id> <id>, <id>, …
Variable, Parent, …

OpLoopMerge

Declare a structured loop.

This instruction must immediately precede either an OpBranch or OpBranchConditional instruction.
That is, it must be the second-to-last instruction in its block.

Merge Block is the label of the merge block for this structured loop.

Continue Target is the label of a block targeted for processing a loop "continue".

Loop Control Parameters appear in Loop Control-table order for any Loop Control setting that requires
such a parameter.

See Structured Control Flow for more detail.

4 + variable 246 <id>
Merge Block

<id>
Continue Target

Loop Control Literal, Literal, …
Loop Control
Parameters

235

OpSelectionMerge

Declare a structured selection.

This instruction must immediately precede either an OpBranchConditional or OpSwitch instruction. That
is, it must be the second-to-last instruction in its block.

Merge Block is the label of the merge block for this structured selection.

See Structured Control Flow for more detail.

3 247 <id>
Merge Block

Selection Control

OpLabel

The label instruction of a block.

References to a block are through the Result <id> of its label.

2 248 Result <id>

OpBranch

Unconditional branch to Target Label.

Target Label must be the Result <id> of an OpLabel instruction in the current function.

This instruction must be the last instruction in a block.

2 249 <id>
Target Label

236

OpBranchConditional

If Condition is true, branch to True Label, otherwise branch to False Label.

Condition must be a Boolean type scalar.

True Label must be an OpLabel in the current function.

False Label must be an OpLabel in the current function.

Starting with version 1.6, True Label and False Label must not be the same <id>.

Branch weights are unsigned 32-bit integer literals. There must be either no Branch Weights or exactly two
branch weights. If present, the first is the weight for branching to True Label, and the second is the weight
for branching to False Label. The implied probability that a branch is taken is its weight divided by the sum
of the two Branch weights. At least one weight must be non-zero. A weight of zero does not imply a branch
is dead or permit its removal; branch weights are only hints. The sum of the two weights must not overflow
a 32-bit unsigned integer.

This instruction must be the last instruction in a block.

4 + variable 250 <id>
Condition

<id>
True Label

<id>
False Label

Literal, Literal, …
Branch weights

OpSwitch

Multi-way branch to one of the operand label <id>.

Selector must have a type of OpTypeInt. Selector is compared for equality to the Target literals.

Default must be the <id> of a label. If Selector does not equal any of the Target literals, control flow
branches to the Default label <id>.

Target must be alternating scalar integer literals and the <id> of a label. If Selector equals a literal, control
flow branches to the following label <id>. It is invalid for any two literal to be equal to each other. If Selector
does not equal any literal, control flow branches to the Default label <id>. Each literal is interpreted with
the type of Selector: The bit width of Selector’s type is the width of each literal’s type. If this width is not a
multiple of 32-bits and the OpTypeInt Signedness is set to 1, the literal values are interpreted as being
sign extended.

This instruction must be the last instruction in a block.

3 + variable 251 <id>
Selector

<id>
Default

literal, label <id>,
literal, label <id>,
…
Target

237

OpKill

Deprecated (use OpTerminateInvocation or
OpDemoteToHelperInvocation).

Fragment-shader discard.

Ceases all further processing in any invocation that executes it: Only
instructions these invocations executed before OpKill have observable
side effects. If this instruction is executed in non-uniform control flow,
all subsequent control flow is non-uniform (for invocations that
continue to execute).

This instruction must be the last instruction in a block.

This instruction is only valid in the Fragment Execution Model.

Capability:
Shader

1 252

OpReturn

Return with no value from a function with void return type.

This instruction must be the last instruction in a block.

1 253

OpReturnValue

Return a value from a function.

Value is the value returned, by copy, and must match the Return Type operand of the OpTypeFunction
type of the OpFunction body this return instruction is in. Value must not have type OpTypeVoid.

This instruction must be the last instruction in a block.

2 254 <id>
Value

OpUnreachable

Behavior is undefined if this instruction is executed.

This instruction must be the last instruction in a block.

1 255

238

OpLifetimeStart

Declare that an object was not defined before this instruction.

Pointer is a pointer to the object whose lifetime is starting. Its type
must be an OpTypePointer with Storage Class Function.

Size is an unsigned 32-bit integer. Size must be 0 if Pointer is a
pointer to a non-void type or the Addresses capability is not being
used. If Size is non-zero, it is the number of bytes of memory whose
lifetime is starting.

Capability:
Kernel

3 256 <id>
Pointer

Literal
Size

OpLifetimeStop

Declare that an object is dead after this instruction.

Pointer is a pointer to the object whose lifetime is ending. Its type must
be an OpTypePointer with Storage Class Function.

Size is an unsigned 32-bit integer. Size must be 0 if Pointer is a
pointer to a non-void type or the Addresses capability is not being
used. If Size is non-zero, it is the number of bytes of memory whose
lifetime is ending.

Capability:
Kernel

3 257 <id>
Pointer

Literal
Size

OpTerminateInvocation

Fragment-shader terminate.

Ceases all further processing in any invocation that executes it: Only
instructions these invocations executed before
OpTerminateInvocation will have observable side effects. If this
instruction is executed in non-uniform control flow, all subsequent
control flow is non-uniform (for invocations that continue to execute).

This instruction must be the last instruction in a block.

This instruction is only valid in the Fragment Execution Model.

Capability:
Shader

Missing before version 1.6.

1 4416

239

OpDemoteToHelperInvocation
(OpDemoteToHelperInvocationEXT)

Demote this fragment shader invocation to a helper invocation. Any
stores to memory after this instruction are suppressed and the
fragment does not write outputs to the framebuffer.

Unlike the OpTerminateInvocation instruction, this does not
necessarily terminate the invocation which might be needed for
derivative calculations. It is not considered a flow control instruction
(flow control does not become non-uniform) and does not terminate
the block. The implementation may terminate helper invocations
before the end of the shader as an optimization, but doing so must not
affect derivative calculations and does not make control flow non-
uniform.

After an invocation executes this instruction, any subsequent load of
HelperInvocation within that invocation will load an undefined value
unless the HelperInvocation built-in variable is decorated with
Volatile or the load included Volatile in its Memory Operands

This instruction is only valid in the Fragment Execution Model.

Capability:
DemoteToHelperInvocation

Missing before version 1.6.

1 5380

240

3.42.18. Atomic Instructions

OpAtomicLoad

Atomically load through Pointer using the given Semantics. All subparts of the value that is loaded are
read atomically with respect to all other atomic accesses to it within Scope.

Result Type must be a scalar of integer type or floating-point type.

Pointer is the pointer to the memory to read. The type of the value pointed to by Pointer must be the same
as Result Type.

Memory is a memory Scope.

6 227 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics <id>
Semantics

OpAtomicStore

Atomically store through Pointer using the given Semantics. All subparts of Value are written atomically
with respect to all other atomic accesses to it within Scope.

Pointer is the pointer to the memory to write. The type it points to must be a scalar of integer type or
floating-point type.

Value is the value to write. The type of Value and the type pointed to by Pointer must be the same type.

Memory is a memory Scope.

5 228 <id>
Pointer

Scope <id>
Memory

Memory Semantics
<id>
Semantics

<id>
Value

OpAtomicExchange

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value from copying Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be a scalar of integer type or floating-point type.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type.

Memory is a memory Scope.

7 229 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

241

OpAtomicCompareExchange

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value from Value only if Original Value equals Comparator, and
3) store the New Value back through Pointer only if Original Value equaled Comparator.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

Use Equal for the memory semantics of this instruction when Value and Original Value compare equal.

Use Unequal for the memory semantics of this instruction when Value and Original Value compare
unequal. Unequal must not be set to Release or Acquire and Release. In addition, Unequal cannot be
set to a stronger memory-order then Equal.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type. This type must also match the type of Comparator.

Memory is a memory Scope.

9 230 <id>
Result
Type

Result
<id>

<id>
Pointer

Scope
<id>
Memory

Memory
Semantics
<id>
Equal

Memory
Semantics
<id>
Unequal

<id>
Value

<id>
Comparat
or

OpAtomicCompareExchangeWeak

Deprecated (use OpAtomicCompareExchange).

Has the same semantics as OpAtomicCompareExchange.

Memory is a memory Scope.

Capability:
Kernel

Missing after version 1.3.

9 231 <id>
Result
Type

Result
<id>

<id>
Pointer

Scope
<id>
Memory

Memory
Semantics
<id>
Equal

Memory
Semantics
<id>
Unequal

<id>
Value

<id>
Comparat
or

242

OpAtomicIIncrement

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value through integer addition of 1 to Original Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar. The type of the value pointed to by Pointer must be the same
as Result Type.

Memory is a memory Scope.

6 232 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics <id>
Semantics

OpAtomicIDecrement

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value through integer subtraction of 1 from Original Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar. The type of the value pointed to by Pointer must be the same
as Result Type.

Memory is a memory Scope.

6 233 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics <id>
Semantics

243

OpAtomicIAdd

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value by integer addition of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type.

Memory is a memory Scope.

7 234 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicISub

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value by integer subtraction of Value from Original Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type.

Memory is a memory Scope.

7 235 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

244

OpAtomicSMin

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value by finding the smallest signed integer of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type.

Memory is a memory Scope.

7 236 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicUMin

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value by finding the smallest unsigned integer of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type.

Memory is a memory Scope.

7 237 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

245

OpAtomicSMax

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value by finding the largest signed integer of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type.

Memory is a memory Scope.

7 238 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicUMax

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value by finding the largest unsigned integer of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type.

Memory is a memory Scope.

7 239 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

246

OpAtomicAnd

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value by the bitwise AND of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type.

Memory is a memory Scope.

7 240 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicOr

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value by the bitwise OR of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type.

Memory is a memory Scope.

7 241 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

247

OpAtomicXor

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same
location:
1) load through Pointer to get an Original Value,
2) get a New Value by the bitwise exclusive OR of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be
the same as Result Type.

Memory is a memory Scope.

7 242 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicFlagTestAndSet

Atomically sets the flag value pointed to by Pointer to the set state.

Pointer must be a pointer to a 32-bit integer type representing an
atomic flag.

The instruction’s result is true if the flag was in the set state or false if
the flag was in the clear state immediately before the operation.

Result Type must be a Boolean type.

The resulting values are undefined if an atomic flag is modified by an
instruction other than OpAtomicFlagTestAndSet or
OpAtomicFlagClear.

Memory is a memory Scope.

Capability:
Kernel

6 318 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics <id>
Semantics

248

OpAtomicFlagClear

Atomically sets the flag value pointed to by Pointer to the clear state.

Pointer must be a pointer to a 32-bit integer type representing an atomic flag.

Memory Semantics must not be Acquire or AcquireRelease

The resulting values are undefined if an atomic flag is modified by an
instruction other than OpAtomicFlagTestAndSet or OpAtomicFlagClear.

Memory is a memory Scope.

Capability:
Kernel

4 319 <id>
Pointer

Scope <id>
Memory

Memory Semantics <id>
Semantics

OpAtomicFMinEXT

TBD

Capability:
AtomicFloat16MinMaxEXT,
AtomicFloat32MinMaxEXT,
AtomicFloat64MinMaxEXT

Reserved.

7 5614 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicFMaxEXT

TBD

Capability:
AtomicFloat16MinMaxEXT,
AtomicFloat32MinMaxEXT,
AtomicFloat64MinMaxEXT

Reserved.

7 5615 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicFAddEXT

TBD

Capability:
AtomicFloat16AddEXT,
AtomicFloat32AddEXT,
AtomicFloat64AddEXT

Reserved.

7 6035 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Memory

Memory
Semantics
<id>
Semantics

<id>
Value

249

3.42.19. Primitive Instructions

OpEmitVertex

Emits the current values of all output variables to the current output
primitive. After execution, the values of all output variables are
undefined.

This instruction must only be used when only one stream is present.

Capability:
Geometry

1 218

OpEndPrimitive

Finish the current primitive and start a new one. No vertex is emitted.

This instruction must only be used when only one stream is present.

Capability:
Geometry

1 219

OpEmitStreamVertex

Emits the current values of all output variables to the
current output primitive. After execution, the values
of all output variables are undefined.

Stream must be an <id> of a constant instruction
with a scalar integer type. That constant is the
output-primitive stream number.

This instruction must only be used when multiple
streams are present.

Capability:
GeometryStreams

2 220 <id>
Stream

OpEndStreamPrimitive

Finish the current primitive and start a new one. No
vertex is emitted.

Stream must be an <id> of a constant instruction
with a scalar integer type. That constant is the
output-primitive stream number.

This instruction must only be used when multiple
streams are present.

Capability:
GeometryStreams

2 221 <id>
Stream

250

3.42.20. Barrier Instructions

OpControlBarrier

Wait for other invocations of this module to reach the current point of execution.

All invocations of this module within Execution scope reach this point of execution before any invocation
proceeds beyond it.

When Execution is Workgroup or larger, behavior is undefined unless all invocations within Execution
execute the same dynamic instance of this instruction. When Execution is Subgroup or Invocation, the
behavior of this instruction in non-uniform control flow is defined by the client API.

If Semantics is not None, this instruction also serves as an OpMemoryBarrier instruction, and also
performs and adheres to the description and semantics of an OpMemoryBarrier instruction with the same
Memory and Semantics operands. This allows atomically specifying both a control barrier and a memory
barrier (that is, without needing two instructions). If Semantics is None, Memory is ignored.

Before version 1.3, it is only valid to use this instruction with TessellationControl, GLCompute, or
Kernel execution models. There is no such restriction starting with version 1.3.

If used with the TessellationControl execution model, it also implicitly synchronizes the Output Storage
Class: Writes to Output variables performed by any invocation executed prior to a OpControlBarrier are
visible to any other invocation proceeding beyond that OpControlBarrier.

4 224 Scope <id>
Execution

Scope <id>
Memory

Memory Semantics <id>
Semantics

OpMemoryBarrier

Control the order that memory accesses are observed.

Ensures that memory accesses issued before this instruction are observed before memory accesses
issued after this instruction. This control is ensured only for memory accesses issued by this invocation
and observed by another invocation executing within Memory scope. If the Vulkan memory model is
declared, this ordering only applies to memory accesses that use the NonPrivatePointer memory
operand or NonPrivateTexel image operand.

Semantics declares what kind of memory is being controlled and what kind of control to apply.

To execute both a memory barrier and a control barrier, see OpControlBarrier.

3 225 Scope <id>
Memory

Memory Semantics <id>
Semantics

251

OpNamedBarrierInitialize

Declare a new named-barrier object.

Result Type must be the type OpTypeNamedBarrier.

Subgroup Count must be a 32-bit integer type scalar representing the number
of subgroups that must reach the current point of execution.

Capability:
NamedBarrier

Missing before version
1.1.

4 328 <id>
Result Type

Result <id> <id>
Subgroup Count

OpMemoryNamedBarrier

Wait for other invocations of this module to reach the current point of execution.

Named Barrier must be the type OpTypeNamedBarrier.

If Semantics is not None, this instruction also serves as an OpMemoryBarrier
instruction, and also performs and adheres to the description and semantics of
an OpMemoryBarrier instruction with the same Memory and Semantics
operands. This allows atomically specifying both a control barrier and a
memory barrier (that is, without needing two instructions). If Semantics None,
Memory is ignored.

Capability:
NamedBarrier

Missing before version
1.1.

4 329 <id>
Named Barrier

Scope <id>
Memory

Memory Semantics <id>
Semantics

252

3.42.21. Group and Subgroup Instructions

OpGroupAsyncCopy

Perform an asynchronous group copy of Num Elements elements from
Source to Destination. The asynchronous copy is performed by all
work-items in a group.

This instruction results in an event object that can be used by
OpGroupWaitEvents to wait for the async copy to finish.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Result Type must be an OpTypeEvent object.

Destination must be a pointer to a scalar or vector of floating-point
type or integer type.

Destination pointer Storage Class must be Workgroup or
CrossWorkgroup.

The type of Source must be the same as Destination.

If Destination pointer Storage Class is Workgroup, the Source pointer
Storage Class must be CrossWorkgroup. In this case Stride defines
the stride in elements when reading from Source pointer.

If Destination pointer Storage Class is CrossWorkgroup, the Source
pointer Storage Class must be Workgroup. In this case Stride defines
the stride in elements when writing each element to Destination
pointer.

Stride and NumElements must be a 32-bit integer type scalar if the
addressing model is Physical32 and 64 bit integer type scalar if the
Addressing Model is Physical64.

Event must have a type of OpTypeEvent.

Event can be used to associate the copy with a previous copy allowing
an event to be shared by multiple copies. Otherwise Event should be
an OpConstantNull.

If Event is not OpConstantNull, the result is the event object supplied
by the Event operand.

Capability:
Kernel

9 259 <id>
Result
Type

Result
<id>

Scope
<id>
Execution

<id>
Destinatio
n

<id>
Source

<id>
Num
Elements

<id>
Stride

<id>
Event

253

OpGroupWaitEvents

Wait for events generated by OpGroupAsyncCopy operations to complete.
Events List points to Num Events event objects, which is released after the wait
is performed.

Behavior is undefined if not all invocations of this module within Execution
reach this point of execution.

Behavior is undefined unless all invocations within Execution execute the same
dynamic instance of this instruction.

Execution is a Scope. It must be either Workgroup or Subgroup.

Num Events must be a 32-bit integer type scalar.

Events List must be a pointer to OpTypeEvent.

Capability:
Kernel

4 260 Scope <id>
Execution

<id>
Num Events

<id>
Events List

OpGroupAll

Evaluates a predicate for all invocations in the group,resulting
in true if predicate evaluates to true for all invocations in the
group, otherwise the result is false.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution
execute the same dynamic instance of this instruction.

Result Type must be a Boolean type.

Execution is a Scope. It must be either Workgroup or
Subgroup.

Predicate must be a Boolean type.

Capability:
Groups

5 261 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Predicate

254

OpGroupAny

Evaluates a predicate for all invocations in the group,resulting
in true if predicate evaluates to true for any invocation in the
group, otherwise the result is false.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution
execute the same dynamic instance of this instruction.

Result Type must be a Boolean type.

Execution is a Scope. It must be either Workgroup or
Subgroup.

Predicate must be a Boolean type.

Capability:
Groups

5 262 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Predicate

OpGroupBroadcast

Broadcast the Value of the invocation identified by the local id LocalId
to the result of all invocations in the group.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The type of Value must be the same as Result Type.

LocalId must be an integer datatype. It must be a scalar, a vector with
2 components, or a vector with 3 components. Behavior is undefined
unless LocalId is the same for all invocations in the group.

Capability:
Groups

6 263 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

<id>
LocalId

255

OpGroupIAdd

An integer add group operation specified for all values of X specified
by invocations in the group.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0.

The type of X must be the same as Result Type.

Capability:
Groups

6 264 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupFAdd

A floating-point add group operation specified for all values of X
specified by invocations in the group.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Result Type must be a scalar or vector of floating-point type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0.

The type of X must be the same as Result Type.

Capability:
Groups

6 265 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

256

OpGroupFMin

A floating-point minimum group operation specified for all values of X
specified by invocations in the group.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Result Type must be a scalar or vector of floating-point type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is +INF.

The type of X must be the same as Result Type.

Capability:
Groups

6 266 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupUMin

An unsigned integer minimum group operation specified for all values
of X specified by invocations in the group.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is UINT_MAX when X is 32 bits wide and
ULONG_MAX when X is 64 bits wide.

The type of X must be the same as Result Type.

Capability:
Groups

6 267 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

257

OpGroupSMin

A signed integer minimum group operation specified for all values of X
specified by invocations in the group.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is INT_MAX when X is 32 bits wide and
LONG_MAX when X is 64 bits wide.

The type of X must be the same as Result Type.

Capability:
Groups

6 268 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupFMax

A floating-point maximum group operation specified for all values of X
specified by invocations in the group.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Result Type must be a scalar or vector of floating-point type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is -INF.

The type of X must be the same as Result Type.

Capability:
Groups

6 269 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

258

OpGroupUMax

An unsigned integer maximum group operation specified for all values
of X specified by invocations in the group.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0.

The type of X must be the same as Result Type.

Capability:
Groups

6 270 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupSMax

A signed integer maximum group operation specified for all values of
X specified by invocations in the group.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is INT_MIN when X is 32 bits wide and
LONG_MIN when X is 64 bits wide.

The type of X must be the same as Result Type.

Capability:
Groups

6 271 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpSubgroupBallotKHR

See extension SPV_KHR_shader_ballot

Capability:
SubgroupBallotKHR

Reserved.

4 4421 <id>
Result Type

Result <id> <id>
Predicate

259

OpSubgroupFirstInvocationKHR

See extension SPV_KHR_shader_ballot

Capability:
SubgroupBallotKHR

Reserved.

4 4422 <id>
Result Type

Result <id> <id>
Value

OpSubgroupAllKHR

TBD

Capability:
SubgroupVoteKHR

Reserved.

4 4428 <id>
Result Type

Result <id> <id>
Predicate

OpSubgroupAnyKHR

TBD

Capability:
SubgroupVoteKHR

Reserved.

4 4429 <id>
Result Type

Result <id> <id>
Predicate

OpSubgroupAllEqualKHR

TBD

Capability:
SubgroupVoteKHR

Reserved.

4 4430 <id>
Result Type

Result <id> <id>
Predicate

OpSubgroupReadInvocationKHR

See extension SPV_KHR_shader_ballot

Capability:
SubgroupBallotKHR

Reserved.

5 4432 <id>
Result Type

Result <id> <id>
Value

<id>
Index

OpGroupIAddNonUniformAMD

TBD

Capability:
Groups

Reserved.

6 5000 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupFAddNonUniformAMD

TBD

Capability:
Groups

Reserved.

260

6 5001 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupFMinNonUniformAMD

TBD

Capability:
Groups

Reserved.

6 5002 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupUMinNonUniformAMD

TBD

Capability:
Groups

Reserved.

6 5003 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupSMinNonUniformAMD

TBD

Capability:
Groups

Reserved.

6 5004 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupFMaxNonUniformAMD

TBD

Capability:
Groups

Reserved.

6 5005 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupUMaxNonUniformAMD

TBD

Capability:
Groups

Reserved.

6 5006 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupSMaxNonUniformAMD

TBD

Capability:
Groups

Reserved.

6 5007 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

261

OpSubgroupShuffleINTEL

TBD

Capability:
SubgroupShuffleINTEL

Reserved.

5 5571 <id>
Result Type

Result <id> <id>
Data

<id>
InvocationId

OpSubgroupShuffleDownINTEL

TBD

Capability:
SubgroupShuffleINTEL

Reserved.

6 5572 <id>
Result Type

Result <id> <id>
Current

<id>
Next

<id>
Delta

OpSubgroupShuffleUpINTEL

TBD

Capability:
SubgroupShuffleINTEL

Reserved.

6 5573 <id>
Result Type

Result <id> <id>
Previous

<id>
Current

<id>
Delta

OpSubgroupShuffleXorINTEL

TBD

Capability:
SubgroupShuffleINTEL

Reserved.

5 5574 <id>
Result Type

Result <id> <id>
Data

<id>
Value

OpSubgroupBlockReadINTEL

TBD

Capability:
SubgroupBufferBlockI
OINTEL

Reserved.

4 5575 <id>
Result Type

Result <id> <id>
Ptr

OpSubgroupBlockWriteINTEL

TBD

Capability:
SubgroupBufferBlockIOINTEL

Reserved.

3 5576 <id>
Ptr

<id>
Data

OpSubgroupImageBlockReadINTEL

TBD

Capability:
SubgroupImageBlockIOINTEL

Reserved.

262

5 5577 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

OpSubgroupImageBlockWriteINTEL

TBD

Capability:
SubgroupImageBlockIO
INTEL

Reserved.

4 5578 <id>
Image

<id>
Coordinate

<id>
Data

OpSubgroupImageMediaBlockReadINTEL

TBD

Capability:
SubgroupImageMediaBloc
kIOINTEL

Reserved.

7 5580 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

<id>
Width

<id>
Height

OpSubgroupImageMediaBlockWriteINTEL

TBD

Capability:
SubgroupImageMediaBlockIOIN
TEL

Reserved.

6 5581 <id>
Image

<id>
Coordinate

<id>
Width

<id>
Height

<id>
Data

263

3.42.22. Device-Side Enqueue Instructions

OpEnqueueMarker

Enqueue a marker command to the queue object specified by Queue. The
marker command waits for a list of events to complete, or if the list is empty
it waits for all previously enqueued commands in Queue to complete before
the marker completes.

Result Type must be a 32-bit integer type scalar. A successful enqueue
results in the value 0. A failed enqueue results in a non-0 value.

Queue must be of the type OpTypeQueue.

Num Events specifies the number of event objects in the wait list pointed to
by Wait Events and must be a 32-bit integer type scalar, which is treated as
an unsigned integer.

Wait Events specifies the list of wait event objects and must be a pointer to
OpTypeDeviceEvent.

Ret Event is a pointer to a device event which gets implicitly retained by this
instruction. It must have a type of OpTypePointer to OpTypeDeviceEvent.
If Ret Event is set to null this instruction becomes a no-op.

Capability:
DeviceEnqueue

7 291 <id>
Result Type

Result <id> <id>
Queue

<id>
Num Events

<id>
Wait Events

<id>
Ret Event

264

OpEnqueueKernel

Enqueue the function specified by Invoke and the NDRange specified by ND
Range for execution to the queue object specified by Queue.

Result Type must be a 32-bit integer type scalar. A successful enqueue
results in the value 0. A failed enqueue results in a non-0 value.

Queue must be of the type OpTypeQueue.

Flags must be an integer type scalar. The content of Flags is interpreted as
Kernel Enqueue Flags mask.

The type of ND Range must be an OpTypeStruct whose members are as
described by the Result Type of OpBuildNDRange.

Num Events specifies the number of event objects in the wait list pointed to
by Wait Events and must be 32-bit integer type scalar, which is treated as an
unsigned integer.

Wait Events specifies the list of wait event objects and must be a pointer to
OpTypeDeviceEvent.

Ret Event must be a pointer to OpTypeDeviceEvent which gets implicitly
retained by this instruction.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypeInt.
- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be
a pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must
be a 32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type
scalar, which is treated as an unsigned integer.

Each Local Size operand corresponds (in order) to one OpTypePointer to
Workgroup Storage Class parameter to the Invoke function, and specifies
the number of bytes of Workgroup storage used to back the pointer during
the execution of the Invoke function.

Capability:
DeviceEnqueue

13 +
variab
le

292 <id>
Resul
t Type

Resul
t <id>

<id>
Queu
e

<id>
Flags

<id>
ND
Rang
e

<id>
Num
Event
s

<id>
Wait
Event
s

<id>
Ret
Event

<id>
Invok
e

<id>
Para
m

<id>
Para
m
Size

<id>
Para
m
Align

<id>,
<id>,
…
Local
Size

265

OpGetKernelNDrangeSubGroupCount

Result is the number of subgroups in each workgroup of the dispatch (except
for the last in cases where the global size does not divide cleanly into work-
groups) given the combination of the passed NDRange descriptor specified by
ND Range and the function specified by Invoke.

Result Type must be a 32-bit integer type scalar.

The type of ND Range must be an OpTypeStruct whose members are as
described by the Result Type of OpBuildNDRange.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypeInt.
- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a
pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be
a 32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar,
which is treated as an unsigned integer.

Capability:
DeviceEnqueue

8 293 <id>
Result Type

Result <id> <id>
ND Range

<id>
Invoke

<id>
Param

<id>
Param Size

<id>
Param Align

266

OpGetKernelNDrangeMaxSubGroupSize

Result is the maximum sub-group size for the function specified by Invoke and
the NDRange specified by ND Range.

Result Type must be a 32-bit integer type scalar.

The type of ND Range must be an OpTypeStruct whose members are as
described by the Result Type of OpBuildNDRange.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypeInt.
- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a
pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be
a 32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar,
which is treated as an unsigned integer.

Capability:
DeviceEnqueue

8 294 <id>
Result Type

Result <id> <id>
ND Range

<id>
Invoke

<id>
Param

<id>
Param Size

<id>
Param Align

267

OpGetKernelWorkGroupSize

Result is the maximum work-group size that can be used to execute the
function specified by Invoke on the device.

Result Type must be a 32-bit integer type scalar.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypeInt.
- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be
a pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and
must be a 32-bit integer type scalar, which is treated as an unsigned
integer.

Param Align is the alignment of Param and must be a 32-bit integer type
scalar, which is treated as an unsigned integer.

Capability:
DeviceEnqueue

7 295 <id>
Result Type

Result <id> <id>
Invoke

<id>
Param

<id>
Param Size

<id>
Param Align

268

OpGetKernelPreferredWorkGroupSizeMultiple

Result is the preferred multiple of work-group size for the function specified
by Invoke. This is a performance hint. Specifying a work-group size that is
not a multiple of this result as the value of the local work size does not fail
to enqueue Invoke for execution unless the work-group size specified is
larger than the device maximum.

Result Type must be a 32-bit integer type scalar.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypeInt.
- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be
a pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and
must be a 32-bit integer type scalar, which is treated as an unsigned
integer.

Param Align is the alignment of Param and must be a 32-bit integer type
scalar, which is treated as an unsigned integer.

Capability:
DeviceEnqueue

7 296 <id>
Result Type

Result <id> <id>
Invoke

<id>
Param

<id>
Param Size

<id>
Param Align

OpRetainEvent

Increments the reference count of the event object
specified by Event.

Behavior is undefined if Event is not a valid event.

Capability:
DeviceEnqueue

2 297 <id>
Event

OpReleaseEvent

Decrements the reference count of the event object
specified by Event. The event object is deleted once
the event reference count is zero, the specific
command identified by this event has completed (or
terminated) and there are no commands in any
device command queue that require a wait for this
event to complete.

Behavior is undefined if Event is not a valid event.

Capability:
DeviceEnqueue

2 298 <id>
Event

269

OpCreateUserEvent

Create a user event. The execution status of the created event is set
to a value of 2 (CL_SUBMITTED).

Result Type must be OpTypeDeviceEvent.

Capability:
DeviceEnqueue

3 299 <id>
Result Type

Result <id>

OpIsValidEvent

Result is true if the event specified by Event is a valid event, otherwise false.

Result Type must be a Boolean type.

Event must have a type of OpTypeDeviceEvent

Capability:
DeviceEnqueue

4 300 <id>
Result Type

Result <id> <id>
Event

OpSetUserEventStatus

Sets the execution status of a user event specified by Event.Status
can be either 0 (CL_COMPLETE) to indicate that this kernel and all its
child kernels finished execution successfully, or a negative integer
value indicating an error.

Event must have a type of OpTypeDeviceEvent that was produced by
OpCreateUserEvent.

Status must have a type of 32-bit OpTypeInt treated as a signed
integer.

Capability:
DeviceEnqueue

3 301 <id>
Event

<id>
Status

270

OpCaptureEventProfilingInfo

Captures the profiling information specified by Profiling Info for the command
associated with the event specified by Event in the memory pointed to by
Value.The profiling information is available in the memory pointed to by Value
after the command identified by Event has completed.

Event must have a type of OpTypeDeviceEvent that was produced by
OpEnqueueKernel or OpEnqueueMarker.

Profiling Info must be an integer type scalar. The content of Profiling Info is
interpreted as Kernel Profiling Info mask.

Value must be a pointer to a scalar 8-bit integer type in the CrossWorkgroup
Storage Class.

If Profiling Info is CmdExecTime, Value behavior is defined only if it points to
128-bit memory range.
The first 64 bits contain the elapsed time CL_PROFILING_COMMAND_END -
CL_PROFILING_COMMAND_START for the command identified by Event in
nanoseconds.
The second 64 bits contain the elapsed time
CL_PROFILING_COMMAND_COMPLETE -
CL_PROFILING_COMMAND_START for the command identified by Event in
nanoseconds.

Note: What is captured is undefined if this instruction is called multiple times
for the same event.

Capability:
DeviceEnqueue

4 302 <id>
Event

<id>
Profiling Info

<id>
Value

OpGetDefaultQueue

The result is the default device queue, or if a default device queue has
not been created, a null queue object.

Result Type must be an OpTypeQueue.

Capability:
DeviceEnqueue

3 303 <id>
Result Type

Result <id>

271

OpBuildNDRange

Given the global work size specified by GlobalWorkSize, local work
size specified by LocalWorkSize and global work offset specified by
GlobalWorkOffset, builds the result as a 1D, 2D, or 3D ND-range
descriptor structure.

Result Type must be an OpTypeStruct with the following ordered list
of members, starting from the first to last:

1) 32-bit integer type scalar, that specifies the number of dimensions
used to specify the global work-items and work-items in the work-
group.

2) OpTypeArray with 3 elements, where each element is 32-bit
integer type scalar if the addressing model is Physical32 and 64-bit
integer type scalar if the addressing model is Physical64. This
member is an array of per-dimension unsigned values that describe
the offset used to calculate the global ID of a work-item.

3) OpTypeArray with 3 elements, where each element is 32-bit
integer type scalar if the addressing model is Physical32 and 64-bit
integer type scalar if the addressing model is Physical64. This
member is an array of per-dimension unsigned values that describe
the number of global work-items in the dimensions that execute the
kernel function.

4) OpTypeArray with 3 elements, where each element is 32-bit
integer type scalar if the addressing model is Physical32 and 64-bit
integer type scalar if the addressing model is Physical64. This
member is an array of per-dimension unsigned values that describe
the number of work-items that make up a work-group.

GlobalWorkSize must be a scalar or an array with 2 or 3 components.
Where the type of each element in the array is 32-bit integer type
scalar if the addressing model is Physical32 or 64-bit integer type
scalar if the addressing model is Physical64.

The type of LocalWorkSize must be the same as GlobalWorkSize.

The type of GlobalWorkOffset must be the same as GlobalWorkSize.

Capability:
DeviceEnqueue

6 304 <id>
Result Type

Result <id> <id>
GlobalWorkSize

<id>
LocalWorkSize

<id>
GlobalWorkOffs
et

272

OpGetKernelLocalSizeForSubgroupCount

Result is the 1D local size to enqueue Invoke with Subgroup Count subgroups
per workgroup.

Result Type must be a 32-bit integer type scalar.

Subgroup Count must be a 32-bit integer type scalar.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypeInt.
- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a
pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be
a 32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar,
which is treated as an unsigned integer.

Capability:
SubgroupDispatch

Missing before version
1.1.

8 325 <id>
Result Type

Result <id> <id>
Subgroup
Count

<id>
Invoke

<id>
Param

<id>
Param Size

<id>
Param Align

273

OpGetKernelMaxNumSubgroups

Result is the maximum number of subgroups that can be used to execute
Invoke on the device.

Result Type must be a 32-bit integer type scalar.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypeInt.
- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be
a pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and
must be a 32-bit integer type scalar, which is treated as an unsigned
integer.

Param Align is the alignment of Param and must be a 32-bit integer type
scalar, which is treated as an unsigned integer.

Capability:
SubgroupDispatch

Missing before version 1.1.

7 326 <id>
Result Type

Result <id> <id>
Invoke

<id>
Param

<id>
Param Size

<id>
Param Align

274

3.42.23. Pipe Instructions

OpReadPipe

Read a packet from the pipe object specified by Pipe into Pointer. Result is
0 if the operation is successful and a negative value if the pipe is empty.

Result Type must be a 32-bit integer type scalar.

Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Pointer must have a type of OpTypePointer with the same data type as
Pipe and a Generic Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capability:
Pipes

7 274 <id>
Result Type

Result <id> <id>
Pipe

<id>
Pointer

<id>
Packet Size

<id>
Packet
Alignment

OpWritePipe

Write a packet from Pointer to the pipe object specified by Pipe. Result is 0
if the operation is successful and a negative value if the pipe is full.

Result Type must be a 32-bit integer type scalar.

Pipe must have a type of OpTypePipe with WriteOnly access qualifier.

Pointer must have a type of OpTypePointer with the same data type as
Pipe and a Generic Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capability:
Pipes

7 275 <id>
Result Type

Result <id> <id>
Pipe

<id>
Pointer

<id>
Packet Size

<id>
Packet
Alignment

275

OpReservedReadPipe

Read a packet from the reserved area specified by Reserve Id and
Index of the pipe object specified by Pipe into Pointer. The reserved
pipe entries are referred to by indices that go from 0 … Num Packets -
1. Result is 0 if the operation is successful and a negative value
otherwise.

Result Type must be a 32-bit integer type scalar.

Pipe must have a type of OpTypePipe with ReadOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveId.

Index must be a 32-bit integer type scalar, which is treated as an
unsigned value.

Pointer must have a type of OpTypePointer with the same data type
as Pipe and a Generic Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capability:
Pipes

9 276 <id>
Result
Type

Result
<id>

<id>
Pipe

<id>
Reserve
Id

<id>
Index

<id>
Pointer

<id>
Packet
Size

<id>
Packet
Alignment

276

OpReservedWritePipe

Write a packet from Pointer into the reserved area specified by
Reserve Id and Index of the pipe object specified by Pipe. The
reserved pipe entries are referred to by indices that go from 0 … Num
Packets - 1. Result is 0 if the operation is successful and a negative
value otherwise.

Result Type must be a 32-bit integer type scalar.

Pipe must have a type of OpTypePipe with WriteOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveId.

Index must be a 32-bit integer type scalar, which is treated as an
unsigned value.

Pointer must have a type of OpTypePointer with the same data type
as Pipe and a Generic Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capability:
Pipes

9 277 <id>
Result
Type

Result
<id>

<id>
Pipe

<id>
Reserve
Id

<id>
Index

<id>
Pointer

<id>
Packet
Size

<id>
Packet
Alignment

277

OpReserveReadPipePackets

Reserve Num Packets entries for reading from the pipe object specified by
Pipe. Result is a valid reservation ID if the reservation is successful.

Result Type must be an OpTypeReserveId.

Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Num Packets must be a 32-bit integer type scalar, which is treated as an
unsigned value.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capability:
Pipes

7 278 <id>
Result Type

Result <id> <id>
Pipe

<id>
Num Packets

<id>
Packet Size

<id>
Packet
Alignment

OpReserveWritePipePackets

Reserve num_packets entries for writing to the pipe object specified by
Pipe. Result is a valid reservation ID if the reservation is successful.

Pipe must have a type of OpTypePipe with WriteOnly access qualifier.

Num Packets must be a 32-bit OpTypeInt which is treated as an unsigned
value.

Result Type must be an OpTypeReserveId.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capability:
Pipes

7 279 <id>
Result Type

Result <id> <id>
Pipe

<id>
Num Packets

<id>
Packet Size

<id>
Packet
Alignment

278

OpCommitReadPipe

Indicates that all reads to Num Packets associated with the
reservation specified by Reserve Id and the pipe object
specified by Pipe are completed.

Pipe must have a type of OpTypePipe with ReadOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveId.

Packet Size must be a 32-bit integer type scalar that represents
the size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that
represents the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly
divides Packet Size.

Capability:
Pipes

5 280 <id>
Pipe

<id>
Reserve Id

<id>
Packet Size

<id>
Packet Alignment

OpCommitWritePipe

Indicates that all writes to Num Packets associated with the
reservation specified by Reserve Id and the pipe object
specified by Pipe are completed.

Pipe must have a type of OpTypePipe with WriteOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveId.

Packet Size must be a 32-bit integer type scalar that represents
the size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that
represents the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly
divides Packet Size.

Capability:
Pipes

5 281 <id>
Pipe

<id>
Reserve Id

<id>
Packet Size

<id>
Packet Alignment

OpIsValidReserveId

Result is true if Reserve Id is a valid reservation id and false otherwise.

Result Type must be a Boolean type.

Reserve Id must have a type of OpTypeReserveId.

Capability:
Pipes

279

4 282 <id>
Result Type

Result <id> <id>
Reserve Id

OpGetNumPipePackets

Result is the number of available entries in the pipe object specified by
Pipe. The number of available entries in a pipe is a dynamic value.
The result is considered immediately stale.

Result Type must be a 32-bit integer type scalar, which should be
treated as an unsigned value.

Pipe must have a type of OpTypePipe with ReadOnly or WriteOnly
access qualifier.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capability:
Pipes

6 283 <id>
Result Type

Result <id> <id>
Pipe

<id>
Packet Size

<id>
Packet
Alignment

OpGetMaxPipePackets

Result is the maximum number of packets specified by the creation of
Pipe.

Result Type must be a 32-bit integer type scalar, which should be
treated as an unsigned value.

Pipe must have a type of OpTypePipe with ReadOnly or WriteOnly
access qualifier.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capability:
Pipes

6 284 <id>
Result Type

Result <id> <id>
Pipe

<id>
Packet Size

<id>
Packet
Alignment

280

OpGroupReserveReadPipePackets

Reserve Num Packets entries for reading from the pipe object specified by Pipe
at group level. Result is a valid reservation id if the reservation is successful.

The reserved pipe entries are referred to by indices that go from 0 … Num
Packets - 1.

Behavior is undefined if not all invocations of this module within Execution
reach this point of execution.

Behavior is undefined unless all invocations within Execution execute the same
dynamic instance of this instruction.

Result Type must be an OpTypeReserveId.

Execution is a Scope. It must be either Workgroup or Subgroup.

Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Num Packets must be a 32-bit integer type scalar, which is treated as an
unsigned value.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides Packet
Size.

Capability:
Pipes

8 285 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Pipe

<id>
Num
Packets

<id>
Packet Size

<id>
Packet
Alignment

281

OpGroupReserveWritePipePackets

Reserve Num Packets entries for writing to the pipe object specified by Pipe at
group level. Result is a valid reservation ID if the reservation is successful.

The reserved pipe entries are referred to by indices that go from 0 … Num
Packets - 1.

Behavior is undefined if not all invocations of this module within Execution
reach this point of execution.

Behavior is undefined unless all invocations within Execution execute the same
dynamic instance of this instruction.

Result Type must be an OpTypeReserveId.

Execution is a Scope. It must be either Workgroup or Subgroup.

Pipe must have a type of OpTypePipe with WriteOnly access qualifier.

Num Packets must be a 32-bit integer type scalar, which is treated as an
unsigned value.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides Packet
Size.

Capability:
Pipes

8 286 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Pipe

<id>
Num
Packets

<id>
Packet Size

<id>
Packet
Alignment

282

OpGroupCommitReadPipe

A group level indication that all reads to Num Packets associated with
the reservation specified by Reserve Id to the pipe object specified by
Pipe are completed.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Execution is a Scope. It must be either Workgroup or Subgroup.

Pipe must have a type of OpTypePipe with ReadOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveId.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capability:
Pipes

6 287 Scope <id>
Execution

<id>
Pipe

<id>
Reserve Id

<id>
Packet Size

<id>
Packet
Alignment

283

OpGroupCommitWritePipe

A group level indication that all writes to Num Packets associated with
the reservation specified by Reserve Id to the pipe object specified by
Pipe are completed.

Behavior is undefined if not all invocations of this module within
Execution reach this point of execution.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

Execution is a Scope. It must be either Workgroup or Subgroup.

Pipe must have a type of OpTypePipe with WriteOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveId.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capability:
Pipes

6 288 Scope <id>
Execution

<id>
Pipe

<id>
Reserve Id

<id>
Packet Size

<id>
Packet
Alignment

OpConstantPipeStorage

Creates a pipe-storage object.

Result Type must be OpTypePipeStorage.

Packet Size is an unsigned 32-bit integer. It represents the size in
bytes of each packet in the pipe.

Packet Alignment is an unsigned 32-bit integer. It represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capacity is an unsigned 32-bit integer. It is the minimum number of
Packet Size blocks the resulting OpTypePipeStorage can hold.

Capability:
PipeStorage

Missing before version 1.1.

6 323 <id>
Result Type

Result <id> Literal
Packet Size

Literal
Packet
Alignment

Literal
Capacity

284

OpCreatePipeFromPipeStorage

Creates a pipe object from a pipe-storage object.

Result Type must be OpTypePipe.

Pipe Storage must be a pipe-storage object created from
OpConstantPipeStorage.

Qualifier is the pipe access qualifier.

Capability:
PipeStorage

Missing before version
1.1.

4 324 <id>
Result Type

Result <id> <id>
Pipe Storage

OpReadPipeBlockingINTEL

TBD

Capability:
BlockingPipesINTEL

Reserved.

5 5946 <id>
Result Type

Result <id> <id>
Packet Size

<id>
Packet Alignment

OpWritePipeBlockingINTEL

TBD

Capability:
BlockingPipesINTEL

Reserved.

5 5947 <id>
Result Type

Result <id> <id>
Packet Size

<id>
Packet Alignment

285

3.42.24. Non-Uniform Instructions

OpGroupNonUniformElect

Result is true only in the active invocation with the lowest id in the group,
otherwise result is false.

Result Type must be a Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

Capability:
GroupNonUniform

Missing before version
1.3.

4 333 <id>
Result Type

Result <id> Scope <id>
Execution

OpGroupNonUniformAll

Evaluates a predicate for all active invocations in the group,
resulting in true if predicate evaluates to true for all active
invocations in the group, otherwise the result is false.

Result Type must be a Boolean type.

Execution is a Scope. It must be either Workgroup or
Subgroup.

Predicate must be a Boolean type.

Capability:
GroupNonUniformVote

Missing before version 1.3.

5 334 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Predicate

OpGroupNonUniformAny

Evaluates a predicate for all active invocations in the group,
resulting in true if predicate evaluates to true for any active
invocation in the group, otherwise the result is false.

Result Type must be a Boolean type.

Execution is a Scope. It must be either Workgroup or
Subgroup.

Predicate must be a Boolean type.

Capability:
GroupNonUniformVote

Missing before version 1.3.

5 335 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Predicate

286

OpGroupNonUniformAllEqual

Evaluates a value for all active invocations in the group. The
result is true if Value is equal for all active invocations in the
group. Otherwise, the result is false.

Result Type must be a Boolean type.

Execution is a Scope. It must be either Workgroup or
Subgroup.

Value must be a scalar or vector of floating-point type, integer
type, or Boolean type. The compare operation is based on this
type, and if it is a floating-point type, an ordered-and-equal
compare is used.

Capability:
GroupNonUniformVote

Missing before version 1.3.

5 336 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

OpGroupNonUniformBroadcast

Result is the Value of the invocation identified by the id Id to all active
invocations in the group.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The type of Value must be the same as Result Type.

Id must be a scalar of integer type, whose Signedness operand is 0.

Before version 1.5, Id must come from a constant instruction. Starting
with version 1.5, this restriction is lifted. However, behavior is
undefined when Id is not dynamically uniform.

The resulting value is undefined if Id is an inactive invocation, or is
greater than or equal to the size of the group.

Capability:
GroupNonUniformBallot

Missing before version 1.3.

6 337 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

<id>
Id

287

OpGroupNonUniformBroadcastFirst

Result is the Value of the invocation from the active invocation
with the lowest id in the group to all active invocations in the
group.

Result Type must be a scalar or vector of floating-point type,
integer type, or Boolean type.

Execution is a Scope. It must be either Workgroup or
Subgroup.

The type of Value must be the same as Result Type.

Capability:
GroupNonUniformBallot

Missing before version 1.3.

5 338 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

OpGroupNonUniformBallot

Result is a bitfield value combining the Predicate value from all
invocations in the group that execute the same dynamic
instance of this instruction. The bit is set to one if the
corresponding invocation is active and the Predicate for that
invocation evaluated to true; otherwise, it is set to zero.

Result Type must be a vector of four components of integer
type scalar, whose Signedness operand is 0.

Result is a set of bitfields where the first invocation is
represented in the lowest bit of the first vector component and
the last (up to the size of the group) is the higher bit number of
the last bitmask needed to represent all bits of the group
invocations.

Execution is a Scope. It must be either Workgroup or
Subgroup.

Predicate must be a Boolean type.

Capability:
GroupNonUniformBallot

Missing before version 1.3.

5 339 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Predicate

288

OpGroupNonUniformInverseBallot

Evaluates a value for all active invocations in the group,
resulting in true if the bit in Value for the corresponding
invocation is set to one, otherwise the result is false.

Result Type must be a Boolean type.

Execution is a Scope. It must be either Workgroup or
Subgroup.

Value must be a vector of four components of integer type
scalar, whose Signedness operand is 0.

Behavior is undefined unless Value is the same for all
invocations that execute the same dynamic instance of this
instruction.

Value is a set of bitfields where the first invocation is
represented in the lowest bit of the first vector component and
the last (up to the size of the group) is the higher bit number of
the last bitmask needed to represent all bits of the group
invocations.

Capability:
GroupNonUniformBallot

Missing before version 1.3.

5 340 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

OpGroupNonUniformBallotBitExtract

Evaluates a value for all active invocations in the group, resulting in
true if the bit in Value that corresponds to Index is set to one,
otherwise the result is false.

Result Type must be a Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

Value must be a vector of four components of integer type scalar,
whose Signedness operand is 0.

Value is a set of bitfields where the first invocation is represented in
the lowest bit of the first vector component and the last (up to the size
of the group) is the higher bit number of the last bitmask needed to
represent all bits of the group invocations.

Index must be a scalar of integer type, whose Signedness operand is
0.

The resulting value is undefined if Index is greater than or equal to the
size of the group.

Capability:
GroupNonUniformBallot

Missing before version 1.3.

6 341 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

<id>
Index

289

OpGroupNonUniformBallotBitCount

Result is the number of bits that are set to 1 in Value, considering only
the bits in Value required to represent all bits of the group’s
invocations.

Result Type must be a scalar of integer type, whose Signedness
operand is 0.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0.

Value must be a vector of four components of integer type scalar,
whose Signedness operand is 0.

Value is a set of bitfields where the first invocation is represented in
the lowest bit of the first vector component and the last (up to the size
of the group) is the higher bit number of the last bitmask needed to
represent all bits of the group invocations.

Capability:
GroupNonUniformBallot

Missing before version 1.3.

6 342 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
Value

OpGroupNonUniformBallotFindLSB

Find the least significant bit set to 1 in Value, considering only
the bits in Value required to represent all bits of the group’s
invocations. If none of the considered bits is set to 1, the
resulting value is undefined.

Result Type must be a scalar of integer type, whose
Signedness operand is 0.

Execution is a Scope. It must be either Workgroup or
Subgroup.

Value must be a vector of four components of integer type
scalar, whose Signedness operand is 0.

Value is a set of bitfields where the first invocation is
represented in the lowest bit of the first vector component and
the last (up to the size of the group) is the higher bit number of
the last bitmask needed to represent all bits of the group
invocations.

Capability:
GroupNonUniformBallot

Missing before version 1.3.

5 343 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

290

OpGroupNonUniformBallotFindMSB

Find the most significant bit set to 1 in Value, considering only
the bits in Value required to represent all bits of the group’s
invocations. If none of the considered bits is set to 1, the
resulting value is undefined.

Result Type must be a scalar of integer type, whose
Signedness operand is 0.

Execution is a Scope. It must be either Workgroup or
Subgroup.

Value must be a vector of four components of integer type
scalar, whose Signedness operand is 0.

Value is a set of bitfields where the first invocation is
represented in the lowest bit of the first vector component and
the last (up to the size of the group) is the higher bit number of
the last bitmask needed to represent all bits of the group
invocations.

Capability:
GroupNonUniformBallot

Missing before version 1.3.

5 344 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

OpGroupNonUniformShuffle

Result is the Value of the invocation identified by the id Id.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The type of Value must be the same as Result Type.

Id must be a scalar of integer type, whose Signedness operand is 0.

The resulting value is undefined if Id is an inactive invocation, or is
greater than or equal to the size of the group.

Capability:
GroupNonUniformShuffle

Missing before version 1.3.

6 345 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

<id>
Id

291

OpGroupNonUniformShuffleXor

Result is the Value of the invocation identified by the current
invocation’s id within the group xor’ed with Mask.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The type of Value must be the same as Result Type.

Mask must be a scalar of integer type, whose Signedness operand is
0.

The resulting value is undefined if current invocation’s id within the
group xor’ed with Mask is an inactive invocation, or is greater than or
equal to the size of the group.

Capability:
GroupNonUniformShuffle

Missing before version 1.3.

6 346 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

<id>
Mask

OpGroupNonUniformShuffleUp

Result is the Value of the invocation identified by the current
invocation’s id within the group - Delta.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The type of Value must be the same as Result Type.

Delta must be a scalar of integer type, whose Signedness operand is
0.

Delta is treated as unsigned and the resulting value is undefined if
Delta is greater than the current invocation’s id within the group or if
the selected lane is inactive.

Capability:
GroupNonUniformShuffleRelati
ve

Missing before version 1.3.

6 347 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

<id>
Delta

292

OpGroupNonUniformShuffleDown

Result is the Value of the invocation identified by the current
invocation’s id within the group + Delta.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The type of Value must be the same as Result Type.

Delta must be a scalar of integer type, whose Signedness operand is
0.

Delta is treated as unsigned and the resulting value is undefined if
Delta is greater than or equal to the size of the group, or if the current
invocation’s id within the group + Delta is either an inactive invocation
or greater than or equal to the size of the group.

Capability:
GroupNonUniformShuffleRelati
ve

Missing before version 1.3.

6 348 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

<id>
Delta

OpGroupNonUniformIAdd

An integer add group operation of all Value operands contributed by active
invocations in the group.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 349 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

293

OpGroupNonUniformFAdd

A floating point add group operation of all Value operands contributed by
active invocations in the group.

Result Type must be a scalar or vector of floating-point type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type. The method used to
perform the group operation on the contributed Value(s) from active
invocations is implementation defined.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 350 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

OpGroupNonUniformIMul

An integer multiply group operation of all Value operands contributed by active
invocations in the group.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 1. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 351 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

294

OpGroupNonUniformFMul

A floating point multiply group operation of all Value operands contributed by
active invocations in the group.

Result Type must be a scalar or vector of floating-point type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 1. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type. The method used to
perform the group operation on the contributed Value(s) from active
invocations is implementation defined.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 352 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

OpGroupNonUniformSMin

A signed integer minimum group operation of all Value operands contributed
by active invocations in the group.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is INT_MAX. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 353 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

295

OpGroupNonUniformUMin

An unsigned integer minimum group operation of all Value operands
contributed by active invocations in the group.

Result Type must be a scalar or vector of integer type, whose Signedness
operand is 0.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is UINT_MAX. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 354 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

OpGroupNonUniformFMin

A floating point minimum group operation of all Value operands contributed by
active invocations in the group.

Result Type must be a scalar or vector of floating-point type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is +INF. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type. The method used to
perform the group operation on the contributed Value(s) from active
invocations is implementation defined. From the set of Value(s) provided by
active invocations within a subgroup, if for any two Values one of them is a
NaN, the other is chosen. If all Value(s) that are used by the current invocation
are NaN, then the result is an undefined value.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 355 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

296

OpGroupNonUniformSMax

A signed integer maximum group operation of all Value operands contributed
by active invocations in the group.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is INT_MIN. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 356 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

OpGroupNonUniformUMax

An unsigned integer maximum group operation of all Value operands
contributed by active invocations in the group.

Result Type must be a scalar or vector of integer type, whose Signedness
operand is 0.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 357 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

297

OpGroupNonUniformFMax

A floating point maximum group operation of all Value operands contributed by
active invocations in by group.

Result Type must be a scalar or vector of floating-point type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is -INF. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type. The method used to
perform the group operation on the contributed Value(s) from active
invocations is implementation defined. From the set of Value(s) provided by
active invocations within a subgroup, if for any two Values one of them is a
NaN, the other is chosen. If all Value(s) that are used by the current invocation
are NaN, then the result is an undefined value.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 358 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

OpGroupNonUniformBitwiseAnd

A bitwise and group operation of all Value operands contributed by active
invocations in the group.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is ~0. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 359 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

298

OpGroupNonUniformBitwiseOr

A bitwise or group operation of all Value operands contributed by active
invocations in the group.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 360 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

OpGroupNonUniformBitwiseXor

A bitwise xor group operation of all Value operands contributed by active
invocations in the group.

Result Type must be a scalar or vector of integer type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 361 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

299

OpGroupNonUniformLogicalAnd

A logical and group operation of all Value operands contributed by active
invocations in the group.

Result Type must be a scalar or vector of Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is ~0. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 362 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

OpGroupNonUniformLogicalOr

A logical or group operation of all Value operands contributed by active
invocations in the group.

Result Type must be a scalar or vector of Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 363 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

300

OpGroupNonUniformLogicalXor

A logical xor group operation of all Value operands contributed by active
invocations in the group.

Result Type must be a scalar or vector of Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The identity I for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the declared SubGroupSize,
executing this instruction results in undefined behavior.

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

6 + variable 364 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
Value

Optional
<id>
ClusterSize

OpGroupNonUniformQuadBroadcast

Result is the Value of the invocation within the quad with a quad index
equal to Index.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The type of Value must be the same as Result Type.

Index must be a scalar of integer type, whose Signedness operand is
0.

Before version 1.5, Index must come from a constant instruction.
Starting with version 1.5, Index must be dynamically uniform.

If the value of Index is greater than or equal to 4, or refers to an
inactive invocation, the resulting value is undefined.

Capability:
GroupNonUniformQuad

Missing before version 1.3.

6 365 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

<id>
Index

301

OpGroupNonUniformQuadSwap

Swap the Value of the invocation within the quad with another
invocation in the quad using Direction.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is a Scope. It must be either Workgroup or Subgroup.

The type of Value must be the same as Result Type.

Direction is the kind of swap to perform.

Direction must be a scalar of integer type, whose Signedness operand
is 0.

Direction must come from a constant instruction.

The value returned in Result is the value provided to Value by another
invocation in the same quad scope instance. The invocation providing
this value is determined according to Direction.

A Direction of 0 indicates a horizontal swap;
- Invocations with quad indices of 0 and 1 swap values
- Invocations with quad indices of 2 and 3 swap values
A Direction of 1 indicates a vertical swap;
- Invocations with quad indices of 0 and 2 swap values
- Invocations with quad indices of 1 and 3 swap values
A Direction of 2 indicates a diagonal swap;
- Invocations with quad indices of 0 and 3 swap values
- Invocations with quad indices of 1 and 2 swap values

If an active invocation reads Value from an inactive invocation, the
resulting value is undefined.

Capability:
GroupNonUniformQuad

Missing before version 1.3.

6 366 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

<id>
Direction

OpGroupNonUniformPartitionNV

TBD

Capability:
GroupNonUniformPartit
ionedNV

Reserved.

4 5296 <id>
Result Type

Result <id> <id>
Value

302

3.42.25. Reserved Instructions

OpTraceRayKHR

TBD

Capability:
RayTracingKHR

Reserved.

1
2

444
5

<id>
Accel

<id>
Ray
Flags

<id>
Cull
Mask

<id>
SBT
Offset

<id>
SBT
Stride

<id>
Miss
Index

<id>
Ray
Origin

<id>
Ray
Tmin

<id>
Ray
Directio
n

<id>
Ray
Tmax

<id>
Payloa
d

OpExecuteCallableKHR

TBD

Capability:
RayTracingKHR

Reserved.

3 4446 <id>
SBT Index

<id>
Callable Data

OpConvertUToAccelerationStructureKHR

TBD

Capability:
RayTracingKHR,
RayQueryKHR

Reserved.

4 4447 <id>
Result Type

Result <id> <id>
Accel

OpIgnoreIntersectionKHR

TBD

Capability:
RayTracingKHR

Reserved.

1 4448

OpTerminateRayKHR

TBD

Capability:
RayTracingKHR

Reserved.

1 4449

OpTypeRayQueryKHR

TBD

Capability:
RayQueryKHR

Reserved.

2 4472 Result <id>

OpRayQueryInitializeKHR

TBD

Capability:
RayQueryKHR

Reserved.

303

9 4473 <id>
RayQuery

<id>
Accel

<id>
RayFlags

<id>
CullMask

<id>
RayOrigin

<id>
RayTMin

<id>
RayDirecti
on

<id>
RayTMax

OpRayQueryTerminateKHR

TBD

Capability:
RayQueryKHR

Reserved.

2 4474 <id>
RayQuery

OpRayQueryGenerateIntersectionKHR

TBD

Capability:
RayQueryKHR

Reserved.

3 4475 <id>
RayQuery

<id>
HitT

OpRayQueryConfirmIntersectionKHR

TBD

Capability:
RayQueryKHR

Reserved.

2 4476 <id>
RayQuery

OpRayQueryProceedKHR

TBD

Capability:
RayQueryKHR

Reserved.

4 4477 <id>
Result Type

Result <id> <id>
RayQuery

OpRayQueryGetIntersectionTypeKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 4479 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpFragmentMaskFetchAMD

TBD

Capability:
FragmentMaskAMD

Reserved.

5 5011 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

304

OpFragmentFetchAMD

TBD

Capability:
FragmentMaskAMD

Reserved.

6 5012 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

<id>
Fragment Index

OpReadClockKHR

TBD

Capability:
ShaderClockKHR

Reserved.

4 5056 <id>
Result Type

Result <id> Scope <id>
Scope

OpWritePackedPrimitiveIndices4x8NV

TBD

Capability:
MeshShadingNV

Reserved.

3 5299 <id>
Index Offset

<id>
Packed Indices

OpReportIntersectionNV (OpReportIntersectionKHR)

TBD

Capability:
RayTracingNV, RayTracingKHR

Reserved.

5 5334 <id>
Result Type

Result <id> <id>
Hit

<id>
HitKind

OpIgnoreIntersectionNV

TBD

Capability:
RayTracingNV

Reserved.

1 5335

OpTerminateRayNV

TBD

Capability:
RayTracingNV

Reserved.

1 5336

OpTraceNV

TBD

Capability:
RayTracingNV

Reserved.

305

1
2

533
7

<id>
Accel

<id>
Ray
Flags

<id>
Cull
Mask

<id>
SBT
Offset

<id>
SBT
Stride

<id>
Miss
Index

<id>
Ray
Origin

<id>
Ray
Tmin

<id>
Ray
Directio
n

<id>
Ray
Tmax

<id>
Payloa
dId

OpTraceMotionNV

TBD

Capability:
RayTracingMotionBlurNV

Reserved.

1
3

533
8

<id>
Accel

<id>
Ray
Flags

<id>
Cull
Mask

<id>
SBT
Offset

<id>
SBT
Stride

<id>
Miss
Index

<id>
Ray
Origin

<id>
Ray
Tmin

<id>
Ray
Directi
on

<id>
Ray
Tmax

<id>
Time

<id>
Payloa
dId

OpTraceRayMotionNV

TBD

Capability:
RayTracingMotionBlurNV

Reserved.

1
3

533
9

<id>
Accel

<id>
Ray
Flags

<id>
Cull
Mask

<id>
SBT
Offset

<id>
SBT
Stride

<id>
Miss
Index

<id>
Ray
Origin

<id>
Ray
Tmin

<id>
Ray
Directi
on

<id>
Ray
Tmax

<id>
Time

<id>
Payloa
d

OpTypeAccelerationStructureNV
(OpTypeAccelerationStructureKHR)

TBD

Capability:
RayTracingNV, RayTracingKHR, RayQueryKHR

Reserved.

2 5341 Result <id>

OpExecuteCallableNV

TBD

Capability:
RayTracingNV

Reserved.

3 5344 <id>
SBT Index

<id>
Callable DataId

OpTypeCooperativeMatrixNV

TBD

Capability:
CooperativeMatrixNV

Reserved.

6 5358 Result <id> <id>
Component
Type

Scope <id>
Execution

<id>
Rows

<id>
Columns

OpCooperativeMatrixLoadNV

TBD

Capability:
CooperativeMatrixNV

Reserved.

306

6 + variable 5359 <id>
Result Type

Result <id> <id>
Pointer

<id>
Stride

<id>
Column
Major

Optional
Memory
Operands

OpCooperativeMatrixStoreNV

TBD

Capability:
CooperativeMatrixNV

Reserved.

5 + variable 5360 <id>
Pointer

<id>
Object

<id>
Stride

<id>
Column Major

Optional
Memory
Operands

OpCooperativeMatrixMulAddNV

TBD

Capability:
CooperativeMatrixNV

Reserved.

6 5361 <id>
Result Type

Result <id> <id>
A

<id>
B

<id>
C

OpCooperativeMatrixLengthNV

TBD

Capability:
CooperativeMatrixNV

Reserved.

4 5362 <id>
Result Type

Result <id> <id>
Type

OpBeginInvocationInterlockEXT

TBD

Capability:
FragmentShaderSampleInterloc
kEXT,
FragmentShaderPixelInterlockE
XT,
FragmentShaderShadingRateInt
erlockEXT

Reserved.

1 5364

OpEndInvocationInterlockEXT

TBD

Capability:
FragmentShaderSampleInterloc
kEXT,
FragmentShaderPixelInterlockE
XT,
FragmentShaderShadingRateInt
erlockEXT

Reserved.

1 5365

307

OpIsHelperInvocationEXT

TBD

Capability:
DemoteToHelperInvocationEXT

Reserved.

3 5381 <id>
Result Type

Result <id>

OpConvertUToImageNV

TBD

Capability:
BindlessTextureNV

Reserved.

4 5391 <id>
Result Type

Result <id> <id>
Operand

OpConvertUToSamplerNV

TBD

Capability:
BindlessTextureNV

Reserved.

4 5392 <id>
Result Type

Result <id> <id>
Operand

OpConvertImageToUNV

TBD

Capability:
BindlessTextureNV

Reserved.

4 5393 <id>
Result Type

Result <id> <id>
Operand

OpConvertSamplerToUNV

TBD

Capability:
BindlessTextureNV

Reserved.

4 5394 <id>
Result Type

Result <id> <id>
Operand

OpConvertUToSampledImageNV

TBD

Capability:
BindlessTextureNV

Reserved.

4 5395 <id>
Result Type

Result <id> <id>
Operand

OpConvertSampledImageToUNV

TBD

Capability:
BindlessTextureNV

Reserved.

308

4 5396 <id>
Result Type

Result <id> <id>
Operand

OpSamplerImageAddressingModeNV

TBD

Capability:
BindlessTextureNV

Reserved.

2 5397 Literal
Bit Width

OpUCountLeadingZerosINTEL

TBD

Capability:
IntegerFunctions2INTE
L

Reserved.

4 5585 <id>
Result Type

Result <id> <id>
Operand

OpUCountTrailingZerosINTEL

TBD

Capability:
IntegerFunctions2INTE
L

Reserved.

4 5586 <id>
Result Type

Result <id> <id>
Operand

OpAbsISubINTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5587 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpAbsUSubINTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5588 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpIAddSatINTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5589 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

309

OpUAddSatINTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5590 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpIAverageINTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5591 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpUAverageINTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5592 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpIAverageRoundedINTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5593 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpUAverageRoundedINTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5594 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpISubSatINTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5595 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpUSubSatINTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

310

5 5596 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpIMul32x16INTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5597 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpUMul32x16INTEL

TBD

Capability:
IntegerFunctions2INTEL

Reserved.

5 5598 <id>
Result Type

Result <id> <id>
Operand 1

<id>
Operand 2

OpLoopControlINTEL

TBD

Capability:
UnstructuredLoopControlsINTEL

Reserved.

1 + variable 5887 Literal, Literal, …
Loop Control Parameters

OpFPGARegINTEL

TBD

Capability:
FPGARegINTEL

Reserved.

5 5949 <id>
Result Type

Result <id> <id>
Result

<id>
Input

OpRayQueryGetRayTMinKHR

TBD

Capability:
RayQueryKHR

Reserved.

4 6016 <id>
Result Type

Result <id> <id>
RayQuery

OpRayQueryGetRayFlagsKHR

TBD

Capability:
RayQueryKHR

Reserved.

4 6017 <id>
Result Type

Result <id> <id>
RayQuery

311

OpRayQueryGetIntersectionTKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6018 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetIntersectionInstanceCustomIndexKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6019 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetIntersectionInstanceIdKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6020 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetIntersectionInstanceShaderBindingTableR
ecordOffsetKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6021 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetIntersectionGeometryIndexKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6022 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetIntersectionPrimitiveIndexKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6023 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetIntersectionBarycentricsKHR

TBD

Capability:
RayQueryKHR

Reserved.

312

5 6024 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetIntersectionFrontFaceKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6025 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetIntersectionCandidateAABBOpaqueKHR

TBD

Capability:
RayQueryKHR

Reserved.

4 6026 <id>
Result Type

Result <id> <id>
RayQuery

OpRayQueryGetIntersectionObjectRayDirectionKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6027 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetIntersectionObjectRayOriginKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6028 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetWorldRayDirectionKHR

TBD

Capability:
RayQueryKHR

Reserved.

4 6029 <id>
Result Type

Result <id> <id>
RayQuery

OpRayQueryGetWorldRayOriginKHR

TBD

Capability:
RayQueryKHR

Reserved.

4 6030 <id>
Result Type

Result <id> <id>
RayQuery

313

OpRayQueryGetIntersectionObjectToWorldKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6031 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

OpRayQueryGetIntersectionWorldToObjectKHR

TBD

Capability:
RayQueryKHR

Reserved.

5 6032 <id>
Result Type

Result <id> <id>
RayQuery

<id>
Intersection

314

Chapter 4. Appendix A: Changes

4.1. Changes from Version 0.99, Revision 31
• Added the PushConstant Storage Class.

• Added OpIAddCarry, OpISubBorrow, OpUMulExtended, and OpSMulExtended.

• Added OpInBoundsPtrAccessChain.

• Added the Decoration NoContraction to prevent combining multiple operations into a single operation
(bug 14396).

• Added sparse texturing (14486):

- Added OpImageSparse… for accessing images that might not be resident.

- Added MinLod functionality for accessing images with a minimum level of detail.

• Added back the Alignment Decoration, for the Kernel capability (14505).

• Added a Nontemporal Memory Operand (14566).

• Structured control flow changes:

- Changed structured loops to have a structured continue Continue Target in OpLoopMerge (14422).

- Added rules for how "fall through" works with OpSwitch (13579).

- Added definitions for what is "inside" a structured control-flow construct (14422).

• Added SubpassData Dim to support input targets written by a previous subpass as an output target
(14304). This is also a Decoration and a Capability, and can be used by some image ops to read the
input target.

• Added OpTypeForwardPointer to establish the Storage Class of a forward reference to a pointer type
(13822).

• Improved Debuggability

- Changed OpLine to not have a target <id>, but instead be placed immediately preceding the
instruction(s) it is annotating (13905).

- Added OpNoLine to terminate the affect of OpLine (13905).

- Changed OpSource to include the source code:

· Allow multiple occurrences.

· Be mixed in with the OpString instructions.

· Optionally consume an OpString result to say which file it is annotating.

· Optionally include the source text corresponding to that OpString.

· Included adding OpSourceContinued for source text that is too long for a single instruction.

• Added a large number of Capabilities for subsetting functionality (14520, 14453), including 8-bit integer
support for OpenCL kernels.

• Added VertexIndex and InstanceIndex BuiltIn Decorations (14255).

• Added GenericPointer capability that allows the ability to use the Generic Storage Class (14287).

• Added IndependentForwardProgress Execution Mode (14271).

• Added OpAtomicFlagClear and OpAtomicFlagTestAndSet instructions (14315).

• Changed OpEntryPoint to take a list of Input and Output <id> for declaring the entry point’s interface.

315

• Fixed internal bugs

- 14411 Added missing documentation for mad_sat OpenCL extended instructions (enums existed,
just the documentation was missing)

- 14241 Removed shader capability requirement from OpImageQueryLevels and
OpImageQuerySamples.

- 14241 Removed unneeded OpImageQueryDim instruction.

- 14241 Filled in TBD section for OpAtomicCompareExchangeWeek

- 14366 All OpSampledImage must appear before uses of sampled images (and still in the first block
of the entry point).

- 14450 DeviceEnqueue capability is required for OpTypeQueue and OpTypeDeviceEvent

- 14363 OpTypePipe is opaque - moved packet size and alignment to opcodes

- 14367 Float16Buffer capability clarified

- 14241 Clarified how OpSampledImage can be used

- 14402 Clarified OpTypeImage encodings for OpenCL extended instructions

- 14569 Removed mention of non-existent OpFunctionDecl

- 14372 Clarified usage of OpGenericPtrMemSemantics

- 13801 Clarified the SpecId Decoration is just for constants

- 14447 Changed literal values of Memory Semantic enums to match OpenCL/C++11 atomics, and
made the Memory Semantic None and Relaxed be aliases

- 14637 Removed subgroup scope from OpGroupAsyncCopy and OpGroupWaitEvents

4.2. Changes from Version 0.99, Revision 32
• Added UnormInt101010_2 to the Image Channel Data Type table.

• Added place holder for C++11 atomic Consume Memory Semantics along with an explicit
AcquireRelease memory semantic.

• Fixed internal bugs:

- 14690 OpSwitch literal width (and hence number of operands) is determined by the type of
Selector, and be rigorous about how sub-32-bit literals are stored.

- 14485 The client API owns the semantics of built-ins that only have "pass through" semantics WRT
SPIR-V.

- 14862 Removed the IndependentForwardProgress Execution Mode.

• Fixed public bugs:

- 1387 Don’t describe result type of OpImageWrite.

4.3. Changes from Version 1.00, Revision 1
• Adjusted Capabilities:

- Split geometry-stream functionality into its own GeometryStreams capability (14873).

- Have InputAttachmentIndex to depend on InputAttachment instead of Shader (14797).

- Merge AdvancedFormats and StorageImageExtendedFormats into just
StorageImageExtendedFormats (14824).

316

- Require StorageImageReadWithoutFormat and StorageImageWriteWithoutFormat to read and
write storage images with an Unknown Image Format.

- Removed the ImageSRGBWrite capability.

• Clarifications

- RelaxedPrecision Decoration can be applied to OpFunction (14662).

• Fixed internal bugs:

- 14797 The literal argument was missing for the InputAttachmentIndex Decoration.

- 14547 Remove the FragColor BuiltIn, so that no implicit broadcast is implied.

- 13292 Make statements about "Volatile" be more consistent with the memory model specification
(non-functional change).

- 14948 Remove image-"Query" overloading on image/sampled-image type and "fetch" on non-
sampled images, by adding the OpImage instruction to get the image from a sampled image.

- 14949 Make consistent placement between OpSource and OpSourceExtension in the logical
layout of a module.

- 14865 Merge WorkgroupLinearId with LocalInvocationId BuiltIn Decorations.

- 14806 Include 3D images for OpImageQuerySize.

- 14325 Removed the Smooth Decoration.

- 12771 Make the version word formatted as: "0 | Major Number | Minor Number | 0" in the physical
layout.

- 15035 Allow OpTypeImage to use a Depth operand of 2 for not indicating a depth or non-depth
image.

- 15009 Split the OpenCL Source Language into two: OpenCL_C and OpenCL_CPP.

- 14683 OpSampledImage instructions can only be the consuming block, for scalars, and directly
consumed by an image lookup or query instruction.

- 14325 mutual exclusion validation rules of Execution Modes and Decorations

- 15112 add definitions for invocation, dynamically uniform, and uniform control flow.

• Renames

- InputTargetIndex Decoration ¬ InputAttachmentIndex

- InputTarget Capability ¬ InputAttachment

- InputTarget Dim ¬ SubpassData

- WorkgroupLocal Storage Class ¬ Workgroup

- WorkgroupGlobal Storage Class ¬ CrossWorkgroup

- PrivateGlobal Storage Class ¬ Private

- OpAsyncGroupCopy ¬ OpGroupAsyncCopy

- OpWaitGroupEvents ¬ OpGroupWaitEvents

- InputTriangles Execution Mode ¬ Triangles

- InputQuads Execution Mode ¬ Quads

- InputIsolines Execution Mode ¬ Isolines

317

4.4. Changes from Version 1.00, Revision 2
• Updated example at the end of Section 1 to conform to the KHR_vulkan_glsl extension and treat

OpTypeBool as an abstract type.

• Adjusted Capabilities:

- MatrixStride depends on Matrix (15234).

- Sample, SampleId, SamplePosition, and SampleMask depend on SampleRateShading
(15234).

- ClipDistance and CullDistance BuiltIns depend on, respectively, ClipDistance and CullDistance
(1407, 15234).

- ViewportIndex depends on MultiViewport (15234).

- AtomicCounterMemory should be the AtomicStorage (15234).

- Float16 has no dependencies (15234).

- Offset Decoration should only be for Shader (15268).

- Generic Storage Class is supposed to need the GenericPointer Capability (14287).

- Remove capability restriction on the BuiltIn Decoration (15248).

• Fixed internal bugs:

- 15203 Updated description of SampleMask BuiltIn to include "Input or output…", not just "Input…"

- 15225 Include no re-association as a constraint required by the NoContraction Decoration.

- 15210 Clarify OpPhi semantics that operand values only come from parent blocks.

- 15239 Add OpImageSparseRead, which was missing (supposed to be 12 sparse-image
instructions, but only 11 got incorporated, this adds the 12th).

- 15299 Move OpUndef back to the Miscellaneous section.

- 15321 OpTypeImage does not have a Depth restriction when used with SubpassData.

- 14948 Fix the Lod Image Operands to allow both integer and floating-point values.

- 15275 Clarify specific storage classes allowed for atomic operations under universal validation rules
"Atomic access rules".

- 15501 Restrict Patch Decoration to one of the tessellation execution models.

- 15472 Reserved use of OpImageSparseSampleProjImplicitLod,
OpImageSparseSampleProjExplicitLod, OpImageSparseSampleProjDrefImplicitLod, and
OpImageSparseSampleProjDrefExplicitLod.

- 15459 Clarify what makes different aggregate types in "Types and Variables".

- 15426 Don’t require OpQuantizeToF16 to preserve NaN patterns.

- 15418 Don’t set both Acquire and Release bits in Memory Semantics.

- 15404 OpFunction Result <id> can only be used by OpFunctionCall, OpEntryPoint, and
decoration instructions.

- 15437 Restrict element type for OpTypeRuntimeArray by adding a definition of concrete types.

- 15403 Clarify OpTypeFunction can only be consumed by OpFunction and functions can only
return concrete and abstract types.

• Improved accuracy of the opcode word count in each instruction regarding which operands are
optional. For sampling operations with explicit LOD, this included not marking the required LOD
operands as optional.

318

• Clarified that when NonWritable, NonReadable, Volatile, and Coherent Decorations are applied to
the Uniform storage class, the BufferBlock decoration must be present.

• Fixed external bugs:

- 1413 (see internal 15275)

- 1417 Added definitions for block, dominate, post dominate, CFG, and back edge. Removed use of
"dominator tree".

4.5. Changes from Version 1.00, Revision 3
• Added definition of derivative group, and use it to say when derivatives are well defined.

4.6. Changes from Version 1.00, Revision 4
• Expanded the list of instructions that may use or return a pointer in the Logical addressing model.

• Added missing ABGR Image Channel Order

4.7. Changes from Version 1.00, Revision 5
• Khronos SPIR-V issue #27: Removed Shader dependency from SampledBuffer and Sampled1D

Capabilities.

• Khronos SPIR-V issue #56: Clarify that the meaning of "read-only" in the Storage Classes includes not
allowing initializers.

• Khronos SPIR-V issue #57: Clarify "modulo" means "remainder" in OpFMod's description.

• Khronos SPIR-V issue #60: OpControlBarrier synchronizes Output variables when used in
tessellation-control shader.

• Public SPIRV-Headers issue #1: Remove the Shader capability requirement from the Input Storage
Class.

• Public SPIRV-Headers issue #10: Don’t say the (u [, v] [, w], q) has four components, as it can be
closed up when the optional ones are missing. Seen in the projective image instructions.

• Public SPIRV-Headers issues #12 and #13 and Khronos SPIR-V issue #65: Allow OpVariable as an
initializer for another OpVariable instruction or the Base of an OpSpecConstantOp with an
AccessChain opcode.

• Public SPIRV-Headers issues #14: add Max enumerants of 0x7FFFFFFF to each of the non-mask
enums in the C-based header files.

4.8. Changes from Version 1.00, Revision 6
• Khronos SPIR-V issue #63: Be clear that OpUndef can be used in sequence 9 (and is preferred to be)

of the Logical Layout and can be part of partially-defined OpConstantComposite.

• Khronos SPIR-V issue #70: Don’t explicitly require operand truncation for integer operations when
operating at RelaxedPrecision.

• Khronos SPIR-V issue #76: Include OpINotEqual in the list of allowed instructions for
OpSpecConstantOp.

• Khronos SPIR-V issue #79: Remove implication that OpImageQueryLod should have a component for
the array index.

• Public SPIRV-Headers issue #17: Decorations NoPerspective, Flat, Patch, Centroid, and Sample

319

can apply to a top-level member that is itself a structure, so don’t disallow it through restrictions to
numeric types.

4.9. Changes from Version 1.00, Revision 7
• Khronos SPIR-V issue #69: OpImageSparseFetch editorial change in summary: include that it is

sampled image.

• Khronos SPIR-V issue #74: OpImageQueryLod requires a sampler.

• Khronos SPIR-V issue #82: Clarification to the Float16Buffer Capability.

• Khronos SPIR-V issue #89: Editorial improvements to OpMemberDecorate and OpDecorationGroup.

4.10. Changes from Version 1.00, Revision 8
• Add SPV_KHR_subgroup_vote tokens.

• Typo: Change "without a sampler" to "with a sampler" for the description of the SampledBuffer
Capability.

• Khronos SPIR-V issue #61: Clarification of packet size and alignment on all instructions that use the
Pipes Capability.

• Khronos SPIR-V issue #99: Use "invalid" language to replace any "compile-time error" language.

• Khronos SPIR-V issue #55: Distinguish between branch instructions and termination instructions.

• Khronos SPIR-V issue #94: Add missing OpSubgroupReadInvocationKHR enumerant.

• Khronos SPIR-V issue #114: Header blocks strictly dominate their merge blocks.

• Khronos SPIR-V issue #119: OpSpecConstantOp allows OpUndef where allowed by its opcode.

4.11. Changes from Version 1.00, Revision 9
• Khronos Vulkan issue #652: Remove statements about matrix offsets and padding. These are

described correctly in the Vulkan API specifications.

• Khronos SPIR-V issue #113: Remove the "By Default" statements in FP Rounding Mode. These should
be properly specified by the client API.

• Add extension enumerants for

- SPV_KHR_16bit_storage

- SPV_KHR_device_group

- SPV_KHR_multiview

- SPV_NV_sample_mask_override_coverage

- SPV_NV_geometry_shader_passthrough

- SPV_NV_viewport_array2

- SPV_NV_stereo_view_rendering

- SPV_NVX_multiview_per_view_attributes

4.12. Changes from Version 1.00, Revision 10
• Add HLSL source language.

320

• Add StorageBuffer storage class.

• Add StorageBuffer16BitAccess, UniformAndStorageBuffer16BitAccess,
VariablePointersStorageBuffer, and VariablePointers capabilities.

• Khronos SPIR-V issue #163: Be more clear that OpTypeStruct allows zero members. Also affects
ArrayStride and Offset decoration validation rules.

• Khronos SPIR-V issue #159: List allowed AtomicCounter instructions with the AtomicStorage
capability rather than the validation rules.

• Khronos SPIR-V issue #36: Describe more clearly the type of ND Range in
OpGetKernelNDrangeSubGroupCount, OpGetKernelNDrangeMaxSubGroupSize, and
OpEnqueueKernel.

• Khronos SPIR-V issue #128: Be clear the OpDot operates only on vectors.

• Khronos SPIR-V issue #80: Loop headers must dominate their continue target. See Structured Control
Flow.

• Khronos SPIR-V issue #150 allow UniformConstant storage-class variables to have initializers,
depending on the client API.

4.13. Changes from Version 1.00, Revision 11
• Public issue #2: Disallow the Cube dimension from use with the Offset, ConstOffset, and

ConstOffset image operands.

• Public issue #48: OpConvertPtrToU only returns a scalar, not a vector.

• Khronos SPIR-V issue #130: Be more clear which masks are literal and which are not.

• Khronos SPIR-V issue #154: Clarify only one of the listed Capabilities needs to be declared to use a
feature that lists multiple capabilities. The non-declared capabilities need not be supported by the
underlying implementation.

• Khronos SPIR-V issue #174: OpImageDrefGather and OpImageSparseDrefGather return vectors,
not scalars.

• Khronos SPIR-V issue #182: The SampleMask built in does not depend on SampleRateShading, only
Shader.

• Khronos SPIR-V issue #183: OpQuantizeToF16 with too-small magnitude can result in either +0 or -0.

• Khronos SPIR-V issue #203: OpImageTexelPointer has 3 components for cube arrays, not 4.

• Khronos SPIR-V issue #217: Clearer language for OpArrayLength.

• Khronos SPIR-V issue #213: Image Operand LoD is not used by query operations.

• Khronos SPIR-V issue #223: OpPhi has exactly one parent operand per parent block.

• Khronos SPIR-V issue #212: In the Validation Rules, make clear a pointer can be an operand in an
extended instruction set.

• Add extension enumerants for

- SPV_AMD_shader_ballot

- SPV_KHR_post_depth_coverage

- SPV_AMD_shader_explicit_vertex_parameter

- SPV_EXT_shader_stencil_export

- SPV_INTEL_subgroups

321

4.14. Changes from Version 1.00
• Moved version number to SPIR-V 1.1

• New functionality:

- Bug 14202 named barriers:

· Added the NamedBarrier Capability.

· Added the instructions: OpTypeNamedBarrier, OpNamedBarrierInitialize, and
OpMemoryNamedBarrier.

- Bug 14201 subgroup dispatch:

· Added the SubgroupDispatch Capability.

· Added the instructions: OpGetKernelLocalSizeForSubgroupCount and
OpGetKernelMaxNumSubgroups.

· Added SubgroupSize and SubgroupsPerWorkgroup Execution Modes.

- Bug 14441 program-scope pipes:

· Added the PipeStorage Capability.

· Added Instructions: OpTypePipeStorage, OpConstantPipeStorage, and
OpCreatePipeFromPipeStorage.

- Bug 15434 Added the OpSizeOf instruction.

- Bug 15024 support for OpenCL-C++ ivdep loop attribute:

· Added DependencyInfinite and DependencyLength Loop Controls.

· Updated OpLoopMerge to support these.

- Bug 14022 Added Initializer and Finalizer and Execution Modes.

- Bug 15539 Added the MaxByteOffset Decoration.

- Bug 15073 Added the Kernel Capability to the SpecId Decoration.

- Bug 14828 Added the OpModuleProcessed instruction.

• Fixed internal bugs:

- Bug 15481 Clarification on alignment and size operands for pipe operands

4.15. Changes from Version 1.1, Revision 1
• Incorporated bug fixes from Revision 6 of Version 1.00 (see section 4.7. Changes from Version 1.00,

Revision 5).

4.16. Changes from Version 1.1, Revision 2
• Incorporated bug fixes from Revision 7 of Version 1.00 (see section 4.8. Changes from Version 1.00,

Revision 6).

4.17. Changes from Version 1.1, Revision 3
• Incorporated bug fixes from Revision 8 of Version 1.00 (see section 4.9. Changes from Version 1.00,

Revision 7).

322

4.18. Changes from Version 1.1, Revision 4
• Incorporated bug fixes from Revision 9 of Version 1.00 (see section 4.10. Changes from Version 1.00,

Revision 8).

4.19. Changes from Version 1.1, Revision 5
• Incorporated changes from Revision 10 of Version 1.00 (see section 4.11. Changes from Version 1.00,

Revision 9).

4.20. Changes from Version 1.1, Revision 6
• Incorporated changes from Revision 11 of Version 1.00 (see section 4.12. Changes from Version 1.00,

Revision 10).

4.21. Changes from Version 1.1, Revision 7
• Incorporated changes from Revision 12 of Version 1.00 (see section 4.13. Changes from Version 1.00,

Revision 11).

• State where all OpModuleProcessed belong, in the logical layout.

4.22. Changes from Version 1.1
• Moved version number to SPIR-V 1.2

• New functionality:

- Added OpExecutionModeId to allow using an <id> to set the execution modes
SubgroupsPerWorkgroupId, LocalSizeId, and LocalSizeHintId.

- Added OpDecorateId to allow using an <id> to set the decorations AlignmentId and
MaxByteOffsetId.

4.23. Changes from Version 1.2, Revision 1
• Incorporated changes from Revision 12 of Version 1.00 (see section 4.13. Changes from Version 1.00,

Revision 11).

• Incorporated changes from Revision 8 of Version 1.1 (see section 4.21. Changes from Version 1.1,
Revision 7).

4.24. Changes from Version 1.2, Revision 2
• Combine the 1.0, 1.1, and 1.2 specifications, making a unified specification. The previous 1.0, 1.1, and

1.2 specifications are replaced with this one unified specification.

4.25. Changes from Version 1.2, Revision 3
Fixed Khronos-internal issues:

• #249: Improve description of OpTranspose.

• #251: Undefined values in OpUndef include abstract and opaque values.

323

• #258: Deprecate OpAtomicCompareExchangeWeak in favor of OpAtomicCompareExchange.

• #241: Use "invalid" instead of "compile-time" error for ConstOffsets.

• #248: OpImageSparseRead is not for SubpassData.

• #257: Allow OpImageSparseFetch and OpImageSparseRead with the Sample image operands.

• #229: Some sensible constraints on branch hints for OpBranchConditional.

• #236: OpVariable's storage class must match storage class of the pointer type.

• #216: Can decorate pointer types with Coherent and Volatile.

• #247: Don’t say Scope <id> is a mask; it is not.

• #254: Remove validation rules about the types atomic instructions can operate on. These rules belong
instead to the client API.

• #265: OpGroupDecorate cannot target an OpDecorationGroup.

4.26. Changes from Version 1.2
• Moved version number to SPIR-V 1.3

• New functionality:

- Added subgroup operations:

· the OpGroupNonUniform instructions and capabilities.

· Subgroup-mask built-in decorations.

- Khronos SPIR-V issue #125, #138, #196: Removed capabilities from the rounding modes.

- Khronos SPIR-V issue #110: Removed the execution-model restrictions from OpControlBarrier.

• Incorporated the following extensions:

- SPV_KHR_shader_draw_parameters

- SPV_KHR_16bit_storage

- SPV_KHR_device_group

- SPV_KHR_multiview

- SPV_KHR_storage_buffer_storage_class

- SPV_KHR_variable_pointers

• Reserved symbols for

- SPV_GOOGLE_decorate_string

- SPV_GOOGLE_hlsl_functionality1

- SPV_AMD_gpu_shader_half_float_fetch

• Added deprecation model.

4.27. Changes from Version 1.3, Revision 1
• Fixed Issues:

- Public SPIRV-Headers PR #73: Add missing fields for some NVIDIA-specific tokens.

- Khronos SPIR-V Issue #202: Shader Validation: Be clear that arrays of blocks set by the client API
cannot have an ArrayStride.

324

- Khronos SPIR-V Issue #210: Clarify the Result Type of OpSampledImage.

- Khronos SPIR-V Issue #211: State that Derivative instructions only work on 32-bit width
components.

- Khronos SPIR-V Issue #239: Clarify OpImageFetch is for an image whose Sampled operand is 1.

- Khronos SPIR-V Issue #256: OpAtomicCompareExchange does not store if comparison fails.

- Khronos SPIR-V Issue #269: Be more clear which bits are mutually exclusive for memory
semantics.

- Khronos SPIR-V Issue #278: Delete OpTypeRuntimeArray restriction on storage classes, as this
is already covered by the client API.

- Khronos SPIR-V Issue #279:

· Add section expository section 2.8.1 "Unsigned Versus Signed Integers".

· As expected, OpUConvert can have vector Result Type.

- Khronos SPIR-V Issue #280: OpImageQuerySizeLod and OpImageQueryLevels can be limited
by the client API.

- Khronos SPIR-V Issue #285: Remove Kernel as a capability implicitly declared by Int8.

- Khronos SPIR-V Issue #290: Clarify implicit declaration of capabilities, in part by changing the
column heading to *Implicitly Declares".

- Khronos SPIR-V Issues #295: Explicitly say blocks cannot be nested in blocks, in the validation
section. (This was already indirectly required.)

- Khronos SPIR-V Issue #299: Add the ImageGatherExtended capability to ConstOffsets in the
image operands section.

- Khronos SPIR-V Issues #303 and #304: OpGroupNonUniformBallotBitExtract documentation:
add Result Type and fix Index parameter.

- Khronos SPIR-V Issue #310: Remove instruction word count from the Limits table, as it is already
intrinsically limited.

- Khronos SPIR-V Issue #313: Move the FPRoundingMode-decoration validation rule to the shader
validation section (not a universal rule). Also, include the StorageBuffer storage class in this rule.

4.28. Changes from Version 1.3, Revision 2
• New enumarents:

- For SPV_KHR_8bit_storage

• Fixed Issues:

- Add definition of Memory Object Declaration.

- Khronos SPIR-V Issue #275: Clarify the meaning of Aliased and Restrict in the Aliasing section.

- Khronos SPIR-V Issue #315: Be more specific about where many decorations are allowed,
particularly for OpFunctionParameter. Includes being clear that the BuiltIn decoration does not
apply to OpFunctionParamater.

- Khronos SPIR-V Issue #348: Clarify remainder descriptions in OpFRem, OpFMod, OpSRem, and
OpSMod.

- Khronos SPIR-V Issue #342: State the DepthReplacing execution-mode behavior more
specifically.

- Khronos SPIR-V Issue #341: More specific wording for depth-hint execution modes DepthGreater,
DepthLess, and DepthUnchanged.

325

- Khronos SPIR-V Issues #276 and #311: Take more care with unreachable blocks in structured
control flow and how to branch into a construct.

- Khronos SPIR-V Issue #320: Include OpExecutionModeId in the logical layout.

- Khronos SPIR-V Issue #238: Fix description of OpImageQuerySize to correct Sampled Type ¬
Sampled and list the correct set of dimensions.

- Khronos SPIR-V Issue #346: Remove ordered rule for structures in the memory layout: Vulkan
allows out-of-order Offset layouts.

- Khronos SPIR-V Issue #322: Allow OpImageQuerySize to query the size of a NonReadable
image.

- Khronos SPIR-V Issue #244: Be more clear about the connections between dimensionalities and
capabilities, and in referring to them from OpImageRead and OpImageWrite.

- Khronos SPIR-V Issue #333: Be clear about overflow behavior for OpIAdd, OpISub, and OpIMul.

4.29. Changes from Version 1.3, Revision 3
• Add enumerants for

- SPV_KHR_vulkan_memory_model

• Fixed Issues:

- Typo: say OpMatrixTimesVector is Matrix X Vector.

- Update on Khronos SPIR-V issue #244: Added Shader and Kernel capabilities to the 2D
dimensionality.

- Khronos SPIR-V Issue #317: Clarify that the Uniform decoration should apply only to objects, and
that the dynamic instance of the object is the same, rather than at the consumer usage.

- Khronos SPIR-V Issue #335: Clarify and correct when it is valid for pointers to be operands to
OpFunctionCall. Corrections are believed to be consistent with existing front-end and back-end
support.

- Khronos SPIR-V Issue #344: don’t include inactive invocations in what makes the result of
OpGroupNonUniformBallotBitExtract undefined.

4.30. Changes from Version 1.3, Revision 4
• Add enumerants for

- SPV_NV_fragment_shader_barycentric

- SPV_NV_compute_shader_derivatives

- SPV_NV_shader_image_footprint

- SPV_NV_shading_rate

- SPV_NV_mesh_shader

- SPV_NVX_Raytracing

• Formatting: Removed Enabling Extensions column and instead list the extensions in the Enabling
Capabilities column.

4.31. Changes from Version 1.3, Revision 5
• Reserve Tokens for:

326

- SPV_KHR_no_integer_wrap_decoration

- SPV_KHR_float_controls

• Fixed Issues:

- Khronos SPIR-V Issue #352: Remove from OpFunction the statement limiting the use its result.
This does not result in any change in intent; it only avoids any past and potential future
contradictions.

- Khronos SPIR-V Issue #308: Don’t allow runtime-sized arrays to be loaded or copied by OpLoad or
OpCopyMemory.

- Include back-edge blocks in the list of blocks that can branch outside their own construct in the
structured control-flow rules.

- Khronos OpenGL API issue #77: Clarify the OriginUpperLeft and OriginLowerLeft execution
modes apply only to FragCoord.

- State the XfbStride and Stream restrictions in the Universal Validation Rules.

- Khronos SPIR-V Issue #357: The Memory Operands of OpCopyMemory and
OpCopyMemorySized applies to both Source and Target.

- Khronos SPIR-V Issue #385: Be more clear what type <id> must be the same in OpCopyMemory.

- Khronos SPIR-V Issue #359: OpAccessChain and OpPtrAccessChain do indexing with signed
indexes, and OpPtrAccessChain is allowed to compute addresses of elements one past the end of
an array.

- Khronos SPIR-V Issue #367: General validation rules allow the Function storage class for atomic
access, while the shader-specific validation rules do not.

- Khronos SPIR-V Issue #382: In OpTypeFunction, disallow parameter types from being
OpTypeVoid.

- Khronos SPIR-V Issue #374: Built-in decorations can also apply to a constant instruction.

• Editorial:

- Make it more clear in OpVariable what Storage Classes must be the same.

- Remove references to specific APIs, and instead generally refer only to "client API"s. Note that the
previous lists of APIs was nonnormative.

- State the FPRoundingMode decoration rule more clearly in the section listing Validation Rules for
Shader Capabilities.

- Don’t say "value preserving" in the Conversion instructions. These now convert the "value
numerically".

- State variable-pointer validation rules more clearly.

4.32. Changes from Version 1.3, Revision 6
• Reserve Tokens for:

- SPV_INTEL_media_block_io

- SPV_NV_cooperative_matrix

- SPV_INTEL_device_side_avc_motion_estimation, partially. See the
SPV_INTEL_device_side_avc_motion_estimation extension specification for a full listing of tokens.

• Fixed Issues:

- Khronos SPIR-V Issue #406: Scope values must come from the table of scope values.

327

- Khronos SPIR-V Issue #419: Validation rules include AtomicCounter in the list of storage classes
allowed for pointer operands to an OpFunctionCall.

- Khronos SPIR-V Issue #325: OpPhi clarifications regarding parent dominance, in the instruction
and the validation rules, and forward references in the Logical Layout section.

- Khronos SPIR-V Issue #415: Remove the non-writable storage classes PushConstant and Input
from the FPRoundingMode decoration shader validation rule.

- Khronos SPIR-V Issue #404: Clarify when OpGroupNonUniformShuffleXor,
OpGroupNonUniformShuffleUp, and OpGroupNonUniformShuffleDown are valid or result in
undefined values.

- Khronos SPIR-V Issue #393: Be more clear that OpConvertUToPtr and OpConvertPtrToU
operate only on unsigned scalar integers.

- Khronos SPIR-V Issue #416: Result are undefined for all Shift instructions for shifts amounts equal
to the bit width of the operand.

- Khronos SPIR-V Issue #399: Refine the definition of a variable pointer, particularly for function
parameters receiving a variable pointer.

- Khronos SPIR-V Issue #441: Clarify that atomic instruction’s Scope <id> must be a valid memory
scope. More generally, all Scope <id> operands are now either Memory or Execution.

- Khronos SPIR-V Issue #426: Be more direct about undefined behavior for non-uniform control flow
in OpControlBarrier and the OpGroup… instructions that discuss this.

• Deprecate

- Khronos SPIR-V Issue #429: Deprecate OpDecorationGroup, OpGroupDecorate, and
OpGroupMemberDecorate

• Editorial

- Add more clarity that the full client API describes the execution environment (there is not a separate
specification from the client API specification).

4.33. Changes from Version 1.3, Revision 7
• Fixed Issues:

- Khronos SPIR-V Issue #371: Restrict intermediate object types to variable types allowed at global
scope. See shader validation data rules.

- Khronos SPIR-V Issue #408: (Re)allow the decorations Volatile, Coherent, NonWritable, and
NonReadable on members of blocks. (Temporarily dropping this functionality was
accidental/clerical; intent is that it has always been present.)

- Khronos SPIR-V Issue #418: Add statements about undefinedness and how NaNs are mixed to
OpGroupNonUniformFAdd, OpGroupNonUniformFMul, OpGroupNonUniformFMin, and
OpGroupNonUniformFMax.

- Khronos SPIR-V Issue #435: Expand the universal validation rule for variable pointers and matrices
to also disallow pointing within a matrix.

- Khronos SPIR-V Issue #447: Remove implication that OpPtrAccessChain obeys an ArrayStride
decoration in storage classes laid out by the implementation.

- Khronos SPIR-V Issue #450: Allow pointers to OpFunctionCall to be pointers to an element of an
array of samplers or images. See the universal validation rules under the Logical addressing model
without variable pointers.

- Khronos SPIR-V Issue #452: OpGroupNonUniformAllEqual uses ordered compares for floating-
point values.

328

- Khronos SPIR-V Issue #454: Add OpExecutionModeId to the list of allowed forward references in
the Logical Layout of a Module.

4.34. Changes from Version 1.3
• New Functionality:

- Public issue #35: OpEntryPoint must list all global variables in the interface. Additionally,
duplication in the list is not allowed.

- Khronos SPIR-V Issue #140: Generalize OpSelect to select between two objects.

- Khronos SPIR-V Issue #156: Add OpUConvert to the list of required opcodes in
OpSpecConstantOp.

- Khronos SPIR-V Issue #345: Generalize the NonWritable decoration to include Private and
Function storage classes. This helps identify lookup tables.

- Khronos SPIR-V Issue #84: Add OpCopyLogical to copy similar but unequal types.

- Khronos SPIR-V Issue #170: Add OpPtrEqual and OpPtrNotEqual to compare pointers.

- Khronos SPIR-V Issue #362: Add OpPtrDiff to count the number of elements between two element
pointers.

- Khronos SPIR-V Issue #332: Add SignExtend and ZeroExtend image operands.

- Khronos SPIR-V Issue #340: Add the UniformId decoration, which takes a Scope operand.

- Khronos SPIR-V Issue #112: Add iteration-control loop controls.

- Khronos SPIR-V Issue #366: Change Memory Access operands and the Memory Access section
to now be Memory Operands and the Memory Operands section.

- Khronos SPIR-V Issue #357: Allow OpCopyMemory and OpCopyMemorySized to have Memory
Operands for both their Source and Target.

• New Extensions Incorporated into SPIR-V 1.4:

- SPV_KHR_no_integer_wrap_decoration. See NoSignedWrap and NoUnsignedWrap decorations
and universal validation decoration rules.

- SPV_GOOGLE_decorate_string. See OpDecorateString and OpMemberDecorateString.

- SPV_GOOGLE_hlsl_functionality1. See CounterBuffer and UserSemantic decorations.

- SPV_KHR_float_controls. See DenormPreserve, DenormFlushToZero,
SignedZeroInfNanPreserve, RoundingModeRTE, and RoundingModeRTZ execution modes and
capabilities.

• Removed:

- Khronos SPIR-V Issue #437: Removed OpAtomicCompareExchangeWeak, and the BufferBlock
decoration.

4.35. Changes from Version 1.4, Revision 1
• GitHub SPIRV-Registry Issue #25: Remove validation rule for simultaneous use of RowMajor and

ColMajor, instead stating this in the decoration cells themselves.

• Khronos Issue #319: Bring in fixes to the SPV_KHR_16bit_storage extension. See the
StorageBuffer16BitAccess and the related 16-bit capabilities.

• Khronos Issue #363: OpTypeBool can be used in the Input and Output storage classes, but the client
APIs still only allow built-in Boolean variables (e.g. FrontFacing), not user variables.

329

• Khronos Issue #432: Remove the untrue expository statement "OpFunction is the only valid use of
OpTypeFunction."

• Khronos Issue #465: Distinguish between the Groups capability and the Group and Subgroup
instructions.

• Khronos Issue #484: Have OpTypeArray and OpTypeStruct point to their definitions.

• Khronos Issue #477: Include 0.0 in the range of required values for RelaxedPrecision and other minor
clarifications in the relaxed-precision section regarding floating-point precision.

• Khronos Issue #226: Be more clear about explicit level-of-detail being either Lod or Grad throughout
the sampling instructions, and that ConstOffset, Offset, and ConstOffsets are mutually exclusive in
the image operand’s descriptions.

• Khronos Issue #390: The Volatile decoration does not guarantee each invocation performs the access.

• Reserved New Tokens for:

- SPV_EXT_fragment_shader_interlock

- SPV_NV_shader_sm_builtins

- SPV_INTEL_shader_integer_functions2

- SPV_EXT_demote_to_helper_invocation

- SPV_KHR_shader_clock

- SPV_GOOGLE_user_type

- Volatile, for SPV_KHR_vulkan_memory_model

4.36. Changes from Version 1.4
• Extensions Incorporated into SPIR-V 1.5:

- SPV_KHR_8bit_storage

- SPV_EXT_descriptor_indexing

- SPV_EXT_shader_viewport_index_layer, with changes: Replaced the single
ShaderViewportIndexLayerEXT capability with the two new capabilities ShaderViewportIndex
and ShaderLayer. Declaring both is equivalent to declaring ShaderViewportIndexLayerEXT.

- SPV_EXT_physical_storage_buffer and SPV_KHR_physical_storage_buffer

- SPV_KHR_vulkan_memory_model

• Khronos Issue #402: Relax OpGroupNonUniformBroadcast Id from constant to dynamically uniform,
starting with version 1.5.

• Khronos Issue #493: Relax OpGroupNonUniformQuadBroadcast Id from constant to dynamically
uniform, starting with version 1.5.

• Khronos Issue #494: Update the Dynamically Uniform definition to say that the invocation group is the
set of invocations, unless otherwise stated.

• Khronos Issue #485: When RelaxedPrecision is applied to a numerical instruction, the operands may
be truncated.

4.37. Changes from Version 1.5, Revision 1
• Khronos Issue #511: Allow non-execution non-memory scopes in the introduction to the Scope <id>

section .

330

• Khronos MR !147: Fix OpFNegate so it handles 0.0f properly

• Khronos Issue #502: OpAccessChain array indexes must be an in-bounds for logical pointer types.

• Khronos Issue #518: Include both VariablePointers and VariablePointersStorageBuffer capabilities
in the validation rules when discussing variable pointer rules.

• Khronos Issue #496: Allow Invariant to decorate a block member.

• Khronos Issue #469: Disallow OpConstantNull result and OpPtrEqual, OpPtrNotEqual, and
OpPtrDiff operands from being pointers into the PhysicalStorageBuffer storage class. See the
PhysicalStorageBuffer validation rules.

• Khronos Issue #425: Clarify what variables can allocate pointers, in the validation rules, based on the
declarations of the VariablePointers or VariablePointersStorageBuffer capabilities.

• Khronos Issue #442: Add a note pointing out where signedness has some semantic meaning.

• Khronos Issue #498: Relaxed the set of allowed types for some Group and Subgroup instructions.

• Khronos Issue #500: Deprecate OpLessOrGreater in favor of OpFOrdNotEqual.

• Khronos Issue #354: Rationalize literals throughout the specification. Remove "immediate" as a
separate definition. Be more rigid about a single literal mapping to one or more operands, and that the
instruction description defines the type of the literal.

• Khronos Issue #479: Disallow intermediate aggregate types that could not be used to declare global
variables, and disallow all types that can’t be used for declaring variables. See the shader validation
"Type Rules". Also, more strongly state that intermediate values don’t form a storage class, in the
introduction to storage classes.

• Khronos Issue #78: Use a more correct definition of back edge.

• Khronos Issue #492: Overflow with OpSDiv, OpSRem, and OpSMod results in undefined behavior.

4.38. Changes from Version 1.5, Revision 2
• Reserve enumerants for SPV_KHR_ray_query and SPV_KHR_ray_tracing.

• Khronos MR #164: Subtract all exits from what a construct contains, not just the construct’s merge
block. See the Structured Control Flow section.

• Khronos Issues #394 and #473: More clearly state that the <id> declared by an
OpTypeForwardPointer can be consumed by any type-declaration instruction that can legally
consume the type of <id>. Also consolidated the rules for this within the instruction itself.

• Khronos Vulkan Issue #1951: Clarify that the SampledImageArrayDynamicIndexing capability
applies to dynamic indexing of image, sampler and sampled image objects.

• Khronos Issue #523: Label as memory Scope the additional operand for each of

- MakeTexelAvailable and MakeTexelVisible image operands, and

- MakePointerAvailable and MakePointerVisible memory operands.

• Khronos Issue #529: Allow the scope of uniform control flow to be defined by the client API.

• Khronos Issue #530: Allow the definition of derivative group to be set by the client API.

• Khronos Issue #293: Editorial simplification and clarification of different types under Types and
Variables.

• Khronos Issue #506: Add to the definition of Pure under Function Control that assuming it computes
the same results also requires the same global state.

• Khronos Issue #539: Clarify out-of-bounds indexes for OpAccessChain.

• Khronos Issue #550: Include OpUndef in the allowed constituents for OpSpecConstantComposite.

331

• Khronos Issue #389: Be more clear which instructions can be updated with a specialization constant in
the specialization section.

• Khronos Issue #544: Be more concise with OpLabel language.

• Khronos Issue #245: State that Dref operands must be 32-bit scalar floats in the image instructions.

• Khronos Issue #457: Change rule for OpUnreachable to being that behavior is undefined if it is
executed.

• Khronos Issue #231: Explicitly state that the component numbers 0, 1, 2, and 3 are 32-bit scalar
integers for OpImageGather and OpImageSparseGather.

• Khronos Issue #534: State where OpNoLine can be in the logical layout and with OpPhi.

• Khronos MR #168: Add definitions of quad and quad index, used by
OpGroupNonUniformQuadBroadcast and OpGroupNonUniformQuadSwap.

4.39. Changes from Version 1.5, Revision 3
• Reserve enumerants for the extensions

- SPV_INTEL_fpga_loop_controls

- SPV_INTEL_blocking_pipes

- SPV_INTEL_unstructured_loop_controls

- SPV_INTEL_fpga_reg

- SPV_INTEL_fpga_memory_attributes

- SPV_INTEL_kernel_attributes

- SPV_INTEL_function_pointers

- SPV_EXT_shader_image_int64

- SPV_KHR_fragment_shading_rate

- SPV_EXT_shader_atomic_float_add

• Establish formal meanings for validity (being statically expressed) and behavior (regarding dynamic
execution), in Validity and Defined Behavior. This also changed a number of uses of these terms
throughout the specifications to be consistent with these definitions.

- Main issue for this: Khronos issue #540.

- Addresses Khronos issues #542, #540, #545, #546, #547, and #548.

- Khronos issue #491: For OpConvertFToU and OpConvertFToS, behavior is undefined if Result
Type is not wide enough to hold the converted value.

- Khronos issue #591: Module validity does not depend on the default values of specialization
constants.

• Fix Khronos issues:

- #214: LoD and gather Image Instructions need non-multisampled images (MS of 0), while others
that provide a Sample Image Operand need a multisampled image (MS of 1).

- #324: For several Capabilities, explicitly list the values OpTypeImage has for Sampled, instead of
saying sampled or unsampled.

- #361: Stop requiring OpTypeRuntimeArray to be concrete, in the description of
OpTypeRuntimeArray. (This may still be restricted elsewhere though.)

- #553: Add definition of a tangled instruction and update the definitions of dynamic instance and
uniform control flow.

332

- #517: Expand the About This Document section to also discuss versioning.

- #564: Depth hint for the DepthLess execution mode means less-than-or-equal to.

- #558: Explicitly say (rather than imply) that ImageMipmap and ImageReadWrite capabilities apply
to kernels.

- #563: Delete unnecessary statement about incomplete images in OpImageQueryLod.

- #570: Update the definitions of the Acquire and Release memory semantics.

- #560: It is not valid to make duplicate BuiltIn variables.

- #566: The Client API specificies what happens with image coordinates outside the image for
OpImageRead, OpImageWrite, and OpImageSparseRead.

- #573: Clarify the type read/written is scalar or vector in OpImageRead, OpImageWrite, and
OpImageSparseRead.

- #595: Remove the parenthetical partial list of annotation instructions in the logical layout section.

- #574: Constituents of OpConstantComposite must not be specialization constants.

- #444: Use more restrictive "only" language for what decorations may apply to.

- MR !182: See the client API for how SubpassData coordinates are applied in OpImageRead.

4.40. Changes from Version 1.5, Revision 4
• Update to January 7, 2021 public headers.

4.41. Changes from Version 1.5, Revision 5
• Ported the specification itself to use asciidoctor instead of asciidoc.

• Reserve enumerants for the extensions:

- SPV_INTEL_float_controls2

- SPV_INTEL_vector_compute

- SPV_INTEL_arbitrary_precision_floating_point

- SPV_INTEL_usm_storage_classes

- SPV_INTEL_unstructured_loop_controls

- SPV_KHR_subgroup_uniform_control_flow

- SPV_KHR_linkonce_odr

- SPV_KHR_expect_assume

- SPV_EXT_shader_atomic_float_min_max

- SPV_KHR_integer_dot_product

- SPV_KHR_bit_instructions

- SPV_NV_ray_tracing_motion_blur

- SPV_INTEL_optnone

- SPV_NV_bindless_texture

• Add CPP_for_OpenCL source language.

• Clarify that OpFDiv has a defined result when the divisor is 0. (MR !195.)

• Fix execution-mode table to show all 3 operands for LocalSizeHintId.

333

• Fix GitHub SPIRV-Registry issues:

- #79: Clarify the definitions of StorageImageMultisample and ImageMSArray capabilities.

• Fix Khronos issues:

- #351: OpUDiv and OpUMod have undefined behavior if the divisor is 0.

- #621: Clarify the definition of the Sampled operand for OpTypeImage.

- #611: Clarifying string literals are case sensitive for comparisons.

- #615: Clarify Block and BufferBlock decorations.

- #654: Clarify that the ZeroExtend image operand is not valid with signed types.

- #623: Clarify OpAccessChain doesn’t create any extra restrictions.

- #647: Clarify NoWrite and NoReadWrite function parameter attributes apply to the pointer, not to
the underlying memory.

- #585: Clarify that OpCopyObject cannot have result type OpTypeVoid.

- #614: Clarify that OpUndef, OpPhi, and OpReturnValue cannot have result type OpTypeVoid.

- #115: Clarify the Shader validation rules for when OpSelectionMerge and OpLoopMerge
instructions are necessary.

- #656: Clarify the <id>-based rules for operands apply only to operands that are <id>s, in the
OpSpecConstantOp instruction.

- #627: Clarify the places that the RelaxedPrecision decoration must apply to.

- #549: Clarify the VariablePointers and VariablePointersStorageBuffer capabilities enable
additional features for logical pointers, but keep other prohibitions. Also that the VariablePointers
and VariablePointersStorageBuffer capabilities allow a pointer to be an operand to
OpReturnValue.

- #640: Add parenthetical note in structured control flow about reconverging before reaching a merge
block.

- #656: Clarify the <id>-based rules for OpSpecConstantOp operands apply only to operands that
are <id>s.

- #651: Add a validation rule that the workgroup size cannot have a dimension with the value zero
statically.

- #580: Clarify that SubpassInput is not valid as the Dim operand of OpTypeSampledImage, and
that sampled images with a Dim of Buffer are not valid in image sampling instructions.

- #619: Add a validation rule that LocalSize, LocalSizeId, LocalSizeHint, and LocalSizeHintId
can’t be used at the same time.

- #663: Restrict OpSwitch from being used to directly break or continue in a structured loop.

- #678: Allow the AliasedPointer and RestrictPointer decorations to apply to memory object
declarations.

- #682: Clarify that the VariablePointersStorageBuffer capability is sufficient to compare pointers
that point into different storage buffers using OpPtrEqual and OpPtrNotEqual.

• Changes from public headers

- PR #240: Remove the Kernel capability from fast-math flags.

- PR #257: Remove the Shader implicit declaration from SPV_EXT_shader_atomic_float_add
capabilities.

334

4.42. Changes from Version 1.5
• New Functionality:

- Khronos SPIR-V issue #515: The FPFastMathMode decoration may now be used with
OpFNegate, with the binary floating-point comparison instructions (including OpOrdered and
OpUnordered), and with OpExtInst where expressly permitted by the extended instruction set.

- #661: Added a Nontemporal Image Operand.

• Extensions Incorporated into SPIR-V 1.6:

- SPV_KHR_non_semantic_info, see OpExtInstImport.

- SPV_KHR_integer_dot_product

- SPV_KHR_terminate_invocation

- SPV_EXT_demote_to_helper_invocation, with changes: Only OpDemoteToHelperInvocationEXT
was incorporated. Instead of using OpIsHelperInvocationEXT, modules should use Volatile loads
of the HelperInvocation built-in variable.

• Deprecations and Removals, from Khronos SPIR-V issues:

- Removed OpLessOrGreater. Use OpFOrdNotEqual instead.

- #620: The WorkgroupSize built-in is deprecated starting with version 1.6.

- #645: The True Label and False Label of an OpBranchConditional must not be the same, starting
with version 1.6.

- #584: Disallow Dim Buffer in OpTypeSampledImage and OpSampledImage starting with version
1.6.

- Deprecated OpKill, in favor of OpTerminateInvocation, or OpDemoteToHelperInvocation.

• Reserve enumerants for the SPV_KHR_fragment_shader_barycentric extension.

335

	SPIR-V Specification
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. �Execution Environment and Client API
	1.3. �About This Document
	1.3.1. Versioning

	1.4. Extendability
	1.5. Debuggability
	1.6. Design Principles
	1.7. Static Single Assignment (SSA)
	1.8. Built-In Variables
	1.9. �Specialization
	1.10. Example

	Chapter 2. �Specification
	2.1. �Language Capabilities
	2.2. Terms
	2.2.1. Instructions
	2.2.2. Types
	2.2.3. Computation
	2.2.4. Module
	2.2.5. Control Flow
	2.2.6. �Validity and Defined Behavior

	2.3. �Physical Layout of a SPIR-V Module and Instruction
	2.4. �Logical Layout of a Module
	2.5. Instructions
	2.5.1. �SSA Form

	2.6. Entry Point and Execution Model
	2.7. Execution Modes
	2.8. Types and Variables
	2.8.1. �Unsigned Versus Signed Integers

	2.9. Function Calling
	2.10. �Extended Instruction Sets
	2.11. �Structured Control Flow
	2.12. �Specialization
	2.13. �Linkage
	2.14. �Relaxed Precision
	2.15. Debug Information
	2.15.1. Function-Name Mangling

	2.16. �Validation Rules
	2.16.1. Universal Validation Rules
	2.16.2. �Validation Rules for Shader Capabilities
	2.16.3. Validation Rules for Kernel Capabilities

	2.17. �Universal Limits
	2.18. �Memory Model
	2.18.1. �Memory Layout
	2.18.2. �Aliasing
	2.18.3. Null pointers

	2.19. Derivatives
	2.20. Code Motion
	2.21. �Deprecation
	2.22. �Unified Specification
	2.23. �Uniformity

	Chapter 3. �Binary Form
	3.1. �Magic Number
	3.2. �Source Language
	3.3. �Execution Model
	3.4. �Addressing Model
	3.5. �Memory Model
	3.6. �Execution Mode
	3.7. �Storage Class
	3.8. �Dim
	3.9. �Sampler Addressing Mode
	3.10. �Sampler Filter Mode
	3.11. �Image Format
	3.12. �Image Channel Order
	3.13. �Image Channel Data Type
	3.14. �Image Operands
	3.15. �FP Fast Math Mode
	3.16. �FP Rounding Mode
	3.17. �Linkage Type
	3.18. �Access Qualifier
	3.19. �Function Parameter Attribute
	3.20. �Decoration
	3.21. �BuiltIn
	3.22. �Selection Control
	3.23. �Loop Control
	3.24. �Function Control
	3.25. �Memory Semantics <id>
	3.26. �Memory Operands
	3.27. �Scope <id>
	3.28. �Group Operation
	3.29. �Kernel Enqueue Flags
	3.30. �Kernel Profiling Info
	3.31. �Capability
	3.32. �Reserved Ray Flags
	3.33. �Reserved Ray Query Intersection
	3.34. �Reserved Ray Query Committed Type
	3.35. �Reserved Ray Query Candidate Type
	3.36. �Reserved Fragment Shading Rate
	3.37. �Reserved FP Denorm Mode
	3.38. �Reserved FP Operation Mode
	3.39. �Quantization Mode
	3.40. �Overflow Mode
	3.41. �Packed Vector Format
	3.42. �Instructions
	3.42.1. �Miscellaneous Instructions
	3.42.2. �Debug Instructions
	3.42.3. �Annotation Instructions
	3.42.4. �Extension Instructions
	3.42.5. �Mode-Setting Instructions
	3.42.6. �Type-Declaration Instructions
	3.42.7. �Constant-Creation Instructions
	3.42.8. �Memory Instructions
	3.42.9. �Function Instructions
	3.42.10. �Image Instructions
	3.42.11. �Conversion Instructions
	3.42.12. �Composite Instructions
	3.42.13. �Arithmetic Instructions
	3.42.14. �Bit Instructions
	3.42.15. �Relational and Logical Instructions
	3.42.16. �Derivative Instructions
	3.42.17. �Control-Flow Instructions
	3.42.18. �Atomic Instructions
	3.42.19. �Primitive Instructions
	3.42.20. �Barrier Instructions
	3.42.21. �Group and Subgroup Instructions
	3.42.22. �Device-Side Enqueue Instructions
	3.42.23. �Pipe Instructions
	3.42.24. �Non-Uniform Instructions
	3.42.25. �Reserved Instructions

	Chapter 4. Appendix A: Changes
	4.1. Changes from Version 0.99, Revision 31
	4.2. Changes from Version 0.99, Revision 32
	4.3. Changes from Version 1.00, Revision 1
	4.4. Changes from Version 1.00, Revision 2
	4.5. Changes from Version 1.00, Revision 3
	4.6. Changes from Version 1.00, Revision 4
	4.7. Changes from Version 1.00, Revision 5
	4.8. Changes from Version 1.00, Revision 6
	4.9. Changes from Version 1.00, Revision 7
	4.10. Changes from Version 1.00, Revision 8
	4.11. Changes from Version 1.00, Revision 9
	4.12. Changes from Version 1.00, Revision 10
	4.13. Changes from Version 1.00, Revision 11
	4.14. Changes from Version 1.00
	4.15. Changes from Version 1.1, Revision 1
	4.16. Changes from Version 1.1, Revision 2
	4.17. Changes from Version 1.1, Revision 3
	4.18. Changes from Version 1.1, Revision 4
	4.19. Changes from Version 1.1, Revision 5
	4.20. Changes from Version 1.1, Revision 6
	4.21. Changes from Version 1.1, Revision 7
	4.22. Changes from Version 1.1
	4.23. Changes from Version 1.2, Revision 1
	4.24. Changes from Version 1.2, Revision 2
	4.25. Changes from Version 1.2, Revision 3
	4.26. Changes from Version 1.2
	4.27. Changes from Version 1.3, Revision 1
	4.28. Changes from Version 1.3, Revision 2
	4.29. Changes from Version 1.3, Revision 3
	4.30. Changes from Version 1.3, Revision 4
	4.31. Changes from Version 1.3, Revision 5
	4.32. Changes from Version 1.3, Revision 6
	4.33. Changes from Version 1.3, Revision 7
	4.34. Changes from Version 1.3
	4.35. Changes from Version 1.4, Revision 1
	4.36. Changes from Version 1.4
	4.37. Changes from Version 1.5, Revision 1
	4.38. Changes from Version 1.5, Revision 2
	4.39. Changes from Version 1.5, Revision 3
	4.40. Changes from Version 1.5, Revision 4
	4.41. Changes from Version 1.5, Revision 5
	4.42. Changes from Version 1.5

