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ABSTRACT
Halo abundance and structure play a central role for modeling structure formation and evolution. Without relying on a spherical
or ellipsoidal collapse model, we analytically derive the halo mass function and cuspy halo density (inner slope of -4/3) based
on the mass and energy cascade theory in dark matter flow. The hierarchical halo structure formation leads to halo or particle
random walk with a position-dependent waiting time 𝜏𝑔. First, the inverse mass cascade from small to large scales leads to the
halo random walk in mass space with 𝜏𝑔 ∝ 𝑚−_

ℎ
, where 𝑚ℎ is the halo mass and _ is a halo geometry parameter with predicted

value of 2/3. The corresponding Fokker-Planck solution for halo random walk in mass space gives rise to the halo mass function
with a power-law behavior on small scale and exponential decay on large scale. This can be further improved by considering two
different _ for haloes below and above a critical mass scale 𝑚∗

ℎ
, i.e. a double-_ halo mass function. Second, a double-𝛾 density

profile can be derived based on the particle random walk in 3D space with a position-dependent waiting time 𝜏𝑔 ∝ Φ(𝑟)−1 ∝ 𝑟−𝛾 ,
where Φ is the gravitational potential and 𝑟 is the particle distance to halo center. Theory predicts 𝛾 = 2/3 that leads to a cuspy
density profile with an inner slope of -4/3, consistent with the predicted scaling laws from energy cascade. The Press-Schechter
mass function and Einasto density profile are just special cases of proposed models. The small scale permanence can be identified
due to the scale-independent rates of mass and energy cascade, where density profiles of different halo masses and redshifts
converge to the −4/3 scaling law (𝜌ℎ ∝ 𝑟−4/3) on small scales. Theory predicts the halo number density scales with halo mass
as ∝ 𝑚−1.9

ℎ
, while the halo mass density scales as ∝ 𝑚

4/9
ℎ

. Results were compared against the Illustris simulations. This new
perspective provides a theory for nearly universal halo mass functions and density profiles.
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1 INTRODUCTION

Within the standardΛCDM (cold dark matter) cosmology [1, 2, 3, 4],
the formation of structures proceeds hierarchically with small struc-
tures coalescing into large structures in a "bottom-up" fashion. For
systems involving long-range interaction, the formation of haloes of
different sizes is necessary to maximize system entropy [5]. There-
fore, highly localized halo structures and their evolution are major
features of ΛCDM model [6, 7]. As a counterpart of "eddies" in
hydrodynamic turbulence, "haloes" are the building blocks in the
flow of dark matter [8, 9, 10]. Halo abundance and internal structure
play a central role for modeling structure formation and evolution.
These two quantities are also critical to understand the small scale

challenges for ΛCDM when comparing model with observations
[11, 12, 13, 14]. However, despite having been extensively studied
over many decades, our understanding is still not entirely satisfactory.

First, the abundance of dark matter haloes is described by a halo
mass function. The seminal Press-Schechter (PS) model allows one
to predict the shape and evolution of mass function based on a den-
sity peak approach [15]. This model relies on a threshold value of
overdensity (𝛿𝑐) that can be obtained from the nonlinear collapse of
a spherical over-density [16, 17]. Bond et al. provided an alternative
derivation using an excursion set approach (EPS) that puts the theory
on a firmer footing by removing the fudge factor in original PS model
[18], which was further extend to excursion set with correlated steps
[19, 20, 21]. The PS model was further improved by Jedamzik with
a formalism explicitly counting all cosmic materials to address the
so-called "cloud-in-cloud" problem in density peak approach [22].
Lee and Shandarin adopted Zeldovich approximation and extended
the PS formalism to a non-spherical dynamical model [23]. Other
developments include combination of the peak and excursion set ap-
proaches [20], a moving barrier as a better density threshold [24], and
more recent efforts on developing emulators of halo mass functions
for a range of different cosmologies [25].

However, when compared to N-body simulations, both PS and
EPS models overestimate the number of low-mass haloes and un-
derestimate the number of massive haloes. There are also significant
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errors at high redshifts [26]. Further improvement was achieved by
computing the density threshold 𝛿𝑐 for ellipsoidal collapse [27, 28].
In contrast to the spherical collapse where 𝛿𝑐 is independent of halo
mass, the ellipsoidal collapse leads to a mass-dependent overdensity
threshold 𝛿𝑐 . This modification (hereafter ST) considerably compli-
cates the derivation but provides a better agreement with simulations.

Because of its simplicity, the PS-EPS-ST mass functions are still
a very popular analytic model. However, the theoretical basis of this
approach is at best heuristic. First, the derivation requires a thresh-
old overdensity from a simplified (if not over simplified) collapse
model (either spherical or ellipsoidal). Second, the linear density
field is required to identify collapsed structures that is deeply in the
non-linear regime. In principle, halo mass function should be an ob-
jective intrinsic property of self-gravitating collisionless system that
is independent of any simplified (spherical or ellipsoidal) collapse
models. In this paper, a different approach is taken to derive the halo
mass function without resorting to any simplified models. This ap-
proach is based on the random walk of haloes in mass space, which
is a direct result of inverse mass cascade in dark matter flow [10].

Next, the structure of haloes is described by the halo density profile
that can be studied both analytically and numerically with N-body
simulations [29, 30]. Since the seminal work of spherical collapse
[17], the power-law density profile was derived under the self-similar
approximation. The secondary in-fall model suggests a power-law
density dependent on the initial density of the region that collapsed
[31, 32]. High-resolution N-body simulations have shown nearly uni-
versal profile with a cuspy density shallower than isothermal profile
at smaller radius and steeper at larger radius [33, 34]. For the cuspy
inner density from N-body simulations, there seems no consensus on
the exact value of the asymptotic logarithmic density slope 𝛾. Since
the first prediction of 𝛾 = −1.0 in NFW profile [33], the inner density
slope of simulated haloes have different values from 𝛾 > −1.0 [35] to
𝛾 = −1.2 [36], and 𝛾 ≈ −1.3 [37, 38, 39]. In addition, there still lacks
a complete understanding for the origin of nearly universal density
profile [7]. In this paper, similar to the halo random walk in mass
space for halo mass function, a new approach is presented based on
the particle random walk in real space, which provides a possible
theory for nearly universal halo structures and density profiles.

2 EXISTING HALO MASS FUNCTIONS

For comparison with our mass function model, a brief overview of
existing mass functions is presented here. The exact definition of
mass function varies widely in the literature. The two widely used
mass functions are defined as

𝐹𝑀 (𝑚ℎ, 𝑧) ≡
𝑑𝑛(𝑚ℎ, 𝑧)
𝑑 ln(𝑚ℎ)

, f(𝜎𝛿 , 𝑧) ≡ 𝐹𝑀
𝑚ℎ

𝜌0

𝑑 ln(𝑚ℎ)
𝑑 ln(𝜎−1

𝛿
)
, (1)

where 𝑛(𝑚ℎ, 𝑧) is the number density of haloes, 𝜌0 is the background
density. Here 𝜎𝛿 (𝑚ℎ) is the density fluctuation when density field
is smoothed at mass scale 𝑚ℎ, which can be computed from the den-
sity power spectrum. When a normalized variable a = 𝛿2

𝑐/𝜎2
𝛿
(𝑚ℎ)

is used, the third definition 𝑓 (a) can be introduced such that the
multiplicity mass function f(𝜎𝛿 , 𝑧) = 2a 𝑓 (a). In this definition, the
PS mass function reads

𝑓𝑃𝑆 (a) =
1

√
2𝜋

√
a
𝑒−a/2. (2)

The modified PS model (ST model) can be compactly written as:

𝑓𝑆𝑇 (a) = 𝐴

√︂
2𝑞
𝜋

(
1 + 1

(𝑞a)𝑝
)

1
2
√
a
𝑒−𝑞a/2, (3)

where the normalization condition requires:

𝐴 =

√
𝜋

Γ (1/2) + 2−𝑝Γ (1/2 − 𝑝) . (4)

The best fitted parameters from simulation is 𝐴 = 0.3222, 𝑞 = 0.707,
and 𝑝 = 0.3 (hereafter ST1), while 𝐴 = 0.3222, 𝑞 = 0.75, and
𝑝 = 0.3 was suggested by Sheth and Tormen [40] (hereafter ST2).
Both models satisfy the normalization condition

∫ ∞
0 𝑓 (a) 𝑑a = 1.

Many empirical mass functions were also proposed by fitting to
the high-resolution simulation data. For example, a universal mass
function by Jenkins etc. (hereafter JK) covers a wide range of different
cosmologies and redshifts that is written as [41],

𝑓𝐽𝐾 (a) = 0.315
2a

exp[−
��ln (√

𝑣/𝛿𝑐
)
+ 0.61

��3.8], (5)

where the threshold density 𝛿𝑐 = 1.6865. Using a similar form of
mass function to ST, Warren proposed (hereafter WR) [42]

𝑓𝑊𝑅 (a) = 0.7234

[(
𝛿𝑐√
a

)−1.625
+ 0.2538

]
exp

(
−1.1982

𝛿2
𝑐/a

)
, (6)

It should be noted that these empirical mass functions might not
satisfy the normalization constraint and can be difficult to extrapolate
beyond the range of fit.

The other widely used empirical mass function by Tinker etc. was
also calibrated from numerical simulations with haloes identified
as isolated spherical overdensity masses. The range of halo mass is
between 1011 and 1015 ℎ−1𝑀⊙ with redshift 𝑧 ⩽ 2 [43]. TK mass
function reads

f(𝜎𝛿 , 𝑧) = 𝐴

[(𝜎𝛿
𝑏

)−𝑎
+ 1

]
exp

[
− 𝑐

𝜎2
𝛿

]
,

or equivalently,

𝑓𝑇𝐾 (a) = 𝐴

2a

[(
𝛿𝑐

𝑏
√
a

)−𝑎
+ 1

]
exp

[
− 𝑐a

𝛿2
𝑐

]
,

(7)

where best fitted parameters 𝐴 = 0.186, 𝑎 = 1.47, 𝑏 = 2.57 and
𝑐 = 1.19 for haloes with a critical density ratio Δ𝑐 = 200. Table 1
summarizes different halo mass functions f(𝜎𝛿 , 𝑧) in Eq. (1). The
double-_ mass function is analytically derived in Section 4.

3 MASS AND ENERGY CASCADE BETWEEN HALOES

To derive the halo mass function and density profiles, we first in-
troduce the relevant context and background. In CDM cosmology,
haloes are continuously merging with small structures (mass accre-
tion). This facilitates an inverse mass cascade in halo mass space, i.e.
a continuous mass transfer from small to large mass scales ("inverse")
to allow hierarchical structure formation (see Fig. 1). To explain this,
we first identify all haloes in entire system and then group them ac-
cording to their mass 𝑚ℎ. In simulation, a clear definition of halo is
required to identify these haloes. This definition is usually related to
a critical density 𝛿𝑐 from a simplified collapse model. At this step,
we just treat haloes as existing objects without triggering a specific
halo definition. In Fig. 1, halo of mass 𝑚ℎ merging with a single
merger of mass 𝑚 results in a new halo of mass 𝑚ℎ +𝑚. This causes
a continuous mass flux from small to large scales along the chain of
merging, i.e. an inverse mass cascade at a rate of Y𝑚.

Next, the mass of entire halo group (𝑚𝑔) including all haloes of
the same mass 𝑚ℎ is 𝑚𝑔 = 𝑁ℎ𝑚ℎ, where 𝑁ℎ is the number of haloes
in that group. Now let’s consider the most dominant and frequent
merging, i.e. the merging with a single merger (or a single particle
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Table 1. Different Halo Mass Functions f(𝜎𝛿 , 𝑧)

Reference Mass Function f(𝜎𝛿 , 𝑧) Mass Range of Fit Redshift range of Fit

PS, Press & Schechter
√︃

2
𝜋

𝛿𝑐
𝜎𝛿

exp
[
− 𝛿2

𝑐

2𝜎2
𝛿

]
unspecified unspecified

ST, Sheth & Tormen 𝐴

√︃
2𝑞
𝜋

𝛿𝑐
𝜎𝛿

exp
[
− 𝑞𝛿2

𝑐

2𝜎2
𝛿

] [
1 +

(
𝜎2
𝛿

𝑞𝛿2
𝑐

) 𝑝 ]
unspecified unspecified

JK, Jenkins et al. 0.315 exp
[
−| ln 𝜎−1

𝛿
+ 0.61 |3.8

]
−1.2 ⩽ ln 𝜎−1

𝛿
⩽ 1.05 𝑧 = 0 − 5

WR, Warren et al. 0.7234
(
𝜎−1.625

𝛿
+ 0.2538

)
exp

[
− 1.1982

𝜎2
𝛿

]
(1010 − 1015 )ℎ−1𝑀⊙ 𝑧 = 0

TK, Tinker et al. 𝐴exp
[
− 𝑐

𝜎2
𝛿

] [ ( 𝜎𝛿
𝑏

)−𝑎 + 1
]

(1011 − 1015 )ℎ−1𝑀⊙ 𝑧 = 0 − 2

Double-_, Xu (this work Eq. (21)) 2𝑝 (2√[0 )−𝑞
Γ (𝑞/2) ( 𝛿𝑐

𝜎𝛿
) 𝑝𝑞 exp

[
− 1

4[0

(
𝛿𝑐
𝜎𝛿

)2𝑝
]

unspecified unspecified
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Figure 1. Schematic plot of the inverse mass cascade for hierarchical structure
formation. Halo of mass 𝑚ℎ merges with single merger (free DM particles
of mass 𝑚) to cause the mass flux into haloes on larger scales 𝑚ℎ + 𝑚 and
the next merging along the chain. This facilitates a continuous mass cascade
from small to large scales. A scale-independent mass flux Y𝑚 is expected
for haloes in the mass propagation range (< 𝑚∗

ℎ
). Mass cascaded from small

scales is simply propagated in the propagation range and consumed to grow
haloes with mass > 𝑚∗

ℎ
in the deposition range.

of mass 𝑚) in Fig. 1, where 𝜏ℎ is the average waiting time of a given
halo group, i.e. the average time interval between two subsequent
merging events involving single mergers with any one halo in the
same group. Therefore, the rate of mass transfer (or cascade) from
mass scale 𝑚ℎ to scale 𝑚ℎ +𝑚 during the time interval 𝜏ℎ should be

Y𝑚 = − 𝑚ℎ

𝜏ℎ (𝑚ℎ, 𝑎)
= − 𝜕

𝜕𝑡

[
𝑀ℎ (𝑎)

∫ ∞

𝑚ℎ

𝑓𝑀 (𝑚, 𝑎) 𝑑𝑚
]
, (8)

i.e. the entire halo mass 𝑚ℎ is transferred to a larger scale in a
time interval 𝜏ℎ. This equals the rate of change for total mass in all
haloes greater than 𝑚ℎ. Here 𝑀ℎ (𝑎) is the total mass in all haloes,
𝑓𝑀 (𝑚ℎ, 𝑎) = 𝐹𝑀/𝜌0 (see Eq. (1)) is the probability distribution of
total halo mass 𝑀ℎ with respect to𝑚ℎ. The integration gives the total
mass in all haloes greater than scale 𝑚ℎ. The ’minus’ sign stands for
the "inverse" cascade from small to large scales.

When self-gravitating collisionless system reaches a statistically
steady state, this rate of mass transfer must be scale independent (i.e.
Y𝑚 is independent of 𝑚ℎ). If this is not the case, there would be a net
accumulation of mass at some intermediate mass scale below 𝑚∗

ℎ
.

We exclude this possibility because we require statistical structures
of haloes to be self-similar and scale free for haloes smaller than 𝑚∗

ℎ
.

This leads to the rate of mass cascade Y𝑚 independent of mass scale

𝑚ℎ up to a critical mass 𝑚∗
ℎ

[10]. Therefore, taking the derivative of
Eq. (8) with respect to 𝑚ℎ leads to

𝜕Y𝑚

𝜕𝑚ℎ
=

𝜕

[
𝑀ℎ (𝑎) 𝑓𝑀

(
𝑚ℎ, 𝑚

∗
ℎ

)]
𝜕𝑡

=
𝜕𝑚𝑔 (𝑚ℎ, 𝑎)

𝑚𝑝𝜕𝑡
= 0,

𝑚𝑔 (𝑚ℎ, 𝑡) = 𝑀ℎ (𝑎) 𝑓𝑀 (𝑚ℎ, 𝑚∗
ℎ
)𝑚𝑝 ≡ 𝑚𝑔 (𝑚ℎ),

(9)

where 𝑚𝑔 = 𝑁ℎ𝑚ℎ is the halo group mass, 𝑚𝑝 is mass of a single
particle (mass resolution in N-body simulation).

Here the scale-independent Y𝑚 requires the halo group mass
𝑚𝑔 (𝑚ℎ, 𝑡) ≡ 𝑚𝑔 (𝑚ℎ) to be independent of time, i.e. a "small scale
permanence" where the group mass 𝑚𝑔 of different halo masses 𝑚ℎ
and different redshifts 𝑧 should collapse on to a common scaling law
(Eq. (10) and Fig. 2). Once the statistically steady state is established,
the rate of mass cascade Y𝑚 becomes scale-independent. The halo
group mass 𝑚𝑔 in propagation range becomes time independent due
to scale-independent Y𝑚. Mass is simply injected at the smallest scale
(scale of single mergers), propagated to larger scales in propagation
range (𝑚ℎ < 𝑚∗

ℎ
), and consumed to grow haloes in deposition range

(𝑚ℎ > 𝑚∗
ℎ
). Halo group mass 𝑚𝑔 (𝑚ℎ) is constant in time for haloes

𝑚ℎ < 𝑚∗
ℎ
, and grows with time for haloes 𝑚ℎ > 𝑚∗

ℎ
. Similarly, due

to scale-independent energy cascade, the "small scale permanence"
for halo density profile will be identified in Section 5 (Fig. 10).

To validate this concept, Fig. 2 presents results from large scale
cosmological Illustris simulation (Illustris-1-Dark) [44]. Illustris is
a suite of large volume cosmological DM-only and hydrodynamical
simulations. The selected Illustris-1-Dark is the DM-only simulation
of 106.5Mpc3 cosmological volume with 18203 DM particles for
the highest resolution. Each DM particle has a mass around 7.6 ×
106𝑀⊙ . The gravitational softening length is around 1.4kpc. Haloes
in simulation were identified by a standard friends-of-friends (FoF)
algorithm with linking length parameter b = 0.2 and halo center
placed at the minimum of the gravitational potential of entire halo.
Simulation has cosmological parameters of a total matter density
Ω𝑚 = 0.2726, dark energy density Ω𝐷𝐸 = 0.7274 at 𝑧 = 0, and a
dimensionless Hubble constant ℎ = 0.704.

Next, if we focus on a given halo in a halo group, the waiting
time 𝜏𝑔 for that particular halo to merge with a single merger should
be different and much greater than 𝜏ℎ (the waiting time for entire
group). Here 𝜏𝑔 is expected to be inversely proportional to the surface
area of that halo. The larger surface area 𝑆ℎ, the more likely for
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Figure 2. The variation of halo group mass𝑚𝑔 with halo mass𝑚ℎ at different
redshift 𝑧 from Illustris-1-Dark simulation. Figure demonstrates the small
scale permanence of group mass 𝑚𝑔 in mass space. Once the statistically
steady state is established (𝑧 < 8), rate of inverse mass cascade Y𝑚 becomes
scale independent such that the halo group mass 𝑚𝑔 at different redshift 𝑧
collapse to a time independent power-law 𝑚𝑔 ∝ 𝑚−_

ℎ
(Eq. (10)) at small

mass scale (propagation range) with halo geometry parameter _ ≈ 0.88.

that halo to merge with a single merger, and the smaller waiting
time 𝜏𝑔. Therefore, for haloes with a given mass 𝑚ℎ, this waiting
time 𝜏𝑔 ∝ 𝑆−1

ℎ
∝ 𝑚−_

ℎ
, where _ is a key halo geometry parameter.

Intuitively, _ ≈ 2/3 for large haloes (i.e. 𝑆ℎ ∝ 𝑚
2/3
ℎ

). This is also
equivalent to the waiting time 𝜏𝑔 ∝ Φ−1, where Φ ∝ 𝐺𝑚ℎ/𝑟ℎ is the
gravitational potential and 𝑟ℎ ∝ 𝑚

1/3
ℎ

is the size of halo. The greater
halo gravitational potential Φ, the larger velocity dispersion 𝜎2 from
virial theorem (or halo temperature), the smaller waiting time 𝜏𝑔,
and the more frequently halo merging with single mergers. Particle
waiting time is dependent on its local potential. This will be used for
deriving halo density profile in Section 6.

Depending on the number of haloes 𝑁ℎ in a given halo group, the
two waiting times 𝜏𝑔 and 𝜏ℎ are related to each other as

𝜏ℎ = −𝑚ℎ

Y𝑚
=

𝜏𝑔

𝑁ℎ
∝ 𝑁−1

ℎ
𝑚−_
ℎ

and 𝑚𝑔 = 𝑁ℎ𝑚ℎ ∝ 𝑚−_
ℎ

. (10)

Again, due to scale-independent rate of mass cascade Y𝑚 (not varying
with𝑚ℎ in propagation range), Eq. (10) requires the number of haloes
𝑁ℎ ∝ 𝑚−1−_

ℎ
for any given mass 𝑚ℎ, or equivalently a power-law

group mass 𝑚𝑔 = 𝑁ℎ𝑚ℎ ∝ 𝑚−_
ℎ

at small mass scales, i.e. the small
scale permanence in Fig. 2. In the same figure, we obtain _ ≈ 0.88 for
Illustris simulation and number of haloes in halo group 𝑁ℎ ∝ 𝑚−1.9

ℎ
that is in good agreement with other work [45].

To summarize, the mass cascade at statistically steady state in-
volves two ranges, the propagation and deposition range. The propa-
gation range for haloes with mass 𝑚ℎ < 𝑚∗

ℎ
involves a sequence of

merging with single mergers (the smallest structure) to simply prop-
agate mass to larger scales. In this range, the rate of mass transfer Y𝑚
is independent of halo mass 𝑚ℎ and halo group mass 𝑚𝑔 is constant
in time. The deposition range (𝑚ℎ > 𝑚∗

ℎ
) involves the consumption

(deposition) of mass cascaded from scales below 𝑚∗
ℎ

to grow haloes
above 𝑚∗

ℎ
(Fig. 1). Therefore, the inverse mass cascade can be de-

scribed as: "Little halos have big halos, That feed on their mass; And
big halos have greater halos, And so on to growth."

In addition, haloes possess finite kinetic and potential energy.

Accompanied by the mass cascade, there exists a simultaneous energy
cascade across haloes of different masses [46, 47]. The rate of energy
cascade Y𝑢 ∝ Y𝑚

〈
𝜎2〉 /𝑀ℎ ∝ −𝐻

〈
𝜎2〉, where

〈
𝜎2〉 is the mean

kinetic energy of all particles in all haloes. The specific rate of energy
cascade per unit mass (Y𝑢 < 0 for inverse energy cascade) can be
estimated from the time variation of velocity dispersion 𝑢2

0 for all
dark matter particles,

Y𝑢 = −3
2
𝑢2

0
𝑡0

≈ −4.6 × 10−7 𝑚
2

𝑠3 , (11)

where 𝑢0 ≈ 350𝑘𝑚/𝑠 from N-body simulation and 𝑡0 is the current
age of universe [9].

Therefore, similar to the mass cascade in propagation range, there
exist an inverse (kinetic) energy cascade from small to large scales
with a constant rate Y𝑢. In this range of scales, the small scale struc-
tures evolve so fast and do not feel the slowly evolving large scale
structures directly except through constant rate Y𝑢. This description
indicates that relevant quantities in this range of scales should be
determined by and only by Y𝑢 (𝑚2/𝑠3), gravitational constant 𝐺
(𝑚3/𝑘𝑔 · 𝑠2), and the relevant length scale r. By a simple dimen-
sional analysis, the halo mass enclosed within 𝑟 and corresponding
halo density should follow the scaling [9]

𝑚𝑟 (𝑟) ∝ Y
2/3
𝑢 𝐺−1𝑟5/3 and 𝜌𝑟 (𝑟) ∝ Y

2/3
𝑢 𝐺−1𝑟−4/3, (12)

i.e. the 5/3 law and -4/3 law. These results can be demonstrated and
confirmed by both N-body simulations (Figs. 12 to 15) and halo
density profiles from random walk in Section 6 (Eq. (30)).

4 DOUBLE-_ HALO MASS FUNCTION

To derive halo mass function, the inverse mass cascade can be trans-
formed into a halo random walk in mass space that mimics the
random work of particles for diffusion problem. Just similar to the
particle diffusion, we can derive the relevant Fokker-Planck equa-
tion and corresponding solution, from which halo mass function can
be analytically solved. This is not just mathematically convenient,
but reveals some fundamental aspects of halo mass function as an
intrinsic property of self-gravitating collisionless system.

As shown in Fig. 1, haloes are continuously migrating in mass
space from one scale (𝑚ℎ) to neighboring scale (𝑚ℎ +𝑚) by merging
with single mergers. This leads to a probability distribution to find
a halo at a given mass. The waiting time (or jumping frequency) for
a given halo to migrate from a given mass 𝑚ℎ to neighboring mass
𝑚ℎ + 𝑚 is 𝜏𝑔 in Eq. (10). Different from the standard random walk
with a constant waiting time, the halo waiting time 𝜏𝑔 is dependent
on the mass of halo, i.e. a position-dependent 𝜏𝑔 (Eq. (10)). For halo
with a given mass 𝑚ℎ, the waiting time 𝜏𝑔 ∝ 𝑚−_

ℎ
, where _ is a key

halo geometry parameter we discussed.
First, the random walk of haloes in mass space describes the

stochastic variation of the mass of a given halo due to continu-
ous merging with single mergers of mass 𝑚. Following the Langevin
equation, we can write a stochastic equation for halo mass 𝑚ℎ [10]

𝜕𝑚ℎ (𝑡)
𝜕𝑡

=

√︃
2𝐷 𝑝 (𝑚ℎ)𝜍 (𝑡) ∝ 𝑚

𝜏𝑔
, (13)

where 𝑚/𝜏𝑔 represents the average rate of mass change. For a power-
law waiting time 𝜏𝑔 ∝ 𝑚−_

ℎ
, we find the position-dependent diffusiv-

ity should take the form of

𝐷 𝑝 (𝑚ℎ) = 𝐷 𝑝0 (𝑡)𝑚2_
ℎ
. (14)

Here 𝐷 𝑝0 (𝑡) is a proportional constant for diffusivity 𝐷 𝑝 . The white
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Gaussian noise 𝜍 (𝑡) satisfies the covariance ⟨𝜍 (𝑡)𝜍 (𝑡′ )⟩ = 𝛿(𝑡 − 𝑡
′ )

with a zero mean ⟨𝜍 (𝑡)⟩ = 0. Equation (13) describes the stochastic
evolution of halo mass 𝑚ℎ with a waiting time 𝜏𝑔 (𝑚ℎ) ∝ 𝑚−_

ℎ
.

Second, in Stratonovich interpretation [48], the Langevin equation
(Eq. (13)) yields to a distribution function 𝑃ℎ (𝑚ℎ, 𝑡) satisfying the
Fokker-Planck equation (resembling particle diffusion)

𝜕𝑃ℎ (𝑚ℎ, 𝑡)
𝜕𝑡

= 𝐷 𝑝0
𝜕

𝜕𝑚ℎ

[
𝑚_
ℎ

𝜕

𝜕𝑚ℎ

(
𝑚_
ℎ
𝑃ℎ (𝑚ℎ, 𝑡)

)]
, (15)

which describes the evolution of probability function 𝑃ℎ for halo
mass𝑚ℎ in mass space. Obviously, the halo mass function 𝑓𝑀 (𝑚ℎ, 𝑡)
is exactly the distribution function 𝑃ℎ, i.e. 𝑓𝑀 ≡ 𝑃ℎ.

Finally, solution to Eq. (15), i.e. the halo mass function, is a
stretched Gaussian with an exponential cut-off for large 𝑚ℎ and a
power-law behavior for small 𝑚ℎ,

𝑓𝑀 (𝑚ℎ, 𝑡) =
𝑚−_
ℎ√︁

𝜋𝐷 𝑝0𝑡
exp

[
−

𝑚2−2_
ℎ

4 (1 − _)2 𝐷 𝑝0𝑡

]
. (16)

The mean square displacement in mass space is〈
𝑚2
ℎ

〉
=

∫ ∞

0
𝑓𝑀 (𝑚ℎ, 𝑡) 𝑚2

ℎ
𝑑𝑚ℎ

=
1
√
𝜋
Γ

(
3 − _

2 − 2_

) [
4 (1 − _)2 𝐷 𝑝0𝑡

] 1
1−_ ≡ 𝛾0𝑚

∗2
ℎ
.

(17)

where 𝑚∗
ℎ
(𝑡) is the critical mass scale and 𝛾0 is just a proportional

constant. With the exponent of 1/(1 − _) ⩾ 1 in Eq. (17), it is clear
that the random walk of haloes in mass space is of a super-diffusion
nature. Now 𝑓𝑀 (𝑚ℎ, 𝑡) (Eq. (16)) can be rewritten in terms of 𝑚∗

ℎ

𝑓𝑀 (𝑚ℎ, 𝑡) =
(1 − _)
𝑚∗
ℎ

√
𝜋[0

(
𝑚∗
ℎ

𝑚ℎ

)_
exp

−
1

4[0

(
𝑚ℎ

𝑚∗
ℎ

)2−2_ , (18)

where the dimensionless constant

[0 =
1
4

[
𝛾0
√
𝜋

Γ ((3 − _) /(2 − 2_))

]1−_
. (19)

The time dependence of 𝑓𝑀 is absorbed into 𝑚∗
ℎ
. Intuitively,

_ ≈ 2/3 for large haloes in deposition range with low concentra-
tion, whose central structures are still dynamically adjusted due to
fast mass accretion. While for small haloes with high concentration
(propagation range), the mass accretion is slow and inner structure
is stable [49]. These small haloes can be treated as fractal objects
with a fractal surface dimension 𝐷ℎ ⩽ 3. The geometry parameter
_ = 𝐷ℎ/3 can be greater than 2/3 (see Fig. 2). These high concen-
tration low mass haloes are usually found in denser environments
[50]. The denser environment might lead to a rougher halo surface
and higher surface fractal dimension 𝐷ℎ. Therefore, two different _
(i.e. double-_) are required for two ranges (propagation range with
𝑚ℎ < 𝑚∗

ℎ
and deposition range with 𝑚ℎ > 𝑚∗

ℎ
) due to different halo

properties and surrounding environments. The single-_ halo mass
function in Eq. (18) can be naturally generalized to a double-_ halo
mass function with _1 and _2 for propagation and deposition ranges,
respectively. Therefore, the double-_ mass function reads

𝑓𝑀 (𝑚ℎ, 𝑎) =
(
2
√
[0

)−𝑞 2 (1 − _1)
𝑞Γ (𝑞/2)

·
(
𝑚∗
ℎ

𝑚ℎ

)_1 1
𝑚∗
ℎ

exp
−

1
4[0

(
𝑚ℎ

𝑚∗
ℎ

)2−2_2  .
(20)

By introducing variable a = (𝑚ℎ/𝑚∗
ℎ
)2/3, the three parameter
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Figure 3. Comparison between different halo mass functions f(𝜎𝛿 , 𝑧) and
simulation at different redshift z. The PS mass function overestimate the mass
in small haloes and underestimates the mass in large haloes. The fitted JK
mass function matches simulation only in a given range with large deviation
for small mass haloes. The WR mass function deviates at small mass with a
limit f(𝜎−1

𝛿
→ 0, 𝑧) = −1.695. The double-_ mass function (Eq. (21)) with

best fitting parameters [0 = 1.162, 𝑞 = 0.365, and 𝑝 = 1.185 (or _1 = 0.856
and _2 = 0.605) matches the simulation and is slightly better than ST mass
functions at large halo mass.

double-_ mass function can be finally written as,

𝑓𝐷_ (a) =
𝑝

(
2√[0

)−𝑞
Γ (𝑞/2) a

𝑝𝑞

2 −1 exp
(
− a𝑝

4[0

)
, (21)

where model parameters 𝑝 and 𝑞 have clear physical meaning. Both
are related to halo geometry parameters _1 and _2 as,

𝑝 = 3 (1 − _2) and 𝑞 =
(1 − _1)
(1 − _2)

. (22)

Clearly, Eq. (21) reduces to the Press-Schechter (PS) mass function
if _1 = _2 = 2/3 and [0 = 1/2. However, the derivation of double-
_ mass function does not rely on any collapse model (spherical
or ellipsoidal). The critical overdensity 𝛿𝑐 from collapse model is
not required in this formulation. In simulation, haloes are usually
defined using the critical overdensity 𝛿𝑐 to compute the halo mass
function. The derivation of double-_ mass function of Eq. (21) does
not depend on the exact definition of halo. Different definitions of
halo in simulation might affect both halo mass 𝑚ℎ and the critical
mass 𝑚∗

ℎ
, but not the ratio a = (𝑚ℎ/𝑚∗

ℎ
)2/3, and therefore not the

double-_ halo mass function. More importantly, _1 = _2 = 2/3 or
𝑝 = 𝑞 = 1 is a natural result of current theory. This formulation
reveals that the halo mass function in the form of Eq. (21) is an
intrinsic property of self-gravitating collisionless dark matter system
that is independent of spherical or ellipsoidal collapse models.

The halo geometry exponent _ has a fundamental meaning to re-
late halo surface area (or effective mass accretion area) to its mass.
The cosmology and redshift dependence of _1 and _2 can be system-
atically studied by fitting the model to the simulation data of different
cosmologies, similar to the study in Bocquet et al. [25] and Euclid
Collaboration et al. [51].

Alternatively, similar to the scale radius 𝑟𝑠 for halo density where
logarithmic density slope is -2, we may introduce a scale mass 𝑚ℎ𝑠
where logarithmic slope 𝜕 ln( 𝑓𝑀 )/𝜕 ln(𝑚ℎ) = −1 such that 𝑚ℎ𝑠 =
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Figure 4. Comparison of mass functions with Illustris-1-Dark simulation
(solid blue) at z=0. The PS mass function overestimates mass in small haloes.
The fitted JK mass function matches simulation only in a given range. The
double-_ mass function (Eq. (21)) matches both simulation and the ST and
WR mass functions at z=0. Bottom plot presents the relative errors between
simulation and different mass functions.

(2[0𝑞)3/(2𝑝)𝑚∗
ℎ

from Eq. (20). With a new scaled variable ā =

(𝑚ℎ/𝑚ℎ𝑠)2/3, mass function in Eq. (21) can be further simplified
with 𝑝 and 𝑞 as the only two parameters

𝑓𝐷_ (ā) =
𝑝(𝑞/2)𝑞/2

Γ (𝑞/2) ā
𝑝𝑞

2 −1 exp
(
−𝑞

2
ā𝑝

)
. (23)

To validate the derived double-_mass function, we presents results
from Illustris simulation (Illustris-1-Dark) [44]. Figure 3 presents the
halo mass function f(𝜎𝛿 , 𝑧) in Eq. (1). The best fit of double-_ mass
function to the simulation data at all z gives values of [0 = 1.162,
𝑞 = 0.365, and 𝑝 = 1.185 (Fig. 3), which leads to _1 = 0.856 and
_2 = 0.605 from Eq. (22) for the propagation and deposition ranges,
respectively. This leads to a slope of −_1 −1 ≈ −1.9 for halo number
density 𝑛(𝑚ℎ, 𝑧) ∝ 𝑚−1.9

ℎ
(Eq. (10)), in very good agreement with

Fig. 2 and other work [45]. Compared to predicted value of _ = 2/3
for matter dominant universe, the effect of dark energy in Illustris
simulations seems to enhance the value of _1 and decrease the value
of _2, reflecting the changes in environments and halo properties due
to the presence of dark energy and accelerated expansion.

The PS mass function overestimate the mass in small haloes
and underestimates the mass in large haloes. The JK mass func-
tion matches simulation for large mass haloes with large deviation
for small haloes. The fitted WR mass function does not satisfy
the normalization condition, where

∫ ∞
0 𝑓𝑊𝑅 (a)𝑑a diverges. The

WR mass function also deviates at small mass with a finite limit
f(𝜎−1

𝛿
, 𝑧) = −1.695 for 𝜎𝛿 → ∞. The ST functions matches the

simulation better with f(𝜎𝛿 , 𝑧) → 𝜎
2𝑝−1
𝛿

≈ 𝜎−0.4
𝛿

for large 𝜎𝛿 . For
large halo or high redshift, ST mass functions tend to overestimate
when compared with simulation, which is also found in other studies
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Figure 5. Comparison of mass functions with Illustris-1-Dark (solid blue) at
z=4. The simulation results agree with all mass functions except PS. Double-_
mass function (Eq. (21)) predicts a slightly lower mass in larger haloes.

[52, 53]. The double-_ mass function is better than ST function for
large haloes with f(𝜎𝛿 , 𝑧) → 𝜎

−𝑝𝑞
𝛿

≈ 𝜎−0.43
𝛿

for 𝜎𝛿 → ∞.
Figures 4 to 7 present the comparison of halo mass functions 𝐹𝑀

in Eq. (1) with simulation results at 𝑧 = 0, 4, 8, and12, as a function
of halo mass 𝑚ℎ. Relative errors of different mass functions when
compared to binned simulation data are also presented in the bottom
plots. Similar conclusions can be obtained from these plots, where
WR, ST, TK and double-_ mass functions agree with simulation at
lower redshift. Double-_ mass function is slightly better at higher
redshifts 𝑧 = 8 and 12.

5 MASS SCALE 𝑚∗
ℎ

AND SMALL SCALE PERMANENCE

The inverse mass cascade and halo mass function (Eq. (20)) require
a critical halo mass scale 𝑚∗

ℎ
that can be related to halo velocity

dispersions from virial theorem

a =

(
𝑚ℎ

𝑚∗
ℎ

)2/3

=
⟨𝜎2
𝑣 (𝑚ℎ)⟩

⟨𝜎2
𝑣 (𝑚∗

ℎ
)⟩

=
⟨𝜎2
𝑣 (𝑚ℎ)⟩

𝜎2
ℎ
(𝑚∗
ℎ
)
, (24)

where 𝜎2
𝑣 (𝑚ℎ) is the velocity dispersion of all DM particles in a

halo with a given mass 𝑚ℎ, which represents the temperature of that
halo. Here ⟨⟩ represents the average for all haloes in the same group
with same mass 𝑚ℎ. In addition, 𝜎2

ℎ
= 𝑉𝐴𝑅(𝑉ℎ) is the dispersion

(variance) of halo velocity 𝑉ℎ (the mean velocity of all particles in
the same halo) for all haloes in the same group, where 𝜎2

ℎ
represents

the temperature of halo group that is relatively independent of halo
mass 𝑚ℎ [5, 47].

Figure 8 presents an example of the variation of ⟨𝜎2
𝑣 ⟩ and 𝜎2

ℎ
with

𝑚ℎ at 𝑧 = 8, where the critical mass 𝑚∗
ℎ
(𝑧 = 8) = 9×1010𝑀⊙ can be

determined by setting ⟨𝜎2
𝑣 (𝑚∗

ℎ
)⟩ = 𝜎2

ℎ
in Eq. (24). We can similarly
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Figure 6. Comparison of mass functions with Illustris-1-Dark simulation
(solid blue) at z=8. The double-_ mass function (Eq. (21)) predicts less mass
in larger haloes and slightly better agrees with the simulation.
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Figure 7. Comparison of mass functions with Illustris-1-Dark simulation
(solid blue) at z=12. Compared to other mass functions, the double-_ mass
function (Eq. (21)) predicts less mass in larger haloes and slightly better
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Figure 8. The halo velocity dispersions ⟨𝜎2
𝑣 ⟩ (𝑚ℎ ) and 𝜎2

ℎ
at 𝑧 = 8 from

Illustris-1-Dark simulation. The two velocity dispersions represent the tem-
perature of haloes and temperature of halo groups [47]. The large fluctuation
at large mass scale is due to fewer massive haloes. Here ⟨𝜎2

𝑣 ⟩ ∝ 𝑚
2/3
ℎ

while
𝜎2
ℎ

is relatively independent of 𝑚ℎ . The critical halo mass 𝑚∗
ℎ
(𝑧 = 8) =

9 × 1010𝑀⊙ is found by setting ⟨𝜎2
𝑣 ⟩ (𝑚∗

ℎ
) = 𝜎2

ℎ
(Eq. (24)).

compute the critical mass 𝑚∗
ℎ

for other redshifts. The variation of
𝑚∗
ℎ

with the scale factor 𝑎 is presented in Fig. 9. In linear regime,
𝑚∗
ℎ
∝ 𝑎3 is expected, while in nonlinear regime 𝑚∗

ℎ
∝ 𝑎3/2 [10].

With halo mass function in Eq. (18) and the small scale perma-
nence for 𝑚𝑔 in Eqs. (9), (10), and Fig. 2, the halo group mass
𝑚𝑔 = 𝑚ℎ𝑚𝑝 (𝑚𝑝 is particle mass) should satisfy

𝑚𝑔 (𝑚ℎ, 𝑡) = 𝑀ℎ (𝑡) 𝑓𝑀𝑚𝑝 ∝ 𝑀ℎ𝑚
∗
ℎ
_−1𝑚−_

ℎ
𝑚𝑝 ≡ 𝑚𝑔 (𝑚ℎ), (25)

such that the total mass in all haloes 𝑀ℎ (𝑎) ∝ 𝑚∗
ℎ

1−_ when statisti-
cally steady state is established in the nonlinear regime. With _ = 2/3
for 𝑚ℎ = 𝑚∗

ℎ
, 𝑀ℎ (𝑎) ∝ 𝑎1/2 is expected. The time variation of total

halo mass 𝑀ℎ is also presented in Fig. 9.
Next, similar to the small scale permanence for group mass 𝑚𝑔 in

Fig. 2, we will present the small scale permanence for halo density
profile. From the scaling laws due to energy cascade, the density
scaling 𝜌𝑟 ∝ 𝑟−4/3 is proposed in Eq. (12), which already hints the
small scale permanence. To demonstrate this concept, the density
profiles for haloes with a critical mass 𝑚∗

ℎ
at different redshifts are

studied first. In Illustris-1-Dark simulation, all haloes with mass
between 10±Δ𝑚∗

ℎ
are identified at different redshifts 𝑧 with Δ = 0.1.

The spherical averaged density profile is computed for every halo.
The density profile for haloes with critical mass 𝑚∗

ℎ
is computed as

the average density profile for all haloes with mass between 10±Δ𝑚∗
ℎ
.

Figure 10 presents the time evolution of halo density profiles for
haloes with critical mass 𝑚∗

ℎ
(𝑧). The small scale permanence from

energy cascade can be clearly demonstrated as the density profiles
for haloes with critical mass at different redshifts all collapse onto
the predicted density scaling (blue solid line 𝜌ℎ ∝ 𝑟−4/3) on small
scales. Finally, if gravity is the only interaction and dark matter is
fully collisionless and cold, extending the established scaling in Fig.
10 to the smallest length scale and and the earliest time (or the highest
𝑧) might be able to identify dark matter particle mass, size, lifetime,
and many other properties [46].
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Figure 9. The variation of critical halo mass 𝑚∗
ℎ
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haloes with scale factor 𝑎. Two regimes can be identified. In the linear regime
𝑚∗

ℎ
∝ 𝑎3. In nonlinear regime𝑚∗

ℎ
∝ 𝑎3/2 and𝑀ℎ ∝ 𝑎1/2, where statistically

steady state is established with a scale-independent rate of cascade. Density
profiles of haloes with critical mass 𝑚∗

ℎ
are presented in Fig. 10.
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Figure 10. The evolution of halo density profiles for haloes with critical mass
𝑚∗

ℎ
(𝑧) . Figure demonstrates the small scale permanence, i.e. the density

profiles for haloes with mass 𝑚∗
ℎ

at different redshifts 𝑧 collapse at small
scale 𝑟 onto the predicted density scaling (-4/3 law with 𝜌ℎ ∝ 𝑟−4/3) from
the theory of energy cascade (solid blue line from Eq. (12)).

6 DOUBLE-𝛾 HALO DENSITY PROFILE

The halo density profile can be analytically derived based on a similar
idea as deriving halo mass function. Within CDM paradigm, the
formation of structures starts from the gravitational collapse of small
scale density fluctuations and proceeds hierarchically such that small
structures coalesce into large structures in a "bottom-up" fashion.
The halo structure is formed hierarchically through a series merging
with smaller structures (dominantly with single mergers in Fig. 1).

Now let us follow the mass accretion history of a given halo in Fig.
11, where halo mass 𝑚𝑟 ≡ 𝑚𝑟 (𝑡) (or halo size 𝑟 ≡ 𝑟 (𝑡), the radius
enclosing mass 𝑚𝑟 ) continuously varies with time from 0 to 𝑚𝑟 (or
size from 0 to 𝑟 ). The mean waiting time of every merging with a
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Figure 11. Schematic plot of the growth of a given halo in both mass 𝑚𝑟

and size 𝑟 via continuous merging with single mergers, where the waiting
time 𝜏𝑔 (𝑚𝑟 ) ∝ 𝑚−_

𝑟 . Every merging event corresponds to a single move of
particle 𝑚 in a random walk process, where the waiting time 𝜏𝑔 (𝑟 ) ∝ 𝑟−𝛾 .
Single mergers continuously join halo and perform 3D random walk. Particle
distribution from 3D random walk gives rise to the halo density.

single merger 𝑚 has a simple scaling as 𝜏𝑔 ∝ 𝑚−_
𝑟 ∝ Φ−1, where _

is a halo geometry parameter (see Eq. (10)) and Φ(𝑟) ∝ 𝐺𝑚𝑟/𝑟 is
the gravitational potential at 𝑟 . In 3D space, halo size 𝑟 can be related
to the position 𝑿𝑡 of merger 𝑚 as 𝑟 =

√
𝑿𝑡 · 𝑿𝑡 . Since both halo

mass 𝑚𝑟 (𝑡) and Φ(𝑟) can be related to size 𝑟 (𝑡), the waiting time
𝜏𝑔 should also be a function of 𝑟 (𝑡), which means a varying waiting
time dependent on the particle distance 𝑟 to halo center

𝜏𝑔 (𝑟) ∝ Φ(𝑟)−1 ∝ 𝑟 (𝑡)−𝛾 , (26)

where 𝛾 is an exponent for 𝑟-dependence of waiting time 𝜏𝑔, which
can be related to the slope of density profile (see Eq. (30)).

Since haloes are formed by sequential merging, every DM particle
in any halo was a single merger at the time they joined that halo.
That particle starts to continuously perform a 3D random walk with
a position-dependent waiting time 𝜏𝑔 dependent on its local potential
Φ or 𝑟 (Eq. (26)) right after the merging, whereΦ(𝑟) is determined by
the total enclosed mass within 𝑟. In this regard, halo random walk in
mass space is consistent with the particle random walk in 3D space.
The random walk of DM particles has a position dependent waiting
time 𝜏𝑔 ∝ Φ(𝑟)−1 ∝ 𝑟−𝛾 , where 𝑟 =

√
𝑿𝑡 · 𝑿𝑡 is the distance to halo

center. The waiting time is also dependent on the local potentialΦ(𝑟),
or from virial theorem, the velocity dispersion 𝜎2 that represents the
local temperature. Since energy cascade theory predicts the 5/3 law
for mass scaling 𝑚𝑟 ∝ 𝑟5/3 for the inner region of virialized haloes
(see Eq. (12)), we have potential Φ(𝑟) ∝ 𝐺𝑚𝑟/𝑟 ∝ 𝑟2/3 such that
𝛾 = 2/3 from Eq. (26). A position dependent waiting time 𝜏𝑔 (𝑟) is
an important feature for hierarchical formation of halo structure. A
longer waiting time 𝜏𝑔 (𝑟) at small 𝑟 means a more stable core region
than the outer region.

Finally, the particle distribution resulting from this position-
dependent random walk in 3D space gives rise to the halo density, as
shown in Fig. 11. Therefore, to find the halo density profile, we need
to derive the particle distribution function due to the random walk
in 3D space with 𝜏𝑔 (𝑟) ∝ 𝑟−𝛾 . The 3D particle random walk can be
described by a Langevin equation for particle position 𝑿𝑡 (similar to
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Eq. (13) for halo random walk in mass space),
𝑑𝑿𝑡
𝑑𝑡

=
√︁

2𝐷𝑃 (𝑿𝑡 )𝝃 (𝑡) . (27)

Due to position-dependent waiting time 𝜏𝑔 (𝑟), the position-
dependent diffusivity reads

𝐷𝑃 (𝑿𝑡 ) = 𝐷0 (𝑡)𝑟2𝛾 , (28)

where 𝐷0 (𝑡) is a proportional constant. The smaller 𝑟 , the smaller
diffusivity or longer waiting time, and the higher particle density.
In Itô convention, the 3D Fokker-Planck equation in Cartesian co-
ordinate can be directly obtained for particle distribution function
𝑃𝑟 (𝑿, 𝑡) (𝑖 = 1, 2, 3 for Cartesian coordinates),
𝜕𝑃𝑟 (𝑿, 𝑡)

𝜕𝑡
= 𝐷0

𝜕

𝜕𝑋𝑖

[
𝜕

𝜕𝑋𝑖

(
𝑟2𝛾𝑃𝑟 (𝑿, 𝑡)

)]
. (29)

The corresponding solution of Eq. (29) in spherical coordinate is

𝑃𝑟 (𝑟, 𝑡) =
(2 − 2𝛾)

𝛾−2
1−𝛾 𝑟−2𝛾

4𝜋 (𝐷0𝑡)
3−2𝛾
2−2𝛾 Γ

(
3−2𝛾
2−2𝛾

) exp
(
− 𝑟2−2𝛾

4(1 − 𝛾)2𝐷0𝑡

)
. (30)

Since the distribution function 𝑃𝑟 (𝑟, 𝑡) is equivalent to halo density,
we find that the parameter 𝛾 is half of the density slope at small 𝑟.

From this insight, assume 𝛾 is unknown, we can predict the value
of 𝛾 as follows: Since the waiting time 𝜏𝑔 ∝ Φ(𝑟)−1 ∝ 𝑟−𝛾 , halo
density should scale as 𝜌𝑟 ∝ 𝑟−2𝛾 from Eq. (30). The halo mass
enclosed in 𝑟 scales as 𝑚𝑟 ∝ 𝜌𝑟𝑟

3 ∝ 𝑟3−2𝛾 . The local potential at
𝑟 should scale as Φ(𝑟) ∝ 𝐺𝑚𝑟/𝑟 ∝ 𝑟3−2𝛾−1. The waiting time of
particle at 𝑟 should satisfy Eq. (26) that requires 3 − 2𝛾 − 1 = 𝛾

such that 𝛾 = 2/3 and the density slope 2𝛾 = 4/3. It should be noted
that the random walk theory for halo structure formation confirms
the -4/3 law (𝜌𝑟 ∝ 𝑟−4/3) predicted by the energy cascade theory
in Eq. (12). Predictions are tested against simulations in Figs. 12 to
15. Similar to halo mass function (Eq. (20)), the exponent 𝛾 can be
different in two different ranges, i.e. the power law below the scale
radius 𝑟𝑠 and the exponential decay above 𝑟𝑠 . Using two different 𝛾
for 𝑟-dependence of waiting time 𝜏𝑔 (𝑟) ∝ 𝑟−𝛾 , i.e. 𝛾1 and 𝛾2 for two
different ranges, based on the single-𝛾 distribution in Eq. (30), the
double-𝛾 distribution reads

𝑃𝑟 (𝑟, 𝑡) =
(2 − 2𝛾2)

2𝛾1−2−𝛾2
1−𝛾2 𝑟−2𝛾1

4𝜋 (𝐷0𝑡)
3−2𝛾1
2−2𝛾2 Γ

(
3−2𝛾1
2−2𝛾2

) exp
(
− 𝑟2−2𝛾2

4(1 − 𝛾2)2𝐷0𝑡

)
. (31)

Introducing the conventional scale radius 𝑟𝑠 (𝑡) where the logarithmic
slope of 𝑃𝑟 (𝑟, 𝑡) equals -2, we should have

4(1 − 𝛾2)2𝐷0𝑡 =
2 − 2𝛾2
2 − 2𝛾1

𝑟
2−2𝛾2
𝑠 . (32)

Substituting Eq. (32) into Eq. (31) and introducing a dimensionless
spatial-temporal variable 𝑥 = 𝑟/𝑟𝑠 (𝑡), distribution function reads

𝑃𝑟 (𝑥) =
(1 − 𝛾2)𝑥−2𝛾1

2𝜋Γ
(

3−2𝛾1
2−2𝛾2

) (
1−𝛾2
1−𝛾1

) 3−2𝛾1
2−2𝛾2

exp
(
−1 − 𝛾1

1 − 𝛾2
𝑥2−2𝛾2

)
. (33)

Finally, the two parameter particle distribution function can be writ-
ten as (with a similar form as mass function in Eq. (23))

𝑃𝑟 (𝑥) =
𝛼𝛽

−( 1
𝛼
+ 1

𝛽
)

4𝜋Γ
(

1
𝛼 + 1

𝛽

) 𝑥 𝛼
𝛽
−2 exp

(
− 𝑥𝛼

𝛽

)
, (34)

where two dimensionless parameters 𝛼 and 𝛽 are

𝛼 = 2 − 2𝛾2 and 𝛽 =
1 − 𝛾2
1 − 𝛾1

. (35)
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Figure 12. Halo density profiles for different halo mass 𝑚ℎ at 𝑧 = 0 (solid
lines). The predicted scaling law (Eq. (12)) for halo density is presented as
the solid blue line. The double-𝛾 density model (Eq. (38)) was also plotted
for all haloes as dashed lines.

The time variation of the distribution function is absorbed into the
scale radius 𝑟𝑠 (𝑡). The double-𝛾 distribution function reduces to the
Einasto profile with 𝛼 = 2𝛽. The cumulative distribution in spherical
coordinate can be easily obtained as,∫ 𝑥

0
𝑃𝑟 (𝑦) 4𝜋𝑦2𝑑𝑦 = 1 −

Γ

(
1
𝛼 + 1

𝛽
, 𝑥

𝛼

𝛽

)
Γ

(
1
𝛼 + 1

𝛽

) , (36)

where Γ(𝑥, 𝑦) is an upper incomplete gamma function.
So far we provide physical interpretation and a possible theory for

halo density. The general density profile can be finally written as

𝜌ℎ (𝑟, 𝑡) = 𝜌𝑠 (𝑡)
𝑃𝑟 (𝑥)
𝑃𝑟 (1)

= 𝜌𝑠 (𝑡)𝑥
𝛼
𝛽
−2 exp

(
1
𝛽

(
1 − 𝑥𝛼

) )
, (37)

where 𝜌𝑠 (𝑡) is the density at scale radius 𝑟𝑠 . Simulated haloes were
found to have different density slopes in different simulations as
discussed in Section 1. This might be due to the different radial flow
and mass accretion rate in these haloes, whose density profile can be
modelled by the general solution in Eq. (37) [9].

On small scale, virialized haloes are incompressible with vanishing
(proper) radial flow [54]. For fully virialized haloes with vanishing
radial flow, we would expect -4/3 law for inner density with 2𝛾1 =

4/3, which is consistent with the limiting density slope in Eq. (12).
Combining Eq. (37) with 𝛼/𝛽 = 2/3 leads to density profile that is
consistent with the prediction from energy cascade in Eq. (12),

𝜌ℎ (𝑟, 𝑡) = 𝐴𝑟Y
2/3
𝑢 𝐺−1𝑟−4/3

𝑠

(
𝑟

𝑟𝑠

)−4/3
exp

[
− 1
𝛽𝑟

(
𝑟

𝑟𝑠

)2𝛽𝑟/3
]
. (38)

The small scale permanence for halo density in Fig. 10 becomes

𝜌ℎ (𝑟, 𝑡) ≡ 𝜌ℎ (𝑟) = 𝐴𝑟Y
2/3
𝑢 𝐺−1𝑟−4/3 for 𝑟 → 0, (39)

where 𝐴𝑟 is an amplitude parameter of halo density, 𝛽𝑟 = 𝛽 is a
shape parameter of density profile, and 𝑟𝑠 is the scale radius.

To validate the proposed density model in Eq. (38), spherical
averaged density profile was first obtained for all haloes with given
mass in a range of 10±Δ𝑚ℎ at different redshifts 𝑧. Next, we obtained
the average halo density profile for all haloes in the same range at
same redshift. The radial flow in these haloes might be cancelled out
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Figure 13. Halo density profiles for different halo mass 𝑚ℎ at 𝑧 = 4 (solid
lines). The predicted scaling law (Eq. (12)) for halo density is presented as
the solid blue line. for comparison, the double-𝛾 density model (Eq. (38))
was also plotted as dashed lines. Model fits better for halo density at higher
redshift. The asymptotic density slope −4/3 at small 𝑟 can be identified.
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Figure 14. Halo density profiles for different halo mass 𝑚ℎ at 𝑧 = 8 (solid
lines). The predicted scaling law (Eq. (12)) for halo density is presented as
the solid blue line. The double-𝛾 density model (Eq. (38)) was also plotted as
dashed lines. The asymptotic density slope −4/3 at small 𝑟 can be identified.

after this averaging such that the averaged halo density can be better
described by Eq. (38) with an inner slope of 2𝛾1 = 4/3.

Figures 12 to 15 present the halo density profiles of different
halo mass 𝑚ℎ at different redshifts 𝑧 from Illustris dark matter only
simulations: Illustris-1-Dark (solid lines), where Δ is selected to be
0.1. The double-𝛾 density model (Eq. (38)) was also used to fit all
haloes and plotted as dashed lines in these figures. The best-fit model
parameters 𝐴𝑟 , 𝛽𝑟 and 𝑟𝑠 can be obtained for different halo mass 𝑚ℎ
and redshifts 𝑧 (as presented in Figs. 16 to 18). The double-𝛾 density
model provides a reasonably well fit to all haloes at all redshifts, with
slightly better fit at higher redshift in a matter-dominant universe.

Figure 16 presents the variation of amplitude parameter 𝐴𝑟 with
the dimensionless parameter a defined in Eq. (24). As expected, the
amplitude parameter 𝐴𝑟 ∝ a2/3 increases with halo mass 𝑚ℎ at
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Figure 15. Halo density profiles for different halo mass 𝑚ℎ at 𝑧 = 12 (solid
lines). The predicted scaling law (Eq. (12)) for halo density is presented as
the solid blue line. The double-𝛾 density model (Eq. (38)) was also plotted
as dashed lines for comparison.
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Figure 16. The variation of amplitude parameter 𝐴𝑟 for halo density with the
dimensionless parameter a at different redshifts 𝑧. In principle, 𝐴𝑟 increases
with halo mass 𝑚ℎ . This is related to the waiting time 𝜏𝑔 ∝ 𝑚−_

ℎ
.

fixed redshift or decreases with time at fixed mass 𝑚ℎ. The mass cas-
cade across haloes is accompanied by a simultaneous energy cascade
across haloes. The rate of cascade is independent of mass scale for
group of haloes of the same mass. For individual haloes with mass
𝑚ℎ < 𝑚∗

ℎ
, the rate of energy cascade Y in these haloes is smaller due

to the longer waiting time 𝜏𝑔 ∝ 𝑚−_
ℎ

. The effective rate of energy
cascade Y in individual haloes is inversely proportional to 𝜏𝑔,

Y(𝑚ℎ, 𝑎) =
(
𝑚ℎ/𝑚∗

ℎ

)_
Y𝑢 = a3_/2Y𝑢 . (40)

Therefore, the halo density 𝜌ℎ ∝ Y2/3𝐺−1𝑟−4/3 ∝ 𝑚
2_/3
ℎ

(see Eq.
(12)) such that the amplitude parameter 𝐴𝑟 ∝ a_, as shown in Fig.
16. With _ = 2/3, halo density scales with halo mass as 𝜌ℎ ∝ 𝑚

4/9
ℎ

at a given position 𝑟 .
Figure 17 presents the variation of shape parameter 𝛽𝑟 with a.
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Figure 17. The variation of shape parameter 𝛽𝑟 for halo density with a at
different redshifts 𝑧. The shape parameter 𝛽𝑟 varies in a small range between
1 and 3 and slightly decreases with halo mass 𝑚ℎ .

Table 2. Halo parameters _ and 𝛾 from theory and simulation

Mass range Scale Range
_

(pred.)
_

(simu.)
𝛾

(pred.)
𝛾

(simu.)
Small haloes
𝑚ℎ < 𝑚

∗
ℎ

Core region
𝑟 < 𝑟𝑠

_1 = 2/3 _1 = 0.856 𝛾1 = 2/3 𝛾1 = 2/3

Small haloes
𝑚ℎ < 𝑚

∗
ℎ

Outer region
𝑟 > 𝑟𝑠

_1 = 2/3 _1 = 0.856 𝛾2 = 2/3 𝛾2 = 0

Large haloes
𝑚ℎ > 𝑚

∗
ℎ

Core region
𝑟 < 𝑟𝑠

_2 = 2/3 _2 = 0.605 𝛾1 = 2/3 𝛾1 = 2/3

Large haloes
𝑚ℎ > 𝑚

∗
ℎ

Outer region
𝑟 > 𝑟𝑠

_2 = 2/3 _2 = 0.605 𝛾2 = 2/3 𝛾2 = 2/3

The shape parameter 𝛽𝑟 is relatively independent of parameter a

at low redshift 𝑧. It varies in a small range between 1 and 3 and
slightly decreases with halo mass 𝑚ℎ, which corresponds to a range
of 𝛾2 = 2/3 for large haloes and 𝛾2 = 0 for small haloes with 𝛾1 = 2/3
(see Eq. (35)). In the range 𝑟 > 𝑟𝑠 , the potential Φ is relatively
independent of 𝑟 due to exponential decay of density. Therefore, the
waiting time becomes less dependent on 𝑟 in this range with 𝛾2 ⩽ 𝛾1.
Table 2 lists relevant values of _ and 𝛾 in different ranges.

Figure 18 presents the variation of the best fitted scale radius
𝑟𝑠 with a at different redshifts 𝑧, where 𝑟𝑠 increases with a with
an approximate scaling of 𝑟𝑠 ∝ a1/2. In summary, the amplitude
parameter 𝐴𝑟 is related to the rate of cascade Y in haloes (Eq. (40)),
while the shape parameter 𝛽𝑟 is related to the parameter 𝛾 (Eq. (35)),
i.e. the position dependence of waiting time 𝜏𝑔 ∝ 𝑟−𝛾 .

It would be also interesting to compare the density profile obtained
in this work with the Einasto and NFW profiles. Figure 19 presents
the comparison for small (108.5𝑀⊙ ) and large haloes (1013𝑀⊙) at
redshift 𝑧 = 0 (haloes in Fig. 12). These density profiles include: 1)
the general double-𝛾 profile in Eq. (37) with 𝛼 and 𝛽 being indepen-
dent; 2) the Einasto profile with 𝛼 = 2𝛽 in Eq. (37); 3) the double-𝛾
profile with 𝛼 = 2𝛽/3 in Eq. (37) (or Eq. (38)) for fully virialized
haloes; and 4) the standard NFW profile. Bottom plots present the
relative errors between these density profiles and simulation results.
As expected, the general double-𝛾 profile provides the best fit of sim-
ulated halo density, compared to NFW profile. The double-𝛾 profile
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Figure 18. The variation of scale radius 𝑟𝑠 for halo density with a at different
redshifts 𝑧. The scale radius increases with a as 𝑟𝑠 ∝ a1/2.

with 𝛼 = 2𝛽/3 (Eq. (38)) provides a slight better fit than Einasto
profile for small haloes, and a much better fit for large haloes.

Finally, additional tests for different halo definitions and cosmolo-
gies should be very helpful to include data from simulations other
than Illustris series. In this case, parameters in halo mass function
and density models (Eqs. (21) and (37)) need to be fitted for differ-
ent cosmologies. From this study, we can find how model parameters
(halo parameters_ and 𝛾) vary with different cosmologies, which will
require extensive work in future study. Here a quick test of double-𝛾
density for some simulated haloes in the literature was presented.
Figure 20 provides the best fit by the general model in Eq. (37) for
these simulated haloes. Since the analytically derived double-𝛾 pro-
file reduces to Einasto profile for 𝛼 = 2𝛽/3, the general double-𝛾
profile is expected to provide a better fit than Einasto profile for all
simulated haloes.

7 CONCLUSION

In this paper, a simple theory was presented for halo mass function
and density profile. The small scale permanence is proposed for halo
group mass 𝑚𝑔 and halo density profile 𝜌ℎ due to scale-independent
rate of mass and energy cascade (Figs. 2 and 10). Both halo mass
function and halo density profile can be analytically derived based on
this simple theory. The position-dependent waiting time 𝜏𝑔 ∝ 𝑚−_

ℎ
leads to an analytical mass function modelled by a stretched Gaussian
with a power-law behavior on small scale and exponential decay on
large scale (Eq. (18)). This can be further improved by considering
two different values of _ in propagation and deposition ranges, i.e.
a double-_ mass function in Eq. (21). Similarly, a double-𝛾 halo
density profile is proposed based on the particle random walk in 3D
space with a position-dependent waiting time 𝜏𝑔 ∝ 𝑟−𝛾 (Eq. (37)).
The predicted value of 𝛾 = 2/3 leads to a cuspy density profile with
an inner slope of -4/3, consistent with the energy cascade theory (Eq.
(12)). The Press-Schechter mass function and Einasto profile are just
special cases of the proposed model. Models were compared and
validated against the Illustris simulations. Future work will involve
additional tests for proposed models in different cosmologies.



12 Z. Xu

10
0

10
1

10
2

10
3

-0.5

0

0.5

 (
h
)

Double-  in Eq. (37)

Einasto ( =2 )

Double-  ( =2 /3) Eq. (38)

NFW

10
0

10
1

10
2

10
3

-0.5

0

0.5

 (
h
)

Double-  in Eq. (37)

Einasto ( =2 )

Double-  ( =2 /3) Eq. (38)
NFW

10
0

10
1

10
2

10
3r (kpc)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

H
al

o
 d

en
si

ty
 

h
 (

M
su

n
/k

p
c

3
)

z=0, m
h
=10

8.5
M

sun

Double-  in Eq. (37)

Einasto ( =2 )

Double-  ( =2 /3) Eq. (38)

NFW

z=0, m
h
=10

13
M

sun

Double-  in Eq. (37)

Einasto ( =2 )

Double-  ( =2 /3) Eq. (38)

NFW

Figure 19. The comparison between different density profiles that fit to haloes
with a mass of 108.5𝑀⊙ and 1013𝑀⊙ at redshift 𝑧 = 0. These density
profiles include: 1) the general double-𝛾 profile in Eq. (37) with 𝛼 and 𝛽
being independent (green); 2) the Einasto profile with 𝛼 = 2𝛽 in Eq. (37)
(blue); 3) the double-𝛾 profile with 𝛼 = 2𝛽/3 in Eq. (37) (or Eq. (38)) (red);
4) the standard NFW profile (black). The bottom plots present the relative
errors between these density profiles and simulation results. Double-𝛾 profiles
provide better fit of simulated halo density.

10
-2

10
-1

10
0

10
1

10
2

10
3

r (kpc)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

H
al

o
 d

en
si

ty
 

h
 (

M
su

n
/k

p
c

3
)

Ghalo

Via Lactea

Aquarius

Dubinski

FIRE:DMO

Eq. (37)

Eq. (37)

Eq. (37)

Eq. (37)

Eq. (37)

Figure 20. Some halo density profiles for simulated haloes: 1) Ghalo [55]; 2)
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