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Motivation

Computational fluid dynamics (CFD)

Characteristics:

+ Computationally expensive

* Requiring large storage for the results (tens of GB per
simulation step)

In this study we use CFD as use case
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Motivation

Computational fluid dynamics (CFD)

Characteristics:

Computationally expensive
Requiring large storage for the results (tens of GB per
simulation step)

In this study we use CFD as use case

Post-mortem data processing

Workflow:

« Simulation solver write results through 10 subsystem to storage

» Data processor read the data through 10 subsystem from storage
Disadvantage:

» Bottleneck in 10 because of the 10 bandwidth

» Limited frequency to preform data processing

High Performance Computing (HPC) systems

Rapid increment in computational capacity
Relatively slow development in input/output (10) subsystem
Limit storage capacity

In-situ data processing
Workflow:
» Data processer receive data from simulation solver without via 10
subsystem and storage
Challenge:
« Data processing could bring overhead to the simulation
» Data processing could influence the scalability of the simulation
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Synchronous, Asynchronous and Hybrid In-Situ Data Processing

Synchronous in-situ approach

Workflow:
« Simulation waits until data processing
finished

Simulaion

Data processing

Data transfer
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Data processing

Data transfer

Workflow:

e Simul

computing resources and continues
+ Data are processed concurrently

Asynchronous in-situ approach

ation sends data to separate
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Synchronous, Asynchronous and Hybrid In-Situ Data Processing

Synchronous in-situ approach Asynchronous in-situ approach Hybrid in-situ approach
Workflow: Workflow: Work.ﬂow: o
« Simulation waits until data processing « Simulation sends data to separate »  First part of data processing _'S synchronous
finished computing resources and continues *  Second part of data processing is
+ Data are processed concurrently asynchronous
Simulaion Simulaion Simulaion
Data processing Data processing Data processing
Data transfer Data transfer Data transfer
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State-of-the-Art

Simulation solver

Nek5000:
 CPU version: Fortran
» GPU version: Fortran with OpenACC

Characteristics:

* Direct Numerical Simulation (DNS) solver
+  “Matrix-free”

» Scalability from “local domain”

1: https://adios2.readthedocs.io/en/latest/components/components.html 4
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State-of-the-Art

Simulation solver

Nek5000:
 CPU version: Fortran
» GPU version: Fortran with OpenACC

Characteristics:

* Direct Numerical Simulation (DNS) solver
+  “Matrix-free”

» Scalability from “local domain”

In-situ systems

Vislt with Libsim
o
VISIT

ParaView with Catalyst

ParaView

Catalyst

SENSEI

SENSEI

insitu

Adaptable IO System (ADIOS)

ADI&s

ADIOS

Arbitrary data structure

Runtime configuration

Application programming interfaces (APIs)
for multiple programming languages
Operators such as lossless compression
MPI-based data communication between
arbitrary configuration 1

ADIOS 2 Full API
Interface Components RN Factory

Component
Creation

oo

Application ~=> Input

DefineOperator

DeclarelO|

DefineVariable DefineVariable

Open (name, mode, MPI_Comm)*,

Open (name, mode

1: https://adios2.readthedocs.io/en/latest/components/components.html 4
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Use Case: Lossy and Lossless Data Compression

Data compression
Lossy compression, physics-based method:
discard the data not associated with the most
energetic flow motions !
135 10°
13
1.25
s % 10710
12
=
1.15
11 10‘20
space coord Fregeunc
135 10° f
13 10°
125 10°
s P
1.2 10710
1.15 10718
1.1 1020
space coord Fregeuncy
Lossless compression:
ADIOS2 operator with runtime configuration

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data 5
reduction,” Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365—- 387, 2018.
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Use Case: Lossy and Lossless Data Compression

Data compression In-situ approach
Lossy compression, physics-based method: * Nek5000 with synchronous data compression: LI Jeeel 1 1]
discard the data not associated with the most
energetic flow motions !
135 10°
13
1.25
s % 10710
12
=
1.15
11 10720
space coord Fregeunc
1.35 10° f
13 10°
125 10°
S RS
1.2 10710
1.15 10718
11 10-20
space coord Freqeuncy
Lossless compression: _
i i i i Fortran functions C/C++ functions C++ functions
ADIOS2 operator with runtime configuration called in Fortran

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data 5
reduction,” Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365- 387, 2018.
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Use Case: Lossy and Lossless Data Compression

Data compression In-situ approach
Lossy compression, physics-based method: * Nek5000 with synchronous data compression: L]
discard .the data n(?t associated with the most 1 " "Nek5000 ) /Nek- oroc a dapto\r Data compress o)
energetic flow motions | e ——
135 10° . .
e | |, SR | Data passing by
13 address address
125 Lossless compression
2 LR \_ A\ ~/ \_ Output through 10/
12 ‘ I
=
1.15
11 10720
space coord Freqeunc
1.35 10° f
13 10°
125 10°
S RS
1.2 10710
1.15 10718
11 10-20
space coord Freqeuncy
Lossless compression: _
. . . . . C/C++ functions ,
ADIOS2 operator with runtime configuration Fortran functions called in Fortran C++ functions

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data 5
reduction,” Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365—- 387, 2018.
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Use Case: Lossy and Lossless Data Compression

Data compression In-situ approach
Lossy compression, physics-based method: * Nek5000 with synchronous data compression: L]
discard .the data n(?t associated with the most 1 Nek5000 ) /N ek-proc ad apto\r Data compresso}
energetic flow motions 0 || pyp—r—
135 i situ function -» Data passing by | Data passing by
13 address address
1o Lossless compression
s % 107 \_ VAN ~/ \_ Output through IO/
) | _ _ _ 1 1 eeel 1 [T
N 7 « Nek5000 with hybrid data compression:  ——  —

1.1

space coord Fregeunc
5
135 10 f

13 10°
1.25 10°
S] P
1.2 10710
1.15 10718
11 10-20
space coord Fregeuncy
Lossless compression: _
i i i i Fortran functions C/C+ functions C++ functions
ADIOS2 operator with runtime configuration called in Fortran

1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data 5
reduction,” Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365- 387, 2018.
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Use Case: Lossy and Lossless Data Compression

Data compression In-situ approach
Lossy compression, physics-based method: * Nek5000 with synchronous data compression: L]
discard .the data ngt associated with the most 1 Nek5000 ) /N ek-proc ad apto\r Data compresso}
energetic flow motions || pyp—r—
135 10° . .
in-situ function +1+» Dol ey 1 DR S [
13 address address
1o Lossless compression
s & 10 | Output through 10
- AN _/ \_Outp ghlo /
115 . . . I:[L
' * Nek5000 with hybrid data compression:
11 10720
space coord Fregeunc Nek5000 || Nek-proc adaptor| | Data compressor | [ Proc-wrtr adaptor || ADIOS writer
135 o o . : . Data passing by ADIOS insituMPI
in-situ function Data selection Lossy compression .
13 10° address writer
125 10° 1
S {'7\3
1.2 10710
Data compressor | | Rdr-proc adaptor |( ADIOS reader
e 107 Lossless compression Data passing by ADIOS insituMPI
& 1020 Output through 10 address reader
space coord g:'re?glmfy
Lossless compression: _
. . . . . C/C++ functions ,
ADIOS?2 operator with runtime configuration Fortran functions called in Fortran C++ functions
1: E. Otero et al., “Lossy data compression effects on wall-bounded turbulence: bounds on data 5

reduction,” Flow, Turbulence and Combustion, vol. 101, no. 2, pp. 365- 387, 2018.
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CPU-based Nek5000 with Lossy and Lossless Data Compression

(with maximum allowed error e = 10~2 and compression ratio ¢ = 98%)
1

1: Slice of the velocity magnitude downstream from the bent section. a) is the original data set, while b) is the reconstruction of a field compressed witha 6
maximum allowed error of 1072. 2: RMSE of a slice of the 3D field for a maximum allowed error of 1072. The error is shown per spectral element.
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CPU-based Nek5000 with Lossy and Lossless Data Compression

(with maximum allowed error £ = 1072 and compression ratio ¢ = 98%)

Root Mean Squared Error (RMSE)
0.01091

—0.008353

0.005799

0.003245

0.0006913

1: Slice of the velocity magnitude downstream from the bent section. a) is the original data set, while b) is the reconstruction of a field compressed witha 6
maximum allowed error of 1072. 2: RMSE of a slice of the 3D field for a maximum allowed error of 1072. The error is shown per spectral element.
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CPU-based Nek5000 with Synchronous and Hybrid In-Situ Data Compression

(with maximum allowed error £ = 1072 and compression ratio ¢ = 98%)

Synchronous In-Situ Data Compression

3.50
- Total

*\ —-= ]deal scale

32510 N Ll Nek5000

»

o

S
1

2.75 1

Execution time pre step (s)

864 1152 1440 1728
Number of cores

1: execution time of Nek5000 with synchronous in-situ compression with lossy compression maximum allowed error € = 1072 on Raven 7
supercomputer (left) and hybrid in-situ compression with lossy compression maximum allowed error € = 1072 on 24 Raven nodes (right).
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CPU-based Nek5000 with Synchronous and Hybrid In-Situ Data Compression

(with maximum allowed error e = 1072 and compression ratio ¢ = 98%)

Hybrid In-Situ Data Compression (with 1728 cores)

3.50
—— Total
Node 0 Node 1 Node 2 Node23 | .. Nek5000 B

3.25 1

A 000 ohd
)

+ 2.75 1
$
]
Q.

Node 0 Node 1 Node 2 Node 23 2 2.50 1

8 2251
B 000

< -

i 2.00
1.75 A
1.50 1
24 216 432 864
Number of cores for in-situ data compression
1: execution time of Nek5000 with synchronous in-situ compression with lossy compression maximum allowed error € = 1072 on Raven 7

supercomputer (left) and hybrid in-situ compression with lossy compression maximum allowed error € = 1072 on 24 Raven nodes (right).
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CPU-based Nek5000 with Synchronous and Hybrid In-Situ Data Compression

(with maximum allowed error e = 1072 and compression ratio ¢ = 98%)

3.50

Synchronous In-Situ Data Compression

3.25 1

g N N N »

S [\ W ] )

S W () () (=)
1 1 1 1 1

Execution time pre step (s)

1.75 1

1.50 1

- Total
—-= Ideal scale
----- Nek5000

864

1152 1440
Number of cores

1728

3.50

Hybrid In-Situ Data Compression (with 1728 cores)

3.25 1

>

=

S
1

——— Total
----- Nek5000

216 432
Number of cores for in-situ data compression

1: execution time of Nek5000 with synchronous in-situ compression with lossy compression maximum allowed error € = 1072 on Raven
supercomputer (left) and hybrid in-situ compression with lossy compression maximum allowed error € = 1072 on 24 Raven nodes (right).
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Use Case: Image Generation with ParaView/Catalyst

Image generation

Nek5000
Fortran
Spectral-element
method
v
/Catalystadaptor\ / Pipeline \
C++ Python
Spectral-element
mesh Instructions for
v ParaView

VTK format / K /

s l_,\/ PareView&Mesa
I C++

Slice
| f|Ie Y N
I Rendering
v
IlO subsystem klmage compositioy

1: Original from “M. Atzori, W. Ko'pp, S. W. Chien, D. Massaro, F. Mallor, A. Peplinski, M. Rezaei, N. Jansson, S. Markidis, R. Vinuesa et al., “In situ visualization of 8
large-scale turbulence simulations in nek5000 with paraview catalyst,” The Journal of Supercomputing, vol. 78, no. 3, pp. 3605-3620, 2022.”
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Use Case: Image Generation with ParaView/Catalyst

Image generation

Nek5000

Fortran
Spectral-element

method

v
/Catalystadaptor\ / Pipeline \

C++ Python
Spectral-element
mesh Instructions for
v ParaView
\ VTK format j \ j
/ PareView&Mesa
C++
Slice
P + [
Rendering
v
klmage compositioy

1: Original from “M. Atzori, W. Ko'pp, S. W. Chien, D. Massaro, F. Mallor, A. Peplinski, M. Rezaei, N. Jansson, S. Markidis, R. Vinuesa et al., “In situ visualization of 8
large-scale turbulence simulations in nek5000 with paraview catalyst,” The Journal of Supercomputing, vol. 78, no. 3, pp. 3605-3620, 2022.”
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Use Case: Image Generation with ParaView/Catalyst

Image generation

Nek5000
Fortran

Spectral-element
method

v

/Catalystadaptor\ / Pipeline

C++ Python

Spectral-element

~

mesh Instructions for

.

v ParaView

VTK format j K

J

/ PareView & Mesa
C++

Slice
> + ¢

Rendering
v

klmage compositioy

In-situ approach

* Nek5000 with synchronous image generation:

Fortran functions

Nek5000

in-situ function

Nek-proc adaptor

Data deep copy

C/C++ functions
called in Fortran

C++ functions

Image generator

ParaView & Mesa
with Pipeline defined
in Python

1: Original from “M. Atzori, W. Ko'pp, S. W. Chien, D. Massaro, F. Mallor, A. Peplinski, M. Rezaei, N. Jansson, S. Markidis, R. Vinuesa et al., “In situ visualization of
large-scale turbulence simulations in nek5000 with paraview catalyst,” The Journal of Supercomputing, vol. 78, no. 3, pp. 3605-3620, 2022.”
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Use Case: Image Generation with ParaView/Catalyst

e

Image generation In-situ approach
1
Nek5000 * Nek5000 with synchronous image generation:
Fortran Nek5000 Nek-proc adaptor) ( Image generator
Spectral-element
thod ParaView & Mesa
metho in-situ function Data deep copy with Pipeline defined
v in Python
/" Catalyst adaptor \ /  Pipeline
C++ Python * Nek5000 with asynchronous image generation: —1
Spectral-element Instructions for Nek5000 Nek-proc adaptor| | ADIOS writer
mesh _ ity funct Data passing by ADIOS insituMPI
K " ?Ormat j K ParaView j in-situ function address T
/ PareView & Mesa Image generator\ (| Rdr-proc adaptor\ /ADIOS reader
C++ ParaView & Mesa o
Slice with Pipeline defined Data deep copy <« ADIOrSG:ZISeI:UMPI
> ¥ R in Python L JAN
Rendering
L C/C++ functi
klmage COmDOSitiOy Fortran functions callc:d+inulggr!torzz C++ functions

1: Original from “M. Atzori, W. Ko'pp, S. W. Chien, D. Massaro, F. Mallor, A. Peplinski, M. Rezaei, N. Jansson, S. Markidis, R. Vinuesa et al., “

In situ visualization of 8

large-scale turbulence simulations in nek5000 with paraview catalyst,” The Journal of Supercomputing, vol. 78, no. 3, pp. 3605-3620, 2022.”
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CPU-based Nek5000 with Synchronous and Asynchronous Image Generation
(45G VTK file for one image avoided)

Synchronous In-Situ Image Generation

6.0
~—— Total
N, —+= Ideal scale
5.5 \
O e Nek5000

5.0 1
~~
N
& i
5 4.5
w
)
4.0
£
=
= 351
2
-
=
3 3.0 1
<
88

2.5

2.0 1

1.5 I I T T

8364 1152 1440 1728
Number of cores
1: Execution time of Nek5000 with synchronous in-situ image generation every two steps on Raven supercomputer (left) and 9

asynchronous in-situ image generation every two steps on 24 Raven nodes (right).
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CPU-based Nek5000 with Synchronous and Asynchronous Image Generation
(45G VTK file for one image avoided)

Asynchronous In-Situ Image Generation (with 1728 cores)
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1: Execution time of Nek5000 with synchronous in-situ image generation every two steps on Raven supercomputer (left) and 9
asynchronous in-situ image generation every two steps on 24 Raven nodes (right).
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Execution time per step (s)
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CPU-based Nek5000 with Synchronous and Asynchronous Image Generation

(45G VTK file for one image avoided)

Synchronous In-Situ Image Generation

6.0
~— Total
N, == Jdeal scale
5.5 1 N\
N e Nek5000
5.0 -

>
(%]
1

H
<
1

g
i
1

g
(=
1

Execution time per step (s)

6.0

Asynchronous In-Situ Image Generation (with 1728 cores)

N
(=]
1

P
i
1

>
<
!

W
i
1

>
<
1

—— Total
Nek5000
In-situ

2.5 2.5 1
2.0 A 2.0 1
1.5 I T T T 1.5 T T T T T
864 1152 1440 1728 48 96 216 432 864
Number of cores Number of cores for in-situ analysis
1: Execution time of Nek5000 with synchronous in-situ image generation every two steps on Raven supercomputer (left) and 9

asynchronous in-situ image generation every two steps on 24 Raven nodes (right).
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Use Case: Uncertainty Quantification

Uncertainty Quantification

Training lags of one grid point
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Use Case: Uncertainty Quantification

Uncertainty Quantification

Training lags of one grid point
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Use Case: Uncertainty Quantification

Uncertainty Quantification

Training lags of one grid point
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Use Case: Uncertainty Quantification

Uncertainty Quantification

Training lags of one grid point
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In-situ approach

* Nek5000 with synchronous uncertainty quantification:

Nek5000

in-situ function

Nek-proc adaptor
Data passing by
address

UQ processor
Frequent update

Expensive update
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Nek5000 with asynchronous uncertainty quantification:

Nek-proc ; ADI r r|( Rdr-proc
Nek5000 adaptor ADIOS writer OS reade adaptor
in-situ function Data passing ADIOS ADIOS Data passing
-Situiunctio by address insituMPI writer insituMPI reader by address

UQ processor
Frequent update

Expensive update

Nek5000 with hybrid uncertainty quantification:
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CPU-based Nek5000 with In-Situ Uncertainty Quantification (UQ)

Synchronous In-Situ UQ

~—— Total
------ Nek3000

Execution time of one step (s)

864 1152 1440 1728
Number of cores

1: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty 11
quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).
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CPU-based Nek5000 with In-Situ Uncertainty Quantification (UQ)

1

Asynchronous In-Situ UQ (with 1728 cores)
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1: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty 11

quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).
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CPU-based Nek5000 with In-Situ Uncertainty Quantification (UQ)

1
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1: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty 11

quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).
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CPU-based Nek5000 with In-Situ Uncertainty Quantification (UQ)

1

Synchronous In-Situ UQ Hybrid In-Situ UQ (with 1728 cores) Asynchronous In-Situ UQ (with 1728 cores)
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1: Execution time of Nek5000 with synchronous in-situ uncertainty quantification (left), asynchronous in-situ uncertainty 11

quantification on 24 Raven nodes (middle) and hybrid in-situ uncertainty quantification on 24 Raven nodes (right).
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Summary

Approaches

The synchronous in-situ approach: simulation waits until data process finished
The asynchronous in-situ approach: simulation sends data to separate computing resources and continues, while data are processed

concurrently

The hybrid in-situ approach: the first part of data process is synchronous; the second part of data process is asynchronous.

Case study

The synchronous in-situ data compression is preferred because of its low computational cost.
45GB VTK file for each in-situ step is avoided by in-situ techniques.
The asynchronous in-situ image generation is preferred because of the optimal computing resource allocation to minimize the overhead

from the MPI collective communication.

The hybrid in-situ uncertainty quantification is preferred because of the more efficient computing resources usage

Outlook

In-situ tasks to GPU based simulation
In-situ tasks to exasacle simulation
Performance model of in-situ techniques
Dynamic computing resources allocation

Joint Undertaking
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Understanding the Impact of Synchronous, Asynchronous, and Hybrid In-Situ Techniques in
Computational Fluid Dynamics Applications
Approaches

» The synchronous in-situ approach: simulation waits until data process finished

+ The asynchronous in-situ approach: simulation sends data to separate computing resources and continues, while data are processed
concurrently

» The hybrid in-situ approach: the first part of data process is synchronous; the second part of data process is asynchronous.

Case study

* The synchronous in-situ data compression is preferred because of its low computational cost.

+ 45GB VTK file for each in-situ step is avoided by in-situ techniques.

» The asynchronous in-situ image generation is preferred because of the optimal computing resource allocation to minimize the overhead
from the MPI collective communication.

* The hybrid in-situ uncertainty quantification is preferred because of the more efficient computing resources usage

Outlook

* In-situ tasks to GPU based simulation

* In-situ tasks to exasacle simulation

» Performance model of in-situ techniques
* Dynamic computing resources allocation
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