
SPIR-V Specification

John Kessenich, Google and Boaz Ouriel, Intel

Version 1.00, Revision 12

January 16, 2018

SPIR-V Specification

Copyright © 2014-2017 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any
components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in
any manner without the express prior written permission of Khronos Group. You may use this specification for
implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the
specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or
distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy
and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version of the API is used whenever possible. Such
distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way.
The specification may be incorporated into a product that is sold as long as such product includes significant independent
work developed by the seller. A link to the current version of this specification on the Khronos Group website should be
included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this
specification, including, without limitation, any implied warranties of merchantability or fitness for a particular purpose or
non-infringement of any intellectual property. Khronos Group makes no, and expressly disclaims any, warranties, express
or implied, regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or Members or their respective partners,
officers, directors, employees, agents, or representatives be liable for any damages, whether direct, indirect, special or
consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with these materials.

Khronos, SYCL, SPIR, WebGL, EGL, COLLADA, StreamInput, OpenVX, OpenKCam, glTF, OpenKODE, OpenVG,
OpenWF, OpenSL ES, OpenMAX, OpenMAX AL, OpenMAX IL and OpenMAX DL are trademarks and WebCL is a
certification mark of the Khronos Group Inc. OpenCL is a trademark of Apple Inc. and OpenGL and OpenML are
registered trademarks and the OpenGL ES and OpenGL SC logos are trademarks of Silicon Graphics International used
under license by Khronos. All other product names, trademarks, and/or company names are used solely for identification
and belong to their respective owners.

2

SPIR-V Specification

Contents

1 Introduction 9

1.1 Goals . 9

1.2 About this document . 9

1.3 Extendability . 10

1.4 Debuggability . 10

1.5 Design Principles . 10

1.6 Static Single Assignment (SSA) . 11

1.7 Built-In Variables . 11

1.8 Specialization . 11

1.9 Example . 12

2 Specification 15

2.1 Language Capabilities . 15

2.2 Terms . 15

2.2.1 Instructions . 15

2.2.2 Types . 16

2.2.3 Module . 17

2.2.4 Control Flow . 17

2.3 Physical Layout of a SPIR-V Module and Instruction . 19

2.4 Logical Layout of a Module . 20

2.5 Instructions . 21

2.5.1 SSA Form . 21

2.6 Entry Point and Execution Model . 22

2.7 Execution Modes . 22

2.8 Types and Variables . 22

2.9 Function Calling . 23

2.10 Extended Instruction Sets . 23

2.11 Structured Control Flow . 24

2.12 Specialization . 25

2.13 Linkage . 26

2.14 Relaxed Precision . 26

2.15 Debug Information . 27

2.15.1 Function-Name Mangling . 27

2.16 Validation Rules . 28

2.16.1 Universal Validation Rules . 28

3

SPIR-V Specification

2.16.2 Validation Rules for Shader Capabilities . 30

2.16.3 Validation Rules for Kernel Capabilities . 31

2.17 Universal Limits . 32

2.18 Memory Model . 32

2.18.1 Memory Layout . 33

2.18.2 Aliasing . 33

2.19 Derivatives . 33

2.20 Code Motion . 33

3 Binary Form 34

3.1 Magic Number . 34

3.2 Source Language . 34

3.3 Execution Model . 34

3.4 Addressing Model . 35

3.5 Memory Model . 35

3.6 Execution Mode . 35

3.7 Storage Class . 39

3.8 Dim . 40

3.9 Sampler Addressing Mode . 41

3.10 Sampler Filter Mode . 41

3.11 Image Format . 41

3.12 Image Channel Order . 42

3.13 Image Channel Data Type . 43

3.14 Image Operands . 43

3.15 FP Fast Math Mode . 46

3.16 FP Rounding Mode . 46

3.17 Linkage Type . 47

3.18 Access Qualifier . 47

3.19 Function Parameter Attribute . 47

3.20 Decoration . 48

3.21 BuiltIn . 53

3.22 Selection Control . 57

3.23 Loop Control . 58

3.24 Function Control . 58

3.25 Memory Semantics <id> . 58

3.26 Memory Access . 60

3.27 Scope <id> . 61

3.28 Group Operation . 62

4

SPIR-V Specification

3.29 Kernel Enqueue Flags . 63

3.30 Kernel Profiling Info . 63

3.31 Capability . 64

3.32 Instructions . 69

3.32.1 Miscellaneous Instructions . 69

3.32.2 Debug Instructions . 70

3.32.3 Annotation Instructions . 73

3.32.4 Extension Instructions . 75

3.32.5 Mode-Setting Instructions . 76

3.32.6 Type-Declaration Instructions . 78

3.32.7 Constant-Creation Instructions . 84

3.32.8 Memory Instructions . 89

3.32.9 Function Instructions . 93

3.32.10 Image Instructions . 95

3.32.11 Conversion Instructions . 115

3.32.12 Composite Instructions . 120

3.32.13 Arithmetic Instructions . 123

3.32.14 Bit Instructions . 131

3.32.15 Relational and Logical Instructions . 136

3.32.16 Derivative Instructions . 147

3.32.17 Control-Flow Instructions . 150

3.32.18 Atomic Instructions . 154

3.32.19 Primitive Instructions . 163

3.32.20 Barrier Instructions . 164

3.32.21 Group Instructions . 165

3.32.22 Device-Side Enqueue Instructions . 174

3.32.23 Pipe Instructions . 182

A Changes 196

A.1 Changes from Version 0.99, Revision 31 . 196

A.2 Changes from Version 0.99, Revision 32 . 197

A.3 Changes from Version 1.00, Revision 1 . 197

A.4 Changes from Version 1.00, Revision 2 . 198

A.5 Changes from Version 1.00, Revision 3 . 199

A.6 Changes from Version 1.00, Revision 4 . 199

A.7 Changes from Version 1.00, Revision 5 . 199

A.8 Changes from Version 1.00, Revision 6 . 200

A.9 Changes from Version 1.00, Revision 7 . 200

5

SPIR-V Specification

A.10 Changes from Version 1.00, Revision 8 . 200

A.11 Changes from Version 1.00, Revision 9 . 200

A.12 Changes from Version 1.00, Revision 10 . 201

A.13 Changes from Version 1.00, Revision 11 . 201

6

SPIR-V Specification

List of Tables

1 First Words of Physical Layout . 19

2 Instruction Physical Layout . 19

3 Limits . 32

7

SPIR-V Specification

Contributors and Acknowledgments

Connor Abbott, Intel

Alexey Bader, Intel

Dan Baker, Oxide Games

Kenneth Benzie, Codeplay

Gordon Brown, Codeplay

Pat Brown, NVIDIA

Diana Po-Yu Chen, MediaTek

Stephen Clarke, Imagination

Patrick Doane, Blizzard Entertainment

Stefanus Du Toit, Google

Tim Foley, Intel

Ben Gaster, Qualcomm

Alexander Galazin, ARM

Christopher Gautier, ARM

Neil Henning, Codeplay

Kerch Holt, NVIDIA

Lee Howes, Qualcomm

Roy Ju, MediaTek

Daniel Koch, NVIDIA

Ashwin Kolhe, NVIDIA

Raun Krisch, Intel

Graeme Leese, Broadcom

Yuan Lin, NVIDIA

Yaxun Liu, AMD

Timothy Lottes, Epic Games

John McDonald, Valve

David Neto, Google

Christophe Riccio, Unity

Andrew Richards, Codeplay

Ian Romanick, Intel

Graham Sellers, AMD

Robert Simpson, Qualcomm

Brian Sumner, AMD

Andrew Woloszyn, Google

Weifeng Zhang, Qualcomm

8

SPIR-V Specification

Note
Up-to-date HTML and PDF versions of this specification may be found at the Khronos SPIR-V Registry.
(https://www.khronos.org/registry/spir-v/)

1 Introduction

Abstract

SPIR-V is a simple binary intermediate language for graphical shaders and compute kernels. A SPIR-V module contains
multiple entry points with potentially shared functions in the entry point’s call trees. Each function contains a control-flow
graph (CFG) of basic blocks, with optional instructions to express structured control flow. Load/store instructions are used
to access declared variables, which includes all input/output (IO). Intermediate results bypassing load/store use static
single-assignment (SSA) representation. Data objects are represented logically, with hierarchical type information: There
is no flattening of aggregates or assignment to physical register banks, etc. Selectable addressing models establish whether
general pointer operations may be used, or if memory access is purely logical.

This document fully defines SPIR-V, a Khronos-standard binary intermediate language for representing graphical-shader
stages and compute kernels for multiple Khronos APIs.

1.1 Goals

SPIR-V has the following goals:

• Provide a simple binary intermediate language for all functionality appearing in Khronos shaders/kernels.

• Have a concise, transparent, self-contained specification (sections Specification and Binary Form).

• Map easily to other intermediate languages.

• Be the form passed by an API into a driver to set shaders/kernels.

• Can be targeted by new front ends for novel high-level languages.

• Allow the first steps of compilation and reflection to be done offline.

• Be low-level enough to require a reverse-engineering step to reconstruct source code.

• Improve portability by enabling shared tools to generate or operate on it.

• Allow separation of core specification from source-language-specific sets of built-in functions.

• Reduce compile time during application run time. (Eliminating most of the compile time during application run time is
not a goal of this intermediate language. Target-specific register allocation and scheduling are still expected to take
significant time.)

• Allow some optimizations to be done offline.

1.2 About this document

This document aims to:

• Include everything needed to fully understand, create, and consume SPIR-V. However:

– Imported sets of instructions (which implement source-specific built-in functions) will need their own specification.
– Many validation rules are client-API specific, and hence documented with client API and not in this specification.

• Separate expository and specification language. The specification-proper is in Specification and Binary Form.

9

https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/

SPIR-V Specification

1.3 Extendability

SPIR-V can be extended by multiple vendors or parties simultaneously:

• Using the OpExtension instruction to require new semantics that must be supported. Such new semantics would come
from an extension document.

• Reserving (registering) ranges of the token values, as described further below.

• Aided by instruction skipping, also further described below.

Enumeration Token Values. It is easy to extend all the types, storage classes, opcodes, decorations, etc. by adding to the
token values.

Registration. Ranges of token values in the Binary Form section can be pre-allocated to numerous vendors/parties. This
allows combining multiple independent extensions without conflict. To register ranges, see
https://www.khronos.org/registry/spir-v/api/spir-v.xml.

Extended Instructions. Sets of extended instructions can be provided and specified in separate specifications. These help
personalize SPIR-V for different source languages or execution environments (client APIs). Multiple sets of extended
instructions can be imported without conflict, as the extended instructions are selected by {set id, instruction number}
pairs.

Instruction Skipping. Tools are encouraged to skip opcodes for features they are not required to process. This is trivially
enabled by the word count in an instruction, which makes it easier to add new instructions without breaking existing tools.

1.4 Debuggability

SPIR-V can decorate, with a text string, virtually anything created in the shader: types, variables, functions, etc. This is
required for externally visible symbols, and also allowed for naming the result of any instruction. This can be used to aid
in understandability when disassembling or debugging lowered versions of SPIR-V.

Location information (file names, lines, and columns) can be interleaved with the instruction stream to track the origin of
each instruction.

1.5 Design Principles

Regularity. All instructions start with a word count. This allows walking a SPIR-V module without decoding each
opcode. All instructions have an opcode that dictates for all operands what kind of operand they are. For instructions with
a variable number of operands, the number of variable operands is known by subtracting the number of non-variable words
from the instruction’s word count.

Non Combinatorial. There is no combinatorial type explosion or need for large encode/decode tables for types. Rather,
types are parameterized. Image types declare their dimensionality, arrayness, etc. all orthogonally, which greatly simplify
code. This is done similarly for other types. It also applies to opcodes. Operations are orthogonal to scalar/vector size, but
not to integer vs. floating-point differences.

Modeless. After a given execution model (e.g., pipeline stage) is specified, internal operation is essentially modeless:
Generally, it will follow the rule: "same spelling, same semantics", and does not have mode bits that modify semantics. If a
change to SPIR-V modifies semantics, it should use a different spelling. This makes consumers of SPIR-V much more
robust. There are execution modes declared, but these are generally to affect the way the module interacts with the
environment around it, not the internal semantics. Capabilities are also declared, but this is to declare the subset of
functionality that is used, not to change any semantics of what is used.

Declarative. SPIR-V declares externally-visible modes like "writes depth", rather than having rules that require deduction
from full shader inspection. It also explicitly declares what addressing modes, execution model, extended instruction sets,
etc. will be used. See Language Capabilities for more information.

10

https://www.khronos.org/registry/spir-v/api/spir-v.xml

SPIR-V Specification

SSA. All results of intermediate operations are strictly SSA. However, declared variables reside in memory and use
load/store for access, and such variables can be stored to multiple times.

IO. Some storage classes are for input/output (IO) and, fundamentally, IO will be done through load/store of variables
declared in these storage classes.

1.6 Static Single Assignment (SSA)

SPIR-V includes a phi instruction to allow the merging together of intermediate results from split control flow. This allows
split control flow without load/store to memory. SPIR-V is flexible in the degree to which load/store is used; it is possible
to use control flow with no phi-instructions, while still staying in SSA form, by using memory load/store.

Some storage classes are for IO and, fundamentally, IO will be done through load/store, and initial load and final store can
never be eliminated. Other storage classes are shader local and can have their load/store eliminated. It can be considered
an optimization to largely eliminate such loads/stores by moving them into intermediate results in SSA form.

1.7 Built-In Variables

SPIR-V identifies built-in variables from a high-level language with an enumerant decoration. This assigns any unusual
semantics to the variable. Built-in variables must otherwise be declared with their correct SPIR-V type and treated the
same as any other variable.

1.8 Specialization

Specialization enables creating a portable SPIR-V module outside the target execution environment, based on constant
values that won’t be known until inside the execution environment. For example, to size a fixed array with a constant not
known during creation of a module, but known when the module will be lowered to the target architecture.

See Specialization in the next section for more details.

11

SPIR-V Specification

1.9 Example

The SPIR-V form is binary, not human readable, and fully described in Binary Form. This is an example disassembly to
give a basic idea of what SPIR-V looks like:

GLSL fragment shader:

#version 450

in vec4 color1;
in vec4 multiplier;
noperspective in vec4 color2;
out vec4 color;

struct S {
bool b;
vec4 v[5];
int i;

};

uniform blockName {
S s;
bool cond;

};

void main()
{

vec4 scale = vec4(1.0, 1.0, 2.0, 1.0);

if (cond)
color = color1 + s.v[2];

else
color = sqrt(color2) * scale;

for (int i = 0; i < 4; ++i)
color *= multiplier;

}

Corresponding SPIR-V:

; Magic: 0x07230203 (SPIR-V)
; Version: 0x00010000 (Version: 1.0.0)
; Generator: 0x00080001 (Khronos Glslang Reference Front End; 1)
; Bound: 63
; Schema: 0

OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"

OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %4 "main" %31 %33 %42 %57
OpExecutionMode %4 OriginLowerLeft

; Debug information
OpSource GLSL 450
OpName %4 "main"
OpName %9 "scale"
OpName %17 "S"
OpMemberName %17 0 "b"
OpMemberName %17 1 "v"
OpMemberName %17 2 "i"

12

SPIR-V Specification

OpName %18 "blockName"
OpMemberName %18 0 "s"
OpMemberName %18 1 "cond"
OpName %20 ""
OpName %31 "color"
OpName %33 "color1"
OpName %42 "color2"
OpName %48 "i"
OpName %57 "multiplier"

; Annotations (non-debug)
OpDecorate %15 ArrayStride 16
OpMemberDecorate %17 0 Offset 0
OpMemberDecorate %17 1 Offset 16
OpMemberDecorate %17 2 Offset 96
OpMemberDecorate %18 0 Offset 0
OpMemberDecorate %18 1 Offset 112
OpDecorate %18 Block
OpDecorate %20 DescriptorSet 0
OpDecorate %42 NoPerspective

; All types, variables, and constants
%2 = OpTypeVoid
%3 = OpTypeFunction %2 ; void ()
%6 = OpTypeFloat 32 ; 32-bit float
%7 = OpTypeVector %6 4 ; vec4
%8 = OpTypePointer Function %7 ; function-local vec4*

%10 = OpConstant %6 1
%11 = OpConstant %6 2
%12 = OpConstantComposite %7 %10 %10 %11 %10 ; vec4(1.0, 1.0, 2.0, 1.0)
%13 = OpTypeInt 32 0 ; 32-bit int, sign-less
%14 = OpConstant %13 5
%15 = OpTypeArray %7 %14
%16 = OpTypeInt 32 1
%17 = OpTypeStruct %13 %15 %16
%18 = OpTypeStruct %17 %13
%19 = OpTypePointer Uniform %18
%20 = OpVariable %19 Uniform
%21 = OpConstant %16 1
%22 = OpTypePointer Uniform %13
%25 = OpTypeBool
%26 = OpConstant %13 0
%30 = OpTypePointer Output %7
%31 = OpVariable %30 Output
%32 = OpTypePointer Input %7
%33 = OpVariable %32 Input
%35 = OpConstant %16 0
%36 = OpConstant %16 2
%37 = OpTypePointer Uniform %7
%42 = OpVariable %32 Input
%47 = OpTypePointer Function %16
%55 = OpConstant %16 4
%57 = OpVariable %32 Input

; All functions
%4 = OpFunction %2 None %3 ; main()
%5 = OpLabel
%9 = OpVariable %8 Function

%48 = OpVariable %47 Function

13

SPIR-V Specification

OpStore %9 %12
%23 = OpAccessChain %22 %20 %21 ; location of cond
%24 = OpLoad %13 %23 ; load 32-bit int from cond
%27 = OpINotEqual %25 %24 %26 ; convert to bool

OpSelectionMerge %29 None ; structured if
OpBranchConditional %27 %28 %41 ; if cond

%28 = OpLabel ; then
%34 = OpLoad %7 %33
%38 = OpAccessChain %37 %20 %35 %21 %36 ; s.v[2]
%39 = OpLoad %7 %38
%40 = OpFAdd %7 %34 %39

OpStore %31 %40
OpBranch %29

%41 = OpLabel ; else
%43 = OpLoad %7 %42
%44 = OpExtInst %7 %1 Sqrt %43 ; extended instruction sqrt
%45 = OpLoad %7 %9
%46 = OpFMul %7 %44 %45

OpStore %31 %46
OpBranch %29

%29 = OpLabel ; endif
OpStore %48 %35
OpBranch %49

%49 = OpLabel
OpLoopMerge %51 %52 None ; structured loop
OpBranch %53

%53 = OpLabel
%54 = OpLoad %16 %48
%56 = OpSLessThan %25 %54 %55 ; i < 4 ?

OpBranchConditional %56 %50 %51 ; body or break
%50 = OpLabel ; body
%58 = OpLoad %7 %57
%59 = OpLoad %7 %31
%60 = OpFMul %7 %59 %58

OpStore %31 %60
OpBranch %52

%52 = OpLabel ; continue target
%61 = OpLoad %16 %48
%62 = OpIAdd %16 %61 %21 ; ++i

OpStore %48 %62
OpBranch %49 ; loop back

%51 = OpLabel ; loop merge point
OpReturn
OpFunctionEnd

14

SPIR-V Specification

2 Specification

2.1 Language Capabilities

A SPIR-V module is consumed by an execution environment, specified by a client API, that needs to support the features
used by that SPIR-V module. Features are classified through capabilities. Capabilities used by a particular SPIR-V module
must be declared early in that module with the OpCapability instruction. Then:

• A validator can validate that the module uses only its declared capabilities.

• An execution environment is allowed to reject modules declaring capabilities it does not support. (See client API
specifications for environment-specific rules.)

All available capabilities and their dependencies form a capability hierarchy, fully listed in the capability section. Only
top-level capabilities need to be explicitly declared; their dependencies are implicitly declared.

When an instruction, enumerant, or other feature specifies multiple enabling capabilities, only one such capability needs to
be declared to use the feature. This declaration does not itself imply anything about the presence of the other enabling
capabilities: The execution environment needs to support only the declared capability.

This (SPIR-V) specification provides capability-specific validation rules, in the validation section. To ensure portability,
each client API needs to include the following:

• Which capabilities in the capability section it requires environments to support, and hence allows in SPIR-V modules.

• Required limits, if they are beyond the Universal Limits.

• Any validation requirements specific to the environment that are not tied to specific capabilities, and hence not covered
in the SPIR-V specification.

2.2 Terms

2.2.1 Instructions

Word: 32 bits.

<id>: A numerical name; the name used to refer to an object, a type, a function, a label, etc. An <id> always consumes
one word. The <id>s defined by a module obey SSA.

Result <id>: Most instructions define a result, named by an <id> explicitly provided in the instruction. The Result <id> is
used as an operand in other instructions to refer to the instruction that defined it.

Literal String: A nul-terminated stream of characters consuming an integral number of words. The character set is
Unicode in the UTF-8 encoding scheme. The UTF-8 octets (8-bit bytes) are packed four per word, following the
little-endian convention (i.e., the first octet is in the lowest-order 8 bits of the word). The final word contains the string’s
nul-termination character (0), and all contents past the end of the string in the final word are padded with 0.

Literal Number: A numeric value consuming one or more words. An instruction will determine what type a literal will be
interpreted as. When the type’s bit width is larger than one word, the literal’s low-order words appear first. When the
type’s bit width is less than 32-bits, the literal’s value appears in the low-order bits of the word, and the high-order bits
must be 0 for a floating-point type, or 0 for an integer type with Signedness of 0, or sign extended when Signedness is 1.
(Similarly for the remaining bits of widths larger than 32 bits but not a multiple of 32 bits.)

Literal: A Literal String or a Literal Number.

Operand: A one-word argument to an instruction. E.g., it could be an <id>, or a (part of a) literal. Which form it holds is
always explicitly known from the opcode.

Immediate: Operand(s) directly holding a literal value rather than an <id>. Immediate values larger than one word will
consume multiple operands, one per word. That is, operand counting is always done per word, not per immediate.

WordCount: The complete number of words taken by an instruction, including the word holding the word count and
opcode, and any optional operands. An instruction’s word count is the total space taken by the instruction.

15

SPIR-V Specification

Instruction: After a header, a module is simply a linear list of instructions. An instruction contains a word count, an
opcode, an optional Result <id>, an optional <id> of the instruction’s type, and a variable list of operands. All instruction
opcodes and semantics are listed in Instructions.

Decoration: Auxiliary information such as built-in variable, stream numbers, invariance, interpolation type, relaxed
precision, etc., added to <id>s or structure-type members through Decorations. Decorations are enumerated in Decoration
in the Binary Form section.

Object: An instantiation of a non-void type, either as the Result <id> of an operation, or created through OpVariable.

Memory Object: An object created through OpVariable. Such an object can die on function exit, if it was a function
variable, or exist for the duration of an entry point.

Intermediate Object or Intermediate Value or Intermediate Result: An object created by an operation (not memory
allocated by OpVariable) and dying on its last consumption.

Constant Instruction: Either a specialization-constant instruction or a fixed constant instruction: Instructions that start
"OpConstant" or "OpSpec".

[a, b]: This square-bracket notation means the range from a to b, inclusive of a and b. Parenthesis exclude their end point,
so, for example, (a, b] means a to b excluding a but including b.

2.2.2 Types

Boolean type: The type returned by OpTypeBool.

Integer type: Any width signed or unsigned type from OpTypeInt. By convention, the lowest-order bit will be referred to
as bit-number 0, and the highest-order bit as bit-number Width - 1.

Floating-point type: Any width type from OpTypeFloat.

Numerical type: An integer type or a floating-point type.

Scalar: A single instance of a numerical type or Boolean type. Scalars will also be called components when being
discussed either by themselves or in the context of the contents of a vector.

Vector: An ordered homogeneous collection of two or more scalars. Vector sizes are quite restrictive and dependent on the
execution model.

Matrix: An ordered homogeneous collection of vectors. When vectors are part of a matrix, they will also be called
columns. Matrix sizes are quite restrictive and dependent on the execution model.

Array: An ordered homogeneous collection of any non-void-type objects. When an object is part of an array, it will also be
called an element. Array sizes are generally not restricted.

Structure: An ordered heterogeneous collection of any non-void types. When an object is part of a structure, it will also be
called a member.

Aggregate: A structure or an array.

Composite: An aggregate, a matrix, or a vector.

Image: A traditional texture or image; SPIR-V has this single name for these. An image type is declared with
OpTypeImage. An image does not include any information about how to access, filter, or sample it.

Sampler: Settings that describe how to access, filter, or sample an image. Can come either from literal declarations of
settings or be an opaque reference to externally bound settings. A sampler does not include an image.

Sampled Image: An image combined with a sampler, enabling filtered accesses of the image’s contents.

Concrete Type: A numerical scalar, vector, or matrix type, or OpTypePointer when using a Physical addressing model, or
any aggregate containing only these types.

Abstract Type: An OpTypeVoid or OpTypeBool, or OpTypePointer when using the Logical addressing model, or any
aggregate type containing any of these.

Opaque Type: A type that is, or contains, or points to, or contains pointers to, any of the following types:

16

SPIR-V Specification

• OpTypeImage

• OpTypeSampler

• OpTypeSampledImage

• OpTypeOpaque

• OpTypeEvent

• OpTypeDeviceEvent

• OpTypeReserveId

• OpTypeQueue

• OpTypePipe

• OpTypeForwardPointer

2.2.3 Module

Module: A single unit of SPIR-V. It can contain multiple entry points, but only one set of capabilities.

Entry Point: A function in a module where execution begins. A single entry point is limited to a single execution model.
An entry point is declared using OpEntryPoint.

Execution Model: A graphical-pipeline stage or OpenCL kernel. These are enumerated in Execution Model.

Execution Mode: Modes of operation relating to the interface or execution environment of the module. These are
enumerated in Execution Mode. Generally, modes do not change the semantics of instructions within a SPIR-V module.

Vertex Processor: Any stage or execution model that processes vertices: Vertex, tessellation control, tessellation
evaluation, and geometry. Explicitly excludes fragment and compute execution models.

2.2.4 Control Flow

Block: A contiguous sequence of instructions starting with an OpLabel, ending with a termination instruction. A block has
no additional label or termination instructions.

Branch Instruction: One of the following, used as a termination instruction:

• OpBranch

• OpBranchConditional

• OpSwitch

• OpReturn

• OpReturnValue

Termination Instruction: One of the following, used to terminate blocks:

• any branch instruction

• OpKill

• OpUnreachable

Dominate: A block A dominates a block B, where A and B are in the same function, if every path from the function’s entry
point to block B includes block A. A strictly dominates B only if A dominates B and A and B are different blocks.

Post Dominate: A block B post dominates a block A, where A and B are in the same function, if every path from A to a
function-return instruction goes through block B.

17

SPIR-V Specification

Control-Flow Graph: The graph formed by a function’s blocks and branches. The blocks are the graph’s nodes, and the
branches the graph’s edges.

CFG: Control-flow graph.

Back Edge: If a depth-first traversal is done on a function’s CFG, starting from the first block of the function, a back edge
is a branch to a previously visited block. A back-edge block is the block containing such a branch.

Merge Instruction: One of the following, used before a branch instruction to declare structured control flow:

• OpSelectionMerge

• OpLoopMerge

Header Block: A block containing a merge instruction.

Loop Header: A header block whose merge instruction is an OpLoopMerge.

Merge Block: A block declared by the Merge Block operand of a merge instruction.

Break Block: A block containing a branch to the Merge Block of a loop header’s merge instruction.

Continue Block: A block containing a branch to an OpLoopMerge instruction’s Continue Target.

Return Block: A block containing an OpReturn or OpReturnValue branch.

Invocation: A single execution of an entry point in a SPIR-V module, operating only on the amount of data explicitly
exposed by the semantics of the instructions. (Any implicit operation on additional instances of data would comprise
additional invocations.) For example, in compute execution models, a single invocation operates only on a single work
item, or, in a vertex execution model, a single invocation operates only on a single vertex.

Subgroup: The set of invocations exposed as running concurrently with the current invocation. In compute models, the
current workgroup is a superset of the subgroup.

Invocation Group: The complete set of invocations collectively processing a particular compute workgroup or graphical
operation, where the scope of a "graphical operation" is implementation dependent, but at least as large as a single point,
line, triangle, or patch, and at most as large as a single rendering command, as defined by the client API.

Derivative Group: Defined only for the Fragment Execution Model: The set of invocations collectively processing a
single point, line, or triangle, including any helper invocations.

Dynamic Instance: Within a single invocation, a single static instruction can be executed multiple times, giving multiple
dynamic instances of that instruction. This can happen when the instruction is executed in a loop, or in a function called
from multiple call sites, or combinations of multiple of these. Different loop iterations and different dynamic
function-call-site chains yield different dynamic instances of such an instruction. Dynamic instances are distinguished by
the control-flow path within an invocation, not by which invocation executed it. That is, different invocations of an entry
point execute the same dynamic instances of an instruction when they follow the same control-flow path, starting from that
entry point.

Dynamically Uniform: An <id> is dynamically uniform for a dynamic instance consuming it when its value is the same for
all invocations (in the invocation group) that execute that dynamic instance.

Uniform Control Flow: Uniform control flow (or converged control flow) occurs when all invocations in the invocation
group or derivative group execute the same control-flow path (and hence the same sequence of dynamic instances of
instructions). Uniform control flow is the initial state at the entry point, and lasts until a conditional branch takes different
control paths for different invocations (non-uniform or divergent control flow). Such divergence can reconverge, with all
the invocations once again executing the same control-flow path, and this re-establishes the existence of uniform control
flow. If control flow is uniform upon entry into a header block, and all invocations leave that dynamic instance of the
header block’s control-flow construct via the header block’s declared merge block, then control flow reconverges to be
uniform at that merge block.

18

SPIR-V Specification

2.3 Physical Layout of a SPIR-V Module and Instruction

A SPIR-V module is a single linear stream of words. The first words are shown in the following table:

Table 1: First Words of Physical Layout

Word
Number

Contents

0 Magic Number.
1 Version number. The bytes are, high-order to low-order:

0 | Major Number | Minor Number | 0

Hence, version 1.00 is the value 0x00010000.
2 Generator’s magic number. It is associated with the tool that generated

the module. Its value does not affect any semantics, and is allowed to be
0. Using a non-0 value is encouraged, and can be registered with
Khronos at https://www.khronos.org/registry/spir-v/api/spir-v.xml.

3 Bound; where all <id>s in this module are guaranteed to satisfy

0 < id < Bound

Bound should be small, smaller is better, with all <id> in a module being
densely packed and near 0.

4 0 (Reserved for instruction schema, if needed.)
5 First word of instruction stream, see below.

All remaining words are a linear sequence of instructions.

Each instruction is a stream of words:

Table 2: Instruction Physical Layout

Instruction
Word Number

Contents

0 Opcode: The 16 high-order bits are the WordCount of the
instruction. The 16 low-order bits are the opcode enumerant.

1 Optional instruction type <id> (presence determined by opcode).
. Optional instruction Result <id> (presence determined by

opcode).
. Operand 1 (if needed)
. Operand 2 (if needed)

.
WordCount - 1 Operand N (N is determined by WordCount minus the 1 to 3

words used for the opcode, instruction type <id>, and instruction
Result <id>).

Instructions are variable length due both to having optional instruction type <id> and Result <id> words as well as a
variable number of operands. The details for each specific instruction are given in the Binary Form section.

19

https://www.khronos.org/registry/spir-v/api/spir-v.xml

SPIR-V Specification

2.4 Logical Layout of a Module

The instructions of a SPIR-V module must be in the following order. For sections earlier than function definitions, it is
invalid to use instructions other than those indicated.

1. All OpCapability instructions.

2. Optional OpExtension instructions (extensions to SPIR-V).

3. Optional OpExtInstImport instructions.

4. The single required OpMemoryModel instruction.

5. All entry point declarations, using OpEntryPoint.

6. All execution mode declarations, using OpExecutionMode.

7. These debug instructions, which must be in the following order:

a. all OpString, OpSourceExtension, OpSource, and OpSourceContinued, without forward references.
b. all OpName and all OpMemberName

8. All annotation instructions:

a. all decoration instructions (OpDecorate, OpMemberDecorate, OpGroupDecorate, OpGroupMemberDecorate,
and OpDecorationGroup).

9. All type declarations (OpTypeXXX instructions), all constant instructions, and all global variable declarations (all
OpVariable instructions whose Storage Class is not Function). This is the preferred location for OpUndef
instructions, though they can also appear in function bodies. All operands in all these instructions must be declared
before being used. Otherwise, they can be in any order. This section is the first section to allow use of OpLine debug
information.

10. All function declarations ("declarations" are functions without a body; there is no forward declaration to a function
with a body). A function declaration is as follows.

a. Function declaration, using OpFunction.
b. Function parameter declarations, using OpFunctionParameter.
c. Function end, using OpFunctionEnd.

11. All function definitions (functions with a body). A function definition is as follows.

a. Function definition, using OpFunction.
b. Function parameter declarations, using OpFunctionParameter.
c. Block
d. Block
e. . . .
f. Function end, using OpFunctionEnd.

Within a function definition:

• A block always starts with an OpLabel instruction. This may be immediately preceded by an OpLine instruction, but the
OpLabel is considered as the beginning of the block.

• A block always ends with a termination instruction (see validation rules for more detail).

• All OpVariable instructions in a function must have a Storage Class of Function.

• All OpVariable instructions in a function must be in the first block in the function. These instructions, together with any
immediately preceding OpLine instructions, must be the first instructions in that block. (Note the validation rules prevent
OpPhi instructions in the first block of a function.)

20

SPIR-V Specification

• A function definition (starts with OpFunction) can be immediately preceded by an OpLine instruction.

Forward references (an operand <id> that appears before the Result <id> defining it) are allowed for:

• Operands that are an OpFunction. This allows for recursion and early declaration of entry points.

• Annotation-instruction operands. This is required to fully know everything about a type or variable once it is declared.

• Labels.

• Loops can have forward references to a phi function.

• An OpTypeForwardPointer has a forward reference to an OpTypePointer.

• An OpTypeStruct operand that’s a forward reference to the Pointer Type operand to an OpTypeForwardPointer.

• The list of <id> provided in the OpEntryPoint instruction.

In all cases, there is enough type information to enable a single simple pass through a module to transform it. For example,
function calls have all the type information in the call, phi-functions don’t change type, and labels don’t have type. The
pointer forward reference allows structures to contain pointers to themselves or to be mutually recursive (through
pointers), without needing additional type information.

The Validation Rules section lists additional rules that must be satisfied.

2.5 Instructions

Most instructions create a Result <id>, as provided in the Result <id> field of the instruction. These Result <id>s are then
referred to by other instructions through their <id> operands. All instruction operands are specified in the Binary Form
section.

Instructions are explicit about whether they require immediates, rather than an <id> referring to some other result. This is
strictly known just from the opcode.

• An immediate 32-bit (or smaller) integer is always one operand directly holding a 32-bit two’s-complement value.

• An immediate 32-bit float is always one operand, directly holding a 32-bit IEEE 754 floating-point representation.

• An immediate 64-bit float is always two operands, directly holding a 64-bit IEEE 754 representation. The low-order 32
bits appear in the first operand.

2.5.1 SSA Form

A module is always in static single assignment (SSA) form. That is, there is always exactly one instruction resulting in any
particular Result <id>. Storing into variables declared in memory is not subject to this; such stores do not create Result
<id>s. Accessing declared variables is done through:

• OpVariable to allocate an object in memory and create a Result <id> that is the name of a pointer to it.

• OpAccessChain or OpInBoundsAccessChain to create a pointer to a subpart of a composite object in memory.

• OpLoad through a pointer, giving the loaded object a Result <id> that can then be used as an operand in other
instructions.

• OpStore through a pointer, to write a value. There is no Result <id> for an OpStore.

OpLoad and OpStore instructions can often be eliminated, using intermediate results instead. When this happens in
multiple control-flow paths, these values need to be merged again at the path’s merge point. Use OpPhi to merge such
values together.

21

SPIR-V Specification

2.6 Entry Point and Execution Model

The OpEntryPoint instruction identifies an entry point with two key things: an execution model and a function definition.
Execution models include Vertex, GLCompute, etc. (one for each graphical stage), as well as Kernel for OpenCL
kernels. For the complete list, see Execution Model. An OpEntryPoint also supplies a name that can be used externally to
identify the entry point, and a declaration of all the Input and Output variables that form its input/output interface.

The static function call graphs rooted at two entry points are allowed to overlap, so that function definitions and global
variable definitions can be shared. The execution model and any execution modes associated with an entry point apply to
the entire static function call graph rooted at that entry point. This rule implies that a function appearing in both call graphs
of two distinct entry points may behave differently in each case. Similarly, variables whose semantics depend on properties
of an entry point, e.g. those using the Input Storage Class, may behave differently when used in call graphs rooted in two
different entry points.

2.7 Execution Modes

Information like the following is declared with OpExecutionMode instructions. For example,

• number of invocations (Invocations)

• vertex-order CCW (VertexOrderCcw)

• triangle strip generation (OutputTriangleStrip)

• number of output vertices (OutputVertices)

• etc.

For a complete list, see Execution Mode.

2.8 Types and Variables

Types are built up hierarchically, using OpTypeXXX instructions. The Result <id> of an OpTypeXXX instruction becomes
a type <id> for future use where type <id>s are needed (therefore, OpTypeXXX instructions do not have a type <id>, like
most other instructions do).

The "leaves" to start building with are types like OpTypeFloat, OpTypeInt, OpTypeImage, OpTypeEvent, etc. Other types
are built up from the Result <id> of these. The numerical types are parameterized to specify bit width and signed vs.
unsigned.

Higher-level types are then constructed using opcodes like OpTypeVector, OpTypeMatrix, OpTypeImage, OpTypeArray,
OpTypeRuntimeArray, OpTypeStruct, and OpTypePointer. These are parameterized by number of components, array size,
member lists, etc. The image types are parameterized by the return type, dimensionality, arrayness, etc. To do sampling or
filtering operations, a type from OpTypeSampledImage is used that contains both an image and a sampler. Such a sampled
image can be set directly by the API, or combined in a SPIR-V module from an independent image and an independent
sampler.

Types are built bottom up: A parameterizing operand in a type must be defined before being used.

Some additional information about the type of an <id> can be provided using the decoration instructions (OpDecorate,
OpMemberDecorate, OpGroupDecorate, OpGroupMemberDecorate, and OpDecorationGroup). These can add, for
example, Invariant to an <id> created by another instruction. See the full list of Decorations in the Binary Form section.

Two different type <id>s form, by definition, two different types. It is valid to declare multiple aggregate type <id>s
having the same opcode and operands. This is to allow multiple instances of aggregate types with the same structure to be
decorated differently. (Different decorations are not required; two different aggregate type <id>s are allowed to have
identical declarations and decorations, and will still be two different types.) Non-aggregate types are different: It is invalid
to declare multiple type <id>s for the same scalar, vector, or matrix type. That is, non-aggregate type declarations must all
have different opcodes or operands. (Note that non-aggregate types cannot be decorated in ways that affect their type.)

22

SPIR-V Specification

Variables are declared to be of an already built type, and placed in a Storage Class. Storage classes include
UniformConstant, Input, Workgroup, etc. and are fully specified in Storage Class. Variables declared with the Function
Storage Class can have their lifetime’s specified within their function using the OpLifetimeStart and OpLifetimeStop
instructions.

Intermediate results are typed by the instruction’s type <id>, which must validate with respect to the operation being done.

Built-in variables needing special driver handling (having unique semantics) are declared using OpDecorate or
OpMemberDecorate with the BuiltIn Decoration, followed by a BuiltIn enumerant. This decoration is applied to a
variable or a structure-type member.

2.9 Function Calling

To call a function defined in the current module or a function declared to be imported from another module, use
OpFunctionCall with an operand that is the <id> of the OpFunction to call, and the <id>s of the arguments to pass. All
arguments are passed by value into the called function. This includes pointers, through which a callee object could be
modified.

2.10 Extended Instruction Sets

Many operations and/or built-in function calls from high-level languages are represented through extended instruction sets.
Extended instruction sets will include things like

• trigonometric functions: sin(), cos(), . . .

• exponentiation functions: exp(), pow(), . . .

• geometry functions: reflect(), smoothstep(), . . .

• functions having rich performance/accuracy trade-offs

• etc.

Non-extended instructions, those that are core SPIR-V instructions, are listed in the Binary Form section. Native
operations include:

• Basic arithmetic: +, -, *, min(), scalar * vector, etc.

• Texturing, to help with back-end decoding and support special code-motion rules.

• Derivatives, due to special code-motion rules.

Extended instruction sets are specified in independent specifications. They can be referenced (but not specified) in this
specification. The separate extended instruction set specification will specify instruction opcodes, semantics, and
instruction names.

To use an extended instruction set, first import it by name string using OpExtInstImport and giving it a Result <id>:

<extinst-id> OpExtInstImport "name-of-extended-instruction-set"

The "name-of-extended-instruction-set" is a literal string. The standard convention for this string is

"<source language name>.<package name>.<version>"

For example "GLSL.std.450" could be the name of the core built-in functions for GLSL versions 450 and earlier.

Note
There is nothing precluding having two "mirror" sets of instructions with different names but the same opcode values,
which could, for example, let modifying just the import statement to change a performance/accuracy trade off.

23

SPIR-V Specification

Then, to call a specific extended instruction, use OpExtInst:

OpExtInst <extinst-id> instruction-number operand0, operand1, ...

Extended instruction-set specifications will provide semantics for each "instruction-number". It is up to the specific
specification what the overloading rules are on operand type. The specification must be clear on its semantics, and
producers/consumers of it must follow those semantics.

By convention, it is recommended that all external specifications include an enum {. . . } listing all the
"instruction-numbers", and a mapping between these numbers and a string representing the instruction name. However,
there are no requirements that instruction name strings are provided or mangled.

Note
Producing and consuming extended instructions can be done entirely through numbers (no string parsing). An extended
instruction set specification provides opcode enumerant values for the instructions, and these will be produced by the front
end and consumed by the back end.

2.11 Structured Control Flow

SPIR-V can explicitly declare structured control-flow constructs using merge instructions. These explicitly declare a
header block before the control flow diverges and a merge block where control flow subsequently converges. These blocks
delimit constructs that must nest, and can only be entered and exited in structured ways, as per the following.

Structured control-flow declarations must satisfy the following rules:

• the merge block declared by a header block cannot be a merge block declared by any other header block

• each header block must strictly dominate its merge block, unless the merge block is unreachable in the CFG

• all CFG back edges must branch to a loop header, with each loop header having exactly one back edge branching to it

• for a given loop header, its OpLoopMerge Continue Target, and corresponding back-edge block:

– the loop header must dominate the Continue Target, unless the Continue Target is unreachable in the CFG
– the Continue Target must dominate the back-edge block
– the back-edge block must post dominate the Continue Target

A structured control-flow construct is then defined as one of:

• a selection construct: the set of blocks dominated by a selection header, minus the set of blocks dominated by the
header’s merge block

• a continue construct: the set of blocks dominated by an OpLoopMerge’s Continue Target and post dominated by the
corresponding back-edge block

• a loop construct: the set of blocks dominated by a loop header, minus the set of blocks dominated by the loop’s merge
block, minus the loop’s corresponding continue construct

• a case construct: the set of blocks dominated by an OpSwitch Target or Default, minus the set of blocks dominated by
the OpSwitch’s merge block (this construct is only defined for those OpSwitch Target or Default that are not equal to
the OpSwitch’s corresponding merge block)

The above structured control-flow constructs must satisfy the following rules:

• if a construct contains another header block, then it also contains that header’s corresponding merge block

• the only blocks in a construct that can branch outside the construct are

24

SPIR-V Specification

– a block branching to the construct’s merge block
– a block branching from one case construct to another, for the same OpSwitch
– a continue block for the innermost loop it is nested inside of
– a break block for the innermost loop it is nested inside of
– a return block

• additionally for switches:

– an OpSwitch block dominates all its defined case constructs
– each case construct has at most one branch to another case construct
– each case construct is branched to by at most one other case construct
– if Target T1 branches to Target T2, or if Target T1 branches to the Default and the Default branches to Target T2, then

T1 must immediately precede T2 in the list of the OpSwitch Target operands

2.12 Specialization

Specialization is intended for constant objects that will not have known constant values until after initial generation of a
SPIR-V module. Such objects are called specialization constants.

A SPIR-V module containing specialization constants can consume one or more externally provided specializations: A set
of final constant values for some subset of the module’s specialization constants. Applying these final constant values
yields a new module having fewer remaining specialization constants. A module also contains default values for any
specialization constants that never get externally specialized.

Note
No optimizing transforms are required to make a specialized module functionally correct. The specializing transform is
straightforward and explicitly defined below.

Note
Ad hoc specializing should not be done through constants (OpConstant or OpConstantComposite) that get overwritten:
A SPIR-V→ SPIR-V transform might want to do something irreversible with the value of such a constant, unconstrained
from the possibility that its value could be later changed.

Within a module, a Specialization Constant is declared with one of these instructions:

• OpSpecConstantTrue

• OpSpecConstantFalse

• OpSpecConstant

• OpSpecConstantComposite

• OpSpecConstantOp

The literal operands to OpSpecConstant are the default numerical specialization constants. Similarly, the "True" and
"False" parts of OpSpecConstantTrue and OpSpecConstantFalse provide the default Boolean specialization constants.
These default values make an external specialization optional. However, such a default constant is applied only after all
external specializations are complete, and none contained a specialization for it.

An external specialization is provided as a logical list of pairs. Each pair is a SpecId Decoration of a scalar specialization
instruction along with its specialization constant. The numeric values are exactly what the operands would be to a
corresponding OpConstant instruction. Boolean values are true if non-zero and false if zero.

Specializing a module is straightforward. The following specialization-constant instructions can be updated with
specialization constants, and replaced in place, leaving everything else in the module exactly the same:

25

SPIR-V Specification

OpSpecConstantTrue -> OpConstantTrue or OpConstantFalse
OpSpecConstantFalse -> OpConstantTrue or OpConstantFalse

OpSpecConstant -> OpConstant
OpSpecConstantComposite -> OpConstantComposite

The OpSpecConstantOp instruction is specialized by executing the operation and replacing the instruction with the result.
The result can be expressed in terms of a constant instruction that is not a specialization-constant instruction. (Note,
however, this resulting instruction might not have the same size as the original instruction, so is not a "replaced in place"
operation.)

When applying an external specialization, the following (and only the following) must be modified to be
non-specialization-constant instructions:

• specialization-constant instructions with values provided by the specialization

• specialization-constant instructions that consume nothing but non-specialization constant instructions (including those
that the partial specialization transformed from specialization-constant instructions; these are in order, so it is a single
pass to do so)

A full specialization can also be done, when requested or required, in which all specialization-constant instructions will be
modified to non-specialization-constant instructions, using the default values where required.

2.13 Linkage

The ability to have partially linked modules and libraries is provided as part of the Linkage capability.

By default, functions and global variables are private to a module and cannot be accessed by other modules. However, a
module may be written to export or import functions and global (module scope) variables. Imported functions and global
variable definitions are resolved at linkage time. A module is considered to be partially linked if it depends on imported
values.

Within a module, imported or exported values are decorated using the Linkage Attributes Decoration. This decoration
assigns the following linkage attributes to decorated values:

• A Linkage Type.

• A name, which is a Literal String, and is used to uniquely identify exported values.

Note
When resolving imported functions, the Function Control and all Function Parameter Attributes are taken from the function
definition, and not from the function declaration.

2.14 Relaxed Precision

The RelaxedPrecision Decoration allows 32-bit integer and 32-bit floating-point operations to execute with a relaxed
precision of somewhere between 16 and 32 bits.

For a floating-point operation, operating at relaxed precision means that the minimum requirements for range and precision
are as follows:

• the floating point range may be as small as (-214, 214)

• the floating point magnitude range may be as small as (2-14, 214)

• the relative floating point precision may be as small as 2-10

26

SPIR-V Specification

Relative floating-point precision is defined as the worst case (i.e. largest) ratio of the smallest step in relation to the value
for all non-zero values:

Precisionrelative = (abs(v1 - v2)min / abs(v1))max for v1 6= 0, v2 6= 0, v1 6= v2

For integer operations, operating at relaxed precision means that the operation will be evaluated by an operation in which,
for some N, 16 ≤ N ≤ 32:

• the operation is executed as though its type were N bits in size, and

• the result is zero or sign extended to 32 bits as determined by the signedness of the result type of the operation.

The RelaxedPrecision Decoration can be applied to:

• The <id> of a variable, where the variable’s type is a scalar, vector, or matrix, or an array of scalar, vector, or matrix. In
all cases, the components in the type must be a 32-bit numerical type.

• The Result <id> of an instruction that operates on numerical types, meaning the instruction is to operate at relaxed
precision.

• The Result <id> of an instruction that reads or filters from an image. E.g. OpImageSampleExplicitLod, meaning the
instruction is to operate at relaxed precision.

• The Result <id> of an OpFunction meaning the function’s returned result is at relaxed precision. It cannot be applied to
OpTypeFunction or to an OpFunction whose return type is OpTypeVoid.

• A structure-type member (through OpMemberDecorate).

When applied to a variable or structure member, all loads and stores from the decorated object may be treated as though
they were decorated with RelaxedPrecision. Loads may also be decorated with RelaxedPrecision, in which case they are
treated as operating at relaxed precision.

All loads and stores involving relaxed precision still read and write 32 bits of data, respectively. Floating-point data read or
written in such a manner is written in full 32-bit floating-point format. However, a load or store might reduce the precision
(as allowed by RelaxedPrecision) of the destination value.

For debugging portability of floating-point operations, OpQuantizeToF16 may be used to explicitly reduce the precision of
a relaxed-precision result to 16-bit precision. (Integer-result precision can be reduced, for example, using left- and
right-shift opcodes.)

For image-sampling operations, decorations can appear on both the sampling instruction and the image variable being
sampled. If either is decorated, they both should be decorated, and when both are decorated their decorations must match.
If only one is decorated, the sampling instruction can behave either as if both were decorated or neither were decorated.

2.15 Debug Information

Debug information is supplied with:

• Source-code text through OpString, OpSource, and OpSourceContinued.

• Object names through OpName and OpMemberName.

• Line numbers through OpLine.

A module will not lose any semantics when all such instructions are removed.

2.15.1 Function-Name Mangling

There is no functional dependency on how functions are named. Signature-typing information is explicitly provided,
without any need for name "unmangling". (Valid modules can be created without inclusion of mangled names.)

By convention, for debugging purposes, modules with OpSource Source Language of OpenCL use the Itanium
name-mangling standard.

27

SPIR-V Specification

2.16 Validation Rules

2.16.1 Universal Validation Rules

All modules must obey the following, or it is an invalid module:

• The stream of instructions must be ordered as described in the Logical Layout section.

• Any use of a feature described by a capability in the capability section requires that capability to be declared, either
directly, or as a "depends on" capability on a capability that is declared.

• Non-structure types (scalars, vectors, arrays, etc.) with the same operand parameterization cannot be type aliases. For
non-structures, two type <id>s match if-and-only-if the types match.

• If the Logical addressing model is selected:

– OpVariable cannot allocate an object whose type is a pointer type (that is, it cannot create an object in memory that is
itself a pointer and whose result would thus be a pointer to a pointer)

– A pointer can only be an operand to the following instructions:

* OpLoad
* OpStore
* OpAccessChain
* OpInBoundsAccessChain
* OpFunctionCall
* OpImageTexelPointer
* OpCopyMemory
* OpCopyObject
* all OpAtomic instructions
* extended instruction-set instructions that are explicitly identified as taking pointer operands

– A pointer can be the Result <id> of only the following instructions:

* OpVariable
* OpAccessChain
* OpInBoundsAccessChain
* OpFunctionParameter
* OpImageTexelPointer
* OpCopyObject

– All indexes in OpAccessChain and OpInBoundsAccessChain that are OpConstant with type of OpTypeInt with a
signedness of 1 must not have their sign bit set.

• SSA

– Each <id> must appear exactly once as the Result <id> of an instruction.
– The definition of an SSA <id> should dominate all uses of it, with the following exceptions:

* Function calls may call functions not yet defined. However, note that the function’s argument and return types will
already be known at the call site.

* Uses in a phi-function in a loop may consume definitions in the loop that don’t dominate the use.

• Entry point and execution model

– There is at least one OpEntryPoint instruction, unless the Linkage capability is being used.
– No function can be targeted by both an OpEntryPoint instruction and an OpFunctionCall instruction.

• Functions

– A function declaration (an OpFunction with no basic blocks), must have a Linkage Attributes Decoration with the
Import Linkage Type.

28

SPIR-V Specification

– A function definition (an OpFunction with basic blocks) cannot be decorated with the Import Linkage Type.
– A function cannot have both a declaration and a definition (no forward declarations).

• Global (Module Scope) Variables

– It is illegal to initialize an imported variable. This means that a module-scope OpVariable with initialization value
cannot be marked with the Import Linkage Type.

• Control-Flow Graph (CFG)

– Blocks exist only within a function.
– The first block in a function definition is the entry point of that function and cannot be the target of any branch. (Note

this means it will have no OpPhi instructions.)
– The order of blocks in a function must satisfy the rule that blocks appear before all blocks they dominate.
– Each block starts with a label.

* A label is made by OpLabel.
* This includes the first block of a function (OpFunction is not a label).
* Labels are used only to form blocks.

– The last instruction of each block is a termination instruction.
– Termination instructions can only appear as the last instruction in a block.
– OpLabel instructions can only appear within a function.
– All branches within a function must be to labels in that function.

• All OpFunctionCall Function operands are an <id> of an OpFunction in the same module.

• Data rules

– Scalar floating-point types can be parameterized only as 32 bit, plus any additional sizes enabled by capabilities.
– Scalar integer types can be parameterized only as 32 bit, plus any additional sizes enabled by capabilities.
– Vector types can only be parameterized with numerical types or the OpTypeBool type.
– Vector types for can only be parameterized as having 2, 3, or 4 components, plus any additional sizes enabled by

capabilities.
– Matrix types can only be parameterized with floating-point types.
– Matrix types can only be parameterized as having only 2, 3, or 4 columns.
– Specialization constants (see Specialization) are limited to integers, Booleans, floating-point numbers, and vectors of

these.
– Forward reference operands in an OpTypeStruct

* must be later declared with OpTypePointer
* the type pointed to must be an OpTypeStruct
* had an earlier OpTypeForwardPointer forward reference to the same <id>

– All OpSampledImage instructions must be in the same block in which their Result <id> are consumed. Result <id>
from OpSampledImage instructions must not appear as operands to OpPhi instructions or OpSelect instructions, or
any instructions other than the image lookup and query instructions specified to take an operand whose type is
OpTypeSampledImage.

– Instructions for extracting a scalar image or scalar sampler out of a composite must only use dynamically-uniform
indexes. They must be in the same block in which their Result <id> are consumed. Such Result <id> must not appear
as operands to OpPhi instructions or OpSelect instructions, or any instructions other than the image instructions
specified to operate on them.

• Decoration rules

– The Aliased Decoration can only be applied to intermediate objects that are pointers to non-void types.
– The Linkage Attributes Decoration cannot be applied to functions targeted by an OpEntryPoint instruction.

29

SPIR-V Specification

– A BuiltIn Decoration can only be applied as follows:

* When applied to a structure-type member, all members of that structure type must also be decorated with BuiltIn.
(No allowed mixing of built-in variables and non-built-in variables within a single structure.)

* When applied to a structure-type member, that structure type cannot be contained as a member of another structure
type.

* There is at most one object per Storage Class that can contain a structure type containing members decorated with
BuiltIn, consumed per entry-point.

• OpLoad and OpStore can only consume objects whose type is a pointer.

• A Result <id> resulting from an instruction within a function can only be used in that function.

• A function call must have the same number of arguments as the function definition (or declaration) has parameters, and
their respective types must match.

• An instruction requiring a specific number of operands must have that many operands. The word count must agree.

• Each opcode specifies its own requirements for number and type of operands, and these must be followed.

• Atomic access rules

– The pointers taken by atomic operation instructions must be a pointer into one of the following Storage Classes:

* Uniform when used with the BufferBlock Decoration
* Workgroup
* CrossWorkgroup
* Generic
* AtomicCounter
* Image

– All pointers used in atomic operation instructions must be pointers to one of the following:

* 32-bit scalar integer
* 64-bit scalar integer

2.16.2 Validation Rules for Shader Capabilities

• CFG:

– Loops must be structured, having an OpLoopMerge instruction in their header.
– Selections must be structured, having an OpSelectionMerge instruction in their header.

• Entry point and execution model

– Each entry point in a module, along with its corresponding static call tree within that module, forms a complete
pipeline stage.

– Each OpEntryPoint with the Fragment Execution Model must have an OpExecutionMode for either the
OriginLowerLeft or the OriginUpperLeft Execution Mode. (Exactly one of these is required.)

– An OpEntryPoint with the Fragment Execution Model can set at most one of the DepthGreater, DepthLess, or
DepthUnchanged Execution Modes.

– An OpEntryPoint with one of the Tessellation Execution Modes can set at most one of the SpacingEqual,
FractionalEven, or FractionalOdd Execution Modes.

– An OpEntryPoint with one of the Tessellation Execution Models can set at most one of the Triangles, Quads, or
Isolines Execution Modes.

– An OpEntryPoint with one of the Tessellation Execution Models can set at most one of the VertexOrderCw or
VertexOrderCcw Execution Modes.

– An OpEntryPoint with the Geometry Execution Model must set exactly one of the InputPoints, InputLines,
InputLinesAdjacency, Triangles, or TrianglesAdjacency Execution Modes.

30

SPIR-V Specification

– An OpEntryPoint with the Geometry Execution Model must set exactly one of the OutputPoints, OutputLineStrip,
or OutputTriangleStrip Execution Modes.

• Composite objects in the UniformConstant, Uniform, and PushConstant Storage Classes must be explicitly laid out.
The following apply to all the aggregate and matrix types describing such an object, recursively through their nested
types:

– Each structure-type member must have an Offset Decoration.
– Each array type must have an ArrayStride Decoration.
– Each structure-type member that is a matrix or array-of-matrices must have be decorated with

* a MatrixStride Decoration, and
* one of the RowMajor or ColMajor Decorations.

– The ArrayStride, MatrixStride, and Offset Decorations must be large enough to hold the size of the objects they
affect (that is, specifying overlap is invalid). Each ArrayStride and MatrixStride must be greater than zero, and no
two members of a given structure can be assigned to the same Offset.

• For structure objects in the Input and Output Storage Classes, the following apply:

– When applied to structure-type members, the Decorations Noperspective, Flat, Patch, Centroid, and Sample can
only be applied to the top-level members of the structure type. (Nested objects’ types cannot be structures whose
members are decorated with these decorations.)

• Decorations

– At most one of Noperspective or Flat Decorations can be applied to the same object or member.
– At most one of Patch, Centroid, or Sample Decorations can be applied to the same object or member.
– At most one of RowMajor and ColMajor Decorations can be applied to a structure type.
– At most one of Block and BufferBlock Decorations can be applied to a structure type.

• All <id> used for Scope and Memory Semantics must be of an OpConstant.

2.16.3 Validation Rules for Kernel Capabilities

• The Signedness in OpTypeInt must always be 0.

31

SPIR-V Specification

2.17 Universal Limits

These quantities are minimum limits for all implementations and validators. Implementations are allowed to support larger
quantities. Specific APIs may impose larger minimums. See Language Capabilities.

Validators must either

• inform when these limits are crossed, or

• be explicitly parameterized with larger limits.

Table 3: Limits

Limited Entity Minimum Limit
Decimal Hexadecimal

Characters in a literal string 65,535 FFFF
Instruction word count 65,535 FFFF
Result <id> bound

See Physical Layout for the shader-specific bound.
4,194,303 3FFFFF

Control-flow nesting depth

Measured per function, in program order, counting
the maximum number of OpBranch,
OpBranchConditional, or OpSwitch that are seen
without yet seeing their corresponding Merge Block,
as declared by OpSelectionMerge or OpLoopMerge.

1023 3FF

Global variables (Storage Class other than Function) 65,535 FFFF
Local variables (Function Storage Class) 524,287 7FFFF

Decorations per target <id>
Number of entries in the

Decoration table.
Execution modes per entry point 255 FF
Indexes for OpAccessChain,
OpInBoundsAccessChain, OpPtrAccessChain,
OpInBoundsPtrAccessChain, OpCompositeExtract,
and OpCompositeInsert

255 FF

Number of function parameters, per function
declaration 255 FF

OpFunctionCall actual arguments 255 FF
OpExtInst actual arguments 255 FF
OpSwitch (literal, label) pairs 16,383 3FFF
OpTypeStruct members 16,383 3FFF
Structure nesting depth 255 FF

2.18 Memory Model

A memory model is chosen using a single OpMemoryModel instruction near the beginning of the module. This selects
both an addressing model and a memory model.

The Logical addressing model means pointers are abstract, having no physical size or numeric value. In this mode,
pointers can only be created from existing objects, and they cannot be stored into an object.

The non-Logical addressing models allow physical pointers to be formed. OpVariable can be used to create objects that
hold pointers. These are declared for a specific Storage Class. Pointers for one Storage Class cannot be used to access

32

SPIR-V Specification

objects in another Storage Class. However, they can be converted with conversion opcodes. Any particular addressing
model must describe the bit width of pointers for each of the storage classes.

2.18.1 Memory Layout

When memory is shared between a SPIR-V module and an API, its contents are transparent, and must be agreed on. For
example, the Offset, MatrixStride, and ArrayStride Decorations applied to members of a struct object can partially
define how the memory is laid out. In addition, the following are always true, applied recursively as needed, of the offsets
within the memory buffer:

• a vector consumes contiguous memory with lower-numbered components appearing in smaller offsets than
higher-numbered components, and with component 0 starting at the vector’s Offset Decoration, if present

• in an array, lower-numbered elements appear at smaller offsets than higher-numbered elements, with element 0 starting
at the Offset Decoration for the array, if present

• a structure has lower-numbered members appearing at smaller offsets than higher-numbered members, with member 0
starting at the Offset Decoration for the structure, if present

• in a matrix, lower-numbered columns appear at smaller offsets than higher-numbered columns, and lower-numbered
components within the matrix’s vectors appearing at smaller offsets than high-numbered components, with component 0
of column 0 starting at the Offset Decoration, if present (the RowMajor and ColMajor Decorations dictate what is
contiguous)

2.18.2 Aliasing

Here, aliasing means one of:

• Two or more pointers that point into overlapping parts of the same underlying object. That is, two intermediates, both of
which are typed pointers, that can be dereferenced (in bounds) such that both dereferences access the same memory.

• Images, buffers, or other externally allocated objects where a function might access the same underlying memory via
accesses to two different objects.

How aliasing is managed depends on the Memory Model:

• The simple and GLSL memory models can assume that aliasing is generally not present. Specifically, the compiler is
free to compile as if aliasing is not present, unless a pointer is explicitly indicated to be an alias. This is indicated by
applying the Aliased Decoration to an intermediate object’s <id>. Applying Restrict is allowed, but has no effect.

• The OpenCL memory models must assume that aliasing is generally present. Specifically, the compiler must compile as
if aliasing is present, unless a pointer is explicitly indicated to not alias. This is done by applying the Restrict
Decoration to an intermediate object’s <id>. Applying Aliased is allowed, but has no effect.

It is invalid to apply both Restrict and Aliased to the same <id>.

2.19 Derivatives

Derivatives appear only in the Fragment Execution Model. They can be implicit or explicit. Some image instructions
consume implicit derivatives, while the derivative instructions compute explicit derivatives. In all cases, derivatives are
well defined only if the derivative group has uniform control flow.

2.20 Code Motion

Texturing instructions in the Fragment Execution Model that rely on an implicit derivative cannot be moved into control
flow that is not known to be uniform control flow within each derivative group.

33

SPIR-V Specification

3 Binary Form

This section contains the exact form for all instructions, starting with the numerical values for all fields. See Physical
Layout for the order words appear in.

3.1 Magic Number

Magic number for a SPIR-V module.

Tip
Endianness: A module is defined as a stream of words, not a stream of bytes. However, if stored as a stream of bytes
(e.g., in a file), the magic number can be used to deduce what endianness to apply to convert the byte stream back to a
word stream.

Magic Number
0x07230203

3.2 Source Language

The source language is for debug purposes only, with no semantics that affect the meaning of other parts of the module.
Used by OpSource.

Source Language
0 Unknown
1 ESSL
2 GLSL
3 OpenCL_C
4 OpenCL_CPP
5 HLSL

3.3 Execution Model

Used by OpEntryPoint.

Execution Model Enabling Capabilities
0 Vertex

Vertex shading stage.
Shader

1 TessellationControl
Tessellation control (or hull) shading stage.

Tessellation

2 TessellationEvaluation
Tessellation evaluation (or domain) shading
stage.

Tessellation

3 Geometry
Geometry shading stage.

Geometry

4 Fragment
Fragment shading stage.

Shader

5 GLCompute
Graphical compute shading stage.

Shader

34

SPIR-V Specification

Execution Model Enabling Capabilities
6 Kernel

Compute kernel.
Kernel

3.4 Addressing Model

Used by OpMemoryModel.

Addressing Model Enabling Capabilities
0 Logical
1 Physical32

Indicates a 32-bit module, where the address
width is equal to 32 bits.

Addresses

2 Physical64
Indicates a 64-bit module, where the address
width is equal to 64 bits.

Addresses

3.5 Memory Model

Used by OpMemoryModel.

Memory Model Enabling Capabilities
0 Simple

No shared memory consistency issues.
Shader

1 GLSL450
Memory model needed by later versions of
GLSL and ESSL. Works across multiple
versions.

Shader

2 OpenCL
OpenCL memory model.

Kernel

3.6 Execution Mode

Declare the modes an entry point will execute in. Used by OpExecutionMode.

Execution Mode Enabling Capabilities Extra Operands
0 Invocations

Number of times to invoke the geometry
stage for each input primitive received. The
default is to run once for each input
primitive. It is invalid to specify a value
greater than the target-dependent maximum.
Only valid with the Geometry Execution
Model.

Geometry Literal Number
Number of invocations

1 SpacingEqual
Requests the tessellation primitive generator
to divide edges into a collection of
equal-sized segments. Only valid with one
of the tessellation Execution Models.

Tessellation

35

SPIR-V Specification

Execution Mode Enabling Capabilities Extra Operands
2 SpacingFractionalEven

Requests the tessellation primitive generator
to divide edges into an even number of
equal-length segments plus two additional
shorter fractional segments. Only valid with
one of the tessellation Execution Models.

Tessellation

3 SpacingFractionalOdd
Requests the tessellation primitive generator
to divide edges into an odd number of
equal-length segments plus two additional
shorter fractional segments. Only valid with
one of the tessellation Execution Models.

Tessellation

4 VertexOrderCw
Requests the tessellation primitive generator
to generate triangles in clockwise order.
Only valid with one of the tessellation
Execution Models.

Tessellation

5 VertexOrderCcw
Requests the tessellation primitive generator
to generate triangles in counter-clockwise
order. Only valid with one of the
tessellation Execution Models.

Tessellation

6 PixelCenterInteger
Pixels appear centered on whole-number
pixel offsets. E.g., the coordinate (0.5, 0.5)
appears to move to (0.0, 0.0). Only valid
with the Fragment Execution Model. If a
Fragment entry point does not have this
set, pixels appear centered at offsets of (0.5,
0.5) from whole numbers

Shader

7 OriginUpperLeft
Pixel coordinates appear to originate in the
upper left, and increase toward the right and
downward. Only valid with the Fragment
Execution Model.

Shader

8 OriginLowerLeft
Pixel coordinates appear to originate in the
lower left, and increase toward the right and
upward. Only valid with the Fragment
Execution Model.

Shader

9 EarlyFragmentTests
Fragment tests are to be performed before
fragment shader execution. Only valid with
the Fragment Execution Model.

Shader

10 PointMode
Requests the tessellation primitive generator
to generate a point for each distinct vertex
in the subdivided primitive, rather than to
generate lines or triangles. Only valid with
one of the tessellation Execution Models.

Tessellation

36

SPIR-V Specification

Execution Mode Enabling Capabilities Extra Operands
11 Xfb

This stage will run in transform
feedback-capturing mode and this module is
responsible for describing the
transform-feedback setup. See the
XfbBuffer, Offset, and XfbStride
Decorations.

TransformFeedback

12 DepthReplacing
This mode must be declared if this module
potentially changes the fragment’s depth.
Only valid with the Fragment Execution
Model.

Shader

14 DepthGreater
External optimizations may assume depth
modifications will leave the fragment’s
depth as greater than or equal to the
fragment’s interpolated depth value (given
by the z component of the FragCoord
BuiltIn decorated variable). Only valid with
the Fragment Execution Model.

Shader

15 DepthLess
External optimizations may assume depth
modifications leave the fragment’s depth
less than the fragment’s interpolated depth
value, (given by the z component of the
FragCoord BuiltIn decorated variable).
Only valid with the Fragment Execution
Model.

Shader

16 DepthUnchanged
External optimizations may assume this
stage did not modify the fragment’s depth.
However, DepthReplacing mode must
accurately represent depth modification.
Only valid with the Fragment Execution
Model.

Shader

17 LocalSize
Indicates the work-group size in the x, y,
and z dimensions. Only valid with the
GLCompute or Kernel Execution Models.

Literal
Number
x size

Literal
Number
y size

Literal
Number
z size

18 LocalSizeHint
A hint to the compiler, which indicates the
most likely to be used work-group size in
the x, y, and z dimensions. Only valid with
the Kernel Execution Model.

Kernel Literal
Number
x size

Literal
Number
y size

Literal
Number
z size

19 InputPoints
Stage input primitive is points. Only valid
with the Geometry Execution Model.

Geometry

20 InputLines
Stage input primitive is lines. Only valid
with the Geometry Execution Model.

Geometry

21 InputLinesAdjacency
Stage input primitive is lines adjacency.
Only valid with the Geometry Execution
Model.

Geometry

37

SPIR-V Specification

Execution Mode Enabling Capabilities Extra Operands
22 Triangles

For a geometry stage, input primitive is
triangles. For a tessellation stage, requests
the tessellation primitive generator to
generate triangles. Only valid with the
Geometry or one of the tessellation
Execution Models.

Geometry, Tessellation

23 InputTrianglesAdjacency
Geometry stage input primitive is triangles
adjacency. Only valid with the Geometry
Execution Model.

Geometry

24 Quads
Requests the tessellation primitive generator
to generate quads. Only valid with one of
the tessellation Execution Models.

Tessellation

25 Isolines
Requests the tessellation primitive generator
to generate isolines. Only valid with one of
the tessellation Execution Models.

Tessellation

26 OutputVertices
For a geometry stage, the maximum number
of vertices the shader will ever emit in a
single invocation. For a tessellation-control
stage, the number of vertices in the output
patch produced by the tessellation control
shader, which also specifies the number of
times the tessellation control shader is
invoked. Only valid with the Geometry or
one of the tessellation Execution Models.

Geometry, Tessellation Literal Number
Vertex count

27 OutputPoints
Stage output primitive is points. Only valid
with the Geometry Execution Model.

Geometry

28 OutputLineStrip
Stage output primitive is line strip. Only
valid with the Geometry Execution Model.

Geometry

29 OutputTriangleStrip
Stage output primitive is triangle strip.
Only valid with the Geometry Execution
Model.

Geometry

38

SPIR-V Specification

Execution Mode Enabling Capabilities Extra Operands
30 VecTypeHint

A hint to the compiler, which indicates that
most operations used in the entry point are
explicitly vectorized using a particular
vector type. The 16 high-order bits of
Vector Type operand specify the number of
components of the vector. The 16 low-order
bits of Vector Type operand specify the data
type of the vector.

These are the legal data type values:
0 represents an 8-bit integer value.
1 represents a 16-bit integer value.
2 represents a 32-bit integer value.
3 represents a 64-bit integer value.
4 represents a 16-bit float value.
5 represents a 32-bit float value.
6 represents a 64-bit float value.

Only valid with the Kernel Execution
Model.

Kernel Literal Number
Vector type

31 ContractionOff
Indicates that floating-point-expressions
contraction is disallowed. Only valid with
the Kernel Execution Model.

Kernel

4446 PostDepthCoverage SampleMaskPostDepthCoverage
5027 StencilRefReplacingEXT StencilExportEXT

3.7 Storage Class

Class of storage for declared variables (does not include intermediate values). Used by:

• OpTypePointer

• OpTypeForwardPointer

• OpVariable

• OpGenericCastToPtrExplicit

Storage Class Enabling
Capabilities

Enabled by Extension

0 UniformConstant
Shared externally, visible across all
functions in all invocations in all work
groups. Graphics uniform memory.
OpenCL constant memory. Variables
declared with this storage class are
read-only. They may have initializers, as
allowed by the client API.

1 Input
Input from pipeline. Visible across all
functions in the current invocation.
Variables declared with this storage class
are read-only, and cannot have initializers.

39

SPIR-V Specification

Storage Class Enabling
Capabilities

Enabled by Extension

2 Uniform
Shared externally, visible across all
functions in all invocations in all work
groups. Graphics uniform blocks and
buffer blocks.

Shader

3 Output
Output to pipeline. Visible across all
functions in the current invocation.

Shader

4 Workgroup
Shared across all invocations within a
work group. Visible across all functions.
The OpenGL "shared" storage qualifier.
OpenCL local memory.

5 CrossWorkgroup
Visible across all functions of all
invocations of all work groups. OpenCL
global memory.

6 Private
Visible to all functions in the current
invocation. Regular global memory.

Shader

7 Function
Visible only within the declaring function
of the current invocation. Regular function
memory.

8 Generic
For generic pointers, which overload the
Function, Workgroup, and
CrossWorkgroup Storage Classes.

GenericPointer

9 PushConstant
For holding push-constant memory, visible
across all functions in all invocations in all
work groups. Intended to contain a small
bank of values pushed from the API.
Variables declared with this storage class
are read-only, and cannot have initializers.

Shader

10 AtomicCounter
For holding atomic counters. Visible
across all functions of the current
invocation. Atomic counter-specific
memory.

AtomicStorage

11 Image
For holding image memory.

12 StorageBuffer Shader SPV_KHR_storage_buffer_storage_class,
SPV_KHR_variable_pointers

3.8 Dim

Dimensionality of an image. Used by OpTypeImage.

Dim Enabling Capabilities
0 1D Sampled1D

40

SPIR-V Specification

Dim Enabling Capabilities
1 2D
2 3D
3 Cube Shader
4 Rect SampledRect
5 Buffer SampledBuffer
6 SubpassData InputAttachment

3.9 Sampler Addressing Mode

Addressing mode for creating constant samplers. Used by OpConstantSampler.

Sampler Addressing Mode Enabling Capabilities
0 None

The image coordinates used to sample
elements of the image refer to a location
inside the image, otherwise the results are
undefined.

Kernel

1 ClampToEdge
Out-of-range image coordinates are clamped
to the extent.

Kernel

2 Clamp
Out-of-range image coordinates will return a
border color.

Kernel

3 Repeat
Out-of-range image coordinates are wrapped
to the valid range. Can only be used with
normalized coordinates.

Kernel

4 RepeatMirrored
Flip the image coordinate at every integer
junction. Can only be used with normalized
coordinates.

Kernel

3.10 Sampler Filter Mode

Filter mode for creating constant samplers. Used by OpConstantSampler.

Sampler Filter Mode Enabling Capabilities
0 Nearest

Use filter nearest mode when performing a
read image operation.

Kernel

1 Linear
Use filter linear mode when performing a
read image operation.

Kernel

3.11 Image Format

Declarative image format. Used by OpTypeImage.

Image Format Enabling Capabilities
0 Unknown

41

SPIR-V Specification

Image Format Enabling Capabilities
1 Rgba32f Shader
2 Rgba16f Shader
3 R32f Shader
4 Rgba8 Shader
5 Rgba8Snorm Shader
6 Rg32f StorageImageExtendedFormats
7 Rg16f StorageImageExtendedFormats
8 R11fG11fB10f StorageImageExtendedFormats
9 R16f StorageImageExtendedFormats
10 Rgba16 StorageImageExtendedFormats
11 Rgb10A2 StorageImageExtendedFormats
12 Rg16 StorageImageExtendedFormats
13 Rg8 StorageImageExtendedFormats
14 R16 StorageImageExtendedFormats
15 R8 StorageImageExtendedFormats
16 Rgba16Snorm StorageImageExtendedFormats
17 Rg16Snorm StorageImageExtendedFormats
18 Rg8Snorm StorageImageExtendedFormats
19 R16Snorm StorageImageExtendedFormats
20 R8Snorm StorageImageExtendedFormats
21 Rgba32i Shader
22 Rgba16i Shader
23 Rgba8i Shader
24 R32i Shader
25 Rg32i StorageImageExtendedFormats
26 Rg16i StorageImageExtendedFormats
27 Rg8i StorageImageExtendedFormats
28 R16i StorageImageExtendedFormats
29 R8i StorageImageExtendedFormats
30 Rgba32ui Shader
31 Rgba16ui Shader
32 Rgba8ui Shader
33 R32ui Shader
34 Rgb10a2ui StorageImageExtendedFormats
35 Rg32ui StorageImageExtendedFormats
36 Rg16ui StorageImageExtendedFormats
37 Rg8ui StorageImageExtendedFormats
38 R16ui StorageImageExtendedFormats
39 R8ui StorageImageExtendedFormats

3.12 Image Channel Order

Image channel order returned by OpImageQueryOrder.

Image Channel Order Enabling Capabilities
0 R Kernel
1 A Kernel
2 RG Kernel
3 RA Kernel
4 RGB Kernel
5 RGBA Kernel
6 BGRA Kernel

42

SPIR-V Specification

Image Channel Order Enabling Capabilities
7 ARGB Kernel
8 Intensity Kernel
9 Luminance Kernel
10 Rx Kernel
11 RGx Kernel
12 RGBx Kernel
13 Depth Kernel
14 DepthStencil Kernel
15 sRGB Kernel
16 sRGBx Kernel
17 sRGBA Kernel
18 sBGRA Kernel
19 ABGR Kernel

3.13 Image Channel Data Type

Image channel data type returned by OpImageQueryFormat.

Image Channel Data Type Enabling Capabilities
0 SnormInt8 Kernel
1 SnormInt16 Kernel
2 UnormInt8 Kernel
3 UnormInt16 Kernel
4 UnormShort565 Kernel
5 UnormShort555 Kernel
6 UnormInt101010 Kernel
7 SignedInt8 Kernel
8 SignedInt16 Kernel
9 SignedInt32 Kernel
10 UnsignedInt8 Kernel
11 UnsignedInt16 Kernel
12 UnsignedInt32 Kernel
13 HalfFloat Kernel
14 Float Kernel
15 UnormInt24 Kernel
16 UnormInt101010_2 Kernel

3.14 Image Operands

Additional operands to sampling, or getting texels from, an image. Bits that are set can indicate that another operand
follows. If there are multiple following operands indicated, they are ordered: Those indicated by smaller-numbered bits
appear first. At least one bit must be set (None is invalid).

This value is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by:

• OpImageSampleImplicitLod

• OpImageSampleExplicitLod

• OpImageSampleDrefImplicitLod

• OpImageSampleDrefExplicitLod

43

SPIR-V Specification

• OpImageSampleProjImplicitLod

• OpImageSampleProjExplicitLod

• OpImageSampleProjDrefImplicitLod

• OpImageSampleProjDrefExplicitLod

• OpImageFetch

• OpImageGather

• OpImageDrefGather

• OpImageRead

• OpImageWrite

• OpImageSparseSampleImplicitLod

• OpImageSparseSampleExplicitLod

• OpImageSparseSampleDrefImplicitLod

• OpImageSparseSampleDrefExplicitLod

• OpImageSparseSampleProjImplicitLod

• OpImageSparseSampleProjExplicitLod

• OpImageSparseSampleProjDrefImplicitLod

• OpImageSparseSampleProjDrefExplicitLod

• OpImageSparseFetch

• OpImageSparseGather

• OpImageSparseDrefGather

• OpImageSparseRead

Image Operands Enabling Capabilities
0x0 None
0x1 Bias

A following operand is the bias added to
the implicit level of detail. Only valid with
implicit-lod instructions. It must be a
floating-point type scalar. This can only be
used with an OpTypeImage that has a Dim
operand of 1D, 2D, 3D, or Cube, and the
MS operand must be 0.

Shader

0x2 Lod
A following operand is the explicit
level-of-detail to use. Only valid with
explicit-lod instructions. For sampling
operations, it must be a floating-point type
scalar. For fetch operations, it must be an
integer type scalar. This can only be used
with an OpTypeImage that has a Dim
operand of 1D, 2D, 3D, or Cube, and the
MS operand must be 0.

44

SPIR-V Specification

Image Operands Enabling Capabilities
0x4 Grad

Two following operands are dx followed
by dy. These are explicit derivatives in the
x and y direction to use in computing level
of detail. Each is a scalar or vector
containing (du/dx[, dv/dx] [, dw/dx]) and
(du/dy[, dv/dy] [, dw/dy]). The number of
components of each must equal the
number of components in Coordinate,
minus the array layer component, if
present. Only valid with explicit-lod
instructions. They must be a scalar or
vector of floating-point type. This can only
be used with an OpTypeImage that has an
MS operand of 0. It is invalid to set both
the Lod and Grad bits.

0x8 ConstOffset
A following operand is added to (u, v, w)
before texel lookup. It must be an <id> of
an integer-based constant instruction of
scalar or vector type. It is invalid for these
to be outside a target-dependent allowed
range. The number of components must
equal the number of components in
Coordinate, minus the array layer
component, if present. Not valid with the
Cube dimension.

0x10 Offset
A following operand is added to (u, v, w)
before texel lookup. It must be a scalar or
vector of integer type. It is invalid for these
to be outside a target-dependent allowed
range. The number of components must
equal the number of components in
Coordinate, minus the array layer
component, if present. Not valid with the
Cube dimension.

ImageGatherExtended

0x20 ConstOffsets
A following operand is Offsets. Offsets
must be an <id> of a constant instruction
making an array of size four of vectors of
two integer components. Each gathered
texel is identified by adding one of these
array elements to the (u, v) sampled
location. It is a compile-time error if this
falls outside a target-dependent allowed
range. Only valid with OpImageGather or
OpImageDrefGather. Not valid with the
Cube dimension.

45

SPIR-V Specification

Image Operands Enabling Capabilities
0x40 Sample

A following operand is the sample number
of the sample to use. Only valid with
OpImageFetch, OpImageRead, and
OpImageWrite. It is invalid to have a
Sample operand if the underlying
OpTypeImage has MS of 0. It must be an
integer type scalar.

0x80 MinLod
A following operand is the minimum
level-of-detail to use when accessing the
image. Only valid with Implicit
instructions and Grad instructions. It must
be a floating-point type scalar. This can
only be used with an OpTypeImage that
has a Dim operand of 1D, 2D, 3D, or
Cube, and the MS operand must be 0.

MinLod

3.15 FP Fast Math Mode

Enables fast math operations which are otherwise unsafe.

• Only valid on OpFAdd, OpFSub, OpFMul, OpFDiv, OpFRem, and OpFMod instructions.

This value is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

FP Fast Math Mode Enabling Capabilities
0x0 None
0x1 NotNaN

Assume parameters and result are not
NaN.

Kernel

0x2 NotInf
Assume parameters and result are not +/-
Inf.

Kernel

0x4 NSZ
Treat the sign of a zero parameter or result
as insignificant.

Kernel

0x8 AllowRecip
Allow the usage of reciprocal rather than
perform a division.

Kernel

0x10 Fast
Allow algebraic transformations according
to real-number associative and distributive
algebra. This flag implies all the others.

Kernel

3.16 FP Rounding Mode

Associate a rounding mode to a floating-point conversion instruction.

46

SPIR-V Specification

FP Rounding Mode Enabling Capabilities
0 RTE

Round to nearest even.
Kernel,

StorageUniformBufferBlock16,
StorageUniform16,

StoragePushConstant16,
StorageInputOutput16

1 RTZ
Round towards zero.

Kernel,
StorageUniformBufferBlock16,

StorageUniform16,
StoragePushConstant16,
StorageInputOutput16

2 RTP
Round towards positive infinity.

Kernel,
StorageUniformBufferBlock16,

StorageUniform16,
StoragePushConstant16,
StorageInputOutput16

3 RTN
Round towards negative infinity.

Kernel,
StorageUniformBufferBlock16,

StorageUniform16,
StoragePushConstant16,
StorageInputOutput16

3.17 Linkage Type

Associate a linkage type to functions or global variables. See linkage.

Linkage Type Enabling Capabilities
0 Export

Accessible by other modules as well.
Linkage

1 Import
A declaration of a global variable or a
function that exists in another module.

Linkage

3.18 Access Qualifier

Defines the access permissions.

Used by OpTypeImage and OpTypePipe.

Access Qualifier Enabling Capabilities
0 ReadOnly

A read-only object.
Kernel

1 WriteOnly
A write-only object.

Kernel

2 ReadWrite
A readable and writable object.

Kernel

3.19 Function Parameter Attribute

Adds additional information to the return type and to each parameter of a function.

47

SPIR-V Specification

Function Parameter Attribute Enabling Capabilities
0 Zext

Value should be zero extended if needed.
Kernel

1 Sext
Value should be sign extended if needed.

Kernel

2 ByVal
This indicates that the pointer parameter
should really be passed by value to the
function. Only valid for pointer parameters
(not for ret value).

Kernel

3 Sret
Indicates that the pointer parameter specifies
the address of a structure that is the return
value of the function in the source program.
Only applicable to the first parameter which
must be a pointer parameters.

Kernel

4 NoAlias
Indicates that the memory pointed to by a
pointer parameter is not accessed via pointer
values which are not derived from this
pointer parameter. Only valid for pointer
parameters. Not valid on return values.

Kernel

5 NoCapture
The callee does not make a copy of the
pointer parameter into a location that is
accessible after returning from the callee.
Only valid for pointer parameters. Not valid
on return values.

Kernel

6 NoWrite
Can only read the memory pointed to by a
pointer parameter. Only valid for pointer
parameters. Not valid on return values.

Kernel

7 NoReadWrite
Cannot dereference the memory pointed to
by a pointer parameter. Only valid for pointer
parameters. Not valid on return values.

Kernel

3.20 Decoration

Used by OpDecorate and OpMemberDecorate.

Decoration Enabling Capabilities Extra Operands
0 RelaxedPrecision

Allow reduced precision operations. To be used
as described in Relaxed Precision.

Shader

1 SpecId
Apply to a scalar specialization constant. Forms
the API linkage for setting a specialized value.
See specialization.

Shader Literal Number
Specialization
Constant ID

2 Block
Apply to a structure type to establish it is a
non-SSBO-like shader-interface block.

Shader

48

SPIR-V Specification

Decoration Enabling Capabilities Extra Operands
3 BufferBlock

Apply to a structure type to establish it is an
SSBO-like shader-interface block.

Shader

4 RowMajor
Applies only to a member of a structure type.
Only valid on a matrix or array whose most basic
element is a matrix. Indicates that components
within a row are contiguous in memory.

Matrix

5 ColMajor
Applies only to a member of a structure type.
Only valid on a matrix or array whose most basic
element is a matrix. Indicates that components
within a column are contiguous in memory.

Matrix

6 ArrayStride
Apply to an array type to specify the stride, in
bytes, of the array’s elements. Must not be
applied to anything other than an array type.

Shader Literal Number
Array Stride

7 MatrixStride
Applies only to a member of a structure type.
Only valid on a matrix or array whose most basic
element is a matrix. Specifies the stride of rows in
a RowMajor-decorated matrix, or columns in a
ColMajor-decorated matrix.

Matrix Literal Number
Matrix Stride

8 GLSLShared
Apply to a structure type to get GLSL shared
memory layout.

Shader

9 GLSLPacked
Apply to a structure type to get GLSL packed
memory layout.

Shader

10 CPacked
Apply to a structure type, to marks it as "packed",
indicating that the alignment of the structure is
one and that there is no padding between structure
members.

Kernel

11 BuiltIn
Apply to an object or a member of a structure
type. Indicates which built-in variable the entity
represents. See BuiltIn for more information.

BuiltIn

13 NoPerspective
Apply to an object or a member of a structure
type. Indicates that linear, non-perspective
correct, interpolation must be used. Only valid for
the Input and Output Storage Classes.

Shader

14 Flat
Apply to an object or a member of a structure
type. Indicates no interpolation will be done. The
non-interpolated value will come from a vertex,
as described in the API specification. Only valid
for the Input and Output Storage Classes.

Shader

49

SPIR-V Specification

Decoration Enabling Capabilities Extra Operands
15 Patch

Apply to an object or a member of a structure
type. Indicates a tessellation patch. Only valid for
the Input and Output Storage Classes. Invalid to
use on objects or types referenced by
non-tessellation Execution Models.

Tessellation

16 Centroid
Apply to an object or a member of a structure
type. When used with multi-sampling
rasterization, allows a single interpolation
location for an entire pixel. The interpolation
location must lie in both the pixel and in the
primitive being rasterized. Only valid for the
Input and Output Storage Classes.

Shader

17 Sample
Apply to an object or a member of a structure
type. When used with multi-sampling
rasterization, requires per-sample interpolation.
The interpolation locations must be the locations
of the samples lying in both the pixel and in the
primitive being rasterized. Only valid for the
Input and Output Storage Classes.

SampleRateShading

18 Invariant
Apply to a variable, to indicate expressions
computing its value be done invariant with respect
to other modules computing the same
expressions.

Shader

19 Restrict
Apply to a variable, to indicate the compiler may
compile as if there is no aliasing. See the Aliasing
section for more detail.

20 Aliased
Apply to a variable, to indicate the compiler is to
generate accesses to the variable that work
correctly in the presence of aliasing. See the
Aliasing section for more detail.

21 Volatile
Apply to an object or a member of a structure
type. Can only be used for objects declared as
storage images (see OpTypeImage) or in the
Uniform Storage Class with the BufferBlock
Decoration. This indicates the memory holding
the variable is volatile memory. Accesses to
volatile memory cannot be eliminated, duplicated,
or combined with other accesses. The variable
cannot be in the Function Storage Class.

22 Constant
Indicates that a global variable is constant and
will never be modified. Only allowed on global
variables.

Kernel

50

SPIR-V Specification

Decoration Enabling Capabilities Extra Operands
23 Coherent

Apply to an object or a member of a structure
type. Can only be used for objects declared as
storage images (see OpTypeImage) or in the
Uniform Storage Class with the BufferBlock
Decoration. This indicates the memory backing
the object is coherent.

24 NonWritable
Apply to an object or a member of a structure
type. Can only be used for objects declared as
storage images (see OpTypeImage) or in the
Uniform Storage Class with the BufferBlock
Decoration. This indicates the memory holding
the variable is not writable, and that this module
does not write to it.

25 NonReadable
Apply to an object or a member of a structure
type. Can only be used for objects declared as
storage images (see OpTypeImage) or in the
Uniform Storage Class with the BufferBlock
Decoration. This indicates the memory holding
the variable is not readable, and that this module
does not read from it.

26 Uniform
Apply to an object or a member of a structure
type. Asserts that the value backing the decorated
<id> is dynamically uniform, hence the
consumer is allowed to assume this is the case.

Shader

28 SaturatedConversion
Indicates that a conversion to an integer type
which is outside the representable range of Result
Type will be clamped to the nearest representable
value of Result Type. NaN will be converted to 0.

This decoration can only be applied to conversion
instructions to integer types, not including the
OpSatConvertUToS and OpSatConvertSToU
instructions.

Kernel

29 Stream
Apply to an object or a member of a structure
type. Indicates the stream number to put an
output on. Only valid for the Output Storage
Class and the Geometry Execution Model.

GeometryStreams Literal Number
Stream Number

51

SPIR-V Specification

Decoration Enabling Capabilities Extra Operands
30 Location

Apply to a variable or a structure-type member.
Forms the main linkage for Storage Class Input
and Output variables:
- between the API and vertex-stage inputs,
- between consecutive programmable stages, or
- between fragment-stage outputs and the API.
Also can tag variables or structure-type members
in the UniformConstant Storage Class for
linkage with the API.
Only valid for the Input, Output, and
UniformConstant Storage Classes.

Shader Literal Number
Location

31 Component
Apply to an object or a member of a structure
type. Indicates which component within a
Location will be taken by the decorated entity.
Only valid for the Input and Output Storage
Classes.

Shader Literal Number
Component

32 Index
Apply to a variable to identify a blend equation
input index, used as described in the API
specification. Only valid for the Output Storage
Class and the Fragment Execution Model.

Shader Literal Number
Index

33 Binding
Apply to a variable. Part of the main linkage
between the API and SPIR-V modules for
memory buffers, images, etc. See the API
specification for more information.

Shader Literal Number
Binding Point

34 DescriptorSet
Apply to a variable. Part of the main linkage
between the API and SPIR-V modules for
memory buffers, images, etc. See the API
specification for more information.

Shader Literal Number
Descriptor Set

35 Offset
Apply to a structure-type member. This gives the
byte offset of the member relative to the
beginning of the structure. Can be used, for
example, by both uniform and
transform-feedback buffers. It must not cause any
overlap of the structure’s members, or overflow of
a transform-feedback buffer’s XfbStride.

Shader Literal Number
Byte Offset

36 XfbBuffer
Apply to an object or a member of a structure
type. Indicates which transform-feedback buffer
an output is written to. Only valid for the Output
Storage Classes of vertex processing Execution
Models.

TransformFeedback Literal Number
XFB Buffer Number

37 XfbStride
Apply to anything XfbBuffer is applied to.
Specifies the stride, in bytes, of
transform-feedback buffer vertices. If the
transform-feedback buffer is capturing any
double-precision components, the stride must be a
multiple of 8, otherwise it must be a multiple of 4.

TransformFeedback Literal Number
XFB Stride

52

SPIR-V Specification

Decoration Enabling Capabilities Extra Operands
38 FuncParamAttr

Indicates a function return value or parameter
attribute.

Kernel Function Parameter
Attribute
Function Parameter
Attribute

39 FPRoundingMode
Indicates a floating-point rounding mode.

Kernel, StorageUniform-
BufferBlock16,

StorageUniform16,
StoragePushConstant16,
StorageInputOutput16

FP Rounding Mode
Floating-Point
Rounding Mode

40 FPFastMathMode
Indicates a floating-point fast math flag.

Kernel FP Fast Math Mode
Fast-Math Mode

41 LinkageAttributes
Associate linkage attributes to values. Only valid
on OpFunction or global (module scope)
OpVariable. See linkage.

Linkage Literal
String
Name

Linkage
Type
Linkage
Type

42 NoContraction
Apply to an arithmetic instruction to indicate the
operation cannot be combined with another
instruction to form a single operation. For
example, if applied to an OpFMul, that multiply
can’t be combined with an addition to yield a
fused multiply-add operation. Furthermore, such
operations are not allowed to reassociate; e.g.,
add(a + add(b+c)) cannot be transformed to
add(add(a+b) + c).

Shader

43 InputAttachmentIndex
Apply to a variable to provide an input-target
index (as described in the API specification).
Only valid in the Fragment Execution Model and
for variables of type OpTypeImage with a Dim
operand of SubpassData.

InputAttachment Literal Number
Attachment Index

44 Alignment
Apply to a pointer. This declares a known
minimum alignment the pointer has.

Kernel Literal Number
Alignment

4999 ExplicitInterpAMD
5248 OverrideCoverageNV SampleMaskOverrideCoverageNV
5250 PassthroughNV GeometryShaderPassthroughNV
5252 ViewportRelativeNV ShaderViewportMaskNV
5256 SecondaryViewportRelativeNV ShaderStereoViewNV Literal Number

Offset

3.21 BuiltIn

Used when Decoration is BuiltIn. Apply to either

• the result <id> of the variable declaration of the built-in variable, or

• a structure-type member, if the built-in is a member of a structure.

As stated per entry below, these have additional semantics and constraints described by the client API.

53

SPIR-V Specification

BuiltIn Enabling Capabilities
0 Position

Output vertex position from a vertex
processing Execution Model. See Vulkan or
OpenGL API specifications for more detail.

Shader

1 PointSize
Output point size from a vertex processing
Execution Model. See Vulkan or OpenGL
API specifications for more detail.

Shader

3 ClipDistance
Array of clip distances. See Vulkan or
OpenGL API specifications for more detail.

ClipDistance

4 CullDistance
Array of clip distances. See Vulkan or
OpenGL API specifications for more detail.

CullDistance

5 VertexId
Input vertex ID to a Vertex Execution
Model. See Vulkan or OpenGL API
specifications for more detail.

Shader

6 InstanceId
Input instance ID to a Vertex Execution
Model. See Vulkan or OpenGL API
specifications for more detail.

Shader

7 PrimitiveId
Primitive ID in a Geometry Execution
Model. See Vulkan or OpenGL API
specifications for more detail.

Geometry, Tessellation

8 InvocationId
Invocation ID, input to Geometry and
TessellationControl Execution Model. See
Vulkan or OpenGL API specifications for
more detail.

Geometry, Tessellation

9 Layer
Layer output by a Geometry Execution
Model, input to a Fragment Execution
Model, for multi-layer framebuffer. See
Vulkan or OpenGL API specifications for
more detail.

Geometry

10 ViewportIndex
Viewport Index output by a Geometry stage,
input to a Fragment Execution Model. See
Vulkan or OpenGL API specifications for
more detail.

MultiViewport

11 TessLevelOuter
Output patch outer levels in a
TessellationControl Execution Model. See
Vulkan or OpenGL API specifications for
more detail.

Tessellation

12 TessLevelInner
Output patch inner levels in a
TessellationControl Execution Model. See
Vulkan or OpenGL API specifications for
more detail.

Tessellation

54

SPIR-V Specification

BuiltIn Enabling Capabilities
13 TessCoord

Input vertex position in
TessellationEvaluation Execution Model.
See Vulkan or OpenGL API specifications
for more detail.

Tessellation

14 PatchVertices
Input patch vertex count in a tessellation
Execution Model. See Vulkan or OpenGL
API specifications for more detail.

Tessellation

15 FragCoord
Coordinates (x, y, z, 1/w) of the current
fragment, input to the Fragment Execution
Model. See Vulkan or OpenGL API
specifications for more detail.

Shader

16 PointCoord
Coordinates within a point, input to the
Fragment Execution Model. See Vulkan or
OpenGL API specifications for more detail.

Shader

17 FrontFacing
Face direction, input to the Fragment
Execution Model. See Vulkan or OpenGL
API specifications for more detail.

Shader

18 SampleId
Input sample number to the Fragment
Execution Model. See Vulkan or OpenGL
API specifications for more detail.

SampleRateShading

19 SamplePosition
Input sample position to the Fragment
Execution Model. See Vulkan or OpenGL
API specifications for more detail.

SampleRateShading

20 SampleMask
Input or output sample mask to the
Fragment Execution Model. See Vulkan or
OpenGL API specifications for more detail.

Shader

22 FragDepth
Output fragment depth from the Fragment
Execution Model. See Vulkan or OpenGL
API specifications for more detail.

Shader

23 HelperInvocation
Input whether a helper invocation, to the
Fragment Execution Model. See Vulkan or
OpenGL API specifications for more detail.

Shader

24 NumWorkgroups
Number of workgroups in GLCompute or
Kernel Execution Models. See OpenCL,
Vulkan, or OpenGL API specifications for
more detail.

25 WorkgroupSize
Work-group size in GLCompute or Kernel
Execution Models. See OpenCL, Vulkan, or
OpenGL API specifications for more detail.

55

SPIR-V Specification

BuiltIn Enabling Capabilities
26 WorkgroupId

Work-group ID in GLCompute or Kernel
Execution Models. See OpenCL, Vulkan, or
OpenGL API specifications for more detail.

27 LocalInvocationId
Local invocation ID in GLCompute or
Kernel Execution Models. See OpenCL,
Vulkan, or OpenGL API specifications for
more detail.

28 GlobalInvocationId
Global invocation ID in GLCompute or
Kernel Execution Models. See OpenCL,
Vulkan, or OpenGL API specifications for
more detail.

29 LocalInvocationIndex
Local invocation index in GLCompute
Execution Models. See Vulkan or OpenGL
API specifications for more detail.

Work-group Linear ID in Kernel Execution
Models. See OpenCL API specification for
more detail.

30 WorkDim
Work dimensions in Kernel Execution
Models. See OpenCL API specification for
more detail.

Kernel

31 GlobalSize
Global size in Kernel Execution Models. See
OpenCL API specification for more detail.

Kernel

32 EnqueuedWorkgroupSize
Enqueued work-group size in Kernel
Execution Models. See OpenCL API
specification for more detail.

Kernel

33 GlobalOffset
Global offset in Kernel Execution Models.
See OpenCL API specification for more
detail.

Kernel

34 GlobalLinearId
Global linear ID in Kernel Execution
Models. See OpenCL API specification for
more detail.

Kernel

36 SubgroupSize
Subgroup size in Kernel Execution Models.
See OpenCL API specification for more
detail.

Kernel

37 SubgroupMaxSize
Subgroup maximum size in Kernel
Execution Models. See OpenCL API
specification for more detail.

Kernel

38 NumSubgroups
Number of subgroups in Kernel Execution
Models. See OpenCL API specification for
more detail.

Kernel

56

SPIR-V Specification

BuiltIn Enabling Capabilities
39 NumEnqueuedSubgroups

Number of enqueued subgroups in Kernel
Execution Models. See OpenCL API
specification for more detail.

Kernel

40 SubgroupId
Subgroup ID in Kernel Execution Models.
See OpenCL API specification for more
detail.

Kernel

41 SubgroupLocalInvocationId
Subgroup local invocation ID in Kernel
Execution Models. See OpenCL API
specification for more detail.

Kernel

42 VertexIndex
Vertex index. See Vulkan or OpenGL API
specifications for more detail.

Shader

43 InstanceIndex
Instance index. See Vulkan or OpenGL API
specifications for more detail.

Shader

4416 SubgroupEqMaskKHR SubgroupBallotKHR
4417 SubgroupGeMaskKHR SubgroupBallotKHR
4418 SubgroupGtMaskKHR SubgroupBallotKHR
4419 SubgroupLeMaskKHR SubgroupBallotKHR
4420 SubgroupLtMaskKHR SubgroupBallotKHR
4424 BaseVertex DrawParameters
4425 BaseInstance DrawParameters
4426 DrawIndex DrawParameters
4438 DeviceIndex DeviceGroup
4440 ViewIndex MultiView
4992 BaryCoordNoPerspAMD
4993 BaryCoordNoPerspCentroidAMD
4994 BaryCoordNoPerspSampleAMD
4995 BaryCoordSmoothAMD
4996 BaryCoordSmoothCentroidAMD
4997 BaryCoordSmoothSampleAMD
4998 BaryCoordPullModelAMD
5014 FragStencilRefEXT StencilExportEXT
5253 ViewportMaskNV ShaderViewportMaskNV
5257 SecondaryPositionNV ShaderStereoViewNV
5258 SecondaryViewportMaskNV ShaderStereoViewNV
5261 PositionPerViewNV PerViewAttributesNV
5262 ViewportMaskPerViewNV PerViewAttributesNV
5264 FullyCoveredEXT FragmentFullyCoveredEXT

3.22 Selection Control

This value is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpSelectionMerge.

Selection Control
0x0 None
0x1 Flatten

Strong request, to the extent possible, to
remove the control flow for this selection.

57

SPIR-V Specification

Selection Control
0x2 DontFlatten

Strong request, to the extent possible, to
keep this selection as control flow.

3.23 Loop Control

This value is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpLoopMerge.

Loop Control
0x0 None
0x1 Unroll

Strong request, to the extent possible, to
unroll or unwind this loop.

0x2 DontUnroll
Strong request, to the extent possible, to
keep this loop as a loop, without unrolling.

3.24 Function Control

This value is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpFunction.

Function Control
0x0 None
0x1 Inline

Strong request, to the extent possible, to
inline the function.

0x2 DontInline
Strong request, to the extent possible, to not
inline the function.

0x4 Pure
Compiler can assume this function has no
side effect, but might read global memory
or read through dereferenced function
parameters. Always computes the same
result for the same argument values.

0x8 Const
Compiler can assume this function has no
side effects, and will not access global
memory or dereference function
parameters. Always computes the same
result for the same argument values.

3.25 Memory Semantics <id>

Must be an <id> of a 32-bit integer scalar that contains a mask. The rest of this description is about that mask.

Memory semantics define memory-order constraints, and on what storage classes those constraints apply to. The memory
order constrains the allowed orders in which memory operations in this invocation can made visible to another invocation.

58

SPIR-V Specification

The storage classes specify to which subsets of memory these constraints are to be applied. Storage classes not selected are
not being constrained.

Despite being a mask and allowing multiple bits to be combined, at most one of the first four (low-order) bits can be set.
Requesting both Acquire and Release semantics is done by setting the AcquireRelease bit, not by setting two bits.

This value is a mask; it can be formed by combining the bits from multiple rows in the table below.

Used by:

• OpControlBarrier

• OpMemoryBarrier

• OpAtomicLoad

• OpAtomicStore

• OpAtomicExchange

• OpAtomicCompareExchange

• OpAtomicCompareExchangeWeak

• OpAtomicIIncrement

• OpAtomicIDecrement

• OpAtomicIAdd

• OpAtomicISub

• OpAtomicSMin

• OpAtomicUMin

• OpAtomicSMax

• OpAtomicUMax

• OpAtomicAnd

• OpAtomicOr

• OpAtomicXor

• OpAtomicFlagTestAndSet

• OpAtomicFlagClear

Memory Semantics Enabling Capabilities
0x0 None (Relaxed)
0x2 Acquire

All memory operations provided in
program order after this memory operation
will execute after this memory operation.

0x4 Release
All memory operations provided in
program order before this memory
operation will execute before this memory
operation.

0x8 AcquireRelease
Has the properties of both Acquire and
Release semantics. It is used for
read-modify-write operations.

59

SPIR-V Specification

Memory Semantics Enabling Capabilities
0x10 SequentiallyConsistent

All observers will see this memory access
in the same order with respect to other
sequentially-consistent memory accesses
from this invocation.

0x40 UniformMemory
Apply the memory-ordering constraints to
Uniform Storage Class memory.

Shader

0x80 SubgroupMemory
Apply the memory-ordering constraints to
subgroup memory.

0x100 WorkgroupMemory
Apply the memory-ordering constraints to
Workgroup Storage Class memory.

0x200 CrossWorkgroupMemory
Apply the memory-ordering constraints to
CrossWorkgroup Storage Class memory.

0x400 AtomicCounterMemory
Apply the memory-ordering constraints to
AtomicCounter Storage Class memory.

AtomicStorage

0x800 ImageMemory
Apply the memory-ordering constraints to
image contents (types declared by
OpTypeImage), or to accesses done
through pointers to the Image Storage
Class.

3.26 Memory Access

Memory access semantics.

This value is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by:

• OpLoad

• OpStore

• OpCopyMemory

• OpCopyMemorySized

Memory Access
0x0 None
0x1 Volatile

This access cannot be eliminated,
duplicated, or combined with other
accesses.

0x2 Aligned
This access has a known alignment,
provided as a literal in the next operand.

0x4 Nontemporal
Hints that the accessed address is not likely
to be accessed again in the near future.

60

SPIR-V Specification

3.27 Scope <id>

Must be an <id> of a 32-bit integer scalar that contains a mask. The rest of this description is about that mask.

The execution scope or memory scope of an operation. When used as a memory scope, it specifies the distance of
synchronization from the current invocation. When used as an execution scope, it specifies the set of executing invocations
taking part in the operation. Used by:

• OpControlBarrier

• OpMemoryBarrier

• OpAtomicLoad

• OpAtomicStore

• OpAtomicExchange

• OpAtomicCompareExchange

• OpAtomicCompareExchangeWeak

• OpAtomicIIncrement

• OpAtomicIDecrement

• OpAtomicIAdd

• OpAtomicISub

• OpAtomicSMin

• OpAtomicUMin

• OpAtomicSMax

• OpAtomicUMax

• OpAtomicAnd

• OpAtomicOr

• OpAtomicXor

• OpGroupAsyncCopy

• OpGroupWaitEvents

• OpGroupAll

• OpGroupAny

• OpGroupBroadcast

• OpGroupIAdd

• OpGroupFAdd

• OpGroupFMin

• OpGroupUMin

• OpGroupSMin

• OpGroupFMax

• OpGroupUMax

• OpGroupSMax

• OpGroupReserveReadPipePackets

• OpGroupReserveWritePipePackets

• OpGroupCommitReadPipe

• OpGroupCommitWritePipe

• OpAtomicFlagTestAndSet

61

SPIR-V Specification

• OpAtomicFlagClear

• OpGroupIAddNonUniformAMD

• OpGroupFAddNonUniformAMD

• OpGroupFMinNonUniformAMD

• OpGroupUMinNonUniformAMD

• OpGroupSMinNonUniformAMD

• OpGroupFMaxNonUniformAMD

• OpGroupUMaxNonUniformAMD

• OpGroupSMaxNonUniformAMD

Scope
0 CrossDevice

Scope crosses multiple devices.
1 Device

Scope is the current device.
2 Workgroup

Scope is the current workgroup.
3 Subgroup

Scope is the current subgroup.
4 Invocation

Scope is the current Invocation.

3.28 Group Operation

Defines the class of workgroup or subgroup operation. Used by:

• OpGroupIAdd

• OpGroupFAdd

• OpGroupFMin

• OpGroupUMin

• OpGroupSMin

• OpGroupFMax

• OpGroupUMax

• OpGroupSMax

• OpGroupIAddNonUniformAMD

• OpGroupFAddNonUniformAMD

• OpGroupFMinNonUniformAMD

• OpGroupUMinNonUniformAMD

• OpGroupSMinNonUniformAMD

• OpGroupFMaxNonUniformAMD

• OpGroupUMaxNonUniformAMD

• OpGroupSMaxNonUniformAMD

62

SPIR-V Specification

Group Operation Enabling Capabilities
0 Reduce

A reduction operation for all values of a
specific value X specified by invocations
within a workgroup.

Kernel

1 InclusiveScan
A binary operation with an identity I and n
(where n is the size of the workgroup)
elements[a0, a1, . . . an-1] resulting in [a0, (a0
op a1), . . . (a0 op a1 op . . . op an-1)]

Kernel

2 ExclusiveScan
A binary operation with an identity I and n
(where n is the size of the workgroup)
elements[a0, a1, . . . an-1] resulting in [I, a0,
(a0 op a1), . . . (a0 op a1 op . . . op an-2)].

Kernel

3.29 Kernel Enqueue Flags

Specify when the child kernel begins execution.

Note: Implementations are not required to honor this flag. Implementations may not schedule kernel launch earlier than
the point specified by this flag, however. Used by OpEnqueueKernel.

Kernel Enqueue Flags Enabling Capabilities
0 NoWait

Indicates that the enqueued kernels do not
need to wait for the parent kernel to finish
execution before they begin execution.

Kernel

1 WaitKernel
Indicates that all work-items of the parent
kernel must finish executing and all
immediate side effects committed before the
enqueued child kernel may begin execution.

Note: Immediate meaning not side effects
resulting from child kernels. The side effects
would include stores to global memory and
pipe reads and writes.

Kernel

2 WaitWorkGroup
Indicates that the enqueued kernels wait only
for the workgroup that enqueued the kernels
to finish before they begin execution.

Note: This acts as a memory synchronization
point between work-items in a work-group
and child kernels enqueued by work-items in
the work-group.

Kernel

3.30 Kernel Profiling Info

Specify the profiling information to be queried. Used by OpCaptureEventProfilingInfo.

This value is a mask; it can be formed by combining the bits from multiple rows in the table below.

63

SPIR-V Specification

Kernel Profiling Info Enabling Capabilities
0x0 None
0x1 CmdExecTime

Indicates that the profiling info queried is
the execution time.

Kernel

3.31 Capability

Capabilities a module can declare it uses. All used capabilities must be declared, either directly or through a dependency:
all capabilities that a declared capability depends on are automatically implied.

The Depends On column lists the dependencies for each capability. These are the ones implicitly declared. It is not
necessary (but allowed) to declare a dependency for a declared capability.

See the capabilities section for more detail. Used by OpCapability.

Capability Depends On Enabled by Extension
0 Matrix

Uses OpTypeMatrix.
1 Shader

Uses Vertex, Fragment, or GLCompute
Execution Models.

Matrix

2 Geometry
Uses the Geometry Execution Model.

Shader

3 Tessellation
Uses the TessellationControl or
TessellationEvaluation Execution
Models.

Shader

4 Addresses
Uses physical addressing, non-logical
addressing modes.

5 Linkage
Uses partially linked modules and
libraries.

6 Kernel
Uses the Kernel Execution Model.

7 Vector16
Uses OpTypeVector to declare 8
component or 16 component vectors.

Kernel

8 Float16Buffer
Allows a 16-bit OpTypeFloat instruction
for the sole purpose of creating an
OpTypePointer to a 16-bit float. Pointers
to a 16-bit float cannot be dereferenced
directly, they must only be dereferenced
via an extended instruction. All other uses
of 16-bit OpTypeFloat are disallowed.

Kernel

9 Float16
Uses OpTypeFloat to declare the 16-bit
floating-point type.

10 Float64
Uses OpTypeFloat to declare the 64-bit
floating-point type.

64

SPIR-V Specification

Capability Depends On Enabled by Extension
11 Int64

Uses OpTypeInt to declare 64-bit integer
types.

12 Int64Atomics
Uses atomic instructions on 64-bit integer
types.

Int64

13 ImageBasic
Uses OpTypeImage or OpTypeSampler in
a Kernel.

Kernel

14 ImageReadWrite
Uses OpTypeImage with the ReadWrite
access qualifier.

ImageBasic

15 ImageMipmap
Uses non-zero Lod Image Operands.

ImageBasic

17 Pipes
Uses OpTypePipe, OpTypeReserveId, or
pipe instructions.

Kernel

18 Groups
Uses group instructions.

19 DeviceEnqueue
Uses OpTypeQueue, OpTypeDeviceEvent,
and device side enqueue instructions.

Kernel

20 LiteralSampler
Samplers are made from literals within the
module. See OpConstantSampler.

Kernel

21 AtomicStorage
Uses the AtomicCounter Storage Class,
allowing use of only the OpAtomicLoad,
OpAtomicIIncrement, and
OpAtomicIDecrement instructions.

Shader

22 Int16
Uses OpTypeInt to declare 16-bit integer
types.

23 TessellationPointSize
Tessellation stage exports point size.

Tessellation

24 GeometryPointSize
Geometry stage exports point size

Geometry

25 ImageGatherExtended
Uses texture gather with non-constant or
independent offsets

Shader

27 StorageImageMultisample
Uses multi-sample images for
non-sampled images.

Shader

28 UniformBufferArrayDynamicIndexing
Block-decorated arrays in uniform storage
classes use dynamically uniform indexing.

Shader

29 SampledImageArrayDynamicIndexing
Arrays of sampled images use dynamically
uniform indexing.

Shader

30 StorageBufferArrayDynamicIndexing
BufferBlock-decorated arrays in uniform
storage classes use dynamically uniform
indexing.

Shader

65

SPIR-V Specification

Capability Depends On Enabled by Extension
31 StorageImageArrayDynamicIndexing

Arrays of non-sampled images are
accessed with dynamically uniform
indexing.

Shader

32 ClipDistance
Uses the ClipDistance BuiltIn.

Shader

33 CullDistance
Uses the CullDistance BuiltIn.

Shader

34 ImageCubeArray
Uses the Cube Dim with the Arrayed
operand in OpTypeImage, without a
sampler.

SampledCubeArray

35 SampleRateShading
Uses per-sample rate shading.

Shader

36 ImageRect
Uses the Rect Dim without a sampler.

SampledRect

37 SampledRect
Uses the Rect Dim with a sampler.

Shader

38 GenericPointer
Uses the Generic Storage Class.

Addresses

39 Int8
Uses OpTypeInt to declare 8-bit integer
types.

Kernel

40 InputAttachment
Uses the SubpassData Dim.

Shader

41 SparseResidency
Uses OpImageSparse. . . instructions.

Shader

42 MinLod
Uses the MinLod Image Operand.

Shader

43 Sampled1D
Uses the 1D Dim with a sampler.

44 Image1D
Uses the 1D Dim without a sampler.

Sampled1D

45 SampledCubeArray
Uses the Cube Dim with the Arrayed
operand in OpTypeImage, with a sampler.

Shader

46 SampledBuffer
Uses the Buffer Dim with a sampler.

47 ImageBuffer
Uses the Buffer Dim without a sampler.

SampledBuffer

48 ImageMSArray
An MS operand in OpTypeImage indicates
multisampled, used without a sampler.

Shader

49 StorageImageExtendedFormats
One of a large set of more advanced image
formats are used, namely one of those in
the Image Format table listed as requiring
this capability.

Shader

50 ImageQuery
The sizes, number of samples, or lod, etc.
are queried.

Shader

66

SPIR-V Specification

Capability Depends On Enabled by Extension
51 DerivativeControl

Uses fine or coarse-grained derivatives,
e.g., OpDPdxFine.

Shader

52 InterpolationFunction
Uses one of the InterpolateAtCentroid,
InterpolateAtSample, or
InterpolateAtOffset GLSL.std.450
extended instructions.

Shader

53 TransformFeedback
Uses the Xfb Execution Mode.

Shader

54 GeometryStreams
Uses multiple numbered streams for
geometry-stage output.

Geometry

55 StorageImageReadWithoutFormat
OpImageRead can use the Unknown
Image Format.

Shader

56 StorageImageWriteWithoutFormat
OpImageWrite can use the Unknown
Image Format.

Shader

57 MultiViewport
Multiple viewports are used.

Geometry

4423 SubgroupBallotKHR SPV_KHR_shader_ballot
4427 DrawParameters SPV_KHR_shader_draw_parameters
4431 SubgroupVoteKHR SPV_KHR_subgroup_vote
4433 StorageBuffer16BitAccess SPV_KHR_16bit_storage
4433 StorageUniformBufferBlock16 SPV_KHR_16bit_storage
4434 UniformAndStorageBuffer16BitAccess StorageBuffer16BitAccess,

StorageUni-
form-

BufferBlock16

SPV_KHR_16bit_storage

4434 StorageUniform16 StorageBuffer16BitAccess,
StorageUni-

form-
BufferBlock16

SPV_KHR_16bit_storage

4435 StoragePushConstant16 SPV_KHR_16bit_storage
4436 StorageInputOutput16 SPV_KHR_16bit_storage
4437 DeviceGroup SPV_KHR_device_group
4439 MultiView Shader SPV_KHR_multiview
4441 VariablePointersStorageBuffer Shader SPV_KHR_variable_pointers
4442 VariablePointers VariablePointersStorageBufferSPV_KHR_variable_pointers
4445 AtomicStorageOps SPV_KHR_shader_atomic_counter_ops
4447 SampleMaskPostDepthCoverage SPV_KHR_post_depth_coverage
5009 ImageGatherBiasLodAMD Shader SPV_AMD_texture_gather_bias_lod
5010 FragmentMaskAMD Shader SPV_AMD_shader_fragment_mask
5013 StencilExportEXT Shader SPV_EXT_shader_stencil_export
5015 ImageReadWriteLodAMD Shader SPV_AMD_shader_image_load_store_lod
5249 SampleMaskOverrideCoverageNV SampleRateShadingSPV_NV_sample_mask_override_coverage
5251 GeometryShaderPassthroughNV Geometry SPV_NV_geometry_shader_passthrough
5254 ShaderViewportIndexLayerEXT MultiViewport SPV_EXT_shader_viewport_index_layer
5254 ShaderViewportIndexLayerNV MultiViewport SPV_NV_viewport_array2
5255 ShaderViewportMaskNV ShaderViewportIndexLayerNVSPV_NV_viewport_array2
5259 ShaderStereoViewNV ShaderViewportMaskNVSPV_NV_stereo_view_rendering
5260 PerViewAttributesNV MultiView SPV_NVX_multiview_per_view_attributes

67

SPIR-V Specification

Capability Depends On Enabled by Extension
5265 FragmentFullyCoveredEXT Shader SPV_EXT_fragment_fully_covered
5568 SubgroupShuffleINTEL SPV_INTEL_subgroups
5569 SubgroupBufferBlockIOINTEL SPV_INTEL_subgroups
5570 SubgroupImageBlockIOINTEL SPV_INTEL_subgroups

68

SPIR-V Specification

3.32 Instructions

Form for each instruction:

Opcode Name

Instruction description.

Word Count is the high-order 16 bits of word 0 of the
instruction, holding its total WordCount. If the instruction
takes a variable number of operands, Word Count will also
say "+ variable", after stating the minimum size of the
instruction.

Opcode is the low-order 16 bits of word 0 of the
instruction, holding its opcode enumerant.

Results, when present, are any Result <id> or Result Type
created by the instruction. Each one is always 32 bits.

Operands, when present, are any literals, other
instruction’s Result <id>, etc., consumed by the
instruction. Each one is always 32 bits.

Capability
Enabling
Capabilities
(when needed)

Word Count Opcode Results Operands

3.32.1 Miscellaneous Instructions

OpNop

This has no semantic impact and can safely be removed from a
module.
1 0

OpUndef

Make an intermediate object whose value is undefined.

Result Type is the type of object to make.

Each consumption of Result <id> yields an arbitrary, possibly different bit
pattern.
3 1 <id>

Result Type
Result <id>

69

SPIR-V Specification

3.32.2 Debug Instructions

OpSourceContinued

Continue specifying the Source text from the previous instruction. This has no semantic impact and can safely be
removed from a module.

Continued Source is a continuation of the source text in the previous Source.

The previous instruction must be an OpSource or an OpSourceContinued instruction. As is true for all literal
strings, the previous instruction’s string was nul terminated. That terminating 0 word from the previous instruction is
not part of the source text; the first character of Continued Source logically immediately follows the last character of
Source before its nul.
2 + variable 2 Literal String

Continued Source

OpSource

Document what source language and text this module was translated from. This has no semantic impact and can
safely be removed from a module.

Version is the version of the source language. This literal operand is limited to a single word.

File is an OpString instruction and is the source-level file name.

Source is the text of the source-level file.

Each client API describes what form the Version operand takes, per source language.
3 + variable 3 Source Language Literal Number

Version
Optional
<id>
File

Optional
Literal String
Source

OpSourceExtension

Document an extension to the source language. This has no semantic impact and can safely be
removed from a module.

Extension is a string describing a source-language extension. Its form is dependent on the how the
source language describes extensions.
2 + variable 4 Literal String

Extension

70

SPIR-V Specification

OpName

Assign a name string to another instruction’s Result <id>. This has no semantic impact and can safely be removed
from a module.

Target is the Result <id> to assign a name to. It can be the Result <id> of any other instruction; a variable, function,
type, intermediate result, etc.

Name is the string to assign.
3 + variable 5 <id>

Target
Literal String
Name

OpMemberName

Assign a name string to a member of a structure type. This has no semantic impact and can safely be removed from a
module.

Type is the <id> from an OpTypeStruct instruction.

Member is the number of the member to assign in the structure. The first member is member 0, the next is member 1,
. . . This literal operand is limited to a single word.

Name is the string to assign to the member.
4 + variable 6 <id>

Type
Literal Number
Member

Literal String
Name

OpString

Assign a Result <id> to a string for use by other debug instructions (see OpLine and OpSource). This has no
semantic impact and can safely be removed from a module. (Removal also requires removal of all instructions
referencing Result <id>.)

String is the literal string being assigned a Result <id>.
3 + variable 7 Result <id> Literal String

String

71

SPIR-V Specification

OpLine

Add source-level location information. This has no semantic impact and can safely be removed from a module.

This location information applies to the instructions physically following this instruction, up to the first occurrence of
any of the following: the next end of block, the next OpLine instruction, or the next OpNoLine instruction.

File must be an OpString instruction and is the source-level file name.

Line is the source-level line number. This literal operand is limited to a single word.

Column is the source-level column number. This literal operand is limited to a single word.

OpLine can generally immediately precede other instructions, with the following exceptions:

- it may not be used until after the annotation instructions,
(see the Logical Layout section)

- cannot be the last instruction in a block, which is defined to end with a termination instruction

- if a branch merge instruction is used, the last OpLine in the block must be before its merge instruction
4 8 <id>

File
Literal Number
Line

Literal Number
Column

OpNoLine

Discontinue any source-level location information that might be active from a previous OpLine instruction. This has
no semantic impact and can safely be removed from a module.

This instruction can only appear after the annotation instructions (see the Logical Layout section). It cannot be the
last instruction in a block, or the second-to-last instruction if the block has a merge instruction. There is not a
requirement that there is a preceding OpLine instruction.
1 317

72

SPIR-V Specification

3.32.3 Annotation Instructions

OpDecorate

Add a Decoration to another <id>.

Target is the <id> to decorate. It can potentially be any <id> that is a forward reference. A set of decorations can be
grouped together by having multiple OpDecorate instructions target the same OpDecorationGroup instruction.
3 + variable 71 <id>

Target
Decoration Literal, Literal, . . .

See Decoration.

OpMemberDecorate

Add a Decoration to a member of a structure type.

Structure type is the <id> of a type from OpTypeStruct.

Member is the number of the member to decorate in the type. The first member is member 0, the next is member 1,
. . .

Note: See OpDecorate for creating groups of decorations for consumption by OpGroupMemberDecorate
4 + variable 72 <id>

Structure Type
Literal Number
Member

Decoration Literal, Literal, . . .
See Decoration.

OpDecorationGroup

A collector for Decorations from OpDecorate instructions. All such OpDecorate instructions targeting this
OpDecorationGroup instruction must precede it. Subsequent OpGroupDecorate and OpGroupMemberDecorate
instructions that consume this instruction’s Result <id> will apply these decorations to their targets.
2 73 Result <id>

OpGroupDecorate

Add a group of Decorations to another <id>.

Decoration Group is the <id> of an OpDecorationGroup instruction.

Targets is a list of <id>s to decorate with the groups of decorations.
2 + variable 74 <id>

Decoration Group
<id>, <id>, . . .
Targets

73

SPIR-V Specification

OpGroupMemberDecorate

Add a group of Decorations to members of structure types.

Decoration Group is the <id> of an OpDecorationGroup instruction.

Targets is a list of (<id>, Member) pairs to decorate with the groups of decorations. Each <id> in the pair must be a
target structure type, and the associated Member is the number of the member to decorate in the type. The first
member is member 0, the next is member 1, . . .
2 + variable 75 <id>

Decoration Group
<id>, literal,
<id>, literal,
. . .
Targets

74

SPIR-V Specification

3.32.4 Extension Instructions

OpExtension

Declare use of an extension to SPIR-V. This allows validation of
additional instructions, tokens, semantics, etc.

Name is the extension’s name string.
2 + variable 10 Literal String

Name

OpExtInstImport

Import an extended set of instructions. It can be later referenced by the Result <id>.

Name is the extended instruction-set’s name string. There must be an external specification defining the semantics
for this extended instruction set.

See Extended Instruction Sets for more information.
3 + variable 11 Result <id> Literal String

Name

OpExtInst

Execute an instruction in an imported set of extended instructions.

Result Type is as defined, per Instruction, in the external specification for Set.

Set is the result of an OpExtInstImport instruction.

Instruction is the enumerant of the instruction to execute within Set. This literal operand is limited to a single word.
The semantics of the instruction must be defined in the external specification for Set.

Operand 1, . . . are the operands to the extended instruction.
5 + variable 12 <id>

Result Type
Result <id> <id>

Set
Literal Number
Instruction

<id>, <id>,
. . .
Operand 1,
Operand 2,
. . .

75

SPIR-V Specification

3.32.5 Mode-Setting Instructions

OpMemoryModel

Set addressing model and memory model for the entire module.

Addressing Model selects the module’s Addressing Model.

Memory Model selects the module’s memory model, see Memory Model.
3 14 Addressing Model Memory Model

OpEntryPoint

Declare an entry point and its execution model.

Execution Model is the execution model for the entry point and its static call tree. See Execution Model.

Entry Point must be the Result <id> of an OpFunction instruction.

Name is a name string for the entry point. A module cannot have two OpEntryPoint instructions with the same
Execution Model and the same Name string.

Interface is a list of <id> of global OpVariable instructions with either Input or Output for its Storage Class
operand. These declare the input/output interface of the entry point. They could be a subset of the input/output
declarations of the module, and a superset of those referenced by the entry point’s static call tree. It is invalid for the
entry point’s static call tree to reference such an <id> if it was not listed with this instruction.

Interface <id> are forward references. They allow declaration of all variables forming an interface for an entry
point, whether or not all the variables are actually used by the entry point.
4 + variable 15 Execution Model <id>

Entry Point
Literal String
Name

<id>, <id>, . . .
Interface

OpExecutionMode

Declare an execution mode for an entry point.

Entry Point must be the Entry Point <id> operand of an OpEntryPoint instruction.

Mode is the execution mode. See Execution Mode.
3 + variable 16 <id>

Entry Point
Execution Mode
Mode

Optional
literal(s)
See Execution
Mode

76

SPIR-V Specification

OpCapability

Declare a capability used by this module.

Capability is the capability declared by this instruction. There are no restrictions on the order in which
capabilities are declared.

See the capabilities section for more detail.
2 17 Capability

Capability

77

SPIR-V Specification

3.32.6 Type-Declaration Instructions

OpTypeVoid

Declare the void type.
2 19 Result <id>

OpTypeBool

Declare the Boolean type. Values of this type can only be either true or false. There is no physical size or bit pattern
defined for these values. If they are stored (in conjunction with OpVariable), they can only be used with logical
addressing operations, not physical, and only with non-externally visible shader Storage Classes: Workgroup,
CrossWorkgroup, Private, and Function.
2 20 Result <id>

OpTypeInt

Declare a new integer type.

Width specifies how many bits wide the type is. This literal operand is limited to a single word. The bit pattern of a
signed integer value is two’s complement.

Signedness specifies whether there are signed semantics to preserve or validate.
0 indicates unsigned, or no signedness semantics
1 indicates signed semantics.
In all cases, the type of operation of an instruction comes from the instruction’s opcode, not the signedness of the
operands.
4 21 Result <id> Literal Number

Width
Literal Number
Signedness

OpTypeFloat

Declare a new floating-point type.

Width specifies how many bits wide the type is. The bit pattern of a
floating-point value is as described by the IEEE 754 standard.
3 22 Result <id> Literal Number

Width

OpTypeVector

Declare a new vector type.

Component Type is the type of each component in the resulting type. It must be a scalar type.

Component Count is the number of components in the resulting type. It must be at least 2.

Components are numbered consecutively, starting with 0.
4 23 Result <id> <id>

Component Type
Literal Number
Component Count

78

SPIR-V Specification

OpTypeMatrix

Declare a new matrix type.

Column Type is the type of each column in the matrix. It must be vector type.

Column Count is the number of columns in the new matrix type. It must be at least 2.

Matrix columns are numbered consecutively, starting with 0. This is true
independently of any Decorations describing the memory layout of a matrix (e.g.,
RowMajor or MatrixStride).

Capability:
Matrix

4 24 Result <id> <id>
Column Type

Literal Number
Column Count

79

SPIR-V Specification

OpTypeImage

Declare a new image type. Consumed, for example, by OpTypeSampledImage. This type is opaque: values of this
type have no defined physical size or bit pattern.

Sampled Type is the type of the components that result from sampling or reading from this image type. Must be a
scalar numerical type or OpTypeVoid.

Dim is the image dimensionality (Dim).

Depth is whether or not this image is a depth image. (Note that whether or not depth comparisons are actually done is
a property of the sampling opcode, not of this type declaration.)
0 indicates not a depth image
1 indicates a depth image
2 means no indication as to whether this is a depth or non-depth image

Arrayed must be one of the following indicated values:
0 indicates non-arrayed content
1 indicates arrayed content

MS must be one of the following indicated values:
0 indicates single-sampled content
1 indicates multisampled content

Sampled indicates whether or not this image will be accessed in combination with a sampler, and must be one of the
following values:
0 indicates this is only known at run time, not at compile time
1 indicates will be used with sampler
2 indicates will be used without a sampler (a storage image)

Image Format is the Image Format, which can be Unknown, depending on the client API.

If Dim is SubpassData, Sampled must be 2, Image Format must be Unknown, and the Execution Model must be
Fragment.

Access Qualifier is an image Access Qualifier.
9 +
variable

25 Result
<id>

<id>
Sampled
Type

Dim Literal
Number
Depth

Literal
Number
Arrayed

Literal
Number
MS

Literal
Number
Sampled

Image
Format

Optional
Access
Quali-
fier

OpTypeSampler

Declare the sampler type. Consumed by OpSampledImage. This
type is opaque: values of this type have no defined physical size or
bit pattern.
2 26 Result <id>

80

SPIR-V Specification

OpTypeSampledImage

Declare a sampled image type, the Result Type of OpSampledImage, or an externally combined sampler and image.
This type is opaque: values of this type have no defined physical size or bit pattern.

Image Type must be an OpTypeImage. It is the type of the image in the combined sampler and image type.
3 27 Result <id> <id>

Image Type

OpTypeArray

Declare a new array type: a dynamically-indexable ordered aggregate of elements all having the same type.

Element Type is the type of each element in the array.

Length is the number of elements in the array. It must be at least 1. Length must come from a constant instruction of
an integer-type scalar whose value is at least 1.

Array elements are number consecutively, starting with 0.
4 28 Result <id> <id>

Element Type
<id>
Length

OpTypeRuntimeArray

Declare a new run-time array type. Its length is not known at compile
time.

Element Type is the type of each element in the array. It must be a
concrete type.

See OpArrayLength for getting the Length of an array of this type.

Objects of this type can only be created with OpVariable using the
Uniform Storage Class.

Capability:
Shader

3 29 Result <id> <id>
Element Type

OpTypeStruct

Declare a new structure type: an aggregate of zero or more potentially heterogeneous members.

Member N type is the type of member N of the structure. The first member is member 0, the next is member 1, . . .

If an operand is not yet defined, it must be defined by an OpTypePointer, where the type pointed to is an
OpTypeStruct.
2 + variable 30 Result <id> <id>, <id>, . . .

Member 0 type,
member 1 type,
. . .

81

SPIR-V Specification

OpTypeOpaque

Declare a structure type with no body
specified.

Capability:
Kernel

3 + variable 31 Result <id> Literal String
The name of the
opaque type.

OpTypePointer

Declare a new pointer type.

Storage Class is the Storage Class of the memory holding the object pointed to. If there was a forward reference to
this type from an OpTypeForwardPointer, the Storage Class of that instruction must equal the Storage Class of this
instruction.

Type is the type of the object pointed to.
4 32 Result <id> Storage Class <id>

Type

OpTypeFunction

Declare a new function type.

OpFunction will use this to declare the return type and parameter types of a function. OpFunction is the only valid
use of OpTypeFunction.

Return Type is the type of the return value of functions of this type. It must be a concrete or abstract type, or a pointer
to such a type. If the function has no return value, Return Type must be OpTypeVoid.

Parameter N Type is the type <id> of the type of parameter N.
3 + variable 33 Result <id> <id>

Return Type
<id>, <id>, . . .
Parameter 0 Type,
Parameter 1 Type,
. . .

OpTypeEvent

Declare an OpenCL event
type.

Capability:
Kernel

2 34 Result <id>

OpTypeDeviceEvent

Declare an OpenCL
device-side event type.

Capability:
DeviceEnqueue

2 35 Result <id>

82

SPIR-V Specification

OpTypeReserveId

Declare an OpenCL
reservation id type.

Capability:
Pipes

2 36 Result <id>

OpTypeQueue

Declare an OpenCL queue
type.

Capability:
DeviceEnqueue

2 37 Result <id>

OpTypePipe

Declare an OpenCL pipe type.

Qualifier is the pipe access qualifier.

Capability:
Pipes

3 38 Result <id> Access Qualifier
Qualifier

OpTypeForwardPointer

Declare the Storage Class for a forward reference to a pointer.

Pointer Type is a forward reference to the result of an OpTypePointer.
The type of object the pointer points to is declared by the
OpTypePointer instruction, not this instruction. Subsequent
OpTypeStruct instructions can use Pointer Type as an operand.

Storage Class is the Storage Class of the memory holding the object
pointed to.

Capability:
Addresses

3 39 <id>
Pointer Type

Storage Class

83

SPIR-V Specification

3.32.7 Constant-Creation Instructions

OpConstantTrue

Declare a true Boolean-type scalar constant.

Result Type must be the scalar Boolean type.
3 41 <id>

Result Type
Result <id>

OpConstantFalse

Declare a false Boolean-type scalar constant.

Result Type must be the scalar Boolean type.
3 42 <id>

Result Type
Result <id>

OpConstant

Declare a new integer-type or floating-point-type scalar constant.

Result Type must be a scalar integer type or floating-point type.

Value is the bit pattern for the constant. Types 32 bits wide or smaller take one word. Larger types take multiple
words, with low-order words appearing first.
3 + variable 43 <id>

Result Type
Result <id> Literal, Literal, . . .

Value

OpConstantComposite

Declare a new composite constant.

Result Type must be a composite type, whose top-level members/elements/components/columns have the same type
as the types of the Constituents. The ordering must be the same between the top-level types in Result Type and the
Constituents.

Constituents will become members of a structure, or elements of an array, or components of a vector, or columns of a
matrix. There must be exactly one Constituent for each top-level member/element/component/column of the result.
The Constituents must appear in the order needed by the definition of the Result Type. The Constituents must all be
<id>s of other constant declarations or an OpUndef.
3 + variable 44 <id>

Result Type
Result <id> <id>, <id>, . . .

Constituents

84

SPIR-V Specification

OpConstantSampler

Declare a new sampler constant.

Result Type must be OpTypeSampler.

Sampler Addressing Mode is the addressing mode; a literal from Sampler
Addressing Mode.

Param is one of:
0: Non Normalized
1: Normalized

Sampler Filter Mode is the filter mode; a literal from Sampler Filter Mode.

Capability:
LiteralSampler

6 45 <id>
Result Type

Result <id> Sampler
Addressing
Mode

Literal Number
Param

Sampler Filter
Mode

OpConstantNull

Declare a new null constant value.

The null value is type dependent, defined as follows:
- Scalar Boolean: false
- Scalar integer: 0
- Scalar floating point: +0.0 (all bits 0)
- All other scalars: Abstract
- Composites: Members are set recursively to the null constant according to the null value of their constituent types.

Result Type must be one of the following types:
- Scalar or vector Boolean type
- Scalar or vector integer type
- Scalar or vector floating-point type
- Pointer type
- Event type
- Device side event type
- Reservation id type
- Queue type
- Composite type
3 46 <id>

Result Type
Result <id>

85

SPIR-V Specification

OpSpecConstantTrue

Declare a Boolean-type scalar specialization constant with a default value of true.

This instruction can be specialized to become either an OpConstantTrue or OpConstantFalse instruction.

Result Type must be the scalar Boolean type.

See Specialization.
3 48 <id>

Result Type
Result <id>

OpSpecConstantFalse

Declare a Boolean-type scalar specialization constant with a default value of false.

This instruction can be specialized to become either an OpConstantTrue or OpConstantFalse instruction.

Result Type must be the scalar Boolean type.

See Specialization.
3 49 <id>

Result Type
Result <id>

86

SPIR-V Specification

OpSpecConstant

Declare a new integer-type or floating-point-type scalar specialization constant.

Result Type must be a scalar integer type or floating-point type.

Value is the bit pattern for the default value of the constant. Types 32 bits wide or smaller take one word. Larger
types take multiple words, with low-order words appearing first.

This instruction can be specialized to become an OpConstant instruction.

See Specialization.
3 + variable 50 <id>

Result Type
Result <id> Literal, Literal, . . .

Value

OpSpecConstantComposite

Declare a new composite specialization constant.

Result Type must be a composite type, whose top-level members/elements/components/columns have the same type
as the types of the Constituents. The ordering must be the same between the top-level types in Result Type and the
Constituents.

Constituents will become members of a structure, or elements of an array, or components of a vector, or columns of a
matrix. There must be exactly one Constituent for each top-level member/element/component/column of the result.
The Constituents must appear in the order needed by the definition of the type of the result. The Constituents must be
the <id> of other specialization constant or constant declarations.

This instruction will be specialized to an OpConstantComposite instruction.

See Specialization.
3 + variable 51 <id>

Result Type
Result <id> <id>, <id>, . . .

Constituents

87

SPIR-V Specification

OpSpecConstantOp

Declare a new specialization constant that results from doing an operation.

Result Type must be the type required by the Result Type of Opcode.

Opcode must be one of the following opcodes. This literal operand is limited to a single word.
OpSConvert, OpFConvert
OpSNegate, OpNot
OpIAdd, OpISub
OpIMul, OpUDiv, OpSDiv, OpUMod, OpSRem, OpSMod
OpShiftRightLogical, OpShiftRightArithmetic, OpShiftLeftLogical
OpBitwiseOr, OpBitwiseXor, OpBitwiseAnd
OpVectorShuffle, OpCompositeExtract, OpCompositeInsert
OpLogicalOr, OpLogicalAnd, OpLogicalNot,
OpLogicalEqual, OpLogicalNotEqual
OpSelect
OpIEqual, OpINotEqual
OpULessThan, OpSLessThan
OpUGreaterThan, OpSGreaterThan
OpULessThanEqual, OpSLessThanEqual
OpUGreaterThanEqual, OpSGreaterThanEqual

If the Shader capability was declared, the following opcode is also valid:
OpQuantizeToF16

If the Kernel capability was declared, the following opcodes are also valid:
OpConvertFToS, OpConvertSToF
OpConvertFToU, OpConvertUToF
OpUConvert
OpConvertPtrToU, OpConvertUToPtr
OpGenericCastToPtr, OpPtrCastToGeneric
OpBitcast
OpFNegate
OpFAdd, OpFSub
OpFMul, OpFDiv
OpFRem, OpFMod
OpAccessChain, OpInBoundsAccessChain
OpPtrAccessChain, OpInBoundsPtrAccessChain

Operands are the operands required by opcode, and satisfy the semantics of opcode. In addition, all Operands must
be either:
- the <id>s of other constant instructions, or
- OpUndef, when allowed by opcode, or
- for the AccessChain named opcodes, their Base is allowed to be a global (module scope) OpVariable instruction.

See Specialization.
4 + variable 52 <id>

Result Type
Result <id> Literal Number

Opcode
<id>, <id>, . . .
Operands

88

SPIR-V Specification

3.32.8 Memory Instructions

OpVariable

Allocate an object in memory, resulting in a pointer to it, which can be used with OpLoad and OpStore.

Result Type must be an OpTypePointer. Its Type operand is the type of object in memory.

Storage Class is the Storage Class of the memory holding the object. It cannot be Generic.

Initializer is optional. If Initializer is present, it will be the initial value of the variable’s memory content. Initializer
must be an <id> from a constant instruction or a global (module scope) OpVariable instruction. Initializer must have
the same type as the type pointed to by Result Type.
4 + variable 59 <id>

Result Type
Result <id> Storage Class Optional

<id>
Initializer

OpImageTexelPointer

Form a pointer to a texel of an image. Use of such a pointer is limited to atomic operations.

Result Type must be an OpTypePointer whose Storage Class operand is Image. Its Type operand must be a scalar
numerical type or OpTypeVoid.

Image must have a type of OpTypePointer with Type OpTypeImage. The Sampled Type of the type of Image must be
the same as the Type pointed to by Result Type. The Dim operand of Type cannot be SubpassData.

Coordinate and Sample specify which texel and sample within the image to form a pointer to.

Coordinate must be a scalar or vector of integer type. It must have the number of components specified below, given
the following Arrayed and Dim operands of the type of the OpTypeImage.

If Arrayed is 0:
1D: scalar
2D: 2 components
3D: 3 components
Cube: 3 components
Rect: 2 components
Buffer: scalar

If Arrayed is 1:
1D: 2 components
2D: 3 components
Cube: 3 components; the face and layer combine into the 3rd component, layer_face, such that face is layer_face %
6 and layer is floor(layer_face / 6)

Sample must be an integer type scalar. It specifies which sample to select at the given coordinate. It must be a valid
<id> for the value 0 if the OpTypeImage has MS of 0.
6 60 <id>

Result Type
Result <id> <id>

Image
<id>
Coordinate

<id>
Sample

89

SPIR-V Specification

OpLoad

Load through a pointer.

Result Type is the type of the loaded object.

Pointer is the pointer to load through. Its type must be an OpTypePointer whose Type operand is the same as Result
Type.

Memory Access must be a Memory Access literal. If not present, it is the same as specifying None.
4 + variable 61 <id>

Result Type
Result <id> <id>

Pointer
Optional
Memory Access

OpStore

Store through a pointer.

Pointer is the pointer to store through. Its type must be an OpTypePointer whose Type operand is the same as the
type of Object.

Object is the object to store.

Memory Access must be a Memory Access literal. If not present, it is the same as specifying None.
3 + variable 62 <id>

Pointer
<id>
Object

Optional
Memory Access

OpCopyMemory

Copy from the memory pointed to by Source to the memory pointed to by Target. Both operands must be non-void
pointers of the same type. Matching Storage Class is not required. The amount of memory copied is the size of the
type pointed to.

Memory Access must be a Memory Access literal. If not present, it is the same as specifying None.
3 + variable 63 <id>

Target
<id>
Source

Optional
Memory Access

90

SPIR-V Specification

OpCopyMemorySized

Copy from the memory pointed to by Source to the memory pointed to by Target.

Size is the number of bytes to copy. It must have a scalar integer type. If it is a constant
instruction, the constant value cannot be 0. It is invalid for both the constant’s type to have
Signedness of 1 and to have the sign bit set. Otherwise, as a run-time value, Size is treated as
unsigned, and if its value is 0, no memory access will be made.

Memory Access must be a Memory Access literal. If not present, it is the same as specifying
None.

Capability:
Addresses

4 + variable 64 <id>
Target

<id>
Source

<id>
Size

Optional
Memory Access

OpAccessChain

Create a pointer into a composite object that can be used with OpLoad and OpStore.

Result Type must be an OpTypePointer. Its Type operand must be the type reached by walking the Base’s type
hierarchy down to the last provided index in Indexes, and its Storage Class operand must be the same as the Storage
Class of Base.

Base must be a pointer, pointing to the base of a composite object.

Indexes walk the type hierarchy to the desired depth, potentially down to scalar granularity. The first index in Indexes
will select the top-level member/element/component/element of the base composite. All composite constituents use
zero-based numbering, as described by their OpType. . . instruction. The second index will apply similarly to that
result, and so on. Once any non-composite type is reached, there must be no remaining (unused) indexes. Each of the
Indexes must:
- be a scalar integer type,
- be an OpConstant when indexing into a structure.
4 + variable 65 <id>

Result Type
Result <id> <id>

Base
<id>, <id>, . . .
Indexes

OpInBoundsAccessChain

Has the same semantics as OpAccessChain, with the addition that the resulting
pointer is known to point within the base object.
4 + variable 66 <id>

Result Type
Result <id> <id>

Base
<id>, <id>,
. . .
Indexes

91

SPIR-V Specification

OpPtrAccessChain

Has the same semantics as OpAccessChain, with the addition of the Element
operand.

Element is used to do the initial dereference of Base: Base is treated as the
address of the first element of an array, and the Element element’s address is
computed to be the base for the Indexes, as per OpAccessChain. The type of
Base after being dereferenced with Element is still the same as the original type
of Base.

Note: If Base is originally typed to be a pointer an array, and the desired
operation is to select an element of that array, OpAccessChain should be
directly used, as its first Index will select the array element.

Capability:
Addresses, VariablePointers,
VariablePointersStorageBuffer

5 + variable 67 <id>
Result Type

Result <id> <id>
Base

<id>
Element

<id>, <id>,
. . .
Indexes

OpArrayLength

Length of a run-time array.

Result Type must be an OpTypeInt with 32-bit Width and 0 Signedness.

Structure must be a pointer to an OpTypeStruct whose last member is a run-time array.

Array member is the index of the last member of the structure that Structure points to. That
member’s type must be from OpTypeRuntimeArray.

Capability:
Shader

5 68 <id>
Result Type

Result <id> <id>
Structure

Literal Number
Array member

OpGenericPtrMemSemantics

Result is a valid Memory Semantics which includes mask bits set for the Storage
Class for the specific (non-Generic) Storage Class of Pointer.

Pointer must point to Generic Storage Class.

Result Type must be an OpTypeInt with 32-bit Width and 0 Signedness.

Capability:
Kernel

4 69 <id>
Result Type

Result <id> <id>
Pointer

OpInBoundsPtrAccessChain

Has the same semantics as OpPtrAccessChain, with the addition
that the resulting pointer is known to point within the base object.

Capability:
Addresses

5 + variable 70 <id>
Result Type

Result <id> <id>
Base

<id>
Element

<id>, <id>,
. . .
Indexes

92

SPIR-V Specification

3.32.9 Function Instructions

OpFunction

Add a function. This instruction must be immediately followed by one OpFunctionParameter instruction per each
formal parameter of this function. This function’s body or declaration will terminate with the next OpFunctionEnd
instruction.

The Result <id> cannot be used generally by other instructions. It can only be used by OpFunctionCall,
OpEntryPoint, and decoration instructions.

Result Type must be the same as the Return Type declared in Function Type.

Function Type is the result of an OpTypeFunction, which declares the types of the return value and parameters of the
function.
5 54 <id>

Result Type
Result <id> Function Control <id>

Function Type

OpFunctionParameter

Declare a formal parameter of the current function.

Result Type is the type of the parameter.

This instruction must immediately follow an OpFunction or OpFunctionParameter instruction. The order of
contiguous OpFunctionParameter instructions is the same order arguments will be listed in an OpFunctionCall
instruction to this function. It is also the same order in which Parameter Type operands are listed in the
OpTypeFunction of the Function Type operand for this function’s OpFunction instruction.
3 55 <id>

Result Type
Result <id>

OpFunctionEnd

Last instruction of a function.
1 56

93

SPIR-V Specification

OpFunctionCall

Call a function.

Result Type is the type of the return value of the function. It must be the same as the Return Type operand of the
Function Type operand of the Function operand.

Function is an OpFunction instruction. This could be a forward reference.

Argument N is the object to copy to parameter N of Function.

Note: A forward call is possible because there is no missing type information: Result Type must match the Return
Type of the function, and the calling argument types must match the formal parameter types.
4 + variable 57 <id>

Result Type
Result <id> <id>

Function
<id>, <id>, . . .
Argument 0,
Argument 1,
. . .

94

SPIR-V Specification

3.32.10 Image Instructions

OpSampledImage

Create a sampled image, containing both a sampler and an image.

Result Type must be the OpTypeSampledImage type.

Image is an object whose type is an OpTypeImage, whose Sampled operand is 0 or 1, and whose Dim operand is not
SubpassData.

Sampler must be an object whose type is OpTypeSampler.
5 86 <id>

Result Type
Result <id> <id>

Image
<id>
Sampler

OpImageSampleImplicitLod

Sample an image with an implicit level of detail.

Result Type must be a vector of four components of floating-point type or integer
type. Its components must be the same as Sampled Type of the underlying
OpTypeImage (unless that underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] . . . [,
array layer]) as needed by the definition of Sampled Image. It may be a vector larger
than needed, but all unused components will appear after all used components.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
Shader

5 + variable 87 <id>
Result Type

Result <id> <id>
Sampled
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
. . .

95

SPIR-V Specification

OpImageSampleExplicitLod

Sample an image using an explicit level of detail.

Result Type must be a vector of four components of floating-point type or integer type. Its components must be the
same as Sampled Type of the underlying OpTypeImage (unless that underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage.

Coordinate must be a scalar or vector of floating-point type or integer type. It contains (u[, v] . . . [, array layer]) as
needed by the definition of Sampled Image. Unless the Kernel capability is being used, it must be floating point. It
may be a vector larger than needed, but all unused components will appear after all used components.

Image Operands encodes what operands follow, as per Image Operands. At least one operand setting the level of
detail must be present.
7 +
variable

88 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

Image
Operands

<id> Optional
<id>,
<id>, . . .

OpImageSampleDrefImplicitLod

Sample an image doing depth-comparison with an implicit level of detail.

Result Type must be a scalar of integer type or floating-point type. It must be the same as
Sampled Type of the underlying OpTypeImage.

Sampled Image must be an object whose type is OpTypeSampledImage.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] . . . [,
array layer]) as needed by the definition of Sampled Image. It may be a vector larger
than needed, but all unused components will appear after all used components.

Dref is the depth-comparison reference value.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
Shader

6 +
variable

89 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>,
<id>, . . .

96

SPIR-V Specification

OpImageSampleDrefExplicitLod

Sample an image doing depth-comparison using an explicit level of detail.

Result Type must be a scalar of integer type or floating-point type. It must be the same as
Sampled Type of the underlying OpTypeImage.

Sampled Image must be an object whose type is OpTypeSampledImage.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] . . . [, array
layer]) as needed by the definition of Sampled Image. It may be a vector larger than needed,
but all unused components will appear after all used components.

Dref is the depth-comparison reference value.

Image Operands encodes what operands follow, as per Image Operands. At least one
operand setting the level of detail must be present.

Capability:
Shader

8 +
variable

90 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Image
Operands

<id> Optional
<id>,
<id>, . . .

97

SPIR-V Specification

OpImageSampleProjImplicitLod

Sample an image with with a project coordinate and an implicit level of detail.

Result Type must be a vector of four components of floating-point type or integer
type. Its components must be the same as Sampled Type of the underlying
OpTypeImage (unless that underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage. The Dim
operand of the underlying OpTypeImage must be 1D, 2D, 3D, or Rect, and the
Arrayed and MS operands must be 0.

Coordinate is a floating-point vector containing (u [, v] [, w], q), as needed by the
definition of Sampled Image, with the q component consumed for the projective
division. That is, the actual sample coordinate will be (u/q [, v/q] [, w/q]), as needed
by the definition of Sampled Image. It may be a vector larger than needed, but all
unused components will appear after all used components.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
Shader

5 + variable 91 <id>
Result Type

Result <id> <id>
Sampled
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
. . .

98

SPIR-V Specification

OpImageSampleProjExplicitLod

Sample an image with a project coordinate using an explicit level of detail.

Result Type must be a vector of four components of floating-point type or integer type.
Its components must be the same as Sampled Type of the underlying OpTypeImage
(unless that underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage. The Dim
operand of the underlying OpTypeImage must be 1D, 2D, 3D, or Rect, and the Arrayed
and MS operands must be 0.

Coordinate is a floating-point vector containing (u [, v] [, w], q), as needed by the
definition of Sampled Image, with the q component consumed for the projective division.
That is, the actual sample coordinate will be (u/q [, v/q] [, w/q]), as needed by the
definition of Sampled Image. It may be a vector larger than needed, but all unused
components will appear after all used components.

Image Operands encodes what operands follow, as per Image Operands. At least one
operand setting the level of detail must be present.

Capability:
Shader

7 +
variable

92 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

Image
Operands

<id> Optional
<id>,
<id>, . . .

99

SPIR-V Specification

OpImageSampleProjDrefImplicitLod

Sample an image with a project coordinate, doing depth-comparison, with an implicit
level of detail.

Result Type must be a scalar of integer type or floating-point type. It must be the same as
Sampled Type of the underlying OpTypeImage.

Sampled Image must be an object whose type is OpTypeSampledImage. The Dim
operand of the underlying OpTypeImage must be 1D, 2D, 3D, or Rect, and the Arrayed
and MS operands must be 0.

Coordinate is a floating-point vector containing (u [, v] [, w], q), as needed by the
definition of Sampled Image, with the q component consumed for the projective division.
That is, the actual sample coordinate will be (u/q [, v/q] [, w/q]), as needed by the
definition of Sampled Image. It may be a vector larger than needed, but all unused
components will appear after all used components.

Dref /q is the depth-comparison reference value.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
Shader

6 +
variable

93 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>,
<id>, . . .

100

SPIR-V Specification

OpImageSampleProjDrefExplicitLod

Sample an image with a project coordinate, doing depth-comparison, using an explicit level
of detail.

Result Type must be a scalar of integer type or floating-point type. It must be the same as
Sampled Type of the underlying OpTypeImage.

Sampled Image must be an object whose type is OpTypeSampledImage. The Dim operand
of the underlying OpTypeImage must be 1D, 2D, 3D, or Rect, and the Arrayed and MS
operands must be 0.

Coordinate is a floating-point vector containing (u [, v] [, w], q), as needed by the definition
of Sampled Image, with the q component consumed for the projective division. That is, the
actual sample coordinate will be (u/q [, v/q] [, w/q]), as needed by the definition of Sampled
Image. It may be a vector larger than needed, but all unused components will appear after all
used components.

Dref /q is the depth-comparison reference value.

Image Operands encodes what operands follow, as per Image Operands. At least one
operand setting the level of detail must be present.

Capability:
Shader

8 +
variable

94 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Image
Operands

<id> Optional
<id>,
<id>, . . .

OpImageFetch

Fetch a single texel from a sampled image.

Result Type must be a vector of four components of floating-point type or integer type. Its components must be the
same as Sampled Type of the underlying OpTypeImage (unless that underlying Sampled Type is OpTypeVoid).

Image must be an object whose type is OpTypeImage. Its Dim operand cannot be Cube, and its Sampled operand
must be 1.

Coordinate is an integer scalar or vector containing (u[, v] . . . [, array layer]) as needed by the definition of Sampled
Image.

Image Operands encodes what operands follow, as per Image Operands.
5 + variable 95 <id>

Result Type
Result <id> <id>

Image
<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
. . .

101

SPIR-V Specification

OpImageGather

Gathers the requested component from four texels.

Result Type must be a vector of four components of floating-point type or integer type. Its
components must be the same as Sampled Type of the underlying OpTypeImage (unless
that underlying Sampled Type is OpTypeVoid). It has one component per gathered texel.

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must have a Dim of 2D, Cube, or Rect.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] . . . [,
array layer]) as needed by the definition of Sampled Image.

Component is the component number that will be gathered from all four texels. It must
be 0, 1, 2 or 3.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
Shader

6 +
variable

96 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Component

Optional
Image
Operands

Optional
<id>,
<id>, . . .

OpImageDrefGather

Gathers the requested depth-comparison from four texels.

Result Type must be a vector of four components of floating-point type or integer type. Its
components must be the same as Sampled Type of the underlying OpTypeImage (unless
that underlying Sampled Type is OpTypeVoid). It has one component per gathered texel.

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must have a Dim of 2D, Cube, or Rect.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] . . . [,
array layer]) as needed by the definition of Sampled Image.

Dref is the depth-comparison reference value.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
Shader

6 +
variable

97 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>,
<id>, . . .

102

SPIR-V Specification

OpImageRead

Read a texel from an image without a sampler.

Result Type must be a scalar or vector of floating-point type or integer type. Its component type must be the same as
Sampled Type of the OpTypeImage (unless that Sampled Type is OpTypeVoid).

Image must be an object whose type is OpTypeImage with a Sampled operand of 0 or 2. If the Sampled operand is 2,
then some dimensions require a capability; e.g., one of Image1D, ImageRect, ImageBuffer, ImageCubeArray, or
ImageMSArray.

Coordinate is an integer scalar or vector containing non-normalized texel coordinates (u[, v] . . . [, array layer]) as
needed by the definition of Image. If the coordinates are outside the image, the memory location that is accessed is
undefined.

When the Image Dim operand is SubpassData, Coordinate is relative to the current fragment location. That is, the
integer value (rounded down) of the current fragment’s window-relative (x, y) coordinate is added to (u, v).

When the Image Dim operand is not SubpassData, the Image Format must not be Unknown, unless the
StorageImageReadWithoutFormat Capability was declared.

Image Operands encodes what operands follow, as per Image Operands.
5 + variable 98 <id>

Result Type
Result <id> <id>

Image
<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
. . .

OpImageWrite

Write a texel to an image without a sampler.

Image must be an object whose type is OpTypeImage with a Sampled operand of 0 or 2. If the Sampled operand is 2,
then some dimensions require a capability; e.g., one of Image1D, ImageRect, ImageBuffer, ImageCubeArray, or
ImageMSArray. Its Dim operand cannot be SubpassData.

Coordinate is an integer scalar or vector containing non-normalized texel coordinates (u[, v] . . . [, array layer]) as
needed by the definition of Image. If the coordinates are outside the image, the memory location that is accessed is
undefined.

Texel is the data to write. Its component type must be the same as Sampled Type of the OpTypeImage (unless that
Sampled Type is OpTypeVoid).

The Image Format must not be Unknown, unless the StorageImageWriteWithoutFormat Capability was declared.

Image Operands encodes what operands follow, as per Image Operands.
4 + variable 99 <id>

Image
<id>
Coordinate

<id>
Texel

Optional
Image
Operands

Optional
<id>, <id>,
. . .

103

SPIR-V Specification

OpImage

Extract the image from a sampled image.

Result Type must be OpTypeImage.

Sampled Image must have type OpTypeSampledImage whose Image Type is the same
as Result Type.
4 100 <id>

Result Type
Result <id> <id>

Sampled Image

OpImageQueryFormat

Query the image format of an image created with an Unknown Image Format.

Result Type must be a scalar integer type. The resulting value is an enumerant from
Image Channel Data Type.

Image must be an object whose type is OpTypeImage.

Capability:
Kernel

4 101 <id>
Result Type

Result <id> <id>
Image

OpImageQueryOrder

Query the channel order of an image created with an Unknown Image Format.

Result Type must be a scalar integer type. The resulting value is an enumerant from
Image Channel Order.

Image must be an object whose type is OpTypeImage.

Capability:
Kernel

4 102 <id>
Result Type

Result <id> <id>
Image

104

SPIR-V Specification

OpImageQuerySizeLod

Query the dimensions of Image for mipmap level for Level of Detail.

Result Type must be an integer type scalar or vector. The number of components must be
1 for 1D Dim,
2 for 2D, and Cube Dimensionalities,
3 for 3D Dim,
plus 1 more if the image type is arrayed. This vector is filled in with (width [, height] [,
depth] [, elements]) where elements is the number of layers in an image array, or the number
of cubes in a cube-map array.

Image must be an object whose type is OpTypeImage. Its Dim operand must be one of 1D,
2D, 3D, or Cube, and its MS must be 0. See OpImageQuerySize for querying image types
without level of detail.

Level of Detail is used to compute which mipmap level to query, as described in the API
specification.

Capability:
Kernel,
ImageQuery

5 103 <id>
Result Type

Result <id> <id>
Image

<id>
Level of Detail

OpImageQuerySize

Query the dimensions of Image, with no level of detail.

Result Type must be an integer type scalar or vector. The number of components must
be
1 for Buffer Dim,
2 for 2D and Rect Dimensionalities,
3 for 3D Dim,
plus 1 more if the image type is arrayed. This vector is filled in with (width [, height]
[, elements]) where elements is the number of layers in an image array.

Image must be an object whose type is OpTypeImage. Its Dim operand must be one
of Rect or Buffer, or if its MS is 1, it can be 2D, or, if its Sampled Type is 0 or 2, it
can be 2D or 3D. It cannot be an image with level of detail; there is no implicit
level-of-detail consumed by this instruction. See OpImageQuerySizeLod for
querying images having level of detail.

Capability:
Kernel, ImageQuery

4 104 <id>
Result Type

Result <id> <id>
Image

105

SPIR-V Specification

OpImageQueryLod

Query the mipmap level and the level of detail for a hypothetical sampling of Image at
Coordinate using an implicit level of detail.

Result Type must be a two-component floating-point type vector.
The first component of the result will contain the mipmap array layer.
The second component of the result will contain the implicit level of detail relative to the
base level.

Sampled Image must be an object whose type is OpTypeSampledImage. Its Dim operand
must be one of 1D, 2D, 3D, or Cube.

Coordinate must be a scalar or vector of floating-point type or integer type. It contains (u[,
v] . . .) as needed by the definition of Sampled Image, not including any array layer index.
Unless the Kernel capability is being used, it must be floating point.

If called on an incomplete image, the results are undefined.

This instruction is only valid in the Fragment Execution Model. In addition, it consumes an
implicit derivative that can be affected by code motion.

Capability:
ImageQuery

5 105 <id>
Result Type

Result <id> <id>
Sampled Image

<id>
Coordinate

OpImageQueryLevels

Query the number of mipmap levels accessible through Image.

Result Type must be a scalar integer type. The result is the number of mipmap levels,
as defined by the API specification.

Image must be an object whose type is OpTypeImage. Its Dim operand must be one
of 1D, 2D, 3D, or Cube.

Capability:
Kernel, ImageQuery

4 106 <id>
Result Type

Result <id> <id>
Image

OpImageQuerySamples

Query the number of samples available per texel fetch in a multisample image.

Result Type must be a scalar integer type. The result is the number of samples.

Image must be an object whose type is OpTypeImage. Its Dim operand must be one
of 2D and MS of 1.

Capability:
Kernel, ImageQuery

4 107 <id>
Result Type

Result <id> <id>
Image

106

SPIR-V Specification

OpImageSparseSampleImplicitLod

Sample a sparse image with an implicit level of detail.

Result Type must be an OpTypeStruct with two members. The first member’s type
must be an integer type scalar. It will hold a Residency Code that can be passed to
OpImageSparseTexelsResident. The second member must be a vector of four
components of floating-point type or integer type. Its components must be the same
as Sampled Type of the underlying OpTypeImage (unless that underlying Sampled
Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] . . . [,
array layer]) as needed by the definition of Sampled Image. It may be a vector larger
than needed, but all unused components will appear after all used components.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
SparseResidency

5 + variable 305 <id>
Result Type

Result <id> <id>
Sampled
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
. . .

107

SPIR-V Specification

OpImageSparseSampleExplicitLod

Sample a sparse image using an explicit level of detail.

Result Type must be an OpTypeStruct with two members. The first member’s type must
be an integer type scalar. It will hold a Residency Code that can be passed to
OpImageSparseTexelsResident. The second member must be a vector of four
components of floating-point type or integer type. Its components must be the same as
Sampled Type of the underlying OpTypeImage (unless that underlying Sampled Type is
OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledImage.

Coordinate must be a scalar or vector of floating-point type or integer type. It contains
(u[, v] . . . [, array layer]) as needed by the definition of Sampled Image. Unless the
Kernel capability is being used, it must be floating point. It may be a vector larger than
needed, but all unused components will appear after all used components.

Image Operands encodes what operands follow, as per Image Operands. At least one
operand setting the level of detail must be present.

Capability:
SparseResidency

7 +
variable

306 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

Image
Operands

<id> Optional
<id>,
<id>, . . .

108

SPIR-V Specification

OpImageSparseSampleDrefImplicitLod

Sample a sparse image doing depth-comparison with an implicit level of detail.

Result Type must be an OpTypeStruct with two members. The first member’s type must
be an integer type scalar. It will hold a Residency Code that can be passed to
OpImageSparseTexelsResident. The second member must be a scalar of integer type or
floating-point type. It must be the same as Sampled Type of the underlying
OpTypeImage.

Sampled Image must be an object whose type is OpTypeSampledImage.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] . . . [,
array layer]) as needed by the definition of Sampled Image. It may be a vector larger
than needed, but all unused components will appear after all used components.

Dref is the depth-comparison reference value.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

Capability:
SparseResidency

6 +
variable

307 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>,
<id>, . . .

109

SPIR-V Specification

OpImageSparseSampleDrefExplicitLod

Sample a sparse image doing depth-comparison using an explicit level of detail.

Result Type must be an OpTypeStruct with two members. The first member’s type must be
an integer type scalar. It will hold a Residency Code that can be passed to
OpImageSparseTexelsResident. The second member must be a scalar of integer type or
floating-point type. It must be the same as Sampled Type of the underlying OpTypeImage.

Sampled Image must be an object whose type is OpTypeSampledImage.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] . . . [, array
layer]) as needed by the definition of Sampled Image. It may be a vector larger than needed,
but all unused components will appear after all used components.

Dref is the depth-comparison reference value.

Image Operands encodes what operands follow, as per Image Operands. At least one
operand setting the level of detail must be present.

Capability:
SparseResidency

8 +
variable

308 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Image
Operands

<id> Optional
<id>,
<id>, . . .

110

SPIR-V Specification

OpImageSparseSampleProjImplicitLod

Instruction reserved for future use. Use of this instruction is invalid.

Sample a sparse image with a projective coordinate and an implicit level of detail.

Capability:
SparseResidency

5 + variable 309 <id>
Result Type

Result <id> <id>
Sampled
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>,
<id>, . . .

OpImageSparseSampleProjExplicitLod

Instruction reserved for future use. Use of this instruction is invalid.

Sample a sparse image with a projective coordinate using an explicit level of detail.

Capability:
SparseResidency

7 +
variable

310 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

Image
Operands

<id> Optional
<id>,
<id>, . . .

OpImageSparseSampleProjDrefImplicitLod

Instruction reserved for future use. Use of this instruction is invalid.

Sample a sparse image with a projective coordinate, doing depth-comparison, with an
implicit level of detail.

Capability:
SparseResidency

6 +
variable

311 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>,
<id>, . . .

OpImageSparseSampleProjDrefExplicitLod

Instruction reserved for future use. Use of this instruction is invalid.

Sample a sparse image with a projective coordinate, doing depth-comparison, using an
explicit level of detail.

Capability:
SparseResidency

8 +
variable

312 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Image
Operands

<id> Optional
<id>,
<id>, . . .

111

SPIR-V Specification

OpImageSparseFetch

Fetch a single texel from a sampled sparse image.

Result Type must be an OpTypeStruct with two members. The first member’s type
must be an integer type scalar. It will hold a Residency Code that can be passed to
OpImageSparseTexelsResident. The second member must be a vector of four
components of floating-point type or integer type. Its components must be the same
as Sampled Type of the underlying OpTypeImage (unless that underlying Sampled
Type is OpTypeVoid).

Image must be an object whose type is OpTypeImage. Its Dim operand cannot be
Cube.

Coordinate is an integer scalar or vector containing (u[, v] . . . [, array layer]) as
needed by the definition of Sampled Image.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
SparseResidency

5 + variable 313 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
. . .

OpImageSparseGather

Gathers the requested component from four texels of a sparse image.

Result Type must be an OpTypeStruct with two members. The first member’s type must
be an integer type scalar. It will hold a Residency Code that can be passed to
OpImageSparseTexelsResident. The second member must be a vector of four
components of floating-point type or integer type. Its components must be the same as
Sampled Type of the underlying OpTypeImage (unless that underlying Sampled Type is
OpTypeVoid). It has one component per gathered texel.

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must have a Dim of 2D, Cube, or Rect.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] . . . [,
array layer]) as needed by the definition of Sampled Image.

Component is the component number that will be gathered from all four texels. It must
be 0, 1, 2 or 3.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
SparseResidency

6 +
variable

314 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Component

Optional
Image
Operands

Optional
<id>,
<id>, . . .

112

SPIR-V Specification

OpImageSparseDrefGather

Gathers the requested depth-comparison from four texels of a sparse image.

Result Type must be an OpTypeStruct with two members. The first member’s type must
be an integer type scalar. It will hold a Residency Code that can be passed to
OpImageSparseTexelsResident. The second member must be a vector of four
components of floating-point type or integer type. Its components must be the same as
Sampled Type of the underlying OpTypeImage (unless that underlying Sampled Type is
OpTypeVoid). It has one component per gathered texel.

Sampled Image must be an object whose type is OpTypeSampledImage. Its
OpTypeImage must have a Dim of 2D, Cube, or Rect.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] . . . [,
array layer]) as needed by the definition of Sampled Image.

Dref is the depth-comparison reference value.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
SparseResidency

6 +
variable

315 <id>
Result
Type

Result
<id>

<id>
Sampled
Image

<id>
Coordinate

<id>
Dref

Optional
Image
Operands

Optional
<id>,
<id>, . . .

OpImageSparseTexelsResident

Translates a Resident Code into a Boolean. Result is false if any of the texels were in
uncommitted texture memory, and true otherwise.

Result Type must be a Boolean type scalar.

Resident Code is a value from an OpImageSparse. . . instruction that returns a
resident code.

Capability:
SparseResidency

4 316 <id>
Result Type

Result <id> <id>
Resident Code

113

SPIR-V Specification

OpImageSparseRead

Read a texel from a sparse image without a sampler.

Result Type must be an OpTypeStruct with two members. The first member’s type
must be an integer type scalar. It will hold a Residency Code that can be passed to
OpImageSparseTexelsResident. The second member must be a scalar or vector of
floating-point type or integer type. Its component type must be the same as Sampled
Type of the OpTypeImage (unless that Sampled Type is OpTypeVoid).

Image must be an object whose type is OpTypeImage with a Sampled operand of 2.

Coordinate is an integer scalar or vector containing non-normalized texel coordinates
(u[, v] . . . [, array layer]) as needed by the definition of Image. If the coordinates are
outside the image, the memory location that is accessed is undefined.

The Image Format must not be Unknown, unless the
StorageImageReadWithoutFormat Capability was declared.

Image Operands encodes what operands follow, as per Image Operands.

Capability:
SparseResidency

5 + variable 320 <id>
Result Type

Result <id> <id>
Image

<id>
Coordinate

Optional
Image
Operands

Optional
<id>, <id>,
. . .

114

SPIR-V Specification

3.32.11 Conversion Instructions

OpConvertFToU

Convert (value preserving) from floating point to unsigned integer, with round toward 0.0.

Result Type must be a scalar or vector of integer type, whose Signedness operand is 0.

Float Value must be a scalar or vector of floating-point type. It must have the same number of components as Result
Type.

Results are computed per component.
4 109 <id>

Result Type
Result <id> <id>

Float Value

OpConvertFToS

Convert (value preserving) from floating point to signed integer, with round toward 0.0.

Result Type must be a scalar or vector of integer type.

Float Value must be a scalar or vector of floating-point type. It must have the same number of components as Result
Type.

Results are computed per component.
4 110 <id>

Result Type
Result <id> <id>

Float Value

OpConvertSToF

Convert (value preserving) from signed integer to floating point.

Result Type must be a scalar or vector of floating-point type.

Signed Value must be a scalar or vector of integer type. It must have the same number of components as Result Type.

Results are computed per component.
4 111 <id>

Result Type
Result <id> <id>

Signed Value

115

SPIR-V Specification

OpConvertUToF

Convert (value preserving) from unsigned integer to floating point.

Result Type must be a scalar or vector of floating-point type.

Unsigned Value must be a scalar or vector of integer type. It must have the same number of components as Result
Type.

Results are computed per component.
4 112 <id>

Result Type
Result <id> <id>

Unsigned Value

OpUConvert

Convert (value preserving) unsigned width. This is either a truncate or a zero extend.

Result Type must be a scalar of integer type, whose Signedness operand is 0.

Unsigned Value must be a scalar or vector of integer type. It must have the same number of components as Result
Type. The component width cannot equal the component width in Result Type.

Results are computed per component.
4 113 <id>

Result Type
Result <id> <id>

Unsigned Value

OpSConvert

Convert (value preserving) signed width. This is either a truncate or a sign extend.

Result Type must be a scalar or vector of integer type.

Signed Value must be a scalar or vector of integer type. It must have the same number of components as Result Type.
The component width cannot equal the component width in Result Type.

Results are computed per component.
4 114 <id>

Result Type
Result <id> <id>

Signed Value

OpFConvert

Convert (value preserving) floating-point width.

Result Type must be a scalar or vector of floating-point type.

Float Value must be a scalar or vector of floating-point type. It must have the same number of components as Result
Type. The component width cannot equal the component width in Result Type.

Results are computed per component.
4 115 <id>

Result Type
Result <id> <id>

Float Value

116

SPIR-V Specification

OpQuantizeToF16

Quantize a floating-point value to what is expressible by a 16-bit floating-point value.

Result Type must be a scalar or vector of floating-point type. The component width
must be 32 bits.

Value is the value to quantize. The type of Value must be the same as Result Type.

If Value is an infinity, the result is the same infinity. If Value is a NaN, the result is a
NaN, but not necessarily the same NaN. If Value is positive with a magnitude too
large to represent as a 16-bit floating-point value, the result is positive infinity. If
Value is negative with a magnitude too large to represent as a 16-bit floating-point
value, the result is negative infinity. If the magnitude of Value is too small to represent
as a normalized 16-bit floating-point value, the result may be either +0 or -0.

The RelaxedPrecision Decoration has no effect on this instruction.

Results are computed per component.

Capability:
Shader

4 116 <id>
Result Type

Result <id> <id>
Value

OpConvertPtrToU

Convert a pointer to an unsigned integer type. A Result Type width larger than the
width of Pointer will zero extend. A Result Type smaller than the width of Pointer
will truncate. For same-width source and result, this is the same as OpBitcast.

Result Type must be a scalar or vector of integer type, whose Signedness operand is 0.

Capability:
Addresses

4 117 <id>
Result Type

Result <id> <id>
Pointer

OpSatConvertSToU

Convert a signed integer to unsigned integer. Converted values outside the
representable range of Result Type are clamped to the nearest representable value of
Result Type.

Result Type must be a scalar or vector of integer type.

Signed Value must be a scalar or vector of integer type. It must have the same number
of components as Result Type.

Results are computed per component.

Capability:
Kernel

4 118 <id>
Result Type

Result <id> <id>
Signed Value

117

SPIR-V Specification

OpSatConvertUToS

Convert an unsigned integer to signed integer. Converted values outside the
representable range of Result Type are clamped to the nearest representable value of
Result Type.

Result Type must be a scalar or vector of integer type.

Unsigned Value must be a scalar or vector of integer type. It must have the same
number of components as Result Type.

Results are computed per component.

Capability:
Kernel

4 119 <id>
Result Type

Result <id> <id>
Unsigned Value

OpConvertUToPtr

Convert an integer to pointer. A Result Type width smaller than the width of Integer
Value pointer will truncate. A Result Type width larger than the width of Integer
Value pointer will zero extend.

Result Type must be an OpTypePointer. For same-width source and result, this is the
same as OpBitcast.

Capability:
Addresses

4 120 <id>
Result Type

Result <id> <id>
Integer Value

OpPtrCastToGeneric

Convert a pointer’s Storage Class to Generic.

Result Type must be an OpTypePointer. Its Storage Class must be Generic.

Pointer must point to the Workgroup, CrossWorkgroup, or Function Storage Class.

Result Type and Pointer must point to the same type.

Capability:
Kernel

4 121 <id>
Result Type

Result <id> <id>
Pointer

OpGenericCastToPtr

Convert a pointer’s Storage Class to a non-Generic class.

Result Type must be an OpTypePointer. Its Storage Class must be Workgroup,
CrossWorkgroup, or Function.

Pointer must point to the Generic Storage Class.

Result Type and Pointer must point to the same type.

Capability:
Kernel

4 122 <id>
Result Type

Result <id> <id>
Pointer

118

SPIR-V Specification

OpGenericCastToPtrExplicit

Attempts to explicitly convert Pointer to Storage storage-class pointer value.

Result Type must be an OpTypePointer. Its Storage Class must be Storage.

Pointer must have a type of OpTypePointer whose Type is the same as the Type of Result
Type.Pointer must point to the Generic Storage Class. If the cast fails, the instruction result
is an OpConstantNull pointer in the Storage Storage Class.

Storage must be one of the following literal values from Storage Class: Workgroup,
CrossWorkgroup, or Function.

Capability:
Kernel

5 123 <id>
Result Type

Result <id> <id>
Pointer

Storage Class
Storage

OpBitcast

Bit pattern-preserving type conversion.

Result Type must be an OpTypePointer, or a scalar or vector of numerical-type.

Operand must have a type of OpTypePointer, or a scalar or vector of numerical-type. It must be a different type than
Result Type.

If Result Type is a pointer, Operand must be a pointer or integer scalar. If Operand is a pointer, Result Type must be a
pointer or integer scalar.

If Result Type has the same number of components as Operand, they must also have the same component width, and
results are computed per component.

If Result Type has a different number of components than Operand, the total number of bits in Result Type must equal
the total number of bits in Operand. Let L be the type, either Result Type or Operand’s type, that has the larger
number of components. Let S be the other type, with the smaller number of components. The number of components
in L must be an integer multiple of the number of components in S. The first component (that is, the only or
lowest-numbered component) of S maps to the first components of L, and so on, up to the last component of S
mapping to the last components of L. Within this mapping, any single component of S (mapping to multiple
components of L) maps its lower-ordered bits to the lower-numbered components of L.
4 124 <id>

Result Type
Result <id> <id>

Operand

119

SPIR-V Specification

3.32.12 Composite Instructions

OpVectorExtractDynamic

Extract a single, dynamically selected, component of a vector.

Result Type must be a scalar type.

Vector must have a type OpTypeVector whose Component Type is Result Type.

Index must be a scalar integer 0-based index of which component of Vector to extract.

The value read is undefined if Index’s value is less than zero or greater than or equal to the number of components in
Vector.
5 77 <id>

Result Type
Result <id> <id>

Vector
<id>
Index

OpVectorInsertDynamic

Make a copy of a vector, with a single, variably selected, component modified.

Result Type must be an OpTypeVector.

Vector must have the same type as Result Type and is the vector that the non-written components will be copied from.

Component is the value that will be supplied for the component selected by Index. It must have the same type as the
type of components in Result Type.

Index must be a scalar integer 0-based index of which component to modify.

What is written is undefined if Index’s value is less than zero or greater than or equal to the number of components in
Vector.
6 78 <id>

Result Type
Result <id> <id>

Vector
<id>
Component

<id>
Index

120

SPIR-V Specification

OpVectorShuffle

Select arbitrary components from two vectors to make a new vector.

Result Type must be an OpTypeVector. The number of components in Result Type must be the same as the number of
Component operands.

Vector 1 and Vector 2 must both have vector types, with the same Component Type as Result Type. They do not have
to have the same number of components as Result Type or with each other. They are logically concatenated, forming a
single vector with Vector 1’s components appearing before Vector 2’s. The components of this logical vector are
logically numbered with a single consecutive set of numbers from 0 to N - 1, where N is the total number of
components.

Components are these logical numbers (see above), selecting which of the logically numbered components form the
result. They can select the components in any order and can repeat components. The first component of the result is
selected by the first Component operand, the second component of the result is selected by the second Component
operand, etc. A Component literal may also be FFFFFFFF, which means the corresponding result component has no
source and is undefined. All Component literals must either be FFFFFFFF or in [0, N - 1] (inclusive).

Note: A vector “swizzle” can be done by using the vector for both Vector operands, or using an OpUndef for one of
the Vector operands.
5 + variable 79 <id>

Result Type
Result <id> <id>

Vector 1
<id>
Vector 2

Literal, Literal,
. . .
Components

OpCompositeConstruct

Construct a new composite object from a set of constituent objects that will fully form it.

Result Type must be a composite type, whose top-level members/elements/components/columns have the same type
as the types of the operands, with one exception. The exception is that for constructing a vector, the operands may
also be vectors with the same component type as the Result Type component type. When constructing a vector, the
total number of components in all the operands must equal the number of components in Result Type.

Constituents will become members of a structure, or elements of an array, or components of a vector, or columns of a
matrix. There must be exactly one Constituent for each top-level member/element/component/column of the result,
with one exception. The exception is that for constructing a vector, a contiguous subset of the scalars consumed can
be represented by a vector operand instead. The Constituents must appear in the order needed by the definition of the
type of the result. When constructing a vector, there must be at least two Constituent operands.
3 + variable 80 <id>

Result Type
Result <id> <id>, <id>, . . .

Constituents

121

SPIR-V Specification

OpCompositeExtract

Extract a part of a composite object.

Result Type must be the type of object selected by the last provided index. The instruction result is the extracted
object.

Composite is the composite to extract from.

Indexes walk the type hierarchy, potentially down to component granularity, to select the part to extract. All indexes
must be in bounds. All composite constituents use zero-based numbering, as described by their OpType. . .
instruction.
4 + variable 81 <id>

Result Type
Result <id> <id>

Composite
Literal, Literal, . . .
Indexes

OpCompositeInsert

Make a copy of a composite object, while modifying one part of it.

Result Type must be the same type as Composite.

Object is the object to use as the modified part.

Composite is the composite to copy all but the modified part from.

Indexes walk the type hierarchy of Composite to the desired depth, potentially down to component granularity, to
select the part to modify. All indexes must be in bounds. All composite constituents use zero-based numbering, as
described by their OpType. . . instruction. The type of the part selected to modify must match the type of Object.
5 + variable 82 <id>

Result Type
Result <id> <id>

Object
<id>
Composite

Literal, Literal,
. . .
Indexes

OpCopyObject

Make a copy of Operand. There are no dereferences involved.

Result Type must match Operand type. There are no other
restrictions on the types.
4 83 <id>

Result Type
Result <id> <id>

Operand

OpTranspose

Transpose a matrix.

Result Type must be an OpTypeMatrix, where the number of columns and the column
size is the reverse of those of the type of Matrix.

Matrix must have of type of OpTypeMatrix.

Capability:
Matrix

4 84 <id>
Result Type

Result <id> <id>
Matrix

122

SPIR-V Specification

3.32.13 Arithmetic Instructions

OpSNegate

Signed-integer subtract of Operand from zero.

Result Type must be a scalar or vector of integer type.

Operand’s type must be a scalar or vector of integer type. It must have the same number of components as Result
Type. The component width must equal the component width in Result Type.

Results are computed per component.
4 126 <id>

Result Type
Result <id> <id>

Operand

OpFNegate

Floating-point subtract of Operand from zero.

Result Type must be a scalar or vector of floating-point type.

The type of Operand must be the same as Result Type.

Results are computed per component.
4 127 <id>

Result Type
Result <id> <id>

Operand

OpIAdd

Integer addition of Operand 1 and Operand 2.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same number of
components as Result Type. They must have the same component width as Result Type.

Results are computed per component.
5 128 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFAdd

Floating-point addition of Operand 1 and Operand 2.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component.
5 129 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

123

SPIR-V Specification

OpISub

Integer subtraction of Operand 2 from Operand 1.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same number of
components as Result Type. They must have the same component width as Result Type.

Results are computed per component.
5 130 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFSub

Floating-point subtraction of Operand 2 from Operand 1.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component.
5 131 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpIMul

Integer multiplication of Operand 1 and Operand 2.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same number of
components as Result Type. They must have the same component width as Result Type.

Results are computed per component.
5 132 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFMul

Floating-point multiplication of Operand 1 and Operand 2.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component.
5 133 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

124

SPIR-V Specification

OpUDiv

Unsigned-integer division of Operand 1 divided by Operand 2.

Result Type must be a scalar or vector of integer type, whose Signedness operand is 0.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component. The resulting value is undefined if Operand 2 is 0.
5 134 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpSDiv

Signed-integer division of Operand 1 divided by Operand 2.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same number of
components as Result Type. They must have the same component width as Result Type.

Results are computed per component. The resulting value is undefined if Operand 2 is 0.
5 135 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFDiv

Floating-point division of Operand 1 divided by Operand 2.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component. The resulting value is undefined if Operand 2 is 0.
5 136 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpUMod

Unsigned modulo operation of Operand 1 modulo Operand 2.

Result Type must be a scalar or vector of integer type, whose Signedness operand is 0.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component. The resulting value is undefined if Operand 2 is 0.
5 137 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

125

SPIR-V Specification

OpSRem

Signed remainder operation of Operand 1 divided by Operand 2. The sign of a non-0 result comes from Operand 1.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same number of
components as Result Type. They must have the same component width as Result Type.

Results are computed per component. The resulting value is undefined if Operand 2 is 0.
5 138 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpSMod

Signed modulo operation of Operand 1 modulo Operand 2. The sign of a non-0 result comes from Operand 2.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same number of
components as Result Type. They must have the same component width as Result Type.

Results are computed per component. The resulting value is undefined if Operand 2 is 0.
5 139 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFRem

Floating-point remainder operation of Operand 1 divided by Operand 2. The sign of a non-0 result comes from
Operand 1.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component. The resulting value is undefined if Operand 2 is 0.
5 140 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFMod

Floating-point remainder operation of Operand 1 divided by Operand 2. The sign of a non-0 result comes from
Operand 2.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same as Result Type.

Results are computed per component. The resulting value is undefined if Operand 2 is 0.
5 141 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

126

SPIR-V Specification

OpVectorTimesScalar

Scale a floating-point vector.

Result Type must be a vector of floating-point type.

The type of Vector must be the same as Result Type. Each component of Vector is multiplied by Scalar.

Scalar must have the same type as the Component Type in Result Type.
5 142 <id>

Result Type
Result <id> <id>

Vector
<id>
Scalar

OpMatrixTimesScalar

Scale a floating-point matrix.

Result Type must be an OpTypeMatrix whose Column Type is a vector of floating-point type.

The type of Matrix must be the same as Result Type. Each component in each column in
Matrix is multiplied by Scalar.

Scalar must have the same type as the Component Type in Result Type.

Capability:
Matrix

5 143 <id>
Result Type

Result <id> <id>
Matrix

<id>
Scalar

OpVectorTimesMatrix

Linear-algebraic Vector X Matrix.

Result Type must be a vector of floating-point type.

Vector must be a vector with the same Component Type as the Component Type in Result
Type. Its number of components must equal the number of components in each column in
Matrix.

Matrix must be a matrix with the same Component Type as the Component Type in Result
Type. Its number of columns must equal the number of components in Result Type.

Capability:
Matrix

5 144 <id>
Result Type

Result <id> <id>
Vector

<id>
Matrix

127

SPIR-V Specification

OpMatrixTimesVector

Linear-algebraic Vector X Matrix.

Result Type must be a vector of floating-point type.

Matrix must be an OpTypeMatrix whose Column Type is Result Type.

Vector must be a vector with the same Component Type as the Component Type in Result
Type. Its number of components must equal the number of columns in Matrix.

Capability:
Matrix

5 145 <id>
Result Type

Result <id> <id>
Matrix

<id>
Vector

OpMatrixTimesMatrix

Linear-algebraic multiply of LeftMatrix X RightMatrix.

Result Type must be an OpTypeMatrix whose Column Type is a vector of floating-point type.

LeftMatrix must be a matrix whose Column Type is the same as the Column Type in Result
Type.

RightMatrix must be a matrix with the same Component Type as the Component Type in
Result Type. Its number of columns must equal the number of columns in Result Type. Its
columns must have the same number of components as the number of columns in LeftMatrix.

Capability:
Matrix

5 146 <id>
Result Type

Result <id> <id>
LeftMatrix

<id>
RightMatrix

OpOuterProduct

Linear-algebraic outer product of Vector 1 and Vector 2.

Result Type must be an OpTypeMatrix whose Column Type is a vector of floating-point type.

Vector 1 must have the same type as the Column Type in Result Type.

Vector 2 must be a vector with the same Component Type as the Component Type in Result
Type. Its number of components must equal the number of columns in Result Type.

Capability:
Matrix

5 147 <id>
Result Type

Result <id> <id>
Vector 1

<id>
Vector 2

OpDot

Dot product of Vector 1 and Vector 2.

Result Type must be a floating-point type scalar.

Vector 1 and Vector 2 must be vectors of the same type, and their component type must
be Result Type.
5 148 <id>

Result Type
Result <id> <id>

Vector 1
<id>
Vector 2

128

SPIR-V Specification

OpIAddCarry

Result is the unsigned integer addition of Operand 1 and Operand 2, including its carry.

Result Type must be from OpTypeStruct. The struct must have two members, and the two members must be the same
type. The member type must be a scalar or vector of integer type, whose Signedness operand is 0.

Operand 1 and Operand 2 must have the same type as the members of Result Type. These are consumed as unsigned
integers.

Results are computed per component.

Member 0 of the result gets the low-order bits (full component width) of the addition.

Member 1 of the result gets the high-order (carry) bit of the result of the addition. That is, it gets the value 1 if the
addition overflowed the component width, and 0 otherwise.
5 149 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpISubBorrow

Result is the unsigned integer subtraction of Operand 2 from Operand 1, and what it needed to borrow.

Result Type must be from OpTypeStruct. The struct must have two members, and the two members must be the same
type. The member type must be a scalar or vector of integer type, whose Signedness operand is 0.

Operand 1 and Operand 2 must have the same type as the members of Result Type. These are consumed as unsigned
integers.

Results are computed per component.

Member 0 of the result gets the low-order bits (full component width) of the subtraction. That is, if Operand 1 is
larger than Operand 2, member 0 gets the full value of the subtraction; if Operand 2 is larger than Operand 1,
member 0 gets 2w + Operand 1 - Operand 2, where w is the component width.

Member 1 of the result gets 0 if Operand 1 ≥ Operand 2, and gets 1 otherwise.
5 150 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

129

SPIR-V Specification

OpUMulExtended

Result is the full value of the unsigned integer multiplication of Operand 1 and Operand 2.

Result Type must be from OpTypeStruct. The struct must have two members, and the two members must be the same
type. The member type must be a scalar or vector of integer type, whose Signedness operand is 0.

Operand 1 and Operand 2 must have the same type as the members of Result Type. These are consumed as unsigned
integers.

Results are computed per component.

Member 0 of the result gets the low-order bits of the multiplication.

Member 1 of the result gets the high-order bits of the multiplication.
5 151 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpSMulExtended

Result is the full value of the signed integer multiplication of Operand 1 and Operand 2.

Result Type must be from OpTypeStruct. The struct must have two members, and the two members must be the same
type. The member type must be a scalar or vector of integer type.

Operand 1 and Operand 2 must have the same type as the members of Result Type. These are consumed as signed
integers.

Results are computed per component.

Member 0 of the result gets the low-order bits of the multiplication.

Member 1 of the result gets the high-order bits of the multiplication.
5 152 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

130

SPIR-V Specification

3.32.14 Bit Instructions

OpShiftRightLogical

Shift the bits in Base right by the number of bits specified in Shift. The most-significant bits will be zero filled.

Result Type must be a scalar or vector of integer type.

The type of each Base and Shift must be a scalar or vector of integer type. Base and Shift must have the same number
of components. The number of components and bit width of the type of Base must be the same as in Result Type.

Shift is consumed as an unsigned integer. The result is undefined if Shift is greater than the bit width of the
components of Base.

Results are computed per component.
5 194 <id>

Result Type
Result <id> <id>

Base
<id>
Shift

OpShiftRightArithmetic

Shift the bits in Base right by the number of bits specified in Shift. The most-significant bits will be filled with the
sign bit from Base.

Result Type must be a scalar or vector of integer type.

The type of each Base and Shift must be a scalar or vector of integer type. Base and Shift must have the same number
of components. The number of components and bit width of the type of Base must be the same as in Result Type.

Shift is treated as unsigned. The result is undefined if Shift is greater than the bit width of the components of Base.

Results are computed per component.
5 195 <id>

Result Type
Result <id> <id>

Base
<id>
Shift

OpShiftLeftLogical

Shift the bits in Base left by the number of bits specified in Shift. The least-significant bits will be zero filled.

Result Type must be a scalar or vector of integer type.

The type of each Base and Shift must be a scalar or vector of integer type. Base and Shift must have the same number
of components. The number of components and bit width of the type of Base must be the same as in Result Type.

Shift is treated as unsigned. The result is undefined if Shift is greater than the bit width of the components of Base.

The number of components and bit width of Result Type must match those Base type. All types must be integer types.

Results are computed per component.
5 196 <id>

Result Type
Result <id> <id>

Base
<id>
Shift

131

SPIR-V Specification

OpBitwiseOr

Result is 1 if either Operand 1 or Operand 2 is 1. Result is 0 if both Operand 1 and Operand 2 are 0.

Results are computed per component, and within each component, per bit.

Result Type must be a scalar or vector of integer type. The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same number of components as Result Type. They must have the same
component width as Result Type.
5 197 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpBitwiseXor

Result is 1 if exactly one of Operand 1 or Operand 2 is 1. Result is 0 if Operand 1 and Operand 2 have the same
value.

Results are computed per component, and within each component, per bit.

Result Type must be a scalar or vector of integer type. The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same number of components as Result Type. They must have the same
component width as Result Type.
5 198 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpBitwiseAnd

Result is 1 if both Operand 1 and Operand 2 are 1. Result is 0 if either Operand 1 or Operand 2 are 0.

Results are computed per component, and within each component, per bit.

Result Type must be a scalar or vector of integer type. The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same number of components as Result Type. They must have the same
component width as Result Type.
5 199 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpNot

Complement the bits of Operand.

Results are computed per component, and within each component, per bit.

Result Type must be a scalar or vector of integer type.

Operand’s type must be a scalar or vector of integer type. It must have the same number of components as Result
Type. The component width must equal the component width in Result Type.
4 200 <id>

Result Type
Result <id> <id>

Operand

132

SPIR-V Specification

OpBitFieldInsert

Make a copy of an object, with a modified bit field that comes from another object.

Results are computed per component.

Result Type must be a scalar or vector of integer type.

The type of Base and Insert must be the same as Result Type.

Any result bits numbered outside [Offset, Offset + Count - 1] (inclusive) will come
from the corresponding bits in Base.

Any result bits numbered in [Offset, Offset + Count - 1] come, in order, from the
bits numbered [0, Count - 1] of Insert.

Count must be an integer type scalar. Count is the number of bits taken from
Insert. It will be consumed as an unsigned value. Count can be 0, in which case
the result will be Base.

Offset must be an integer type scalar. Offset is the lowest-order bit of the bit field.
It will be consumed as an unsigned value.

The resulting value is undefined if Count or Offset or their sum is greater than the
number of bits in the result.

Capability:
Shader

7 201 <id>
Result Type

Result <id> <id>
Base

<id>
Insert

<id>
Offset

<id>
Count

133

SPIR-V Specification

OpBitFieldSExtract

Extract a bit field from an object, with sign extension.

Results are computed per component.

Result Type must be a scalar or vector of integer type.

The type of Base must be the same as Result Type.

If Count is greater than 0: The bits of Base numbered in [Offset, Offset +
Count - 1] (inclusive) become the bits numbered [0, Count - 1] of the result.
The remaining bits of the result will all be the same as bit Offset + Count - 1
of Base.

Count must be an integer type scalar. Count is the number of bits extracted
from Base. It will be consumed as an unsigned value. Count can be 0, in
which case the result will be 0.

Offset must be an integer type scalar. Offset is the lowest-order bit of the bit
field to extract from Base. It will be consumed as an unsigned value.

The resulting value is undefined if Count or Offset or their sum is greater
than the number of bits in the result.

Capability:
Shader

6 202 <id>
Result Type

Result <id> <id>
Base

<id>
Offset

<id>
Count

OpBitFieldUExtract

Extract a bit field from an object, without sign extension.

The semantics are the same as with OpBitFieldSExtract with the exception
that there is no sign extension. The remaining bits of the result will all be 0.

Capability:
Shader

6 203 <id>
Result Type

Result <id> <id>
Base

<id>
Offset

<id>
Count

OpBitReverse

Reverse the bits in an object.

Results are computed per component.

Result Type must be a scalar or vector of integer type.

The type of Base must be the same as Result Type.

The bit-number n of the result will be taken from bit-number Width - 1 - n of Base,
where Width is the OpTypeInt operand of the Result Type.

Capability:
Shader

4 204 <id>
Result Type

Result <id> <id>
Base

134

SPIR-V Specification

OpBitCount

Count the number of set bits in an object.

Results are computed per component.

Result Type must be a scalar or vector of integer type. The components must be wide enough to hold the unsigned
Width of Base as an unsigned value. That is, no sign bit is needed or counted when checking for a wide enough result
width.

Base must be a scalar or vector of integer type. It must have the same number of components as Result Type.

The result is the unsigned value that is the number of bits in Base that are 1.
4 205 <id>

Result Type
Result <id> <id>

Base

135

SPIR-V Specification

3.32.15 Relational and Logical Instructions

OpAny

Result is true if any component of Vector is true, otherwise result is false.

Result Type must be a Boolean type scalar.

Vector must be a vector of Boolean type.
4 154 <id>

Result Type
Result <id> <id>

Vector

OpAll

Result is true if all components of Vector are true, otherwise result is false.

Result Type must be a Boolean type scalar.

Vector must be a vector of Boolean type.
4 155 <id>

Result Type
Result <id> <id>

Vector

OpIsNan

Result is true if x is an IEEE NaN, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same number of components as Result Type.

Results are computed per component.
4 156 <id>

Result Type
Result <id> <id>

x

OpIsInf

Result is true if x is an IEEE Inf, otherwise result is false

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same number of components as Result Type.

Results are computed per component.
4 157 <id>

Result Type
Result <id> <id>

x

136

SPIR-V Specification

OpIsFinite

Result is true if x is an IEEE finite number, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same number of
components as Result Type.

Results are computed per component.

Capability:
Kernel

4 158 <id>
Result Type

Result <id> <id>
x

OpIsNormal

Result is true if x is an IEEE normal number, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same number of
components as Result Type.

Results are computed per component.

Capability:
Kernel

4 159 <id>
Result Type

Result <id> <id>
x

OpSignBitSet

Result is true if x has its sign bit set, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same number of
components as Result Type.

Results are computed per component.

Capability:
Kernel

4 160 <id>
Result Type

Result <id> <id>
x

137

SPIR-V Specification

OpLessOrGreater

Result is true if x < y or x > y, where IEEE comparisons are used, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same number of
components as Result Type.

y must have the same type as x.

Results are computed per component.

Capability:
Kernel

5 161 <id>
Result Type

Result <id> <id>
x

<id>
y

OpOrdered

Result is true if both x == x and y == y are true, where IEEE comparison is used, otherwise
result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same number of
components as Result Type.

y must have the same type as x.

Results are computed per component.

Capability:
Kernel

5 162 <id>
Result Type

Result <id> <id>
x

<id>
y

OpUnordered

Result is true if either x or y is an IEEE NaN, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have the same number of
components as Result Type.

y must have the same type as x.

Results are computed per component.

Capability:
Kernel

5 163 <id>
Result Type

Result <id> <id>
x

<id>
y

138

SPIR-V Specification

OpLogicalEqual

Result is true if Operand 1 and Operand 2 have the same value. Result is false if Operand 1 and Operand 2 have
different values.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 must be the same as Result Type.

The type of Operand 2 must be the same as Result Type.

Results are computed per component.
5 164 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpLogicalNotEqual

Result is true if Operand 1 and Operand 2 have different values. Result is false if Operand 1 and Operand 2 have the
same value.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 must be the same as Result Type.

The type of Operand 2 must be the same as Result Type.

Results are computed per component.
5 165 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpLogicalOr

Result is true if either Operand 1 or Operand 2 is true. Result is false if both Operand 1 and Operand 2 are false.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 must be the same as Result Type.

The type of Operand 2 must be the same as Result Type.

Results are computed per component.
5 166 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

139

SPIR-V Specification

OpLogicalAnd

Result is true if both Operand 1 and Operand 2 are true. Result is false if either Operand 1 or Operand 2 are false.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 must be the same as Result Type.

The type of Operand 2 must be the same as Result Type.

Results are computed per component.
5 167 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpLogicalNot

Result is true if Operand is false. Result is false if Operand is true.

Result Type must be a scalar or vector of Boolean type.

The type of Operand must be the same as Result Type.

Results are computed per component.
4 168 <id>

Result Type
Result <id> <id>

Operand

OpSelect

Select between two objects.

Result Type must be a scalar or vector.

The type of Object 1 must be the same as Result Type. Object 1 is selected as the result if Condition is true.

The type of Object 2 must be the same as Result Type. Object 2 is selected as the result if Condition is false.

Condition must be a scalar or vector of Boolean type. It must have the same number of components as Result Type.

Results are computed per component.
6 169 <id>

Result Type
Result <id> <id>

Condition
<id>
Object 1

<id>
Object 2

140

SPIR-V Specification

OpIEqual

Integer comparison for equality.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same
component width, and they must have the same number of components as Result Type.

Results are computed per component.
5 170 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpINotEqual

Integer comparison for inequality.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same
component width, and they must have the same number of components as Result Type.

Results are computed per component.
5 171 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpUGreaterThan

Unsigned-integer comparison if Operand 1 is greater than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same
component width, and they must have the same number of components as Result Type.

Results are computed per component.
5 172 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpSGreaterThan

Signed-integer comparison if Operand 1 is greater than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same
component width, and they must have the same number of components as Result Type.

Results are computed per component.
5 173 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

141

SPIR-V Specification

OpUGreaterThanEqual

Unsigned-integer comparison if Operand 1 is greater than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same
component width, and they must have the same number of components as Result Type.

Results are computed per component.
5 174 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpSGreaterThanEqual

Signed-integer comparison if Operand 1 is greater than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same
component width, and they must have the same number of components as Result Type.

Results are computed per component.
5 175 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpULessThan

Unsigned-integer comparison if Operand 1 is less than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same
component width, and they must have the same number of components as Result Type.

Results are computed per component.
5 176 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpSLessThan

Signed-integer comparison if Operand 1 is less than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same
component width, and they must have the same number of components as Result Type.

Results are computed per component.
5 177 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

142

SPIR-V Specification

OpULessThanEqual

Unsigned-integer comparison if Operand 1 is less than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same
component width, and they must have the same number of components as Result Type.

Results are computed per component.
5 178 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpSLessThanEqual

Signed-integer comparison if Operand 1 is less than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of integer type. They must have the same
component width, and they must have the same number of components as Result Type.

Results are computed per component.
5 179 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFOrdEqual

Floating-point comparison for being ordered and equal.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 180 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFUnordEqual

Floating-point comparison for being unordered or equal.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 181 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

143

SPIR-V Specification

OpFOrdNotEqual

Floating-point comparison for being ordered and not equal.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 182 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFUnordNotEqual

Floating-point comparison for being unordered or not equal.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 183 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFOrdLessThan

Floating-point comparison if operands are ordered and Operand 1 is less than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 184 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFUnordLessThan

Floating-point comparison if operands are unordered or Operand 1 is less than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 185 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

144

SPIR-V Specification

OpFOrdGreaterThan

Floating-point comparison if operands are ordered and Operand 1 is greater than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 186 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFUnordGreaterThan

Floating-point comparison if operands are unordered or Operand 1 is greater than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 187 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFOrdLessThanEqual

Floating-point comparison if operands are ordered and Operand 1 is less than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 188 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFUnordLessThanEqual

Floating-point comparison if operands are unordered or Operand 1 is less than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 189 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

145

SPIR-V Specification

OpFOrdGreaterThanEqual

Floating-point comparison if operands are ordered and Operand 1 is greater than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 190 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

OpFUnordGreaterThanEqual

Floating-point comparison if operands are unordered or Operand 1 is greater than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or vector of floating-point type. They must have the same
type, and they must have the same number of components as Result Type.

Results are computed per component.
5 191 <id>

Result Type
Result <id> <id>

Operand 1
<id>
Operand 2

146

SPIR-V Specification

3.32.16 Derivative Instructions

OpDPdx

Same result as either OpDPdxFine or OpDPdxCoarse on P. Selection of which one is
based on external factors.

Result Type must be a scalar or vector of floating-point type.

The type of P must be the same as Result Type. P is the value to take the derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
Shader

4 207 <id>
Result Type

Result <id> <id>
P

OpDPdy

Same result as either OpDPdyFine or OpDPdyCoarse on P. Selection of which one is
based on external factors.

Result Type must be a scalar or vector of floating-point type.

The type of P must be the same as Result Type. P is the value to take the derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
Shader

4 208 <id>
Result Type

Result <id> <id>
P

OpFwidth

Result is the same as computing the sum of the absolute values of OpDPdx and
OpDPdy on P.

Result Type must be a scalar or vector of floating-point type.

The type of P must be the same as Result Type. P is the value to take the derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
Shader

4 209 <id>
Result Type

Result <id> <id>
P

147

SPIR-V Specification

OpDPdxFine

Result is the partial derivative of P with respect to the window x coordinate.Will use
local differencing based on the value of P for the current fragment and its immediate
neighbor(s).

Result Type must be a scalar or vector of floating-point type.

The type of P must be the same as Result Type. P is the value to take the derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 210 <id>
Result Type

Result <id> <id>
P

OpDPdyFine

Result is the partial derivative of P with respect to the window y coordinate.Will use
local differencing based on the value of P for the current fragment and its immediate
neighbor(s).

Result Type must be a scalar or vector of floating-point type.

The type of P must be the same as Result Type. P is the value to take the derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 211 <id>
Result Type

Result <id> <id>
P

OpFwidthFine

Result is the same as computing the sum of the absolute values of OpDPdxFine and
OpDPdyFine on P.

Result Type must be a scalar or vector of floating-point type.

The type of P must be the same as Result Type. P is the value to take the derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 212 <id>
Result Type

Result <id> <id>
P

148

SPIR-V Specification

OpDPdxCoarse

Result is the partial derivative of P with respect to the window x coordinate. Will use
local differencing based on the value of P for the current fragment’s neighbors, and
will possibly, but not necessarily, include the value of P for the current fragment.
That is, over a given area, the implementation can compute x derivatives in fewer
unique locations than would be allowed for OpDPdxFine.

Result Type must be a scalar or vector of floating-point type.

The type of P must be the same as Result Type. P is the value to take the derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 213 <id>
Result Type

Result <id> <id>
P

OpDPdyCoarse

Result is the partial derivative of P with respect to the window y coordinate. Will use
local differencing based on the value of P for the current fragment’s neighbors, and
will possibly, but not necessarily, include the value of P for the current fragment.
That is, over a given area, the implementation can compute y derivatives in fewer
unique locations than would be allowed for OpDPdyFine.

Result Type must be a scalar or vector of floating-point type.

The type of P must be the same as Result Type. P is the value to take the derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 214 <id>
Result Type

Result <id> <id>
P

OpFwidthCoarse

Result is the same as computing the sum of the absolute values of OpDPdxCoarse
and OpDPdyCoarse on P.

Result Type must be a scalar or vector of floating-point type.

The type of P must be the same as Result Type. P is the value to take the derivative of.

This instruction is only valid in the Fragment Execution Model.

Capability:
DerivativeControl

4 215 <id>
Result Type

Result <id> <id>
P

149

SPIR-V Specification

3.32.17 Control-Flow Instructions

OpPhi

The SSA phi function.

The result is selected based on control flow: If control reached the current block from Parent i, Result Id gets the
value that Variable i had at the end of Parent i.

Result Type can be any type.

Operands are a sequence of pairs: (Variable 1, Parent 1 block), (Variable 2, Parent 2 block), . . . Each Parent i block
is the label of an immediate predecessor in the CFG of the current block. There must be exactly one Parent i for each
parent block of the current block in the CFG. All Variables must have a type matching Result Type.

Within a block, this instruction must appear before all non-OpPhi instructions (except for OpLine, which can be
mixed with OpPhi).
3 + variable 245 <id>

Result Type
Result <id> <id>, <id>, . . .

Variable, Parent, . . .

OpLoopMerge

Declare a structured loop.

This instruction must immediately precede either an OpBranch or OpBranchConditional instruction. That is, it must
be the second-to-last instruction in its block.

Merge Block is the label of the merge block for this structured loop.

Continue Target is the label of a block targeted for processing a loop "continue".

See Structured Control Flow for more detail.
4 246 <id>

Merge Block
<id>
Continue Target

Loop Control

OpSelectionMerge

Declare a structured selection.

This instruction must immediately precede either an OpBranchConditional or OpSwitch instruction. That is, it must
be the second-to-last instruction in its block.

Merge Block is the label of the merge block for this structured selection.

See Structured Control Flow for more detail.
3 247 <id>

Merge Block
Selection Control

150

SPIR-V Specification

OpLabel

The block label instruction: Any reference to a block is through the Result
<id> of its label.

Must be the first instruction of any block, and appears only as the first
instruction of a block.
2 248 Result <id>

OpBranch

Unconditional branch to Target Label.

Target Label must be the Result <id> of an OpLabel instruction in the current
function.

This instruction must be the last instruction in a block.
2 249 <id>

Target Label

OpBranchConditional

If Condition is true, branch to True Label, otherwise branch to False Label.

Condition must be a Boolean type scalar.

True Label must be an OpLabel in the current function.

False Label must be an OpLabel in the current function.

Branch weights are unsigned 32-bit integer literals. There must be either no Branch Weights or exactly two branch
weights. If present, the first is the weight for branching to True Label, and the second is the weight for branching to
False Label. The implied probability that a branch is taken is its weight divided by the sum of the two Branch
weights.

This instruction must be the last instruction in a block.
4 + variable 250 <id>

Condition
<id>
True Label

<id>
False Label

Literal, Literal, . . .
Branch weights

151

SPIR-V Specification

OpSwitch

Multi-way branch to one of the operand label <id>.

Selector must have a type of OpTypeInt. Selector will be compared for equality to the Target literals.

Default must be the <id> of a label. If Selector does not equal any of the Target literals, control flow will branch to
the Default label <id>.

Target must be alternating scalar integer literals and the <id> of a label. If Selector equals a literal, control flow will
branch to the following label <id>. It is invalid for any two literal to be equal to each other. If Selector does not
equal any literal, control flow will branch to the Default label <id>. Each literal is interpreted with the type of
Selector: The bit width of Selector’s type will be the width of each literal’s type. If this width is not a multiple of
32-bits, the literals must be sign extended when the OpTypeInt Signedness is set to 1. (See Literal Number.)

This instruction must be the last instruction in a block.
3 + variable 251 <id>

Selector
<id>
Default

literal, label <id>,
literal, label <id>,
. . .
Target

OpKill

Fragment-shader discard.

Ceases all further processing in any invocation that
executes it: Only instructions these invocations executed
before OpKill will have observable side effects. If this
instruction is executed in non-uniform control flow, all
subsequent control flow is non-uniform (for invocations
that continue to execute).

This instruction must be the last instruction in a block.

This instruction is only valid in the Fragment Execution
Model.

Capability:
Shader

1 252

OpReturn

Return with no value from a function with void return type.

This instruction must be the last instruction in a block.
1 253

152

SPIR-V Specification

OpReturnValue

Return a value from a function.

Value is the value returned, by copy, and must match the Return Type operand of the OpTypeFunction type of the
OpFunction body this return instruction is in.

This instruction must be the last instruction in a block.
2 254 <id>

Value

OpUnreachable

Declares that this block is not reachable in the CFG.

This instruction must be the last instruction in a block.
1 255

OpLifetimeStart

Declare that an object was not defined before this instruction.

Pointer is a pointer to the object whose lifetime is starting. Its type must
be an OpTypePointer with Storage Class Function.

Size must be 0 if Pointer is a pointer to a non-void type or the Addresses
capability is not being used. If Size is non-zero, it is the number of bytes
of memory whose lifetime is starting. Its type must be an integer type
scalar. It is treated as unsigned; if its type has Signedness of 1, its sign bit
cannot be set.

Capability:
Kernel

3 256 <id>
Pointer

Literal Number
Size

OpLifetimeStop

Declare that an object is dead after this instruction.

Pointer is a pointer to the object whose lifetime is ending. Its type must
be an OpTypePointer with Storage Class Function.

Size must be 0 if Pointer is a pointer to a non-void type or the Addresses
capability is not being used. If Size is non-zero, it is the number of bytes
of memory whose lifetime is ending. Its type must be an integer type
scalar. It is treated as unsigned; if its type has Signedness of 1, its sign bit
cannot be set.

Capability:
Kernel

3 257 <id>
Pointer

Literal Number
Size

153

SPIR-V Specification

3.32.18 Atomic Instructions

OpAtomicLoad

Atomically load through Pointer using the given Semantics. All subparts of the value that is loaded will be read
atomically with respect to all other atomic accesses to it within Scope.

Result Type must be a scalar of integer type or floating-point type.

Pointer is the pointer to the memory to read. The type of the value pointed to by Pointer must be the same as Result
Type.
6 227 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics <id>
Semantics

OpAtomicStore

Atomically store through Pointer using the given Semantics. All subparts of Value will be written atomically with
respect to all other atomic accesses to it within Scope.

Pointer is the pointer to the memory to write. The type it points to must be a scalar of integer type or floating-point
type.

Value is the value to write. The type of Value and the type pointed to by Pointer must be the same type.
5 228 <id>

Pointer
Scope <id>
Scope

Memory Semantics
<id>
Semantics

<id>
Value

OpAtomicExchange

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value from copying Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be a scalar of integer type or floating-point type.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type.
7 229 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics
<id>
Semantics

<id>
Value

154

SPIR-V Specification

OpAtomicCompareExchange

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by selecting Value if Original Value equals Comparator or selecting Original Value otherwise, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

Use Equal for the memory semantics of this instruction when Value and Original Value compare equal.

Use Unequal for the memory semantics of this instruction when Value and Original Value compare unequal. Unequal
cannot be set to Release or Acquire and Release. In addition, Unequal cannot be set to a stronger memory-order
then Equal.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type. This type must also match the type of Comparator.
9 230 <id>

Result
Type

Result
<id>

<id>
Pointer

Scope
<id>
Scope

Memory
Semantics
<id>
Equal

Memory
Semantics
<id>
Unequal

<id>
Value

<id>
Comparator

155

SPIR-V Specification

OpAtomicCompareExchangeWeak

Attempts to do the following:

Perform the following steps atomically with respect to any other atomic accesses within
Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by selecting Value if Original Value equals Comparator or selecting
Original Value otherwise, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

The weak compare-and-exchange operations may fail spuriously. That is, even when
Original Value equals Comparator the comparison can fail and store back the Original
Value through Pointer.

Result Type must be an integer type scalar.

Use Equal for the memory semantics of this instruction when Value and Original Value
compare equal.

Use Unequal for the memory semantics of this instruction when Value and Original Value
compare unequal. Unequal cannot be set to Release or Acquire and Release. In addition,
Unequal cannot be set to a stronger memory-order then Equal.

The type of Value must be the same as Result Type. The type of the value pointed to by
Pointer must be the same as Result Type. This type must also match the type of
Comparator.

Capability:
Kernel

9 231 <id>
Result
Type

Result
<id>

<id>
Pointer

Scope
<id>
Scope

Memory
Semantics
<id>
Equal

Memory
Semantics
<id>
Unequal

<id>
Value

<id>
Comparator

156

SPIR-V Specification

OpAtomicIIncrement

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value through integer addition of 1 to Original Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar. The type of the value pointed to by Pointer must be the same as Result
Type.
6 232 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics <id>
Semantics

OpAtomicIDecrement

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value through integer subtraction of 1 from Original Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar. The type of the value pointed to by Pointer must be the same as Result
Type.
6 233 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics <id>
Semantics

OpAtomicIAdd

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by integer addition of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type.
7 234 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics
<id>
Semantics

<id>
Value

157

SPIR-V Specification

OpAtomicISub

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by integer subtraction of Value from Original Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type.
7 235 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicSMin

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by finding the smallest signed integer of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type.
7 236 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics
<id>
Semantics

<id>
Value

158

SPIR-V Specification

OpAtomicUMin

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by finding the smallest unsigned integer of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type.
7 237 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicSMax

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by finding the largest signed integer of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type.
7 238 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics
<id>
Semantics

<id>
Value

159

SPIR-V Specification

OpAtomicUMax

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by finding the largest unsigned integer of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type.
7 239 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicAnd

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by the bitwise AND of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type.
7 240 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics
<id>
Semantics

<id>
Value

160

SPIR-V Specification

OpAtomicOr

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by the bitwise OR of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type.
7 241 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics
<id>
Semantics

<id>
Value

OpAtomicXor

Perform the following steps atomically with respect to any other atomic accesses within Scope to the same location:
1) load through Pointer to get an Original Value,
2) get a New Value by the bitwise exclusive OR of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value pointed to by Pointer must be the same as
Result Type.
7 242 <id>

Result Type
Result <id> <id>

Pointer
Scope <id>
Scope

Memory
Semantics
<id>
Semantics

<id>
Value

161

SPIR-V Specification

OpAtomicFlagTestAndSet

Atomically sets the flag value pointed to by Pointer to the set state.

Pointer must be a pointer to a 32-bit integer type representing an atomic
flag.

The instruction’s result is true if the flag was in the set state or false if the
flag was in the clear state immediately before the operation.

Result Type must be a Boolean type.

Results are undefined if an atomic flag is modified by an instruction other
than OpAtomicFlagTestAndSet or OpAtomicFlagClear

Capability:
Kernel

6 318 <id>
Result Type

Result <id> <id>
Pointer

Scope <id>
Scope

Memory
Semantics <id>
Semantics

OpAtomicFlagClear

Atomically sets the flag value pointed to by Pointer to the clear state.

Pointer must be a pointer to a 32-bit integer type representing an atomic flag.

Memory Semantics cannot be Acquire or AcquireRelease

Results are undefined if an atomic flag is modified by an instruction other than
OpAtomicFlagTestAndSet or OpAtomicFlagClear

Capability:
Kernel

4 319 <id>
Pointer

Scope <id>
Scope

Memory Semantics <id>
Semantics

162

SPIR-V Specification

3.32.19 Primitive Instructions

OpEmitVertex

Emits the current values of all output variables to the
current output primitive. After execution, the values of
all output variables are undefined.

This instruction can only be used when only one stream
is present.

Capability:
Geometry

1 218

OpEndPrimitive

Finish the current primitive and start a new one. No
vertex is emitted.

This instruction can only be used when only one
stream is present.

Capability:
Geometry

1 219

OpEmitStreamVertex

Emits the current values of all output variables
to the current output primitive. After execution,
the values of all output variables are undefined.

Stream must be an <id> of a constant
instruction with a scalar integer type. That
constant is the output-primitive stream number.

This instruction can only be used when
multiple streams are present.

Capability:
GeometryStreams

2 220 <id>
Stream

OpEndStreamPrimitive

Finish the current primitive and start a new
one. No vertex is emitted.

Stream must be an <id> of a constant
instruction with a scalar integer type. That
constant is the output-primitive stream number.

This instruction can only be used when
multiple streams are present.

Capability:
GeometryStreams

2 221 <id>
Stream

163

SPIR-V Specification

3.32.20 Barrier Instructions

OpControlBarrier

Wait for other invocations of this module to reach the current point of execution.

All invocations of this module within Execution scope must reach this point of execution before any invocation will
proceed beyond it.

This instruction is only guaranteed to work correctly if placed strictly within uniform control flow within Execution.
This ensures that if any invocation executes it, all invocations will execute it. If placed elsewhere, an invocation may
stall indefinitely.

If Semantics is not None, this instruction also serves as an OpMemoryBarrier instruction, and must also perform and
adhere to the description and semantics of an OpMemoryBarrier instruction with the same Memory and Semantics
operands. This allows atomically specifying both a control barrier and a memory barrier (that is, without needing two
instructions). If Semantics is None, Memory is ignored.

It is only valid to use this instruction with TessellationControl, GLCompute, or Kernel execution models.

When used with the TessellationControl execution model, it also implicitly synchronizes the Output Storage Class:
Writes to Output variables performed by any invocation executed prior to a OpControlBarrier will be visible to any
other invocation after return from that OpControlBarrier.
4 224 Scope <id>

Execution
Scope <id>
Memory

Memory Semantics <id>
Semantics

OpMemoryBarrier

Control the order that memory accesses are observed.

Ensures that memory accesses issued before this instruction will be observed before memory accesses issued after
this instruction. This control is ensured only for memory accesses issued by this invocation and observed by another
invocation executing within Memory scope.

Semantics declares what kind of memory is being controlled and what kind of control to apply.

To execute both a memory barrier and a control barrier, see OpControlBarrier.
3 225 Scope <id>

Memory
Memory Semantics <id>
Semantics

164

SPIR-V Specification

3.32.21 Group Instructions

OpGroupAsyncCopy

Perform an asynchronous group copy of Num Elements elements from Source to
Destination. The asynchronous copy is performed by all work-items in a group.

This instruction returns an event object that can be used by OpGroupWaitEvents to wait for
the async copy to finish.

All invocations of this module within Execution must reach this point of execution.

This instruction is only guaranteed to work correctly if placed strictly within uniform
control flow within Execution. This ensures that if any invocation executes it, all
invocations will execute it. If placed elsewhere, an invocation may stall indefinitely.

Result Type must be an OpTypeEvent object.

Destination must be a pointer to a scalar or vector of floating-point type or integer type.

Destination pointer Storage Class must be Workgroup or CrossWorkgroup.

The type of Source must be the same as Destination.

When Destination pointer Storage Class is Workgroup, the Source pointer Storage Class
must be CrossWorkgroup. In this case Stride defines the stride in elements when reading
from Source pointer.

When Destination pointer Storage Class is CrossWorkgroup, the Source pointer Storage
Class must be Workgroup. In this case Stride defines the stride in elements when writing
each element to Destination pointer.

Stride and NumElements must be a 32-bit integer type scalar when the addressing model is
Physical32 and 64 bit integer type scalar when the Addressing Model is Physical64.

Event must have a type of OpTypeEvent.

Event can be used to associate the copy with a previous copy allowing an event to be
shared by multiple copies. Otherwise Event should be an OpConstantNull.

If Event argument is not OpConstantNull, the event object supplied in event argument will
be returned.

Capability:
Kernel

9 259 <id>
Result
Type

Result
<id>

Scope
<id>
Execution

<id>
Destination

<id>
Source

<id>
Num
Elements

<id>
Stride

<id>
Event

165

SPIR-V Specification

OpGroupWaitEvents

Wait for events generated by OpGroupAsyncCopy operations to complete. Events
List points to Num Events event objects, which will be released after the wait is
performed.

All invocations of this module within Execution must reach this point of execution.

This instruction is only guaranteed to work correctly if placed strictly within uniform
control flow within Execution. This ensures that if any invocation executes it, all
invocations will execute it. If placed elsewhere, an invocation may stall indefinitely.

Execution must be Workgroup or Subgroup Scope.

Num Events must be a 32-bit integer type scalar.

Events List must be a pointer to OpTypeEvent.

Capability:
Kernel

4 260 Scope <id>
Execution

<id>
Num Events

<id>
Events List

OpGroupAll

Evaluates a predicate for all invocations in the group,resulting in true if predicate evaluates
to true for all invocations in the group, otherwise the result is false.

All invocations of this module within Execution must reach this point of execution.

This instruction is only guaranteed to work correctly if placed strictly within uniform control
flow within Execution. This ensures that if any invocation executes it, all invocations will
execute it. If placed elsewhere, an invocation may stall indefinitely.

Result Type must be a Boolean type.

Execution must be Workgroup or Subgroup Scope.

Predicate must be a Boolean type.

Capability:
Groups

5 261 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Predicate

166

SPIR-V Specification

OpGroupAny

Evaluates a predicate for all invocations in the group,resulting in true if predicate evaluates
to true for any invocation in the group, otherwise the result is false.

All invocations of this module within Execution must reach this point of execution.

This instruction is only guaranteed to work correctly if placed strictly within uniform control
flow within Execution. This ensures that if any invocation executes it, all invocations will
execute it. If placed elsewhere, an invocation may stall indefinitely.

Result Type must be a Boolean type.

Execution must be Workgroup or Subgroup Scope.

Predicate must be a Boolean type.

Capability:
Groups

5 262 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Predicate

OpGroupBroadcast

Return the Value of the invocation identified by the local id LocalId to all
invocations in the group.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

Result Type must be a 32-bit or 64-bit integer type or a 16, 32 or 64 float
type scalar.

Execution must be Workgroup or Subgroup Scope.

The type of Value must be the same as Result Type.

LocalId must be an integer datatype. It can be a scalar, or a vector with 2
components or a vector with 3 components. LocalId must be the same for
all invocations in the group.

Capability:
Groups

6 263 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Value

<id>
LocalId

167

SPIR-V Specification

OpGroupIAdd

An integer add group operation specified for all values of X specified by
invocations in the group.

The identity I is 0.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

Result Type must be a 32-bit or 64-bit integer type scalar.

Execution must be Workgroup or Subgroup Scope.

The type of X must be the same as Result Type.

Capability:
Groups

6 264 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupFAdd

A floating-point add group operation specified for all values of X specified
by invocations in the group.

The identity I is 0.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

Result Type must be a 16-bit, 32-bit, or 64-bit floating-point type scalar.

Execution must be Workgroup or Subgroup Scope.

The type of X must be the same as Result Type.

Capability:
Groups

6 265 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

168

SPIR-V Specification

OpGroupFMin

A floating-point minimum group operation specified for all values of X
specified by invocations in the group.

The identity I is +INF.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

Result Type must be a 16-bit, 32-bit, or 64-bit floating-point type scalar.

Execution must be Workgroup or Subgroup Scope.

The type of X must be the same as Result Type.

Capability:
Groups

6 266 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupUMin

An unsigned integer minimum group operation specified for all values of X
specified by invocations in the group.

The identity I is UINT_MAX when X is 32 bits wide and ULONG_MAX
when X is 64 bits wide.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

Result Type must be a 32-bit or 64-bit integer type scalar.

Execution must be Workgroup or Subgroup Scope.

The type of X must be the same as Result Type.

Capability:
Groups

6 267 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

169

SPIR-V Specification

OpGroupSMin

A signed integer minimum group operation specified for all values of X
specified by invocations in the group.

The identity I is INT_MAX when X is 32 bits wide and LONG_MAX when
X is 64 bits wide.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

Result Type must be a 32-bit or 64-bit integer type scalar.

Execution must be Workgroup or Subgroup Scope.

The type of X must be the same as Result Type.

Capability:
Groups

6 268 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupFMax

A floating-point maximum group operation specified for all values of X
specified by invocations in the group.

The identity I is -INF.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

Result Type must be a 16-bit, 32-bit, or 64-bit floating-point type scalar.

Execution must be Workgroup or Subgroup Scope.

The type of X must be the same as Result Type.

Capability:
Groups

6 269 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

170

SPIR-V Specification

OpGroupUMax

An unsigned integer maximum group operation specified for all values of X
specified by invocations in the group.

The identity I is 0.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

Result Type must be a 32-bit or 64-bit integer type scalar.

Execution must be Workgroup or Subgroup Scope.

The type of X must be the same as Result Type.

Capability:
Groups

6 270 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpGroupSMax

A signed integer maximum group operation specified for all values of X
specified by invocations in the group.

The identity I is INT_MIN when X is 32 bits wide and LONG_MIN when X
is 64 bits wide.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

X and Result Type must be a 32-bit or 64-bit OpTypeInt data type.

Execution must be Workgroup or Subgroup Scope.

The type of X must be the same as Result Type.

Capability:
Groups

6 271 <id>
Result Type

Result <id> Scope <id>
Execution

Group Operation
Operation

<id>
X

OpSubgroupBallotKHR

See extension SPV_KHR_shader_ballot

Capability:
SubgroupBallotKHR

4 4421 <id>
Result Type

Result <id> <id>
Predicate

171

SPIR-V Specification

OpSubgroupFirstInvocationKHR

See extension SPV_KHR_shader_ballot

Capability:
SubgroupBallotKHR

4 4422 <id>
Result Type

Result <id> <id>
Value

OpSubgroupReadInvocationKHR

See extension SPV_KHR_shader_ballot

Capability:
SubgroupBallotKHR

5 4432 <id>
Result Type

Result <id> <id>
Value

<id>
Index

OpGroupIAddNonUniformAMD

TBD

Capability:
Groups

6 5000 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
X

OpGroupFAddNonUniformAMD

TBD

Capability:
Groups

6 5001 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
X

OpGroupFMinNonUniformAMD

TBD

Capability:
Groups

6 5002 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
X

OpGroupUMinNonUniformAMD

TBD

Capability:
Groups

6 5003 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
X

OpGroupSMinNonUniformAMD

TBD

Capability:
Groups

6 5004 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
X

172

SPIR-V Specification

OpGroupFMaxNonUniformAMD

TBD

Capability:
Groups

6 5005 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
X

OpGroupUMaxNonUniformAMD

TBD

Capability:
Groups

6 5006 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
X

OpGroupSMaxNonUniformAMD

TBD

Capability:
Groups

6 5007 <id>
Result Type

Result <id> Scope <id>
Execution

Group
Operation
Operation

<id>
X

173

SPIR-V Specification

3.32.22 Device-Side Enqueue Instructions

OpEnqueueMarker

Enqueue a marker command to the queue object specified by Queue. The marker
command waits for a list of events to complete, or if the list is empty it waits for
all previously enqueued commands in Queue to complete before the marker
completes.

Result Type must be a 32-bit integer type scalar. A successful enqueue results in
the value 0. A failed enqueue results in a non-0 value.

Queue must be of the type OpTypeQueue.

Num Events specifies the number of event objects in the wait list pointed to by
Wait Events and must be a 32-bit integer type scalar, which is treated as an
unsigned integer.

Wait Events specifies the list of wait event objects and must be a pointer to
OpTypeDeviceEvent.

Ret Event is a pointer to a device event which gets implicitly retained by this
instruction. It must have a type of OpTypePointer to OpTypeDeviceEvent. If Ret
Event is set to null this instruction becomes a no-op.

Capability:
DeviceEnqueue

7 291 <id>
Result Type

Result <id> <id>
Queue

<id>
Num Events

<id>
Wait Events

<id>
Ret Event

174

SPIR-V Specification

OpEnqueueKernel

Enqueue the function specified by Invoke and the NDRange specified by ND Range
for execution to the queue object specified by Queue.

Result Type must be a 32-bit integer type scalar. A successful enqueue results in the
value 0. A failed enqueue results in a non-0 value.

Queue must be of the type OpTypeQueue.

Flags must be an integer type scalar. The content of Flags is interpreted as Kernel
Enqueue Flags mask.

The type of ND Range must be an OpTypeStruct whose members are as described by
the Result Type of OpBuildNDRange.

Num Events specifies the number of event objects in the wait list pointed to by Wait
Events and must be 32-bit integer type scalar, which is treated as an unsigned integer.

Wait Events specifies the list of wait event objects and must be a pointer to
OpTypeDeviceEvent.

Ret Event must be a pointer to OpTypeDeviceEvent which gets implicitly retained
by this instruction.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit OpTypeInt.
- An optional list of parameters, each of which must have a type of OpTypePointer to
the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a pointer
to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be a
32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar,
which is treated as an unsigned integer.

Each Local Size operand corresponds (in order) to one OpTypePointer to
Workgroup Storage Class parameter to the Invoke function, and specifies the
number of bytes of Workgroup storage used to back the pointer during the
execution of the Invoke function.

Capability:
DeviceEnqueue

13 +
vari-
able

292 <id>
Result
Type

Result
<id>

<id>
Queue

<id>
Flags

<id>
ND
Range

<id>
Num
Events

<id>
Wait
Events

<id>
Ret
Event

<id>
Invoke

<id>
Param

<id>
Param
Size

<id>
Param
Align

<id>,
<id>,
. . .
Local
Size

175

SPIR-V Specification

OpGetKernelNDrangeSubGroupCount

Returns the number of subgroups in each workgroup of the dispatch (except for the last
in cases where the global size does not divide cleanly into work-groups) given the
combination of the passed NDRange descriptor specified by ND Range and the
function specified by Invoke.

Result Type must be a 32-bit integer type scalar.

The type of ND Range must be an OpTypeStruct whose members are as described by
the Result Type of OpBuildNDRange.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit OpTypeInt.
- An optional list of parameters, each of which must have a type of OpTypePointer to
the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a pointer to
an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be a 32-bit
integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar, which
is treated as an unsigned integer.

Capability:
DeviceEnqueue

8 293 <id>
Result Type

Result <id> <id>
ND Range

<id>
Invoke

<id>
Param

<id>
Param Size

<id>
Param
Align

176

SPIR-V Specification

OpGetKernelNDrangeMaxSubGroupSize

Returns the maximum sub-group size for the function specified by Invoke and the
NDRange specified by ND Range.

Result Type must be a 32-bit integer type scalar.

The type of ND Range must be an OpTypeStruct whose members are as described by
the Result Type of OpBuildNDRange.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit OpTypeInt.
- An optional list of parameters, each of which must have a type of OpTypePointer to
the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a pointer to
an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be a 32-bit
integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar, which
is treated as an unsigned integer.

Capability:
DeviceEnqueue

8 294 <id>
Result Type

Result <id> <id>
ND Range

<id>
Invoke

<id>
Param

<id>
Param Size

<id>
Param
Align

OpGetKernelWorkGroupSize

Returns the maximum work-group size that can be used to execute the function
specified by Invoke on the device.

Result Type must be a 32-bit integer type scalar.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit OpTypeInt.
- An optional list of parameters, each of which must have a type of OpTypePointer
to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a
pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be a
32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar,
which is treated as an unsigned integer.

Capability:
DeviceEnqueue

7 295 <id>
Result Type

Result <id> <id>
Invoke

<id>
Param

<id>
Param Size

<id>
Param Align

177

SPIR-V Specification

OpGetKernelPreferredWorkGroupSizeMultiple

Returns the preferred multiple of work-group size for the function specified by
Invoke. This is a performance hint. Specifying a work-group size that is not a
multiple of the value returned by this query as the value of the local work size will
not fail to enqueue Invoke for execution unless the work-group size specified is
larger than the device maximum.

Result Type must be a 32-bit integer type scalar.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.
- The first parameter must have a type of OpTypePointer to an 8-bit OpTypeInt.
- An optional list of parameters, each of which must have a type of OpTypePointer
to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a
pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be a
32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar,
which is treated as an unsigned integer.

Capability:
DeviceEnqueue

7 296 <id>
Result Type

Result <id> <id>
Invoke

<id>
Param

<id>
Param Size

<id>
Param Align

OpRetainEvent

Increments the reference count of the event
object specified by Event.

Event must be an event that was produced by
OpEnqueueKernel, OpEnqueueMarker or
OpCreateUserEvent.

Capability:
DeviceEnqueue

2 297 <id>
Event

178

SPIR-V Specification

OpReleaseEvent

Decrements the reference count of the event
object specified by Event. The event object is
deleted once the event reference count is zero,
the specific command identified by this event
has completed (or terminated) and there are no
commands in any device command queue that
require a wait for this event to complete.

Event must be an event that was produced by
OpEnqueueKernel, OpEnqueueMarker or
OpCreateUserEvent.

Capability:
DeviceEnqueue

2 298 <id>
Event

OpCreateUserEvent

Create a user event. The execution status of the created
event is set to a value of 2 (CL_SUBMITTED).

Result Type must be OpTypeDeviceEvent.

Capability:
DeviceEnqueue

3 299 <id>
Result Type

Result <id>

OpIsValidEvent

Returns true if the event specified by Event is a valid event, otherwise result is
false.

Result Type must be a Boolean type.

Event must have a type of OpTypeDeviceEvent

Capability:
DeviceEnqueue

4 300 <id>
Result Type

Result <id> <id>
Event

OpSetUserEventStatus

Sets the execution status of a user event specified by Event.Status can be
either 0 (CL_COMPLETE) to indicate that this kernel and all its child
kernels finished execution successfully, or a negative integer value
indicating an error.

Event must have a type of OpTypeDeviceEvent that was produced by
OpCreateUserEvent.

Status must have a type of 32-bit OpTypeInt treated as a signed integer.

Capability:
DeviceEnqueue

3 301 <id>
Event

<id>
Status

179

SPIR-V Specification

OpCaptureEventProfilingInfo

Captures the profiling information specified by Profiling Info for the command
associated with the event specified by Event in the memory pointed to by Value.The
profiling information will be available in the memory pointed to by Value once the
command identified by Event has completed.

Event must have a type of OpTypeDeviceEvent that was produced by
OpEnqueueKernel or OpEnqueueMarker.

Profiling Info must be an integer type scalar. The content of Profiling Info is
interpreted as Kernel Profiling Info mask.

Value must be a pointer to a scalar 8-bit integer type in the CrossWorkgroup Storage
Class.

When Profiling Info is CmdExecTime, Value must point to 128-bit memory range.
The first 64 bits contain the elapsed time CL_PROFILING_COMMAND_END -
CL_PROFILING_COMMAND_START for the command identified by Event in
nanoseconds.
The second 64 bits contain the elapsed time
CL_PROFILING_COMMAND_COMPLETE -
CL_PROFILING_COMMAND_START for the command identified by Event in
nanoseconds.

Note: The behavior of this instruction is undefined when called multiple times for the
same event.

Capability:
DeviceEnqueue

4 302 <id>
Event

<id>
Profiling Info

<id>
Value

OpGetDefaultQueue

Returns the default device queue. If a default device
queue has not been created, a null queue object is
returned.

Result Type must be an OpTypeQueue.

Capability:
DeviceEnqueue

3 303 <id>
Result Type

Result <id>

180

SPIR-V Specification

OpBuildNDRange

Given the global work size specified by GlobalWorkSize, local work size
specified by LocalWorkSize and global work offset specified by
GlobalWorkOffset, builds a 1D, 2D or 3D ND-range descriptor structure and
returns it.

Result Type must be an OpTypeStruct with the following ordered list of
members, starting from the first to last:

1) 32-bit integer type scalar, that specifies the number of dimensions used to
specify the global work-items and work-items in the work-group.

2) OpTypeArray with 3 elements, where each element is 32-bit integer type
scalar when the addressing model is Physical32 and 64-bit integer type
scalar when the addressing model is Physical64. This member is an array of
per-dimension unsigned values that describe the offset used to calculate the
global ID of a work-item.

3) OpTypeArray with 3 elements, where each element is 32-bit integer type
scalar when the addressing model is Physical32 and 64-bit integer type
scalar when the addressing model is Physical64. This member is an array of
per-dimension unsigned values that describe the number of global
work-items in the dimensions that will execute the kernel function.

4) OpTypeArray with 3 elements, where each element is 32-bit integer type
scalar when the addressing model is Physical32 and 64-bit integer type
scalar when the addressing model is Physical64. This member is an array of
per-dimension unsigned values that describe the number of work-items that
make up a work-group.

GlobalWorkSize must be a scalar or an array with 2 or 3 components. Where
the type of each element in the array is 32-bit integer type scalar when the
addressing model is Physical32 or 64-bit integer type scalar when the
addressing model is Physical64.

The type of LocalWorkSize must be the same as GlobalWorkSize.

The type of GlobalWorkOffset must be the same as GlobalWorkSize.

Capability:
DeviceEnqueue

6 304 <id>
Result Type

Result <id> <id>
GlobalWorkSize

<id>
LocalWorkSize

<id>
GlobalWorkOffset

181

SPIR-V Specification

3.32.23 Pipe Instructions

OpReadPipe

Read a packet from the pipe object specified by Pipe into Pointer. Result is 0 if the
operation is successful and a negative value if the pipe is empty.

Result Type must be a 32-bit integer type scalar.

Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Pointer must have a type of OpTypePointer with the same data type as Pipe and a
Generic Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the size in bytes of
each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the alignment
in bytes of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For aggregate
types, Packet Alignment should be the size of the largest primitive type in the
hierarchy of types.

Capability:
Pipes

7 274 <id>
Result Type

Result <id> <id>
Pipe

<id>
Pointer

<id>
Packet Size

<id>
Packet
Alignment

182

SPIR-V Specification

OpWritePipe

Write a packet from Pointer to the pipe object specified by Pipe. Result is 0 if the
operation is successful and a negative value if the pipe is full.

Result Type must be a 32-bit integer type scalar.

Pipe must have a type of OpTypePipe with WriteOnly access qualifier.

Pointer must have a type of OpTypePointer with the same data type as Pipe and a
Generic Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the size in bytes of
each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the alignment
in bytes of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For aggregate
types, Packet Alignment should be the size of the largest primitive type in the
hierarchy of types.

Capability:
Pipes

7 275 <id>
Result Type

Result <id> <id>
Pipe

<id>
Pointer

<id>
Packet Size

<id>
Packet
Alignment

183

SPIR-V Specification

OpReservedReadPipe

Read a packet from the reserved area specified by Reserve Id and Index of the pipe object
specified by Pipe into Pointer. The reserved pipe entries are referred to by indices that go
from 0 . . . Num Packets - 1. Result is 0 if the operation is successful and a negative value
otherwise.

Result Type must be a 32-bit integer type scalar.

Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Reserve Id must have a type of OpTypeReserveId.

Index must be a 32-bit integer type scalar, which is treated as unsigned value.

Pointer must have a type of OpTypePointer with the same data type as Pipe and a Generic
Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the size in bytes of each
packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the alignment in bytes
of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For aggregate types, Packet
Alignment should be the size of the largest primitive type in the hierarchy of types.

Capability:
Pipes

9 276 <id>
Result
Type

Result
<id>

<id>
Pipe

<id>
Reserve
Id

<id>
Index

<id>
Pointer

<id>
Packet
Size

<id>
Packet
Alignment

184

SPIR-V Specification

OpReservedWritePipe

Write a packet from Pointer into the reserved area specified by Reserve Id and Index of the
pipe object specified by Pipe. The reserved pipe entries are referred to by indices that go
from 0 . . . Num Packets - 1. Result is 0 if the operation is successful and a negative value
otherwise.

Result Type must be a 32-bit integer type scalar.

Pipe must have a type of OpTypePipe with WriteOnly access qualifier.

Reserve Id must have a type of OpTypeReserveId.

Index must be a 32-bit integer type scalar, which is treated as unsigned value.

Pointer must have a type of OpTypePointer with the same data type as Pipe and a Generic
Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the size in bytes of each
packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the alignment in bytes
of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For aggregate types, Packet
Alignment should be the size of the largest primitive type in the hierarchy of types.

Capability:
Pipes

9 277 <id>
Result
Type

Result
<id>

<id>
Pipe

<id>
Reserve
Id

<id>
Index

<id>
Pointer

<id>
Packet
Size

<id>
Packet
Alignment

185

SPIR-V Specification

OpReserveReadPipePackets

Reserve Num Packets entries for reading from the pipe object specified by Pipe.
Result is a valid reservation ID if the reservation is successful.

Result Type must be an OpTypeReserveId.

Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Num Packets must be a 32-bit integer type scalar, which is treated as unsigned
value.

Packet Size must be a 32-bit integer type scalar that represents the size in bytes of
each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the alignment
in bytes of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For aggregate
types, Packet Alignment should be the size of the largest primitive type in the
hierarchy of types.

Capability:
Pipes

7 278 <id>
Result Type

Result <id> <id>
Pipe

<id>
Num Packets

<id>
Packet Size

<id>
Packet
Alignment

OpReserveWritePipePackets

Reserve num_packets entries for writing to the pipe object specified by Pipe.
Result is a valid reservation ID if the reservation is successful.

Pipe must have a type of OpTypePipe with WriteOnly access qualifier.

Num Packets must be a 32-bit OpTypeInt which is treated as unsigned value.

Result Type must be an OpTypeReserveId.

Packet Size must be a 32-bit integer type scalar that represents the size in bytes of
each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the alignment
in bytes of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For aggregate
types, Packet Alignment should be the size of the largest primitive type in the
hierarchy of types.

Capability:
Pipes

186

SPIR-V Specification

7 279 <id>
Result Type

Result <id> <id>
Pipe

<id>
Num Packets

<id>
Packet Size

<id>
Packet
Alignment

187

SPIR-V Specification

OpCommitReadPipe

Indicates that all reads to Num Packets associated with the reservation specified by Reserve
Id and the pipe object specified by Pipe are completed.

Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Reserve Id must have a type of OpTypeReserveId.

Packet Size must be a 32-bit integer type scalar that represents the size in bytes of each
packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the alignment in bytes of
each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For aggregate types, Packet
Alignment should be the size of the largest primitive type in the hierarchy of types.

Capability:
Pipes

5 280 <id>
Pipe

<id>
Reserve Id

<id>
Packet Size

<id>
Packet Alignment

OpCommitWritePipe

Indicates that all writes to Num Packets associated with the reservation specified by Reserve
Id and the pipe object specified by Pipe are completed.

Pipe must have a type of OpTypePipe with WriteOnly access qualifier.

Reserve Id must have a type of OpTypeReserveId.

Packet Size must be a 32-bit integer type scalar that represents the size in bytes of each
packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the alignment in bytes of
each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For aggregate types, Packet
Alignment should be the size of the largest primitive type in the hierarchy of types.

Capability:
Pipes

5 281 <id>
Pipe

<id>
Reserve Id

<id>
Packet Size

<id>
Packet Alignment

188

SPIR-V Specification

OpIsValidReserveId

Return true if Reserve Id is a valid reservation id and false otherwise.

Result Type must be a Boolean type.

Reserve Id must have a type of OpTypeReserveId.

Capability:
Pipes

4 282 <id>
Result Type

Result <id> <id>
Reserve Id

189

SPIR-V Specification

OpGetNumPipePackets

Result is the number of available entries in the pipe object specified by Pipe.
The number of available entries in a pipe is a dynamic value. The value
returned should be considered immediately stale.

Result Type must be a 32-bit integer type scalar, which should be treated as
unsigned value.

Pipe must have a type of OpTypePipe with ReadOnly or WriteOnly access
qualifier.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the
alignment in bytes of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For
aggregate types, Packet Alignment should be the size of the largest primitive
type in the hierarchy of types.

Capability:
Pipes

6 283 <id>
Result Type

Result <id> <id>
Pipe

<id>
Packet Size

<id>
Packet Alignment

OpGetMaxPipePackets

Result is the maximum number of packets specified when the pipe object
specified by Pipe was created.

Result Type must be a 32-bit integer type scalar, which should be treated as
unsigned value.

Pipe must have a type of OpTypePipe with ReadOnly or WriteOnly access
qualifier.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the
alignment in bytes of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For
aggregate types, Packet Alignment should be the size of the largest primitive
type in the hierarchy of types.

Capability:
Pipes

190

SPIR-V Specification

6 284 <id>
Result Type

Result <id> <id>
Pipe

<id>
Packet Size

<id>
Packet Alignment

191

SPIR-V Specification

OpGroupReserveReadPipePackets

Reserve Num Packets entries for reading from the pipe object specified by Pipe at
group level. Result is a valid reservation id if the reservation is successful.

The reserved pipe entries are referred to by indices that go from 0 . . . Num Packets - 1.

All invocations of this module within Execution must reach this point of execution.

This instruction is only guaranteed to work correctly if placed strictly within uniform
control flow within Execution. This ensures that if any invocation executes it, all
invocations will execute it. If placed elsewhere, an invocation may stall indefinitely.

Result Type must be an OpTypeReserveId.

Execution must be Workgroup or Subgroup Scope.

Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Num Packets must be a 32-bit integer type scalar, which is treated as unsigned value.

Packet Size must be a 32-bit integer type scalar that represents the size in bytes of each
packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the alignment in
bytes of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For aggregate types,
Packet Alignment should be the size of the largest primitive type in the hierarchy of
types.

Capability:
Pipes

8 285 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Pipe

<id>
Num
Packets

<id>
Packet Size

<id>
Packet
Alignment

192

SPIR-V Specification

OpGroupReserveWritePipePackets

Reserve Num Packets entries for writing to the pipe object specified by Pipe at group
level. Result is a valid reservation ID if the reservation is successful.

The reserved pipe entries are referred to by indices that go from 0 . . . Num Packets - 1.

All invocations of this module within Execution must reach this point of execution.

This instruction is only guaranteed to work correctly if placed strictly within uniform
control flow within Execution. This ensures that if any invocation executes it, all
invocations will execute it. If placed elsewhere, an invocation may stall indefinitely.

Result Type must be an OpTypeReserveId.

Execution must be Workgroup or Subgroup Scope.

Pipe must have a type of OpTypePipe with WriteOnly access qualifier.

Num Packets must be a 32-bit integer type scalar, which is treated as unsigned value.

Packet Size must be a 32-bit integer type scalar that represents the size in bytes of each
packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the alignment in
bytes of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For aggregate types,
Packet Alignment should be the size of the largest primitive type in the hierarchy of
types.

Capability:
Pipes

8 286 <id>
Result Type

Result <id> Scope <id>
Execution

<id>
Pipe

<id>
Num
Packets

<id>
Packet Size

<id>
Packet
Alignment

193

SPIR-V Specification

OpGroupCommitReadPipe

A group level indication that all reads to Num Packets associated with the
reservation specified by Reserve Id to the pipe object specified by Pipe are
completed.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

Execution must be Workgroup or Subgroup Scope.

Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Reserve Id must have a type of OpTypeReserveId.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the
alignment in bytes of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For
aggregate types, Packet Alignment should be the size of the largest primitive
type in the hierarchy of types.

Capability:
Pipes

6 287 Scope <id>
Execution

<id>
Pipe

<id>
Reserve Id

<id>
Packet Size

<id>
Packet Alignment

194

SPIR-V Specification

OpGroupCommitWritePipe

A group level indication that all writes to Num Packets associated with the
reservation specified by Reserve Id to the pipe object specified by Pipe are
completed.

All invocations of this module within Execution must reach this point of
execution.

This instruction is only guaranteed to work correctly if placed strictly within
uniform control flow within Execution. This ensures that if any invocation
executes it, all invocations will execute it. If placed elsewhere, an invocation
may stall indefinitely.

Execution must be Workgroup or Subgroup Scope.

Pipe must have a type of OpTypePipe with WriteOnly access qualifier.

Reserve Id must have a type of OpTypeReserveId.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that presents the
alignment in bytes of each packet in the pipe.

Packet Size and Packet Alignment must satisfy the following:
- 1 <= Packet Alignment <= Packet Size.
- Packet Alignment must evenly divide Packet Size

For concrete types, Packet Alignment should equal Packet Size. For
aggregate types, Packet Alignment should be the size of the largest primitive
type in the hierarchy of types.

Capability:
Pipes

6 288 Scope <id>
Execution

<id>
Pipe

<id>
Reserve Id

<id>
Packet Size

<id>
Packet Alignment

195

SPIR-V Specification

A Changes

A.1 Changes from Version 0.99, Revision 31

• Added the PushConstant Storage Class.

• Added OpIAddCarry, OpISubBorrow, OpUMulExtended, and OpSMulExtended.

• Added OpInBoundsPtrAccessChain.

• Added the Decoration NoContraction to prevent combining multiple operations into a single operation (bug 14396).

• Added sparse texturing (14486):

– Added OpImageSparse. . . for accessing images that might not be resident.
– Added MinLod functionality for accessing images with a minimum level of detail.

• Added back the Alignment Decoration, for the Kernel capability (14505).

• Added a NonTemporal Memory Access (14566).

• Structured control flow changes:

– Changed structured loops to have a structured continue Continue Target in OpLoopMerge (14422).
– Added rules for how "fall through" works with OpSwitch (13579).
– Added definitions for what is "inside" a structured control-flow construct (14422).

• Added SubpassData Dim to support input targets written by a previous subpass as an output target (14304). This is also
a Decoration and a Capability, and can be used by some image ops to read the input target.

• Added OpTypeForwardPointer to establish the Storage Class of a forward reference to a pointer type (13822).

• Improved Debuggability

– Changed OpLine to not have a target <id>, but instead be placed immediately preceding the instruction(s) it is
annotating (13905).

– Added OpNoLine to terminate the affect of OpLine (13905).
– Changed OpSource to include the source code:

* Allow multiple occurrences.
* Be mixed in with the OpString instructions.
* Optionally consume an OpString result to say which file it is annotating.
* Optionally include the source text corresponding to that OpString.
* Included adding OpSourceContinued for source text that is too long for a single instruction.

• Added a large number of Capabilities for subsetting functionality (14520, 14453), including 8-bit integer support for
OpenCL kernels.

• Added VertexIndex and InstanceIndex BuiltIn Decorations (14255).

• Added GenericPointer capability that allows the ability to use the Generic Storage Class (14287).

• Added IndependentForwardProgress Execution Mode (14271).

• Added OpAtomicFlagClear and OpAtomicFlagTestAndSet instructions (14315).

• Changed OpEntryPoint to take a list of Input and Output <id> for declaring the entry point’s interface.

• Fixed internal bugs

– 14411 Added missing documentation for mad_sat OpenCL extended instructions (enums existed, just the
documentation was missing)

– 14241 Removed shader capability requirement from OpImageQueryLevels and OpImageQuerySamples.
– 14241 Removed unneeded OpImageQueryDim instruction.

196

SPIR-V Specification

– 14241 Filled in TBD section for OpAtomicCompareExchangeWeek
– 14366 All OpSampledImage must appear before uses of sampled images (and still in the first block of the entry point).
– 14450 DeviceEnqueue capability is required for OpTypeQueue and OpTypeDeviceEvent
– 14363 OpTypePipe is opaque - moved packet size and alignment to opcodes
– 14367 Float16Buffer capability clarified
– 14241 Clarified how OpSampledImage can be used
– 14402 Clarified OpTypeImage encodings for OpenCL extended instructions
– 14569 Removed mention of non-existent OpFunctionDecl
– 14372 Clarified usage of OpGenericPtrMemSemantics
– 13801 Clarified the SpecId Decoration is just for constants
– 14447 Changed literal values of Memory Semantic enums to match OpenCL/C++11 atomics, and made the Memory

Semantic None and Relaxed be aliases
– 14637 Removed subgroup scope from OpGroupAsyncCopy and OpGroupWaitEvents

A.2 Changes from Version 0.99, Revision 32

• Added UnormInt101010_2 to the Image Channel Data Type table.

• Added place holder for C++11 atomic Consume Memory Semantics along with an explicit AcquireRelease memory
semantic.

• Fixed internal bugs:

– 14690 OpSwitch literal width (and hence number of operands) is determined by the type of Selector, and be rigorous
about how sub-32-bit literals are stored.

– 14485 The client API owns the semantics of built-ins that only have "pass through" semantics WRT SPIR-V.

• Fixed public bugs:

– 1387 Don’t describe result type of OpImageWrite.

A.3 Changes from Version 1.00, Revision 1

• Adjusted Capabilities:

– Split geometry-stream functionality into its own GeometryStreams capability (14873).
– Have InputAttachmentIndex to depend on InputAttachment instead of Shader (14797).
– Merge AdvancedFormats and StorageImageExtendedFormats into just StorageImageExtendedFormats (14824).
– Require StorageImageReadWithoutFormat and StorageImageWriteWithoutFormat to read and write storage

images with an Unknown Image Format.
– Removed the ImageSRGBWrite capability.

• Clarifications

– RelaxedPrecision Decoration can be applied to OpFunction (14662).

• Fixed internal bugs:

– 14797 The literal argument was missing for the InputAttachmentIndex Decoration.
– 14547 Remove the FragColor BuiltIn, so that no implicit broadcast is implied.
– 13292 Make statements about "Volatile" be more consistent with the memory model specification (non-functional

change).

197

SPIR-V Specification

– 14948 Remove image-"Query" overloading on image/sampled-image type and "fetch" on non-sampled images, by
adding the OpImage instruction to get the image from a sampled image.

– 14949 Make consistent placement between OpSource and OpSourceExtension in the logical layout of a module.
– 14865 Merge WorkgroupLinearId with LocalInvocationId BuiltIn Decorations.
– 14806 Include 3D images for OpImageQuerySize.
– 14325 Removed the Smooth Decoration.
– 12771 Make the version word formatted as: "0 | Major Number | Minor Number | 0" in the physical layout.
– 15035 Allow OpTypeImage to use a Depth operand of 2 for not indicating a depth or non-depth image.
– 15009 Split the OpenCL Source Language into two: OpenCL_C and OpenCL_CPP.
– 14683 OpSampledImage instructions can only be the consuming block, for scalars, and directly consumed by an

image lookup or query instruction.
– 14325 mutual exclusion validation rules of Execution Modes and Decorations
– 15112 add definitions for invocation, dynamically uniform, and uniform control flow.

• Renames

– InputTargetIndex Decoration→ InputAttachmentIndex
– InputTarget Capability→ InputAttachment
– InputTarget Dim→ SubpassData
– WorkgroupLocal Storage Class→Workgroup
– WorkgroupGlobal Storage Class→ CrossWorkgroup
– PrivateGlobal Storage Class→ Private
– OpAsyncGroupCopy→ OpGroupAsyncCopy
– OpWaitGroupEvents→ OpGroupWaitEvents
– InputTriangles Execution Mode→ Triangles
– InputQuads Execution Mode→ Quads
– InputIsolines Execution Mode→ Isolines

A.4 Changes from Version 1.00, Revision 2

• Updated example at the end of Section 1 to conform to the KHR_vulkan_glsl extension and treat OpTypeBool as an
abstract type.

• Adjusted Capabilities:

– MatrixStride depends on Matrix (15234).
– Sample, SampleId, SamplePosition, and SampleMask depend on SampleRateShading (15234).
– ClipDistance and CullDistance BuiltIns depend on, respectively, ClipDistance and CullDistance (1407, 15234).
– ViewportIndex depends on MultiViewport (15234).
– AtomicCounterMemory should be the AtomicStorage (15234).
– Float16 has no dependencies (15234).
– Offset Decoration should only be for Shader (15268).
– Generic Storage Class is supposed to need the GenericPointer Capability (14287).
– Remove capability restriction on the BuiltIn Decoration (15248).

• Fixed internal bugs:

– 15203 Updated description of SampleMask BuiltIn to include "Input or output. . . ", not just "Input. . . "
– 15225 Include no re-association as a constraint required by the NoContraction Decoration.
– 15210 Clarify OpPhi semantics that operand values only come from parent blocks.

198

SPIR-V Specification

– 15239 Add OpImageSparseRead, which was missing (supposed to be 12 sparse-image instructions, but only 11 got
incorporated, this adds the 12th).

– 15299 Move OpUndef back to the Miscellaneous section.
– 15321 OpTypeImage does not have a Depth restriction when used with SubpassData.
– 14948 Fix the Lod Image Operands to allow both integer and floating-point values.
– 15275 Clarify specific storage classes allowed for atomic operations under universal validation rules "Atomic access

rules".
– 15501 Restrict Patch Decoration to one of the tessellation execution models.
– 15472 Reserved use of OpImageSparseSampleProjImplicitLod, OpImageSparseSampleProjExplicitLod,

OpImageSparseSampleProjDrefImplicitLod, and OpImageSparseSampleProjDrefExplicitLod.
– 15459 Clarify what makes different aggregate types in "Types and Variables".
– 15426 Don’t require OpQuantizeToF16 to preserve NaN patterns.
– 15418 Don’t set both Acquire and Release bits in Memory Semantics.
– 15404 OpFunction Result <id> can only be used by OpFunctionCall, OpEntryPoint, and decoration instructions.
– 15437 Restrict element type for OpTypeRuntimeArray by adding a definition of concrete types.
– 15403 Clarify OpTypeFunction can only be consumed by OpFunction and functions can only return concrete and

abstract types.

• Improved accuracy of the opcode word count in each instruction regarding which operands are optional. For sampling
operations with explicit LOD, this included not marking the required LOD operands as optional.

• Clarified that when NonWritable, NonReadable, Volatile, and Coherent Decorations are applied to the Uniform
storage class, the BufferBlock decoration must be present.

• Fixed external bugs:

– 1413 (see internal 15275)
– 1417 Added definitions for block, dominate, post dominate, CFG, and back edge. Removed use of "dominator tree".

A.5 Changes from Version 1.00, Revision 3

• Added definition of derivative group, and use it to say when derivatives are well defined.

A.6 Changes from Version 1.00, Revision 4

• Expanded the list of instructions that may use or return a pointer in the Logical addressing model.

• Added missing ABGR Image Channel Order

A.7 Changes from Version 1.00, Revision 5

• Khronos SPIR-V issue #27: Removed Shader dependency from SampledBuffer and Sampled1D Capabilities.

• Khronos SPIR-V issue #56: Clarify that the meaning of "read-only" in the Storage Classes includes not allowing
initializers.

• Khronos SPIR-V issue #57: Clarify "modulo" means "remainder" in OpFMod’s description.

• Khronos SPIR-V issue #60: OpControlBarrier synchronizes Output variables when used in tessellation-control shader.

• Public SPIRV-Headers issue #1: Remove the Shader capability requirement from the Input Storage Class.

• Public SPIRV-Headers issue #10: Don’t say the (u [, v] [, w], q) has four components, as it can be closed up when the
optional ones are missing. Seen in the projective image instructions.

• Public SPIRV-Headers issues #12 and #13 and Khronos SPIR-V issue #65: Allow OpVariable as an initializer for
another OpVariable instruction or the Base of an OpSpecConstantOp with an AccessChain opcode.

• Public SPIRV-Headers issues #14: add Max enumerants of 0x7FFFFFFF to each of the non-mask enums in the C-based
header files.

199

SPIR-V Specification

A.8 Changes from Version 1.00, Revision 6

• Khronos SPIR-V issue #63: Be clear that OpUndef can be used in sequence 9 (and is preferred to be) of the Logical
Layout and can be part of partially-defined OpConstantComposite.

• Khronos SPIR-V issue #70: Don’t explicitly require operand truncation for integer operations when operating at
RelaxedPrecision.

• Khronos SPIR-V issue #76: Include OpINotEqual in the list of allowed instructions for OpSpecConstantOp.

• Khronos SPIR-V issue #79: Remove implication that OpImageQueryLod should have a component for the array index.

• Public SPIRV-Headers issue #17: Decorations Noperspective, Flat, Patch, Centroid, and Sample can apply to a
top-level member that is itself a structure, so don’t disallow it through restrictions to numeric types.

A.9 Changes from Version 1.00, Revision 7

• Khronos SPIR-V issue #69: OpImageSparseFetch editorial change in summary: include that it is sampled image.

• Khronos SPIR-V issue #74: OpImageQueryLod requires a sampler.

• Khronos SPIR-V issue #82: Clarification to the Float16Buffer Capability.

• Khronos SPIR-V issue #89: Editorial improvements to OpMemberDecorate and OpDecorationGroup.

A.10 Changes from Version 1.00, Revision 8

• Add SPV_KHR_subgroup_vote tokens.

• Typo: Change "without a sampler" to "with a sampler" for the description of the SampledBuffer Capability.

• Khronos SPIR-V issue #61: Clarification of packet size and alignment on all instructions that use the Pipes Capability.

• Khronos SPIR-V issue #99: Use "invalid" language to replace any "compile-time error" language.

• Khronos SPIR-V issue #55: Distinguish between branch instructions and termination instructions.

• Khronos SPIR-V issue #94: Add missing OpSubgroupReadInvocationKHR enumerant.

• Khronos SPIR-V issue #114: Header blocks strictly dominate their merge blocks.

• Khronos SPIR-V issue #119: OpSpecConstantOp allows OpUndef where allowed by its opcode.

A.11 Changes from Version 1.00, Revision 9

• Khronos Vulkan issue #652: Remove statements about matrix offsets and padding. These are described correctly in the
Vulkan API specifications.

• Khronos SPIR-V issue #113: Remove the "By Default" statements in FP Rounding Mode. These should be properly
documented in client API execution environment specifications.

• Add extension enumerants for

– SPV_KHR_16bit_storage
– SPV_KHR_device_group
– SPV_KHR_multiview
– SPV_NV_sample_mask_override_coverage
– SPV_NV_geometry_shader_passthrough
– SPV_NV_viewport_array2
– SPV_NV_stereo_view_rendering
– SPV_NVX_multiview_per_view_attributes

200

SPIR-V Specification

A.12 Changes from Version 1.00, Revision 10

• Add HLSL source language.

• Add StorageBuffer storage class.

• Add StorageBuffer16BitAccess, UniformAndStorageBuffer16BitAccess, VariablePointersStorageBuffer, and
VariablePointers capabilities.

• Khronos SPIR-V issue #163: Be more clear that OpTypeStruct allows zero members. Also affects ArrayStride and
Offset decoration validation rules.

• Khronos SPIR-V issue #159: List allowed AtomicCounter instructions with the AtomicStorage capability rather than
the validation rules.

• Khronos SPIR-V issue #36: Describe more clearly the type of ND Range in OpGetKernelNDrangeSubGroupCount,
OpGetKernelNDrangeMaxSubGroupSize, and OpEnqueueKernel.

• Khronos SPIR-V issue #128: Be clear the OpDot operates only on vectors.

• Khronos SPIR-V issue #80: Loop headers must dominate their continue target. See Structured Control Flow.

• Khronos SPIR-V issue #150 allow UniformConstant storage-class variables to have initializers, depending on the client
API.

A.13 Changes from Version 1.00, Revision 11

• Public issue #2: Disallow the Cube dimension from use with the Offset, ConstOffset, and ConstOffset image operands.

• Public issue #48: OpConvertPtrToU only returns a scalar, not a vector.

• Khronos SPIR-V issue #130: Be more clear which masks are literal and which are not.

• Khronos SPIR-V issue #154: Clarify only one of the listed Capabilities needs to be declared to use a feature that lists
multiple capabilities. The non-declared capabilities need not be supported by the underlying implementation.

• Khronos SPIR-V issue #174: OpImageDrefGather and OpImageSparseDrefGather return vectors, not scalars.

• Khronos SPIR-V issue #182: The SampleMask built in does not depend on SampleRateShading, only Shader.

• Khronos SPIR-V issue #183: OpQuantizeToF16 with too-small magnitude can result in either +0 or -0.

• Khronos SPIR-V issue #203: OpImageTexelPointer has 3 components for cube arrays, not 4.

• Khronos SPIR-V issue #217: Clearer language for OpArrayLength.

• Khronos SPIR-V issue #213: Image Operand LoD is not used by query operations.

• Khronos SPIR-V issue #223: OpPhi has exactly one parent operand per parent block.

• Khronos SPIR-V issue #212: In the Validation Rules, make clear a pointer can be an operand in an extended instruction
set.

• Add extension enumerants for

– SPV_AMD_shader_ballot
– SPV_KHR_post_depth_coverage
– SPV_AMD_shader_explicit_vertex_parameter
– SPV_EXT_shader_stencil_export
– SPV_INTEL_subgroups

201

	1 Introduction
	1.1 Goals
	1.2 About this document
	1.3 Extendability
	1.4 Debuggability
	1.5 Design Principles
	1.6 Static Single Assignment (SSA)
	1.7 Built-In Variables
	1.8 Specialization
	1.9 Example

	2 Specification
	2.1 Language Capabilities
	2.2 Terms
	2.2.1 Instructions
	2.2.2 Types
	2.2.3 Module
	2.2.4 Control Flow

	2.3 Physical Layout of a SPIR-V Module and Instruction
	2.4 Logical Layout of a Module
	2.5 Instructions
	2.5.1 SSA Form

	2.6 Entry Point and Execution Model
	2.7 Execution Modes
	2.8 Types and Variables
	2.9 Function Calling
	2.10 Extended Instruction Sets
	2.11 Structured Control Flow
	2.12 Specialization
	2.13 Linkage
	2.14 Relaxed Precision
	2.15 Debug Information
	2.15.1 Function-Name Mangling

	2.16 Validation Rules
	2.16.1 Universal Validation Rules
	2.16.2 Validation Rules for Shader Capabilities
	2.16.3 Validation Rules for Kernel Capabilities

	2.17 Universal Limits
	2.18 Memory Model
	2.18.1 Memory Layout
	2.18.2 Aliasing

	2.19 Derivatives
	2.20 Code Motion

	3 Binary Form
	3.1 Magic Number
	3.2 Source Language
	3.3 Execution Model
	3.4 Addressing Model
	3.5 Memory Model
	3.6 Execution Mode
	3.7 Storage Class
	3.8 Dim
	3.9 Sampler Addressing Mode
	3.10 Sampler Filter Mode
	3.11 Image Format
	3.12 Image Channel Order
	3.13 Image Channel Data Type
	3.14 Image Operands
	3.15 FP Fast Math Mode
	3.16 FP Rounding Mode
	3.17 Linkage Type
	3.18 Access Qualifier
	3.19 Function Parameter Attribute
	3.20 Decoration
	3.21 BuiltIn
	3.22 Selection Control
	3.23 Loop Control
	3.24 Function Control
	3.25 Memory Semantics <id>
	3.26 Memory Access
	3.27 Scope <id>
	3.28 Group Operation
	3.29 Kernel Enqueue Flags
	3.30 Kernel Profiling Info
	3.31 Capability
	3.32 Instructions
	3.32.1 Miscellaneous Instructions
	3.32.2 Debug Instructions
	3.32.3 Annotation Instructions
	3.32.4 Extension Instructions
	3.32.5 Mode-Setting Instructions
	3.32.6 Type-Declaration Instructions
	3.32.7 Constant-Creation Instructions
	3.32.8 Memory Instructions
	3.32.9 Function Instructions
	3.32.10 Image Instructions
	3.32.11 Conversion Instructions
	3.32.12 Composite Instructions
	3.32.13 Arithmetic Instructions
	3.32.14 Bit Instructions
	3.32.15 Relational and Logical Instructions
	3.32.16 Derivative Instructions
	3.32.17 Control-Flow Instructions
	3.32.18 Atomic Instructions
	3.32.19 Primitive Instructions
	3.32.20 Barrier Instructions
	3.32.21 Group Instructions
	3.32.22 Device-Side Enqueue Instructions
	3.32.23 Pipe Instructions

	A Changes
	A.1 Changes from Version 0.99, Revision 31
	A.2 Changes from Version 0.99, Revision 32
	A.3 Changes from Version 1.00, Revision 1
	A.4 Changes from Version 1.00, Revision 2
	A.5 Changes from Version 1.00, Revision 3
	A.6 Changes from Version 1.00, Revision 4
	A.7 Changes from Version 1.00, Revision 5
	A.8 Changes from Version 1.00, Revision 6
	A.9 Changes from Version 1.00, Revision 7
	A.10 Changes from Version 1.00, Revision 8
	A.11 Changes from Version 1.00, Revision 9
	A.12 Changes from Version 1.00, Revision 10
	A.13 Changes from Version 1.00, Revision 11

