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Abstract.

Due to their large deformation, high energy density, and high compliance, dielectric

elastomer actuators (DEAs) have found a number of applications in several areas of

mechatronics and robotics. Among the many types of DEAs proposed in the literature,

rolled DEAs (RDEAs) represent one of the most popular configurations. RDEAs

can be effectively used as compact muscle-like actuators for soft robots, since they

allow eliminating the need for external motors or compressors while providing at

the same time a flexible and lightweight structure with self-sensing capabilities. To

effectively design and control complex RDEA-driven systems and robots, accurate and

numerically efficient mathematical models need to be developed. In this work, we

propose a novel lumped-parameter model for silicone-based, thin and tightly rolled

DEAs. The model is grounded on a free-energy approach, and permits to describe the

electro-mechanically coupled response of the transducer with a set of nonlinear ordinary

differential equations. After deriving the constitutive relationships, the model is

validated by means of an extensive experimental campaign, conducted on three RDEA

specimens having different geometries. It is shown how the developed model permits

to accurately predict the effects of several parameters (external load, applied voltage,

actuator geometry) on the RDEA electro-mechanical response, while maintaining an

overall simple mathematical structure.

Keywords: Dielectric Elastomers (DE), Dielectric Elastomer Actuators (DEA), Rolled
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1. Introduction

The increasing need for soft an lightweight actuators, which can be used in application

areas such as soft robotics and wearables, has generated a growing interest in Dielectric
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Elastomer (DE) transducers. DEs represent a class of smart materials capable of large

deformation, high compliance, high energy density and efficiency, lightweight, and self-

sensing capabilities. A DE basically consists of a dielectric membrane (e.g., acrylic,

rubber, or silicone) covered by compliant electrodes, forming a flexible capacitor. DE

transducers can be used as actuators that convert an applied voltage into motion, as

capacitive sensors of pressure/deformation, or eventually as generators that transform

mechanical work into electrical energy [1]. Due to their high flexibility and ease of

manufacturing, DE devices can be easily integrated into flexible structures such as soft

robots [2, 3] and wearables [4, 5].

The operating principle of a DE actuator (DEA) is based on the so-called Maxwell

stress. When a sufficiently high voltage is applied to the DE electrodes, attractive

electrostatic forces are generated between the electrodes. As a result of this effect, the

compliant dielectric in between is squeezed, thus undergoing a reduction in thickness

and a subsequent expansion in area (due to the material incompressibility). This

principle has been exploited to develop a large number of DEA configurations, such as

stack actuators [6], strip-in-plane actuators [7], cone-shaped out-of-plane actuators [8],

diamond-shaped actuators [9], as well as minimum energy structures [10], diaphragms

[11], bowties [12], spiders [13], and rolls [14], to mention few examples.

Among the many proposed types of DEA configurations, rolled DEAs (RDEAs)

represent one of the most popular ones. A RDEA can be obtained by tightly wounding

an initially flat DE membrane in a spiral- or cylinder-like shape. A RDEA appears as a

suitable design solution for applications in which one is interested in minimizing space

requirements and increasing at the same time the work output. Several types of RDEA

configurations have been proposed in the literature, which mainly differ in terms of the

adopted DE material (e.g., silicone [15, 16], acrylic [17, 18]), type of core (e.g., elastic

[19, 20], hollow [21, 22], core-free [23, 14]), and actuation mode (e.g., push [24], pull

[25], bending [26]).

Due to their specific geometric characteristics, RDEAs can be naturally used to

replace actuation mechanisms commonly used in artificial muscles and soft robots, like

pneumatic or tendon-driven ones [27]. Other than exhibiting a form factor similar to the

one of those types of actuators, RDEAs offer additional advantages in terms of a simpler

mechanical structure (since mechanical transmissions, motors, and compressors are no

longer required) as well as self-sensing capabilities (i.e., they can work as actuators and

sensors at the same time) [28].

In order to optimize the design of complex RDEA-driven systems and soft robot,

as well as to develop real-time control and self-sensing algorithms, mathematical models

need to be developed. It is well known that modeling of DE transducers is challenging,

as it requires to account for several complex effects such as large deformations, electro-

mechanical coupling, and kinematic nonlinearities. For the specific case of RDEAs,

the rolling process introduces additional kinematic effects and inhomogeneities in the

structure, which further complicate the modeling process. In the last few years, a

number of authors have investigated modeling and simulation of RDEA transducers.
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Several authors proposed models for describing RDEAs containing an elastic core.

In [17], an acrylic RDEA with a spring core is investigated. A set of geometrical

simplifications (fixed inner diameter, layers volume conservation) allowed the authors

to find an algebraic relation for the distribution of radial strain inside the roll. The

authors, however, did not develop an explicit mechanical model for the actuator. An

analytical model for an acrylic RDEA with elastic core is discussed in [29]. In this paper,

the authors focused on modeling and characterizing the blocking force behavior only.

In [18], an axial-symmetric finite element model for an acrylic RDEA with an elastic

core is presented. The developed model permits to predict the actuator displacement

in response to an applied electro-mechanical load. Nonetheless, such a finite element

formalism is unsuitable for real-time simulations and control application. In [30], the

authors analyze the behavior of a bending-type acrylic RDEA with an elastic core. Also

in this case, a finite element framework is adopted to describe the complex core motion.

A further example of bending RDEA based on an acrylic elastomer is analyzed in [26].

In the paper, mathematical equations are derived to correlate the bending angle and

lateral force of multiple-degree-of-freedom RDEAs with segmented electrodes. Modeling

and simulation of core-free RDEA configurations has also received some attention in

literature. Carpi and De Rossi presented in [31] an electro-mechanical model for a

silicone-based DEA, shaped as a single-layer hollow cylinder. Their model permits to

accurately predict the low-strain behavior of the transducer. In [32], Jones and Sarban

presented a model for a coreless silicone-based RDEA. The actuator is described by

means of a grey-box model, by assuming a second order stress-strain dynamics whose

parameters are identified experimentally. In [25], the authors developed a finite element

model for a core-free RDEA. The work aimed at evaluating the effects due to electrode-

free roll area, and using them as a reference to develop a simplified analytical model.

Nonlinear effects due to large deformation were neglected.

From the above discussion, it can be noted that the currently available approaches

for RDEA modeling lack a general and uniform methodology, and are rather focused

on the specific issues of the system under investigation. This is possibly due to the

wide spectrum of RDEA configurations which have been investigated in the literature,

which may differ in terms of material (acrylic, silicone), rolling geometry (cylinder,

spiral), and core (elastic, hollow). Clearly, for many types of RDEA configurations, the

development of accurate mathematical models capable of accounting for their specific

features still represent an open problem. In addition to that, the development of model-

based control and self-sensing strategies for RDEAs is still a largely unexplored research

area, especially in the context of soft robotics applications.

In this paper, we propose a control-oriented lumped-parameter model for a specific

class of RDEAs, consisting of silicone-based DE membranes tightly rolled in a thin and

core-free structure. Such a novel RDEA design has been recently proposed in [14] as a

means to increase the energy density of the transducer, while keeping the manufacturing

process simple and repeatible. Since those types of RDEAs are intended to be used

as artificial muscles in DE-driven soft robots, the development of accurate control-
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oriented models turns out to be of fundamental importance. The model must allow

describing large deformations and electro-mechanical coupling, as well as dissipative

effects, in a lumped-parameter fashion. Moreover, since we intend to use the model

for design optimization as well, we are also interested in describing how the RDEA

electro-mechanical behavior scales with geometry. Once such type of RDEA model is

made available, it can be eventually coupled with a model of an external system (e.g., a

pre-stretching mechanism, a soft robotic structure) in a physically consistent way, and

used to simulate the actuation performance of complex DEA systems. Starting from

a general free-energy framework, we develop an accurate mathematical model which is

capable to account for all the desired effects in a physics-based fashion. After developing

a general model, suitable approximations are developed with the goal of reducing the

computational complexity without significantly affecting the accuracy. Subsequently,

experimental validation of the developed model is performed by means of a number

of custom-developed RDEA specimens, characterized by different geometries. It is

shown how the developed model permits to accurately reproduce the experimental

data, in terms of force-displacement, blocking force, and capacitance behavior, in

each one of the investigated scenarios. We remark that the present paper is an

extension of our previous work in [33], in which preliminary results on RDEA modeling

were presented. In particular, [33] proposes a model for RDEAs which is essentially

based on available models for strip-shaped DE membranes. Such a first model is

validated by means of tensile experiments conducted on a single specimen only. In

this work, we substantially extend the results in [33] by proposing: a more general and

physically consistent modeling framework for RDEAs; a systematic way to consistently

approximate the general roll model without significantly affecting its accuracy; a more

extensive experimental campaign which also includes blocking force and capacitance

measurements; a validation of the model for several rolls with different geometries.

The remainder of this paper is organized as follows. The operating principle of

the thin and core-free RDEA is briefly summarized in Section 2. Model development is

discussed in Section 3, while experimental validation is presented in Section 4. Finally,

concluding remarks and future research directions are outlined in Section 5.

2. System Description

In this paper we focus on a specific class of actuators, consisting of thin, core-

free, silicone-based RDEAs. A detailed description of the operating principle and

manufacturing process of such types of RDEAs has been previously published in [14].

In this section, we present a brief summary of the main results of [14], instrumental to

the subsequent modeling study.

The considered type of RDEAs are manufactured starting from a stack of two

silicone membranes (Wacker Elastosil 2030, 50 µm thick [34]), as shown in Figure 1a.

Prior to stacking, a carbon-based electrode layer is screen-printed on the bottom side of

each silicone membrane (depicted in red and black in Figure 1a). During manufacturing,
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(a) Layers of the DE membrane before rolling.

(b) RDEA layers after

rolling, cross-sectional

view.

(c) Picture of

the resulting

RDEA.

Figure 1: Design of the RDEA.

this stack is first prestretched by means of a support structure, then tightly rolled up,

and crimped at both ends to integrate electrical and mechanical connections. For more

details on manufacturing, the reader may refer to [14]. Due to the rolling process, the

electrodes are distributed within the volume of the roll according to a spiral pattern,

as shown in the cross-sectional sketch reported in Figure 1b. The end result consists of

a core-free, thin, and wrinkle-free actuator structure. A picture of the resulting RDEA

specimen is reported in Figure 1c.

When a high voltage is applied to the electrodes, an electric field is induced along

the roll radial direction. The resulting Coulomb forces produce a compressive mechanical

stress along the radial direction, called Maxwell stress, which causes the electrodes to

attract each other [1]. These compressive forces cause the roll to reduce in radius and,

as a result of the DE incompressibility, expand in length along the axis. This way,

a thin artificial muscle actuator is obtained, capable to respond to an applied voltage

with an increase of its length. The lack of an hollow core makes these type of actuators

particularly compact, and attractive for applications where high-density linear actuation

is required, such as soft robotic tentacle arms [35].
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As a final remark, we point out that the RDEA must be axially pre-loaded in order

to generate a stroke. The pre-load can be supplied, e.g., through a biasing mechanism,

e.g., a mass, a spring, or a nonlinear mechanism [14, 35]. The choice of the biasing

element turns out to be highly critical for the performance of the overall actuator

system. Nevertheless, since the focus of the manuscript is on the RDEA unit itself,

aspects related to the mechanical bias will not be considered hereafter.

3. Modeling

In this section, a lumped-parameter model for RDEAs is developed. Starting from

a general free-energy framework, a detailed quasi-static model capable of describing

the RDEA electro-mechanical response is first developed, and used as a reference.

Subsequently, suitable approximations of this model are derived, which are capable of

capturing the main features of the RDEA response in a more simple and computationally

efficient way. Comparative studies are then conducted in simulation, in order to

understand the operating ranges in which the developed approximations are capable of

tightly approximating the reference model. Finally, a possible approach to incorporate

rate-dependent viscoelastic effects within the developed quasi-static RDEA models is

briefly discussed.

3.1. RDEA Lumped-Parameter Model 1: Three-Ring (3R)

The goal of this section is the development of a general quasi-static model for the

actuator shown in Figure 2, accounting for different stress distributions for the material

regions where electrodes are or are not present. When no load is applied to the roll,

its undeformed length along the main axis equals L1. If an electro-mechanical load

consisting of an axial force F and a voltage v is applied to the roll, its axial length

changes to l1 (cf. Figure 2b).

It shall be noted that the roll is subject to complex deformation patterns

and inhomogeneities, which are normally absent in conventional strip-shaped DEA

membranes [36]. A relevant example is represented by the electric field within the rolled

membrane, which possesses an inhomogeneous distribution along the cross-section due

to the spiral-shaped geometry as well as due to the presence of electrode-free regions,

see Figure 3a. To simplify the mathematical treatment, we introduce the following

assumptions:

Assumption 1. The roll is always under tension, i.e., F ≥ 0 and l1 ≥ L1.

Assumption 2. Because of the friction among the elastomeric layers, when the roll

is axially stretched, no slipping occurs between the adjacent DE layers.

Assumption 3. Edge effects due to the clamps and electrode-free edges are assumed

negligible, and thus the strain is considered as uniform along the RDEA axis.

Assumption 4. Geometrical asymmetries due to the spiral shape are assumed

as negligible. As a results, the geometry of the RDEA cross-section can be well
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(a) 3D sketch of a deformed RDEA.
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L1

2Ro

l1 = λ1L1

(b) Cross-section A○ of a RDEA along the actuation direction

(upper part: unloaded; lower part: axially loaded).

2ri

rie
roe
ro

(c) Cross-section B○ per-

pendicular to the actua-

tion direction.

Figure 2: Sketch of a RDEA cross-section deforming under an axial load.

approximated by a combination of three hollow circles, as shown in Figure 3b. More

specifically, the inner and outer hollow circles (denoted as a and c in Figure 3b) describe

passive insulation regions, where no electrodes are present, while the intermediate hollow

cylinder (denoted as b in Figure 3b) represents the electrically active material part.

Assumption 5. When the RDEA is activated via high voltage, it is assumed that

an electric field E, directed along the radial direction, permeates the volume occupied

by region b only.

Assumption 6. Passive regions a and c are modeled as three-dimensional

hyperelastic solids, while active region b is modeled as a three-dimensional and electro-

mechanically-coupled hyperelastic body. The electro-mechanical state in each one of the

three regions is modeled in a lumped-parameter way, and described through the mean
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(a) Microscope picture of a RDEA specimen.

ri

rie

roe

ro

a b c

(b) Sketch for the concentric cylinder model.

Figure 3: Side-by-side comparison of an actual RDEA specimen with the corresponding

model geometry.

values of the stress, stretch, and electric field. Radial gradients within the single regions

are neglected, whereas different mean stretches and stresses are used for each region.

Assumptions 1-5 reasonably hold true for thin and slender RDEAs, obtained from a

tightly rolled membrane with an unwound thickness much smaller than the roll radius.

Assumption 6 allows developing the model within a lumped-parameter, rather than

a finite element, mathematical framework. On the one hand, this is highly desirable

for numerically efficient dynamic simulations and real-time control applications. On

the other hand, the fact that we are considering three separate regions still permits to

account, at least at a first order, for the effects of radial inhomogeneities within the

material due to the non-negligible passive regions.

Based on Figure 3b, we define the following quantities: Ri (ri) is the inner radius

of passive region a in undeformed (deformed) state; Rie (rie) represents the inner radius

of region b in undeformed (deformed) state; Roe (roe) describes the outer radius of

region b in undeformed (deformed) state; Ro (ro) defines the outer radius of region c

in undeformed (deformed) state. Note that capital letters are used to represent RDEA

geometrical quantities in the undeformed configuration, while lowercase letters denote

the geometry in the current configuration, respectively.

The state of deformation of each hollow cylinder is described by three principal

stretches, i.e., an axial stretch λ1j directed along the membrane thickness direction,

a circumferential stretch λ2j, and a radial stretch λ3j, j ∈ {a, b, c}. Such principal

stretches can be expressed as functions of the above defined geometric parameters, as

follows:
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λ1a =
l1
L1

λ2a =
rie + ri
Rie +Ri

λ3a =
rie − ri
Rie −Ri

(1)

λ1b =
l1
L1

λ2b =
roe + rie
Roe +Rie

λ3b =
roe − rie
Roe −Rie

(2)

λ1c =
l1
L1

λ2c =
ro + roe
Ro +Roe

λ3c =
ro − roe
Ro −Roe

. (3)

Note that stretches (1)-(3) represent averaged material quantities, and thus are

independent of a specific spatial location.

In the following, we identify a number of relationships among the stretches in

(1)-(3), and we impose kinematic constraints dictated by the physical problem, hence

reducing the number of independent stretches needed for a complete description of the

RDEA configuration.

Because the cylinders undergo the same axial elongation, the axial stretches are

equal and can be represented through a single variable λ1:

λ1a = λ1b = λ1c = λ1 =
l1
L1

. (4)

Furthermore, the stretches defined in (1)-(3) must be such that the volumes Ωa, Ωb and

Ωc of the three cylinders stay constant upon stretching. Such volume preservation

assumption is generally considered to hold true for elastomers, including DEs

[1]. Prescribing volume preservation of the hollow cylinders leads to the following

constraints:

Ωa = π(R2
ie −R2

i )L1 = π(r2ie − r2i )l1 ⇒ λ3a =
1

λ1aλ2a
, (5)

Ωb = π(R2
oe −R2

ie)L1 = π(r2oe − r2ie)l1 ⇒ λ3b =
1

λ1bλ2b
, (6)

Ωc = π(R2
o −R2

oe)L1 = π(r2o − r2oe)l1 ⇒ λ3c =
1

λ1cλ2c
. (7)

Finally, two additional conditions hold, which account for the fact that neighbouring

regions remain in contact upon deformation. In particular, the following condition holds,

which ensures that the outer radius of cylinder a coincides with the inner radius of

cylinder b:

(Rie +Ri)λ2a + (Rie −Ri)λ3a − (Roe +Rie)λ2b + (Roe −Rie)λ3b = 0. (8)

Equation (8) is obtained by extracting the values of rie (as a function of the stretches and

the initial dimensions) for cylinder a and b respectively from (1) and (2), and equating

them.

Similarly, the following relation holds, which guarantees the outer radius of b and

the inner radius of c be equal:

(Roe +Rie)λ2b + (Roe −Rie)λ3b − (Ro +Roe)λ2c + (Ro −Roe)λ3c = 0. (9)



Modeling and Parameter Identification of Thin, Tightly Rolled Dielectric Elastomer Actuators10

In analogy to the previous case, equation (9) is obtained by extracting the values of roe
for cylinder b and c respectively from (2) and (3), and equating them.

By collecting (4)-(9), a total of 7 conditions is obtained among the 9 stretches

defined in (1)-(3). Note how (4)-(7) can be directly used to eliminate 5 out of the 9 free

stretches. However, (8) and (9) cannot be uniquely solved in an analytic way, once λ3a,

λ3b, and λ3c are replaced. As a result, we treat them as independent constraints in the

subsequent free-energy formulation.

For future convenience, we hereby introduce the volume ratios of the single cylinders

over the total material volume:

ηa =
Ωa

Ω
=
π(R2

ei −R2
i )L1

π(R2
o −R2

i )L1

=
R2
ei −R2

i

R2
o −R2

i

(10)

ηb =
Ωb

Ω
=
π(R2

oe −R2
ie)L1

π(R2
o −R2

i )L1

=
R2
oe −R2

ie

R2
o −R2

i

(11)

ηc =
Ωc

Ω
=
π(R2

o −R2
oe)L1

π(R2
o −R2

i )L1

=
R2
o −R2

oe

R2
o −R2

i

. (12)

From (10)-(12), it directly follows that ηa + ηb + ηc = 1. Additionally, we define the

electrical correction factor αe1 as follows

αe1 =
L1e

L1

, (13)

where L1e represents the unstretched length of the DE electrode along the axis, with

L1e ≤ L1. Quantity αe1 describes the relative portion of roll axis which is covered by

the electrodes.

In the following, we derive the model constitutive equations using a free-energy

approach. For simplicity, we start by neglecting irreversible phenomena which are due

to losses in the DE material (a more in-depth discussion on this aspect is postponed to

Section 3.5). For a conservative and isothermal system, the internal virtual work given

as the variation of the Helmholtz free-energy dΨ is equal to the external virtual work

δW performed on the system:

dΨ = δW = Fδl1 + vδq. (14)

The total external work, described by the right hand-side of (14), consists of the sum

of a mechanical (first term) and an electrostatic (second term) contributions. The

considered generalized external forces are the force F , directed along the actuation (i.e.,

axial) direction, and the voltage v applied to the RDEA electrodes. The corresponding

conjugated virtual displacements are the virtual actuator length variation δl1 and the

virtual charge displacement δq.
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Next, we introduce the following normalized quantities:

ψ =
Ψ

Ω
=

Ψ

π(R2
o −R2

i )L1

, (15)

σ1 =
F

π (r2o − r2i )
=

λ1
π (R2

o −R2
i )
F, (16)

N =
roe − rie

l3
=
Roe −Rie

L3

, (17)

E =
v

l3
=

λ1λ2bN

Roe −Rie

v, (18)

D =
q

NAavg
=

1

Nαe1L1π(Roe +Rie)λ1λ2b
q, (19)

where: ψ is the Helmholtz free-energy density; σ1 is an average stress (or, more

appropriately, an average force density) along the axial direction; N is the number

of turns in the region b of the roll, and L3 and l3 are the nominal and actual thickness of

a single layer (note how Assumption 2 implies that N is constant and uniquely defined,

regardless of the considered configuration); E is the current averaged field strength

inside the active region b, directed along the radial direction; D is the average electrical

displacement, computed as the total charge on the electrodes divided by the product

between number of active layers N in region b and average electrode surface area Aavg.

By replacing (4), (10)-(12), and (15)-(19) in (14), we obtain the following

normalized version of the principle of virtual work:

dψ =

(
σ1 + αe1ηbED

λ1

)
δλ1 + αe1ηb

ED

λ2b
δλ2b + αe1ηbEδD. (20)

The Helmholtz free-energy density is modeled as follows:

ψ(λ1, λ2a, λ2b, λ2c, D, p1, p2) = ηaψm(λ1, λ2a) + ηbψm(λ1, λ2b) + ηcψm(λ1, λ2c)

+ αe1ηbψe(D) + p1c1(λ1, λ2a, λ2b) + p2c2(λ1, λ2b, λ2c). (21)

In principle, ψ shall explicitly depend on the independent order parameters of the

system only, i.e., a minimum set of stretches together with the electrical displacement.

As remarked above, five out of the nine stretches stretches defined by (1)-(3) can be

eliminated by solving (4)-(7). However, since (8)-(9) cannot be solved unambiguously,

we let ψ explicitly depend on the remaining four stretches λ1, λ2a, λ2b, and λ2c,

and account for constraints (8)-(9) by introducing Lagrange multipliers p1 and p2 as

further variables of ψ. Clearly, the electrical displacement D also represents a further

independent variable on which ψ must depend.

The meaning of the different contributions on the right-hand side of (21) is discussed

in the following. First, ψm denotes a generic hyperelastic free-energy density function,

which depends on stretches λ1 and λ2j, j ∈ {a, b, c}. Therefore, the first three terms on

the right-hand side of (21) can be interpreted as the elastic energy stored in the hollow

cylinders a, b, and c, respectively. Different hyperelastic models are available from the
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literature to characterize ψm [37, 38, 39]. In this work, we describe ψm by means of a

Yeoh free-energy density [36]:

ψm(λ1, λ2j) =
3∑
i=1

Ci0
(
λ21 + λ22j + λ−2

1 λ−2
2j − 3

)i
, j ∈ {a, b, c}, (22)

where Ci0, i ∈ {1, 2, 3}, represent constitutive material parameters. Function ψe models

the electrostatic free-energy density of the RDEA, associated with the electric field E

within active region b [38, 36]:

ψe(D) =
D2

2ε0εr
, (23)

where ε0 and εr are the vacuum and DE relative permittivities, respectively. The last

two terms are introduced in the energy to model constraints (8) and (9), where:

c1(λ1, λ2a, λ2b) = (Rie+Ri)λ2a+(Rie−Ri)
1

λ1λ2a
− (Roe+Rie)λ2b+(Roe−Rie)

1

λ1λ2b
= 0

(24)

and

c2(λ1, λ2b, λ2c) = (Roe+Rie)λ2b+(Roe−Rie)
1

λ1λ2b
−(Re+Roe)λ2c+(Re−Roe)

1

λ1λ2c
= 0.

(25)

The variation of ψ is given by

dψ(λ1, λ2a, λ2b, λ2c, D, p1, p2)

=

(
ηa
∂ψm(λ1, λ2a)

∂λ1
+ ηb

∂ψm(λ1, λ2b)

∂λ1
+ ηc

∂ψm(λ1, λ2c)

∂λ1

+p1
∂c1(λ1, λ2a, λ2b)

∂λ1
+ p2

∂c2(λ1, λ2b, λ2c)

∂λ1

)
δλ1

+

(
ηa
∂ψm(λ1, λ2a)

∂λ2a
+ p1

∂c1(λ1, λ2a, λ2b)

∂λ2a

)
δλ2a

+

(
ηb
∂ψm(λ1, λ2b)

∂λ2b
+ p1

∂c1(λ1, λ2a, λ2c)

∂λ2b
+ p2

∂c2(λ1, λ2b, λ2c)

∂λ2b

)
δλ2b

+

(
ηc
∂ψm(λ1, λ2c)

∂λ2c
+ p2

∂c2(λ1, λ2b, λ2c)

∂λ2c

)
δλ2c

+

(
αe1ηb

D

ε0εr

)
δD + c1(λ1, λ2a, λ2b)δp1 + c2(λ1, λ2b, λ2c)δp2.

(26)

The analytical expression of the partial derivatives of ψm, c1, and c2 is omitted from

(26) for conciseness. By replacing (20) in (26), and equating the terms multiplying the
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same virtual displacements, we obtain the following model:

σ1 = ηa
∂ψm(λ1, λ2a)

∂λ1
+ ηb

∂ψm(λ1, λ2b)

∂λ1
+ ηc

∂ψm(λ1, λ2c)

∂λ1

+ p1
∂c1(λ1, λ2a, λ2b)

∂λ1
+ p2

∂c2(λ1, λ2b, λ2c)

∂λ1
− αe1ηbε0εrE2

0 = ηa
∂ψm(λ1, λ2a)

∂λ2a
+ p1

∂c1(λ1, λ2a, λ2b)

∂λ2a

0 = ηb
∂ψm(λ1, λ2b)

∂λ2b
+ p1

∂c1(λ1, λ2a, λ2c)

∂λ2b
+ p2

∂c2(λ1, λ2b, λ2c)

∂λ2b
− αe1ηbε0εrE2

0 = ηc
∂ψm(λ1, λ2c)

∂λ2c
+ p2

∂c2(λ1, λ2b, λ2c)

∂λ2c

0 = c1(λ1, λ2a, λ2b)

0 = c2(λ1, λ2b, λ2c)

. (27)

Model (27) consists of a set of 6 independent algebraic equations. Given λ1 and E, the

system can be solved for variables σ1, λ2a, λ2b, λ2C , p1, and p2. Once a solution for (27)

is obtained, l1, F , v can be calculated from the corresponding λ1, σ1, E by means of

equations (4), (16), and (18).

To complement model (27), a consistent expression for the electrical capacitance of

the RDEA can be found. We first express v from Ψ as follows:

v =
∂Ψ

∂q
= Ω

∂ψ

∂D

∂D

∂q
=

L2
3

ε0εrαe1L1π
(
Roe

2 −Rie
2
) 1

λ21λ
2
2b

q. (28)

Based on (28), the electrical capacitance can be computed as follows:

C(λ1, λ2b) =
∂q

∂v
= ε0εrαe1

L1π
(
Roe

2 −Rie
2
)

L3
2 λ21λ

2
2b = C0λ

2
1λ

2
2b, (29)

where C0 denotes the capacitance of the undeformed RDEA. Since it is mainly

constructed starting from the three-ring assumption, the RDEA model described by

(27) and (29) will be hereafter referred to as 3R (three-ring) model.

The presented 3R model permits to effectively describe the behavior of a slender

and tightly rolled RDEA in a lumped-parameter fashion. Nonetheless, because it comes

in the form of a nonlinear system of six algebraic equations (cf. (27)), its practical

solution may turn out to be numerically expensive, especially for real-time control

applications. To overcome this issue, in the following we propose two simplified versions

of the RDEA model, which might suitably and conveniently replace the 3R model under

specific assumptions.

3.2. RDEA Lumped-Parameter Model 2: One-Ring (1R)

A first possible way to simplify the 3R model comes in the form of the following

additional assumption.
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Assumption 7. Each one of the three rings describing the RDEA cross-section in

Figure 3b is characterized by the same amount of circumferential stretch.

The above assumption prescribes a further degree of homogeneity within the

material, whose validity might depend on several factors (a more in-depth analysis will

be presented in Section 3.4). When considered all together, Assumptions 1-7 imply that

the three rings of material can be described by a unique set of principal stretches, i.e.,

the RSDEA uniformly deforms as a single hollow cylinder. Mathematically, Assumption

7 implies that continuity constraints (8)-(9) are replaced with the following one

λ2a = λ2b = λ2c = λ2. (30)

Note that (30), in conjunction with relationship (4)-(7), permits to directly eliminate 7

of the 9 principal stretches, and express all of them as functions of λ1 and λ2 explicitly.

By repeating the energy treatment of Section 3.1, and replacing constraints (8)-(9)

with the new condition (30), the normalized version of the principle of virtual work (14)

becomes:

dψ =

(
σ1 + αe1ηbED

λ1

)
δλ1 + αe1ηb

ED

λ2
δλ2 + αe1ηbEδD. (31)

Based on (30), we can further reformulate the Helmholtz free-energy density in (21)

through the following expression:

ψ(λ1, λ2, D) = ψm(λ1, λ2) + αe1ηbψe(D). (32)

Since in this case it is possible to solve constraints (30) analytically, the free-energy

density can be directly expressed as a function of the independent stretches λ1 and λ2
only, alongside with D. Consequently, the Lagrange multipliers do no longer need to be

introduced.

By differentiating (32), replacing it into (31), and repeating the steps previously

outlined in Section 3.1, the constitutive equations of the resulting model can be

computed as follows: 
σ1 = λ1

∂ψm(λ1, λ2)

∂λ1
− αe1ηbε0εrE2

0 = λ2
∂ψm(λ1, λ2)

∂λ2
− αe1ηbε0εrE2.

(33)

Note that (33) consists of a set of two nonlinear equations, which can be uniquely solved

for σ1 and λ2 once λ1 and E are given as inputs. The resulting system turn out to be

significantly simpler to tackle numerically, compared to (27).

Finally, the capacitance equation for this model can be easily derived by replacing

(30) in (29), leading to:

C(λ1, λ2) = ε0εrαe1
L1π

(
Roe

2 −Rie
2
)

L3
2 λ21λ

2
2 = C0λ

2
1λ

2
2. (34)

By using an argument similar to the one in Section 3.3, the model described by

(33) and (34) will be referred to as one-ring (1R) model (since this time the three rings
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deform as a single hollow cylinder, whose behavior follows equation (33)). Note how

model (33) is formally identical to the one for strip-shaped DE membranes previously

derived in [36].

3.3. RDEA Lumped-Parameter Model 3: Strongly Uniaxial (SU)

A potential way to further simplify the 3R model is outlined in the following. For a

homogeneous hollow cylinder, such as the one used to approximate the shape of the

RDEA, the inner and outer radii (i.e., ri and ro) are allowed to change independently

upon loading. In contrast, if we consider a solid cylinder, its inner radius would remain

unchanged, i.e., ri = Ri = 0 all the time. If this is the case, it can readily be verified

that the principal stretches of the resulting cylinder would also satisfy the following

symmetry condition

λ2 = λ3. (35)

Following this reasoning, we can assume that, if the inner passive region of the

RDEA a is sufficiently thick in comparison to the active one, it will contrast changes in

ri. As a result, it can be assumed that the RDEA will deform in a similar fashion to

a solid cylinder, rather than an unconstrained hollow one. This fact can be formalized

with the following additional assumption.

Assumption 8. The RDEA deforms in such a way that the circumferential and

radial stretches are always equal, regardless of the applied electro-mechanical load.

While this assumption adds on to the previous assumptions of the 1R model, and

reduces the number of degrees of freedom of the problem, it provides a means for

implicitly taking into account the constraint to radial electrically-induced expansions

created by the passive regions. By describing the RDEA as an equivalent unconstrained

DE strip, the 1R model fails to account for the large radial stiffness generated by thick

inner passive regions, which expectedly leads towards a response similar to that of a full

cylinder.

By considering Assumption 8 alongside with Assumptions 1-7 and incompressibility

conditions (5)-(7), the following additional constraints are obtained

λ2a = λ2b = λ2c = λ2 =
1√
λ1
. (36)

Collecting together (4)-(7) and (36), all the 9 principal stretches can be analytically

expressed as a function of λ1 only.

By considering the new set of constraints for the stretches, we can rewrite the

normalized version of the principle of virtual work (14) as follows:

dψ =

(
σ1 + 0.5αe1ηbED

λ1

)
δλ1 + αe1ηbEδD, (37)

while the Helmholtz free-energy density (21) becomes

ψ(λ1, D) = ψm(λ1, λ2(λ1)) + αe1ηbψe(D), (38)
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where λ2(λ1) is given by (36). Note that, in this case, it is possible to let the free-energy

density (38) explicitly depend on the only independent stretch λ1 and on D, without

using additional Lagrange multipliers.

The differentiation of (38), together with the subsequent comparison with (37),

allows us to obtain the following constitutive equation:

σ1 = λ1

(
∂ψm(λ1, λ2(λ1))

∂λ1
+
∂ψm(λ1, λ2(λ1))

∂λ2(λ1)

∂λ2(λ1)

∂λ1

)
− 0.5αe1ηbε0εrE

2, (39)

where λ2 depends on λ1 according to (36), and

∂λ2(λ1)

∂λ1
= − 1

2λ1
√
λ1
. (40)

Note that λ1 and λ2(λ1) must be treated as independent variables when computing the

partial derivatives of ψm in (39). Equation (39) can be readily solved for σ1, once λ1
and E are known. A remarkable difference between (39) and models (27) and (33) (i.e.,

3R and 1R, respectively) is the factor 0.5 which multiplies the E-dependent Maxwell

stress. This is a direct consequence of the additional kinematic constraint given by (36).

The capacitance can be then computed by simply replacing (36) into (29), leading

to

C(λ1) = ε0εrαe1
L1π

(
Roe

2 −Rie
2
)

L3
2 λ1 = C0λ1. (41)

Remarkably, a linear dependency between axial stretch and capacitance is observed in

this case.

Note that (36) is generally referred to as uniaxial condition in the literature [36, 37].

It is also simple to prove that the 1R model (33) satisfies condition (36) only when E = 0.

In contrast, model (39) enforces (36) by construction, regardless of the applied electric

field. For this reason, model (39) will be henceforth referred to as strongly uniaxial (SU)

model.

3.4. Model Comparison

The main differences among the three models introduced in Sections 3.1-3.3 can be

summarized as follows:

• 3R model : it is described by equations (27) and (29), and is based on Assumptions

1-6. It is constructed by considering that the RDEA behaves as the combination

of three different hollow cylinders;

• 1R model : it is described by equations (33) and (34), and is based on Assumptions

1-7. It is constructed by considering that the RDEA behaves as a single, lumped

hollow cylinder;

• SU model : it is described by equations (39) and (41), and is based on Assumptions

1-8. It is constructed by considering that the RDEA behaves as a single, lumped

full cylinder.
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In this section, we conduct a comparative study between the three models, based on

realistic material and geometric parameters. The aim is to understand the conditions

for which the simpler models (1R and SU) tightly approximate the behavior of the

more complex one (3R). Such analysis will play a critical role for the selection of the

best RDEA model, which accounts for an optimal trade-off between complexity and

numerical accuracy.

To perform the above mentioned comparison, the following case study is considered.

The material parameters are chosen according to the experimental investigation in [36],

namely C10 = 241 kPa, C20 = −33.2 kPa, C30 = 20.1 kPa, and εr = 2.8, while L3 = 48

µm and αe1 = 1 for simplicity. Three different rolls are considered in this study, each

one of them representing different extreme cases, by properly selecting the values of the

radii as follows: hollow inner core, corresponding to Ri = 0.86 mm, Rie = 0.88 mm,

Roe = 1.76 mm, and Ro = 1.8 mm; active inner core, corresponding to Ri = 0 mm,

Rie = 0.088 mm, Roe = 1.76 mm, and Ro = 1.8 mm; passive inner core, corresponding

to Ri = 0 mm, Rie = 0.81 mm, Roe = 1.76 mm, and Ro = 1.8 mm. By analyzing those

configurations, we can understand the role of the inner core in determining the RDEA

electro-mechanical response.

The response of each one of those cases is first simulated by means of the 3R

model. The results are shown in Figure 4a for the hollow core RDEA, in Figure 4b for

the active core RDEA, and in Figure 4c for the passive core RDEA, respectively. Each

picture shows the simulated cross-section in three different situations, i.e., unloaded

(λ1 = 1, v = 0 V) on the left-hand side, mechanically loaded (λ1 = 1.75, v = 0 V)

on the upper-right hand side, and electro-mechanically loaded (λ1 = 1.75, v = 3.5 kV)

on the lower-right hand side. In the case of the RDEA with hollow core, shown in

Figure 4a, the mechanical loading leads to a reduction in both inner and outer radii,

while the application of an electric field causes both of them to expand again. This

behavior is somehow expected, and also similar to the one of conventional strip-shaped

DE membranes.

When we consider a RDEA whose active part covers almost the entirety of the

material volume, as in Figure 4b, some differences with respect to the previous case

are visible. When stretching the RDEA, the outer radius contracts significantly.

However, when an electric field is also applied, the RDEA geometry remains practically

unchanged. In this scenario, as both Ri and Rie tend to 0, circumferential and radial

stretches λ2 and λ3 are equal in each portion of the RDEA, as a consequence of

constraints (8) and (9), and the roll behaves as a single solid uniaxial cylinder. A

similar behavior is also observed in case of the RDEA with passive core, reported in

Figure 4c. Based on such analysis, we understand that the parameter which determines

the RDEA deformation kinematics upon electrical activation is mostly the inner radius

Ri, rather than the size of inner passive region Rie −Ri. In particular, the closer Ri to

0, the less the RDEA is free to undergo an unconstrained deformation when subject to

an electric field.

A quantitative comparison between 3R and the two simplified models is then
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(a) Hollow core.

λ1 = 1.75

0V

3.5 kV

λ1 = 1.75

λ1 = 1

Ro

(b) Active core.

λ1 = 1.75

0V

3.5 kV

λ1 = 1.75

λ1 = 1

Ro

(c) Passive core.

Figure 4: Comparison of cross-sections for different geometries in loaded/unloaded

configurations and at different voltages according to the 3R model. For this comparison,

the radii are chosen as follows: hollow core (a) corresponds to Ri = 0.86 mm,

Rie = 0.88 mm, Roe = 1.76 mm, and Ro = 1.8 mm; active core (b) corresponds to

Ri = 0 mm, Rie = 0.088 mm, Roe = 1.76 mm, and Ro = 1.8 mm; passive core (c)

corresponds to Ri = 0 mm, Rie = 0.81 mm, Roe = 1.76 mm, and Ro = 1.8 mm.

performed, in order to understand the domain of validity of the additional assumptions

which are introduced. The numerical comparison is shown in Figure 5 for the hollow core

case (corresponding to Figure 4a), in Figure 6 for the active core case (corresponding

to Figure 4b), and in Figure 7 for the passive core case (corresponding to Figure 4c),

respectively. Each plot shows the circumferential stretches λ2 (upper part) and the axial

stresses σ1 (center part) computed as a function of λ1 for the three models, together

with the stress errors eσ1 between the simplified and 3R model (lower part), for both

v = 0 V (left-hand side) and v = 3.5 kV (right hand-side) cases. In all the cases, the 3R

model results are represented in black, while the 1R and SU are depicted in blue and

red, respectively.

First, we analyze the results corresponding to the hollow core case, shown in Figure

5. For the v = 0 V case, all models have coincident circumferential stretches. This

result is somehow expected, since uniaxiality is assumed to hold for a pure tensile test

conducted on a thin and slender roll. As a result, also the stresses predicted by the three

models are practically identical. When comparing the curves computed for v = 3.5 kV,

on the other hand, a remarkable difference is observed among the three models. First,

one can note how the circumferential stretches deviate remarkably. The 1R model

provides an accurate approximation of the circumferential stretch of the active region

of the 3R model, i.e., λ2b, reasonably due to the small thickness of the passive regions.

The stretch predictions of the SU model, on the other hand, significantly deviate from

the 3R model. As a direct result, the stress predicted by the 1R model approximates

much more tightly the stress of the 3R, while the SU model is affected by a maximum
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Figure 5: Model comparison, hollow core.

error of 0.1 MPa over a range of 1 MPa. The situation appears remarkably different if

we analyze the results for the RDEA with active core, shown in Figure 6. The plots for

the case v = 0 V appear identical to Figure 5, thus implying that uniaxiality still holds

true. Quite remarkably, the results obtained for v = 3.5 kV suggest a strong agreement

between 3R and SU models, both in terms of circumferential stretches and stress. As

expected, the 1R model turns out to be inaccurate in this case. Note how this model

predicts a circumferential expansion, which cannot occur in reality. If such an expansion

occurred, the stretches in the central portion of the core would in fact tend to infinity.

Such a misprediction of λ2 leads to stress errors on the order of 0.1 MPa. Qualitatively

similar results are also obtained for the RDEA with the passive core, shown in Figure

7. The only difference is given by the value of the stress error for the 1R model, which

has now a peak value on the order of 0.055 MPa.

The conducted analysis confirms that parameter Ri plays a crucial role for

determining whether the 3R model can or cannot be approximated by the 1R and SU

models. For very small values of Ri, ideally close to 0, the SU behaves identically

to the 3R. In this case, the SU model represents then the best trade-off between

complexity and accuracy. For values of Ri closer to Ro, the 3R model is better

approximated by the 1R one, which can then be considered as the optimal modeling

choice. Furthermore, the value of Rie seems not to play a relevant role in determing the

stretch behavior, but has an effect on the absolute stress error. Naturally, the conducted

analysis only covers extreme cases, and several intermediate situations could manifest

for other geometries. As an example, Figure 8 shows the force error computed by

choosing Ri ∈ {0.1, 0.2, . . . , 0.9} ·Rie, by considering Rie = 0.6 mm, Roe = 1.21 mm, and

Ro = 1.33 mm. As it can be seen, decreasing Ri induces a smooth transition from the
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Figure 6: Model comparison, active core.
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Figure 7: Model comparison, passive core.
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Figure 8: Deviations of the predicted average stress σ1 of the two simplified models

(1R in red, SU in blue) in comparison to the 3R model, for a sweep of Ri ∈
{0.1, 0.2, . . . , 0.9} ·Rie.

1R behavior to the SU one, with values in between for which none of the approximations

accurately describe the 3R model.

As a final note, we point out that the proportions of the reference geometry used

for the passive core case (i.e., the one shown in Figure 4c and Figure 7) closely resembles

the one of the real-life RDEA prototypes investigated in the next section. Therefore,

we conclude that the SU model represents the most appropriate choice for the analysis

of the prototypes under investigation.

3.5. Inclusion of Viscoelastic Effects

All the modeling considerations in Sections 3.1-3.4 are based on the assumption that

the DE behaves as a reversible transducers, i.e., no dissipations occur in the material.

This reflects in the considered form (14) of the principle of virtual work, which states

that all the work done on the DE is stored as free-energy. In reality, however, DE

transducers exhibit irreversibilities which are mostly due to viscoelastic processes within

the material. While those effects are practically negliglible under quasi-static loading

conditions, they become relevant in dynamic applications.

To account for the effects of viscoelasticity in the material response, a modified

version of the principle of virtual work for irreversible systems can be used, which is
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expressed through the following inequality:

dΨ ≤ δW = Fδl1 + vδq. (42)

The inequality sign in (42) implies that only part of the work done on the RDEA is

stored in the material as free-energy, while the rest is dissipated as heat. An in-depth

derivation of a visco-elastic model based on (42) has been proposed by several authors

(e.g., [36, 40]), and is far beyond the scope of this paper. Here, we only present the

final result, and show how to incorporate the viscoelastic effect in the developed RDEA

models.

As proven in [36], using the irreversible version of the principle of virtual work (42)

as a starting point leads to an additive component σ1,irr in the stress σ1. The additional

irreversible component of the stress σ1,irr must be chosen in such a way that inequality

(42) is satisfied for every system trajectory. Moreover, σ1,irr must vanish as the loading

frequency tends to zero, so that the reversible version of the model is recovered at

steady-state. The equation for the stress hence takes the following general form:

σ1 = σ1,rev + σ1,irr, (43)

where the reversible component of the stress σ1,rev is given by the expressions for σ1 in

(27), (33), or (39), depending on the considered RDEA model.

An example of model for σ1,irr which satisfies the two conditions defined above is

provided in the following: 

ξ̇1 =
kv1
ηv1

(λ1 − ξ1)
...

ξ̇M =
kvM
ηvM

(λ1 − ξM)

σ1,irr =
M∑
j=1

kvj (λ1 − ξj) + ηv0λ̇1

. (44)

Quantities ξj represent internal variables describing the viscoelastic dissipation process,

while M , kvj, ηvj, and ηv0 represent constitutive material parameters, with j ∈
{1, . . . ,M}. For more details on the proof for which (44) satisfies the required conditions,

as well as on the interpretation of model (44), the reader may refer to [36].

4. Experimental Characterization and Validation

The aim of this section is to provide experimental validation of the RDEA model.

First, the test-rig used to conduct the experiment is described. Subsequently, an

extensive characterization campaign is conducted, with the aim of evaluating the electro-

mechanical response of several RDEA specimens with different geometries. The ability

of the model to accurately describe the behavior of all the specimens is finally evaluated.
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Figure 9: Experimental setup used to characterize the RDEA specimens.

4.1. Experimental Setup

A picture of the experimental setup used to characterize the electro-mechanical response

of the RDEA specimens is shown in Figure 9. One end of the RDEA is attached to an

Aerotech ACT165DL Linear Actuator, whose displacement can be directly controlled by

the user, while its other end is connected to a FUTEK LSB303 Load cell (25 lb) which

allows recording the force during deformation. At the same time, a TREK 5/80 High

Voltage Amplifier permits to supply an arbitrary high voltage to the RDEA electrodes.

Only for the experiments in which no voltage is applied, an additional electrical

capacitance measurement is also performed by means of a Rohde & Schwarz HAMEG

HM8118 LCR Bridge. Real-time DAQ is implemented via a NI-9149 CompactRIO

FPGA chassis with appropriate IO-modules, while data post-processing is performed in

LabView and Matlab on a Windows Computer.

The experimental setup described above permits to implement different types of

characterization experiments, i.e., force-displacement evaluation with different constant

voltage values applied, blocking force tests under cycling voltage input, and capacitance-

displacement behavior characterization. All the experiments will be conducted by

considering typical ranges of displacement, voltage, and frequency which are relevant

for our intended soft robotic application.

4.2. Results and Discussion

For model validation purpose, three silicone-based RDEA samples are designed and

manufactured. The corresponding geometric data are reported in Table 1, and consist

of a short and thin roll (specimen 1), a short and thick roll (specimen 2), and a long

and thin roll (specimen 3). The meaning of the goemetric parameters reported in

Table 1 is further clarified in Figure 10. Since our aim is to predict the behavior of all

the specimens by means of a unique set of material parameters, the full spectrum of

considered geometries provides a challenging validation platform for our model.

Next, we need to choose one of the three models among the ones discussed in

Section 3. To this end, we use the procedure outlined in the Appendix to estimate the
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Table 1: Physical specimen properties and fixed model parameters.

Specimen

1 2 3

L1 34 34 91 mm initial length in actuation direction

L2 58 99 58 mm initial length in rolling direction (pre-roll)

L3 48 48 48 µm single-membrane initial thickness

L1e 29 29 86 mm length of membrane region with applied

electrode along the actuation direction

Lp1 10 10 10 mm electrode-free membrane length at the start of

rolling

L2e 38 76 38 mm length of membrane region with applied

electrode along the rolling direction

εr 2.8 material relative permittivity

ε0 8.85 pF m−1 vacuum permittivity

Table 2: Geometric model parameters calculated from unwound membrane dimensions.

Specimen

1 2 3

Ri 0.000 0.000 0.000 mm inner radius of region a

Rie 0.600 0.600 0.600 mm inner radius of region b

Roe 1.206 1.615 1.206 mm inner radius of region c

Ro 1.326 1.732 1.326 mm outer radius of region c

Table 3: Calibrated model parameters (RDEA model).

Ci0

242

kPa Yeoh model parameters−69

47

M 1 viscoelastic model order

kv1 8271 kPa viscoelastic model spring stiffness

ηv1 86 kPa s viscoelastic model serial damping

ηv0 0 kPa s viscoelastic model parallel damping
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Figure 10: Geometric parameter of the RDEA, before rolling (left-hand side) and after

rolling (right-hand side).
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Figure 11: Tensile test for measurements of specimen 1 (solid red line), and model

prediction (dashed black line), validation based on SU model. Displacement waveform:

sinewave with amplitude modulated by a ramp (solid black line), frequency of 0.1 Hz.
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Figure 12: Tensile test for measurements of specimen 2 (solid blue line), and model

prediction (dashed black line), calibration based on SU model. Displacement waveform:

sinewave with amplitude modulated by a ramp (solid black line), frequency of 0.1 Hz.

rolls radii on the basis of the unwound membrane geometries reported in Table 1. The

computed values are reported in Table 2. By inspecting the obtained values for the radii,

and recalling the comparative analysis presented in Section 3.4, we conclude that the

considered specimens can be consistently and conveniently described by the SU model.

The geometric parameters are all assumed to be measurable, and thus their nominal

design values will be used in the following. The material parameters consist of the

Yeoh coefficients Ci0, i ∈ {1, 2, 3}, the permittivity εr, the viscoelastic model order

M and parameters kvj, ηvj and ηv0, with j ∈ {1, . . . ,M}. For the given silicone, the

permittivity is assumed to be known and equal to the datasheet value [34], i.e., εr =

2.8. The remaining Yeoh and viscoelastic parameters, on the other hand, need to be

calibrated on the basis of the conducted experiments.

The first set of experiments is performed by deforming the three specimens at

different stretch levels up to λ1 = 1.5 with a frequency of 0.1 Hz. Each tensile experiment

is repeated twice, by considering constant voltage values of v = 0 kV and v = 2.6 kV.

The results of such characterization experiments are reported in Figure 11 for specimen

1 (solid red line), in Figure 12 for specimen 2 (solid blue line), and in Figure 13 for

specimen 3 (solid green line). Each plot shows the applied displacement profile and

the corresponding membrane force signals over time (upper part), as well as the force-

displacement characteristic curve (lower part), for both the v = 0 kV (left-hand side)
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Figure 13: Tensile test for measurements of specimen 3 (solid green line), and model

prediction (dashed black line), validation based on SU model. Displacement waveform:

sinewave with amplitude modulated by a ramp (solid black line), frequency of 0.1 Hz.
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Figure 14: Expanded view based on the force-displacement curve shown in Figure 11

(sample 1, v = 0 kV), to highlight the ability of the model in predicting viscoelastic

hysteresis. For better visualization, the line style of the model prediction has been

modified with respect to Figure 11.
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Figure 15: Blocking force comparison, validation based on SU model (left-hand side:

force over time, right-hand side: force over voltage). Voltage waveform: sinewave

ranging from 0 kV to 2.6 kV, frequency of 1 Hz.
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Figure 16: Capacitance comparison, validation based on SU model. Displacement

waveform: sinewave with amplitude modulated by a ramp (solid black line), frequency

of 0.1 Hz.
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Table 4: Numerical accuracy of the model predictions. The maximum relative errors are

computed with respect to the maximum experimentally observed force or capacitance,

respectively.

Type of experiment Voltage Spec. Max. rel. error (%)

Tensile tests (predicted force)

cf. Figures 11 to 13

0 V

1 3.20

2 5.19

3 4.81

2.60 kV

1 6.13

2 5.41

3 6.53

Blocking Force

cf. Figure 15
0 V to 2.60 kV

1 0.90

2 0.99

3 1.18

Capacitance

cf. Figure 16
0 V

1 4.99

2 0.78

3 5.16

and v = 2.6 kV (right-hand side) cases.

All the unknown model parameters are calibrated on the basis of the experimental

data for specimen 2 (Figure 12), by means of a nonlinear optimization algorithm based

on the Nelder-Mead search method (similarly to [36], details are omitted for conciseness).

The resulting set of calibrated parameters is reported in Table 3. These parameters

are then used to predict the behavior of the remaining experiments. The resulting

model predictions are also shown in Figures 11-13 (dashed black lines). As it can be

observed, the model allows reproducing the behavior with remarkable accuracy, for all

the geometries and voltage. In addition to that, note how the hysteretic effects due

to viscoelasticity are also well reproduced, as highlighted by the expanded view for

sample 1 (v = 0 kV), reported in Figure 14. For better visualization, the line style of

the model prediction in Figure 14 has been modified with respect to Figure 11. Small

deviations may be due to manufacturing tolerances, as well as unmodeled local effects,

but nevertheless their effect is overall negligible. It is remarked that, due to the linear

structure of the viscoelastic stress model (44), we are not able to accurately describe the

complex RDEA hysteresis in a wider frequency range. Nevertheless, the adopted model

still provides a first order description of the hysteretic trend, which is appropriate for the

scope of the present manuscript. Further investigations revealed how the SU model well

predicts the RDEAs force-displacement response for higher voltage values as well, up to 4

kV. However, since the material tends to undergo frequent breakdowns if higher voltages

are used, further results will be omitted in this paper. A quantitative evaluation of the

deviation between experiments and model, expressed in terms of maximum relative
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error, is reported in Table 4. As it can be seen, the maximum error is always smaller

or equal than 4.81% for v = 0 kV, and always smaller or equal than 6.53% for v =

2.6 kV, thus confirming the accuracy of our approach. The ability of the SU model in

predicting the behavior of specimens with very different geometries confirms the validity

of the modeling assumptions outlined in Section 3.

Next, three additional experiments are conducted in which the RDEA position is

kept fixed at a stretch of λ1 = 1.5, while the voltage is cycled sinusoidally from 0 kV

to 2.6 kV at a frequency of 1 Hz, and the resulting blocking force is measured. The

resulting data are shown in Figure 15 for all the three specimens (solid red line for

specimen 1, solid blue line for specimen 2, solid green line for specimen 3). Based

on the parameters calibrated in the previous step, corresponding model predictions

are evaluated and plotted in Figure 15 (dashed black lines). Overall, the model is

capable of reproducing the behavior of the three geometries with satisfactory accuracy.

In particular, relative errors smaller or equal than 1.18% are computed for all those

experiments, as reported in Table 4. The highest deviations are observed for specimen

2, but the accuracy still appears satisfactory.

Finally, the ability of the model in predicting the electrical capacitance is

investigated. To this end, the capacitance-displacement curves of the three specimens

are evaluated based on the same experiments conducted in Figure 11-13, and reported

in Figure 16 (solid red line for specimen 1, solid blue line for specimen 2, solid green line

for specimen 3). Due to technical limitations of the used LCR meter, the capacitance

measurements can be only performed at v = 0 kV. The corresponding capacitance values

predicted by the model are also reported on the same picture (dashed black lines). The

capacitance estimations are solely based on known geometry and permittivity, thus no

further parameter calibration is performed when generating the simulation results in

Figure 16. A remarkable agreement is observed also in this case, both in terms of

the initial capacitance and the resulting trend. Small deviations, visible especially for

specimen 3, could be due to manufacturing inaccuracies as well as parasitic effects. The

latter assumption is supported by the fact that the experimental curve for specimen 3

has the same slope than the simulated one, but is characterized by a higher offset, which

could be well explained by an added constant parasitic capacitance. Nevertheless, the

overall accuracy is high, with errors always smaller or equal than 5.16% for all the

specimens, as reported in in Table 4. The linear dependency between capacitance

and displacement, which is both predicted theoretically (cf. (41)) and confirmed

experimentally, suggests the possibility of effectively implementing self-sensing schemes

in the future, which will allow developing a sensorless control architecture for RDEAs.

Based on the results reported in Figures 11-16, it can be concluded that the

proposed SU model represents the optimal choice when dealing with the considered class

of core-free RDEAs, as it accuratelly captures the experimental results while requiring

minimum computational cost.
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5. Conclusion

In this work, we presented a lumped-parameter modeling approach for thin, core-free,

rolled dielectric elastomer actuators (RDEAs). Starting from a free-energy approach,

we derived a physics-based general model which estimates the RDEA force and

capacitance by knowing its elongation and voltage, and accounts for several effects such

as hyperelasticity, electro-mechanical coupling, viscoelasticity, and geometry scaling.

The proposed general model takes into account inhomogeneities in the radial stretch and

electric field distributions over different regions of the actuator, due to the simultaneous

presence of electrically active and shielding passive layers. Based on the general model,

reduced-order and computationally efficient models are proposed, which are suitable to

describe RDEAs with different geometric features.

Experimental validation, conducted on three custom-developed RDEA specimens

having different geometries (a short and thin one, a short and thick one, and a long

and thin one), showed how the proposed modeling approach permits to predict all

the measured data with great accuracy. Not only is the model able to reproduce the

RDEA response in tensile experiments (force-displacement characterization for different

constant voltage values), blocking force tests (force-voltage characterization for different

constant displacement values), and capacitance characterization investigations, but it

also foresees the effect of the geometry scaling on the overall electro-mechanical response

with remarkable accuracy. Based on the obtained results, it can be concluded that

the model represents an accurate and numerically efficient tool for simulation, design

optimization, and real-time control/self-sensing applications. Moreover, we point out

that the model is built upon a strongly uniaxial assumption, i.e., circumferential and

radial stretches are always equal regardless of the applied electro-mechanical load. This

differs from what is commonly observed in unwound strip-shaped DE membranes made

of the same material, in which uniaxiality solely holds when a purely mechanical load

(with no electric field) is applied. The results of the experimental validation seem to

confirm this interesting, yet not intuitive at a first glance, result for core-free DEAs.

In future research, the developed model will be coupled with models of flexible

structures, and used to simulate and optimize RDEA-driven soft robotic systems. A

special focus will be put on how to pre-stretch the RDEAs in an optimal way, by

combining the results previously published in [35] with the improved transducer model

presented in this work. In addition, we will investigate more extensively the dynamic

response of the RDEAs when subjected to the complex loading conditions, such as the

ones occurring in soft robotic structures. The resulting coupled models will then be

used to develop advanced motion control and self-sensing strategies for DE-based soft

robots.
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Appendix. Calculation of the Hollow Cylinders Radii from the Unwound

DE Membrane Dimensions

In order to accurately compare the RDEA model to the experiments, it is crucial to

carefully calculate the model parameters based on the available measured dimensions

and other known properties of the physical specimens. On the one hand, measuring the

dimensions of the flat DE membranes prior to rolling is relatively simple. On the other

hand, the model requires the knowledge of the radii of the different cylindrical regions,

which might be hard, if not impossible, to measure exactly after the rolling process has

been performed. This section provides a systematic procedure to estimate the radii of

the RDEA, starting from the geometry of the unwound DE membrane. The key idea

is based on accurately matching the volumes of active and inactive regions before and

after the rolling.

As explained in Section 2, the RDEA is manufactured by rolling a stack of two

planar membranes with known dimensions. Figure 17 illustrates the resulting structure

of a RDEA cross-section from a modeling perspective. The meaning of each parameter

is reported in Table 1, and further visualized in Figure 10. Starting from the center

and moving outwards radially, the spiral describing the wound DE membranes starts

at a given inner radius Ri, and completes a certain amount of turns (described by the

accumulated turning angle θp1) until the entire length Lp1 of the inner electrode-free

membrane is covered. Once this point is reached, the electrode-covered portion of the

membrane stack begins. If a voltage is applied to the electrodes, an electric field will

be induced in the region between them, as denoted by the arrows in Figure 17a. Note

that, in the first turn with electrodes, the electric field only appears in the outer half

of the membrane stack, while in subsequent turns it also manifests itself in the inner

half. This is due to the fact that the negative electrode of the current turn forms an

additional pair with the positive electrode of the previous turn. This geometric feature

produces a corresponding loss of active electrical volume, which is considered in the

following calculations. In addition, the second passive layer of length Lp2 produces a

further electric field-free region on the outermost part of the roll, corresponding to angle

θp2 in Figure 17a. Note how this figure does not depict the passive layers in a realistic

way (cf. Figure 3a), but solely serves to provide a geometric intuition for angles θp1 and

θp2.

A suitable kinematic model for describing the spiral geometry is the Archimedean
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Figure 17: Passive, partially active, and fully active regions of a RDEA.

spiral, which is characterized by having a constant separation between adjacent turns.

The Archimedean spiral can be expressed in polar coordinates as

r(θ) = r0 +
d

2π
θ with r0, d ∈ R+, (45)

where the spiral radius r is given as a function of the turning angle θ, r0 indicates

the starting radius of the spiral, and d is the separation between adjacent turns. The

circumference, or length, of such a spiral is obtained by solving the following integral:

lspiral(r0, d, θ) =

∫ θ

0

∥∥∥∥∥ ddθ̄
(
r(θ̄)

[
cos θ̄

sin θ̄

])∥∥∥∥∥
2

dθ̄. (46)

Although an analytical solution is available for (46), in here it is omitted for conciseness.

The total turning angle as a function of the spiral length is thus given as the inverse

function of lspiral:

θspiral(r0, d, lspiral) = l−1
spiral(r0, d, lspiral). (47)

In practice, (47) is generally solved with numerical methods.

Based on equations (46)-(47), it is now possible to compute the geometric

parameters appearing in Figure 17b which are related to the losses in active volume

caused by the passive regions (green areas in Figure 17a). The turning angle θp1 denotes

the start of the electrically half-active region, consisting of the first turn with electrodes

(purple area in Figure 17a), and is computed as follows:

θp1 = θspiral(Ri, 2L3, Lp1). (48)

To obtain (48), the following substitutions are made in (47): r0 = Ri, d = 2L3, and

lspiral = Lp1 (c.f. Table 1). The electrically half-active region starts at θp1 and ends after
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one full turn, which means at turning angle θp1 + 2π. We can thus calculate the length

Lpa of the partially active region as:

Lpa = lspiral(Ri, 2L3, θp1 + 2π)− Lp1. (49)

The remaining length Lfa of the fully active region (cyan area in Figure 17a) is given

as the difference between total electrode length and partially active length:

Lfa = L2e − Lpa. (50)

Finally, the length of the outer inactive region is given by:

Lp2 = L2 − Lp1 − L2e. (51)

The above computed quantities can readily be used to compute the equivalent radii

of the hollow cylinders describing the RDEA. When discussing the RDEAs basics in

Section 2, it is remarked how the adopted manufacturing process allows obtaining rolls

in which the hollow central region is very small. This is also confirmed by the microscope

picture in Figure 3a, in which no meaningful inner hollow region can be seen. Based on

this argument, we set

Ri = 0. (52)

The three remaining radii are then computed by equating the volumes of the three

hollow cylinders with the ones of the corresponding regions in the flat membrane state,

according to Figure 17:

Ωa = π(R2
ie −R2

i )L1 = L1L3(2Lp1 + Lpa), (53)

Ωb = π(R2
oe −R2

ie)L1 = L1L3(2Lfa + Lpa), (54)

Ωc = π(R2
o −R2

oe)L1 = 2L1L3Lp2. (55)

Note that the partially active volume is distributed equally between regions a and b.

Solving (55) for the unknown radii, by considering positive solutions only, the following

expressions are obtained:

Rie =

√
2L3Lp1 + L3Lpa

π
, (56)

Roe =

√
2L3Lfa + L3Lpa

π
+R2

ie, (57)

Ro =

√
2L3Lp2
π

+R2
oe. (58)
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