

Understanding the Impact of Synchronous, Asynchronous, and Hybrid In-Situ Techniques in Computational Fluid Dynamics Applications

eScience Session 7: HPC and eScience

Yi Ju

Max Planck Computing & Data Facility Garching near Munich, Germany

Philipp Schlatter

KTH Engineering Mechanics Stockholm, Sweden

Adalberto Perez

KTH Engineering Mechanics Stockholm, Sweden

Erwin Laure

Max Planck Computing & Data Facility Garching near Munich, Germany

Stefano Markidis

KTH Electrical Engineering and Computer Science Stockholm, Sweden

14.10.2022 Salt Lake City, Utah, USA

Computational fluid dynamics (CFD)

Characteristics:

- Computationally expensive
- Requiring large storage for the results (tens of GB per simulation step)

In this study we use CFD as use case

Computational fluid dynamics (CFD)

Characteristics:

- Computationally expensive
- Requiring large storage for the results (tens of GB per simulation step)

In this study we use CFD as use case

High Performance Computing (HPC) systems

- Rapid increment in computational capacity
- Relatively slow development in input/output (IO) subsystem
- Limit storage capacity

Computational fluid dynamics (CFD)

Characteristics:

- Computationally expensive
- Requiring large storage for the results (tens of GB per simulation step)

In this study we use CFD as use case

High Performance Computing (HPC) systems

- Rapid increment in computational capacity
- Relatively slow development in input/output (IO) subsystem
- Limit storage capacity

Post-mortem data processing

Workflow:

- Simulation solver write results through IO subsystem to storage
- Data processor read the data through IO subsystem from storage Disadvantage:
- Bottleneck in IO because of the IO bandwidth
- Limited frequency to preform data processing

Computational fluid dynamics (CFD)

Characteristics:

- Computationally expensive
- Requiring large storage for the results (tens of GB per simulation step)

In this study we use CFD as use case

High Performance Computing (HPC) systems

- Rapid increment in computational capacity
- Relatively slow development in input/output (IO) subsystem
- Limit storage capacity

Post-mortem data processing

Workflow:

- Simulation solver write results through IO subsystem to storage
- Data processor read the data through IO subsystem from storage Disadvantage:
- Bottleneck in IO because of the IO bandwidth
- Limited frequency to preform data processing

In-situ data processing

Workflow:

• Data processer receive data from simulation solver without via IO subsystem and storage

Challenge:

- Data processing could bring overhead to the simulation
- Data processing could influence the scalability of the simulation

Synchronous in-situ approach

Workflow:

• Simulation waits until data processing finished

Simulaion

Data processing

Data transfer

Synchronous in-situ approach

Workflow:

• Simulation waits until data processing finished

Synchronous in-situ approach

Workflow:

• Simulation waits until data processing finished

Synchronous in-situ approach

Workflow:

• Simulation waits until data processing finished

Synchronous in-situ approach

Workflow:

• Simulation waits until data processing finished

Asynchronous in-situ approach

Workflow:

- Simulation sends data to separate computing resources and continues
- Data are processed concurrently

Simulaion

Data processing

Data transfer

Synchronous in-situ approach

Workflow:

• Simulation waits until data processing finished

Data are processed concurrently

Simulation solver

Nek5000:

- CPU version: Fortran
- GPU version: Fortran with OpenACC

Characteristics:

- Direct Numerical Simulation (DNS) solver
- "Matrix-free"
- Scalability from "local domain"

Simulation solver If the solution solver In-situ systems

Nek5000:

- CPU version: Fortran
- GPU version: Fortran with OpenACC

Characteristics:

- Direct Numerical Simulation (DNS) solver
- "Matrix-free"
- Scalability from "local domain"

• VisIt with Libsim

• ParaView with Catalyst

• SENSEI

• Adaptable IO System (ADIOS)

Simulation solver If the solution solver In-situ systems

Nek5000:

- CPU version: Fortran
- GPU version: Fortran with OpenACC

Characteristics:

- Direct Numerical Simulation (DNS) solver
- "Matrix-free"
- Scalability from "local domain"

• VisIt with Libsim

• ParaView with Catalyst

• SENSEI

ADIC'S

• Adaptable IO System (ADIOS)

Simulation solver In-situ systems

Nek5000:

- CPU version: Fortran
- GPU version: Fortran with OpenACC

Characteristics:

- Direct Numerical Simulation (DNS) solver
- "Matrix-free"
- Scalability from "local domain"

• VisIt with Libsim

ParaView with Catalyst

SENSEI

ADIC'S

• Adaptable IO System (ADIOS)

ADIOS

- Arbitrary data structure
- Runtime configuration
- Application programming interfaces (APIs) for multiple programming languages
- Operators such as lossless compression
- MPI-based data communication between arbitrary configuration ¹

1

Data compression

Lossy compression, physics-based method: discard the data not associated with the most energetic flow motions

Lossy compression, physics-based method: discard the data not associated with the most energetic flow motions

1: E. Otero et al., "Lossy data compression effects on wall-bounded turbulence: bounds on data reduction," Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

1

Lossy compression, physics-based method: discard the data not associated with the most energetic flow motions

1: E. Otero et al., "Lossy data compression effects on wall-bounded turbulence: bounds on data reduction," Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

1: E. Otero et al., "Lossy data compression effects on wall-bounded turbulence: bounds on data reduction," Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

1: E. Otero et al., "Lossy data compression effects on wall-bounded turbulence: bounds on data reduction," Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

CPU-based Nek5000 with Lossy and Lossless Data Compression

(with maximum allowed error $\varepsilon = 10^{-2}$ and compression ratio $c = 98\%)$

CPU-based Nek5000 with Lossy and Lossless Data Compression

(with maximum allowed error $\varepsilon = 10^{-2}$ and compression ratio $c = 98\%)$

1: Slice of the velocity magnitude downstream from the bent section. a) is the original data set, while b) is the reconstruction of a field compressed with a 6 maximum allowed error of 10⁻². 2: RMSE of a slice of the 3D field for a maximum allowed error of 10⁻². The error is shown per spectral element.

CPU-based Nek5000 with Synchronous and Hybrid In-Situ Data Compression

(with maximum allowed error $\varepsilon = 10^{-2}$ and compression ratio $c = 98\%)$

Synchronous In-Situ Data Compression

1: execution time of Nek5000 with synchronous in-situ compression with lossy compression maximum allowed error $\varepsilon = 10^{-2}$ on Raven supercomputer (left) and hybrid in-situ compression with lossy compression maximum allowed error ϵ = 10⁻² on 24 Raven nodes (right).

CPU-based Nek5000 with Synchronous and Hybrid In-Situ Data Compression

(with maximum allowed error $\varepsilon = 10^{-2}$ and compression ratio $c = 98\%)$

1: execution time of Nek5000 with synchronous in-situ compression with lossy compression maximum allowed error $\varepsilon = 10^{-2}$ on Raven supercomputer (left) and hybrid in-situ compression with lossy compression maximum allowed error $\epsilon = 10^{-2}$ on 24 Raven nodes (right). 7

CPU-based Nek5000 with Synchronous and Hybrid In-Situ Data Compression

(with maximum allowed error $\varepsilon = 10^{-2}$ and compression ratio $c = 98\%)$

1: execution time of Nek5000 with synchronous in-situ compression with lossy compression maximum allowed error $\varepsilon = 10^{-2}$ on Raven supercomputer (left) and hybrid in-situ compression with lossy compression maximum allowed error ϵ = 10⁻² on 24 Raven nodes (right).

CPU-based Nek5000 with Synchronous and Asynchronous Image Generation

(45G VTK file for one image avoided) and the state of the state of

Synchronous In-Situ Image Generation

CPU-based Nek5000 with Synchronous and Asynchronous Image Generation

(45G VTK file for one image avoided)

1: Execution time of Nek5000 with synchronous in-situ image generation every two steps on Raven supercomputer (left) and 9 asynchronous in-situ image generation every two steps on 24 Raven nodes (right).

CPU-based Nek5000 with Synchronous and Asynchronous Image Generation

 \Box

COMPUTING & D/

malleable data solutions for HPC

MAX PLANCK

VETENSKA

1: Execution time of Nek5000 with synchronous in-situ image generation every two steps on Raven supercomputer (left) and 9 asynchronous in-situ image generation every two steps on 24 Raven nodes (right).

Frequent training lag update

Expensive model and uncertainty update

Frequent training lag update

Expensive model and uncertainty update

1: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty 11 quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).

1: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty 11 quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).

1: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty 11 quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).

Summary

Approaches

- The synchronous in-situ approach: simulation waits until data process finished
- The asynchronous in-situ approach: simulation sends data to separate computing resources and continues, while data are processed concurrently
- The hybrid in-situ approach: the first part of data process is synchronous; the second part of data process is asynchronous.

Case study

- The synchronous in-situ data compression is preferred because of its low computational cost.
- 45GB VTK file for each in-situ step is avoided by in-situ techniques.
- The asynchronous in-situ image generation is preferred because of the optimal computing resource allocation to minimize the overhead from the MPI collective communication.
- The hybrid in-situ uncertainty quantification is preferred because of the more efficient computing resources usage

Outlook

- In-situ tasks to GPU based simulation
- In-situ tasks to exasacle simulation
- Performance model of in-situ techniques
- Dynamic computing resources allocation

This project has received funding from the European Union's Horizon 2020 JTI-EuroHPC research and innovation programme, with grant Agreement number: 956748 - ADMIRE - H2020-JTI-EuroHPC-2019-1

nucrstanur
Amnutatior **Understanding the Impact of Synchronous, Asynchronous, and Hybrid In-Situ Techniques in Computational Fluid Dynamics Applications**

Approaches

- The synchronous in-situ approach: simulation waits until data process finished
- The asynchronous in-situ approach: simulation sends data to separate computing resources and continues, while data are processed concurrently
- The hybrid in-situ approach: the first part of data process is synchronous; the second part of data process is asynchronous.

Case study

- The synchronous in-situ data compression is preferred because of its low computational cost.
- 45GB VTK file for each in-situ step is avoided by in-situ techniques.
- The asynchronous in-situ image generation is preferred because of the optimal computing resource allocation to minimize the overhead from the MPI collective communication.
- The hybrid in-situ uncertainty quantification is preferred because of the more efficient computing resources usage

Outlook

- In-situ tasks to GPU based simulation
- In-situ tasks to exasacle simulation
- Performance model of in-situ techniques
- Dynamic computing resources allocation

This project has received funding from the European Union's Horizon 2020 JTI-EuroHPC research and innovation programme, with grant Agreement number: 956748 - ADMIRE - H2020-JTI-EuroHPC-2019-1