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simulation step)
In this study we use CFD as use case 

High Performance Computing (HPC) systems

• Rapid increment in computational capacity 
• Relatively slow development in input/output (IO) subsystem 
• Limit storage capacity

Post-mortem data processing

Workflow:
• Simulation solver write results through IO subsystem to storage 
• Data processor read the data through IO subsystem from storage
Disadvantage:
• Bottleneck in IO because of the IO bandwidth
• Limited frequency to preform data processing 

In-situ data processing
Workflow:
• Data processer receive data from simulation solver without via IO 

subsystem and storage
Challenge:
• Data processing could bring overhead to  the simulation 
• Data processing could influence the scalability of the simulation
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• VisIt with Libsim

• ParaView with Catalyst

• SENSEI

• Adaptable IO System (ADIOS)

In-situ systemsSimulation solver

Characteristics: 
• Direct Numerical Simulation (DNS) solver
• “Matrix-free”
• Scalability from “local domain”

Nek5000:
• CPU version: Fortran
• GPU version: Fortran with OpenACC

ADIOS 

• Arbitrary data structure
• Runtime configuration
• Application programming interfaces (APIs) 

for multiple programming languages 
• Operators such as lossless compression
• MPI-based data communication between 

arbitrary configuration 1

1: https://adios2.readthedocs.io/en/latest/components/components.html
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quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).
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Case study

• The synchronous in-situ approach: simulation waits until data process finished
• The asynchronous in-situ approach: simulation sends data to separate computing resources and continues, while data are processed

concurrently
• The hybrid in-situ approach: the first part of data process is synchronous; the second part of data process is asynchronous.

• The synchronous in-situ data compression is preferred because of its low computational cost.  
• 45GB VTK file for each in-situ step is avoided by in-situ techniques.
• The asynchronous in-situ image generation is preferred because of the optimal computing resource allocation to minimize the overhead 

from the MPI collective communication.
• The hybrid in-situ uncertainty quantification is preferred because of the more efficient computing resources usage
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• Performance model of in-situ techniques
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Thank you for your attention!

Understanding the Impact of Synchronous, Asynchronous, and Hybrid In-Situ Techniques in 
Computational Fluid Dynamics Applications


