
Understanding the Impact of Synchronous, Asynchronous, and Hybrid
In-Situ Techniques in Computational Fluid Dynamics Applications
eScience Session 7: HPC and eScience

Adalberto Perez
KTH Engineering Mechanics
Stockholm, Sweden

Stefano Markidis
KTH Electrical Engineering and Computer
Science
Stockholm, Sweden

14.10.2022 Salt Lake City, Utah, USA

Philipp Schlatter
KTH Engineering Mechanics
Stockholm, Sweden

Erwin Laure
Max Planck Computing & Data Facility
Garching near Munich, Germany

Yi Ju
Max Planck Computing & Data Facility
Garching near Munich, Germany

Motivation

2

Computational fluid dynamics (CFD)

Characteristics:
• Computationally expensive
• Requiring large storage for the results (tens of GB per

simulation step)
In this study we use CFD as use case

Motivation

2

Computational fluid dynamics (CFD)

Characteristics:
• Computationally expensive
• Requiring large storage for the results (tens of GB per

simulation step)
In this study we use CFD as use case

High Performance Computing (HPC) systems

• Rapid increment in computational capacity
• Relatively slow development in input/output (IO) subsystem
• Limit storage capacity

Motivation

2

Computational fluid dynamics (CFD)

Characteristics:
• Computationally expensive
• Requiring large storage for the results (tens of GB per

simulation step)
In this study we use CFD as use case

High Performance Computing (HPC) systems

• Rapid increment in computational capacity
• Relatively slow development in input/output (IO) subsystem
• Limit storage capacity

Post-mortem data processing

Workflow:
• Simulation solver write results through IO subsystem to storage
• Data processor read the data through IO subsystem from storage
Disadvantage:
• Bottleneck in IO because of the IO bandwidth
• Limited frequency to preform data processing

Motivation

2

Computational fluid dynamics (CFD)

Characteristics:
• Computationally expensive
• Requiring large storage for the results (tens of GB per

simulation step)
In this study we use CFD as use case

High Performance Computing (HPC) systems

• Rapid increment in computational capacity
• Relatively slow development in input/output (IO) subsystem
• Limit storage capacity

Post-mortem data processing

Workflow:
• Simulation solver write results through IO subsystem to storage
• Data processor read the data through IO subsystem from storage
Disadvantage:
• Bottleneck in IO because of the IO bandwidth
• Limited frequency to preform data processing

In-situ data processing
Workflow:
• Data processer receive data from simulation solver without via IO

subsystem and storage
Challenge:
• Data processing could bring overhead to the simulation
• Data processing could influence the scalability of the simulation

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Asynchronous in-situ approach

Workflow:
• Simulation sends data to separate

computing resources and continues
• Data are processed concurrently

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Asynchronous in-situ approach

Workflow:
• Simulation sends data to separate

computing resources and continues
• Data are processed concurrently

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Asynchronous in-situ approach

Workflow:
• Simulation sends data to separate

computing resources and continues
• Data are processed concurrently

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Asynchronous in-situ approach

Workflow:
• Simulation sends data to separate

computing resources and continues
• Data are processed concurrently

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Asynchronous in-situ approach

Workflow:
• Simulation sends data to separate

computing resources and continues
• Data are processed concurrently

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Asynchronous in-situ approach

Workflow:
• Simulation sends data to separate

computing resources and continues
• Data are processed concurrently

Simulaion

Data processing

Data transfer

Hybrid in-situ approach

Workflow:
• First part of data processing is synchronous
• Second part of data processing is

asynchronous

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Asynchronous in-situ approach

Workflow:
• Simulation sends data to separate

computing resources and continues
• Data are processed concurrently

Simulaion

Data processing

Data transfer

Hybrid in-situ approach

Workflow:
• First part of data processing is synchronous
• Second part of data processing is

asynchronous

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Asynchronous in-situ approach

Workflow:
• Simulation sends data to separate

computing resources and continues
• Data are processed concurrently

Simulaion

Data processing

Data transfer

Hybrid in-situ approach

Workflow:
• First part of data processing is synchronous
• Second part of data processing is

asynchronous

Simulaion

Data processing

Data transfer

Synchronous, Asynchronous and Hybrid In-Situ Data Processing

3

Synchronous in-situ approach

Workflow:
• Simulation waits until data processing

finished

Simulaion

Data processing

Data transfer

Asynchronous in-situ approach

Workflow:
• Simulation sends data to separate

computing resources and continues
• Data are processed concurrently

Simulaion

Data processing

Data transfer

Hybrid in-situ approach

Workflow:
• First part of data processing is synchronous
• Second part of data processing is

asynchronous

Simulaion

Data processing

Data transfer

State-of-the-Art

4

Simulation solver

Characteristics:
• Direct Numerical Simulation (DNS) solver
• “Matrix-free”
• Scalability from “local domain”

Nek5000:
• CPU version: Fortran
• GPU version: Fortran with OpenACC

1: https://adios2.readthedocs.io/en/latest/components/components.html

State-of-the-Art

4

• VisIt with Libsim

• ParaView with Catalyst

• SENSEI

• Adaptable IO System (ADIOS)

In-situ systemsSimulation solver

Characteristics:
• Direct Numerical Simulation (DNS) solver
• “Matrix-free”
• Scalability from “local domain”

Nek5000:
• CPU version: Fortran
• GPU version: Fortran with OpenACC

1: https://adios2.readthedocs.io/en/latest/components/components.html

State-of-the-Art

4

• VisIt with Libsim

• ParaView with Catalyst

• SENSEI

• Adaptable IO System (ADIOS)

In-situ systemsSimulation solver

Characteristics:
• Direct Numerical Simulation (DNS) solver
• “Matrix-free”
• Scalability from “local domain”

Nek5000:
• CPU version: Fortran
• GPU version: Fortran with OpenACC

1: https://adios2.readthedocs.io/en/latest/components/components.html

State-of-the-Art

4

• VisIt with Libsim

• ParaView with Catalyst

• SENSEI

• Adaptable IO System (ADIOS)

In-situ systemsSimulation solver

Characteristics:
• Direct Numerical Simulation (DNS) solver
• “Matrix-free”
• Scalability from “local domain”

Nek5000:
• CPU version: Fortran
• GPU version: Fortran with OpenACC

ADIOS

• Arbitrary data structure
• Runtime configuration
• Application programming interfaces (APIs)

for multiple programming languages
• Operators such as lossless compression
• MPI-based data communication between

arbitrary configuration 1

1: https://adios2.readthedocs.io/en/latest/components/components.html

Freqeuncy

Freqeuncy

1

Use Case: Lossy and Lossless Data Compression

5

Data compression
Lossy compression, physics-based method:
discard the data not associated with the most
energetic flow motions

Lossless compression:
ADIOS2 operator with runtime configuration

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data
reduction,” Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

Freqeuncy

Freqeuncy

1

Use Case: Lossy and Lossless Data Compression

5

Data compression
Lossy compression, physics-based method:
discard the data not associated with the most
energetic flow motions

Lossless compression:
ADIOS2 operator with runtime configuration

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data
reduction,” Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

In-situ approach

• Nek5000 with synchronous data compression:

Fortran functions C/C++ functions
called in Fortran C++ functions

Freqeuncy

Freqeuncy

1

Use Case: Lossy and Lossless Data Compression

5

Data compression
Lossy compression, physics-based method:
discard the data not associated with the most
energetic flow motions

Lossless compression:
ADIOS2 operator with runtime configuration

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data
reduction,” Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

In-situ approach

• Nek5000 with synchronous data compression:

Fortran functions C/C++ functions
called in Fortran C++ functions

Nek5000 Nek-proc adaptor
Lossy compression

Lossless compression

Data compressor

Output through IO

Data passing by
address

in-situ function Data passing by
address

Freqeuncy

Freqeuncy

1

Use Case: Lossy and Lossless Data Compression

5

Data compression
Lossy compression, physics-based method:
discard the data not associated with the most
energetic flow motions

Lossless compression:
ADIOS2 operator with runtime configuration

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data
reduction,” Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

In-situ approach

• Nek5000 with synchronous data compression:

Fortran functions C/C++ functions
called in Fortran C++ functions

• Nek5000 with hybrid data compression:

Nek5000 Nek-proc adaptor
Lossy compression

Lossless compression

Data compressor

Output through IO

Data passing by
address

in-situ function Data passing by
address

Freqeuncy

Freqeuncy

1

Use Case: Lossy and Lossless Data Compression

5

Data compression
Lossy compression, physics-based method:
discard the data not associated with the most
energetic flow motions

Lossless compression:
ADIOS2 operator with runtime configuration

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data
reduction,” Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365– 387, 2018.

In-situ approach

• Nek5000 with synchronous data compression:

Fortran functions C/C++ functions
called in Fortran C++ functions

• Nek5000 with hybrid data compression:

Nek5000 Nek-proc adaptor
Lossy compression

Lossless compression

Data compressor

Output through IO

Data passing by
address

in-situ function Data passing by
address

Nek5000 Nek-proc adaptor
Lossy compression

Data compressor
Data selectionin-situ function

Lossless compression
Output through IO

Proc-wrtr adaptor ADIOS writer

Data compressor

Data passing by
address

ADIOS insituMPI
writer

Rdr-proc adaptor ADIOS reader
ADIOS insituMPI

reader
Data passing by

address

CPU-based Nek5000 with Lossy and Lossless Data Compression

61: Slice of the velocity magnitude downstream from the bent section. a) is the original data set, while b) is the reconstruction of a field compressed with a
maximum allowed error of 10−2. 2: RMSE of a slice of the 3D field for a maximum allowed error of 10−2. The error is shown per spectral element.

1

(with maximum allowed error 𝜀 = 10!" and compression ratio 𝑐 = 98%)

CPU-based Nek5000 with Lossy and Lossless Data Compression

61: Slice of the velocity magnitude downstream from the bent section. a) is the original data set, while b) is the reconstruction of a field compressed with a
maximum allowed error of 10−2. 2: RMSE of a slice of the 3D field for a maximum allowed error of 10−2. The error is shown per spectral element.

1
2

(with maximum allowed error 𝜀 = 10!" and compression ratio 𝑐 = 98%)

Node 0 Node 1 Node 2 Node 23

Node 0 Node 1 Node 2 Node 23

A

B

Synchronous In-Situ Data Compression

CPU-based Nek5000 with Synchronous and Hybrid In-Situ Data Compression

7

(with maximum allowed error 𝜀 = 10!" and compression ratio 𝑐 = 98%)

1: execution time of Nek5000 with synchronous in-situ compression with lossy compression maximum allowed error ε = 10−2 on Raven
supercomputer (left) and hybrid in-situ compression with lossy compression maximum allowed error ε = 10−2 on 24 Raven nodes (right).

1

Node 0 Node 1 Node 2 Node 23

Node 0 Node 1 Node 2 Node 23

A

B

Hybrid In-Situ Data Compression (with 1728 cores)

CPU-based Nek5000 with Synchronous and Hybrid In-Situ Data Compression

7

(with maximum allowed error 𝜀 = 10!" and compression ratio 𝑐 = 98%)

1: execution time of Nek5000 with synchronous in-situ compression with lossy compression maximum allowed error ε = 10−2 on Raven
supercomputer (left) and hybrid in-situ compression with lossy compression maximum allowed error ε = 10−2 on 24 Raven nodes (right).

1

A

B

Node 0 Node 1 Node 2 Node 23

Node 0 Node 1 Node 2 Node 23

A

B

Synchronous In-Situ Data Compression Hybrid In-Situ Data Compression (with 1728 cores)

CPU-based Nek5000 with Synchronous and Hybrid In-Situ Data Compression

7

(with maximum allowed error 𝜀 = 10!" and compression ratio 𝑐 = 98%)

1: execution time of Nek5000 with synchronous in-situ compression with lossy compression maximum allowed error ε = 10−2 on Raven
supercomputer (left) and hybrid in-situ compression with lossy compression maximum allowed error ε = 10−2 on 24 Raven nodes (right).

1

Use Case: Image Generation with ParaView/Catalyst

81: Original from “M. Atzori, W. Ko ̈pp, S. W. Chien, D. Massaro, F. Mallor, A. Peplinski, M. Rezaei, N. Jansson, S. Markidis, R. Vinuesa et al., “In situ visualization of
large-scale turbulence simulations in nek5000 with paraview catalyst,” The Journal of Supercomputing, vol. 78, no. 3, pp. 3605–3620, 2022.”

Image generation

Nek5000
Fortran

Spectral-element
method

Catalyst adaptor
C++

Spectral-element
mesh

VTK format

VTK
file

IO subsystem

Pipeline
Python

Instructions for
ParaView

PareView & Mesa
C++
Slice

Rendering

Image composition

Use Case: Image Generation with ParaView/Catalyst

81: Original from “M. Atzori, W. Ko ̈pp, S. W. Chien, D. Massaro, F. Mallor, A. Peplinski, M. Rezaei, N. Jansson, S. Markidis, R. Vinuesa et al., “In situ visualization of
large-scale turbulence simulations in nek5000 with paraview catalyst,” The Journal of Supercomputing, vol. 78, no. 3, pp. 3605–3620, 2022.”

Image generation

Nek5000
Fortran

Spectral-element
method

Catalyst adaptor
C++

Spectral-element
mesh

VTK format

VTK
file

IO subsystem

1

Pipeline
Python

Instructions for
ParaView

PareView & Mesa
C++
Slice

Rendering

Image composition

Use Case: Image Generation with ParaView/Catalyst

81: Original from “M. Atzori, W. Ko ̈pp, S. W. Chien, D. Massaro, F. Mallor, A. Peplinski, M. Rezaei, N. Jansson, S. Markidis, R. Vinuesa et al., “In situ visualization of
large-scale turbulence simulations in nek5000 with paraview catalyst,” The Journal of Supercomputing, vol. 78, no. 3, pp. 3605–3620, 2022.”

Image generation

Nek5000
Fortran

Spectral-element
method

Catalyst adaptor
C++

Spectral-element
mesh

VTK format

In-situ approach

Fortran functions C/C++ functions
called in Fortran C++ functions

Nek5000 Nek-proc adaptor
ParaView & Mesa

with Pipeline defined
in Python

Image generator

in-situ function

• Nek5000 with synchronous image generation:

Data deep copy

VTK
file

IO subsystem

1

Pipeline
Python

Instructions for
ParaView

PareView & Mesa
C++
Slice

Rendering

Image composition

Use Case: Image Generation with ParaView/Catalyst

81: Original from “M. Atzori, W. Ko ̈pp, S. W. Chien, D. Massaro, F. Mallor, A. Peplinski, M. Rezaei, N. Jansson, S. Markidis, R. Vinuesa et al., “In situ visualization of
large-scale turbulence simulations in nek5000 with paraview catalyst,” The Journal of Supercomputing, vol. 78, no. 3, pp. 3605–3620, 2022.”

Image generation

Nek5000
Fortran

Spectral-element
method

Catalyst adaptor
C++

Spectral-element
mesh

VTK format

In-situ approach

Fortran functions C/C++ functions
called in Fortran C++ functions

Nek5000 Nek-proc adaptor
ParaView & Mesa

with Pipeline defined
in Python

Image generator

in-situ function

• Nek5000 with synchronous image generation:

Data deep copy

Nek5000 Nek-proc adaptor
Data passing by

addressin-situ function

ADIOS writer

Image generator

ADIOS insituMPI
writer

Rdr-proc adaptor ADIOS reader
ADIOS insituMPI

readerData deep copy

• Nek5000 with asynchronous image generation:

ParaView & Mesa
with Pipeline defined

in Python
VTK
file

IO subsystem

1

Pipeline
Python

Instructions for
ParaView

PareView & Mesa
C++
Slice

Rendering

Image composition

CPU-based Nek5000 with Synchronous and Asynchronous Image Generation

91: Execution time of Nek5000 with synchronous in-situ image generation every two steps on Raven supercomputer (left) and
asynchronous in-situ image generation every two steps on 24 Raven nodes (right).

1(45G VTK file for one image avoided)

A

B

Synchronous In-Situ Image Generation

CPU-based Nek5000 with Synchronous and Asynchronous Image Generation

91: Execution time of Nek5000 with synchronous in-situ image generation every two steps on Raven supercomputer (left) and
asynchronous in-situ image generation every two steps on 24 Raven nodes (right).

1

Asynchronous In-Situ Image Generation (with 1728 cores)
(45G VTK file for one image avoided)

A

B

A

B

CPU-based Nek5000 with Synchronous and Asynchronous Image Generation

91: Execution time of Nek5000 with synchronous in-situ image generation every two steps on Raven supercomputer (left) and
asynchronous in-situ image generation every two steps on 24 Raven nodes (right).

1

Asynchronous In-Situ Image Generation (with 1728 cores)
(45G VTK file for one image avoided)

A

B

Synchronous In-Situ Image Generation

Use Case: Uncertainty Quantification

10

Uncertainty Quantification

Training lags of one grid point

of

 g
rid

 p
oi

nt
s

Use Case: Uncertainty Quantification

10

Uncertainty Quantification

Frequent training lag update

Training lags of one grid point

of

 g
rid

 p
oi

nt
s

Use Case: Uncertainty Quantification

10

Uncertainty Quantification

Frequent training lag update

Expensive model and uncertainty update

Training lags of one grid point

of

 g
rid

 p
oi

nt
s

Use Case: Uncertainty Quantification

10

Uncertainty Quantification

Nek5000 Nek-proc
adaptor

Data passing
by addressin-situ function

ADIOS writer UQ processor
ADIOS

insituMPI writer

Rdr-proc
adaptorADIOS reader

ADIOS
insituMPI reader

Data passing
by address

• Nek5000 with asynchronous uncertainty quantification:

Frequent update

Expensive update

Fortran functions
C/C++ functions
called in Fortran Python functions

In-situ approach

Nek5000 Nek-proc adaptor
Frequent update

UQ processor

in-situ function

• Nek5000 with synchronous uncertainty quantification:

Data passing by
address Expensive update

C++ functions

Nek5000 Nek-proc adaptor
Frequent update

UQ processor
Data passing by

address
in-situ function

Expensive update

Proc-wrtr adaptor ADIOS writer

UQ processor

Data passing by
address

ADIOS insituMPI
writer

Rdr-proc adaptor ADIOS reader
ADIOS insituMPI

reader
Data passing by

address

• Nek5000 with hybrid uncertainty quantification:

Frequent training lag update

Expensive model and uncertainty update

Training lags of one grid point

of

 g
rid

 p
oi

nt
s

CPU-based Nek5000 with In-Situ Uncertainty Quantification (UQ)

111: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty
quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).

1

Asynchronous

Synchronous In-Situ UQ

CPU-based Nek5000 with In-Situ Uncertainty Quantification (UQ)

111: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty
quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).

Asynchronous In-Situ UQ (with 1728 cores)
1

Asynchronous

CPU-based Nek5000 with In-Situ Uncertainty Quantification (UQ)

111: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty
quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).

Hybrid In-Situ UQ (with 1728 cores) Asynchronous In-Situ UQ (with 1728 cores)
1

Asynchronous

Hybrid

CPU-based Nek5000 with In-Situ Uncertainty Quantification (UQ)

111: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty
quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).

Hybrid In-Situ UQ (with 1728 cores) Asynchronous In-Situ UQ (with 1728 cores)
1

Asynchronous

Hybrid

Synchronous In-Situ UQ

Summary
Approaches

Case study

• The synchronous in-situ approach: simulation waits until data process finished
• The asynchronous in-situ approach: simulation sends data to separate computing resources and continues, while data are processed

concurrently
• The hybrid in-situ approach: the first part of data process is synchronous; the second part of data process is asynchronous.

• The synchronous in-situ data compression is preferred because of its low computational cost.
• 45GB VTK file for each in-situ step is avoided by in-situ techniques.
• The asynchronous in-situ image generation is preferred because of the optimal computing resource allocation to minimize the overhead

from the MPI collective communication.
• The hybrid in-situ uncertainty quantification is preferred because of the more efficient computing resources usage

12

Outlook

• In-situ tasks to GPU based simulation
• In-situ tasks to exasacle simulation
• Performance model of in-situ techniques
• Dynamic computing resources allocation

Summary
Approaches

Case study

• The synchronous in-situ approach: simulation waits until data process finished
• The asynchronous in-situ approach: simulation sends data to separate computing resources and continues, while data are processed

concurrently
• The hybrid in-situ approach: the first part of data process is synchronous; the second part of data process is asynchronous.

• The synchronous in-situ data compression is preferred because of its low computational cost.
• 45GB VTK file for each in-situ step is avoided by in-situ techniques.
• The asynchronous in-situ image generation is preferred because of the optimal computing resource allocation to minimize the overhead

from the MPI collective communication.
• The hybrid in-situ uncertainty quantification is preferred because of the more efficient computing resources usage

12

Outlook

• In-situ tasks to GPU based simulation
• In-situ tasks to exasacle simulation
• Performance model of in-situ techniques
• Dynamic computing resources allocation

Thank you for your attention!

Understanding the Impact of Synchronous, Asynchronous, and Hybrid In-Situ Techniques in
Computational Fluid Dynamics Applications

