
1

Branch Prediction by Learning Conjunctinos

Abstract—In this paper, we investigate a new branch predictor
that operates by learning a k-term DNF per branch. This
contrasts the behavior of most modern global branch predictors
that have separate predictions for each history a branch may
encounter. When the branch history register (BHR) length equals
4, our branch predictor significantly out performed g-share.
However, as the BHR length increased, g-share significantly
outperformed our predictor. We analyze these results and draw
conclusions as to why it may not be practical to generate
predictions on a per branch basis.

I. INTRODUCTION

Branch prediction has been a bottleneck in exploiting in-
struction level parallelism in modern pipelined processors.
Generally, branch predictors use information such as the his-
tory of previous branches (global behavior) or the history of
each independent branch (local behavior). In this paper, we
attempt to capture the local and global behavior of branches
by generating a k-term DNF per branch, where a k-term DNF
is a disjunction of k conjunctive clauses. To gain some context
about this idea, let us examine some hypothetical data for a
particular branch. The format of the data is < bi, yi > where
bi is the branch history and yi is 1 if the branch is taken and
0 otherwise.
< (1, 0, 0, 1), 1 >
< (1, 0, 1, 1), 1 >
< (1, 1, 0, 1), 1 >
The goal is to learn a conjunction consistent with the data In
order to do this, we initialize our prediction to b0, delete the
third term after examining b1, and delete the second term after
examining b2, leaving us with the conjunction x0 ∧ x3. From
a graphical perspective, our prediction generates the following
results:

Note that the data point (1, 1, 1, 1) will be predicted as taken
even though we did not explicitly observe the data point. Let
us now add some more hypothetical data:
< (0, 0, 0, 1), 0 >
< (1, 0, 1, 0), 0 >
Our prediction also consistent with b3 and b4 because x0 = 0
for b4 and x3 = 0 for b5. Let us now add some more interesting
hypothetical data:
< (0, 1, 0, 0), 0 >
< (1, 1, 1, 0), 0 >
< (0, 1, 1, 0), 1 >
Note that for b5, b6, and b7 our conjunction will mispredict
because both x0 and x3 do not equal 1. If we update our
predictor by deleting all candidate terms (x0 and x3) we would

have erased our entire prediction. Thus, there does not exist a
single conjunctive term consistent with the data. The solution
to this issue of adapting to inconsistent data points lies in
adding a second conjunctive term. By following the same logic
as we did with the first three data points, we can generate a
conjunction consistent with the last three data points x2∧¬x3.
Combining our two results, we end up with a 2 term DNF
(x0 ∧ x3) ∨ (x2 ∧ ¬x3) which is consistent with all the data
points.

II. DESIGN AND IMPLEMENTATION

Let us generalize the above phenomenon of being able to
represent data in the form of < bi, yi > for a particular branch
by a k-term DNF to a formalized branch prediction algorithm.
We shall begin by looking at the updating prediction logic.
A misprediction can be characterized into two classes: false
negatives and false positives.

On a false negative, if this is the first time we mispredicted
the branch, we set the first conjunction equal to the current
branch history. If this is not the first time we mispredicted
the branch and we have not deleted more than t percent of the
terms where t is some threshold (in our predictor t was chosen
to be 70), delete any inconsistent terms with the current branch
history. Deleting a term means that if the ith term of the branch
history does not equal the ith term of the conjunction, replace
the term with a -1. So if the first conjunction is < 0, 1, 1, 0 >
and the branch history is < 0, 0, 1, 1 >, the first conjunction
would be transformed to < 0,−1, 1,−1 >. Note that when
we delete inconsistent terms from a conjunction, we never
delete all terms from a conjunction because that would erase
all work done. If we have deleted more than t percent of the
terms from the current conjunction (implying that the current
conjunction cannot represent anymore direction of branches
based on branch histories), we add a new conjunctive term
and initialize the conjunction to the current branch history.
Note that from now on, when we delete inconsistent terms, we
delete from the most recent conjunction because the previous
conjunctions have theoretically been exhausted.

There remain two issues with this current algorithm. The
first issue is determining when to stop adding conjunctions. In
other words, in our k-term DNF, what should the value of k
be? After evaluating the performance of the branch predictor
on various values of k, it was found that for branch history
lengths greater than 10, values of k greater than 2 did not lead
to any significant gains in performance and if anything, hurt
performance due to overfitting of data. The second issue arose
after running experimental tests on our branch predictor and
observing the proportion of false negative to false positives:
FP-1: 6, FP-2: 14, FP-3: 100+, FP-4: 100+, INT-1: 4, INT-2:
2, INT-3: 9, INT-4: 6, INT-5: 100+.

This data indicates that the 2 term DNF generated per branch
is unable to encompass all data points that are taken. Looking



2

at some hypothetical data, similar to the one presented in the
introduction, to illustrate why this is the case:
< (1, 0, 0, 1), 1 >
< (1, 0, 1, 1), 1 >
< (1, 1, 0, 1), 1 >
< (0, 0, 0, 1), 1 >
< (1, 0, 1, 0), 1 >
After examining the third data point, we are left with the
conjunction x0 ∧ x3. However, this conjunction mispredicts
the 4th and 5th data points and no terms can be deleted from
the conjunction to generate the correct prediction for the 4th

and 5th data points. Also, assume our k-term DNF already
has k terms, so we cannot add another conjunction to fit these
new data points. To adapt to this situation, a term that predicts
always taken is separately added to the prediction. The term
can be in 4 states: strongly not activated (SNA), weakly not
activated (WNA), weakly activated (WA), strongly activated
(SA) and the prediction uses the always taken term when it
is in the SA state. On a false negative, the always taken term
goes to the next state in the direction of SA and on a false
positive the term goes to the next state in the direction of SNA.
To summarize the update prediction logic 1:

In
order to make a prediction, if the always taken term is not
activated, we compare the 2 term DNF to the branch history.
We predict taken if, for either conjunction, each term that is
relevant in the current conjunction equals the corresponding
term in the branch history. If the always taken term is strongly
activated, we predict taken. More formally, if we denote
conjunction one as c1, conjunction two as c2, the branch

1correct and incorrect switched

history as b, and m as the number of bits in the branch history,
the algorithm to make a prediction is:

prediction = false
if always taken term is strongly activated then

return true
end if
for j ← 1, 2 do

for i← 0,m− 1 do
if cj [i] is relevant then

if cj [i] 6= b[i] then
break

end if
end if
if i = m− 1 then

prediction = true
end if

end for
end for
return prediction

RESULTS

The following bar graphs display branch misprediction
percentages for certain traces as a function of BHR length.
The traces were provided by the championship branch
predictor framework.



3

DISCUSSION

As we can see from the results, while the branch predictor
trained by learning conjunctions does beat g-share when the
BHR length = 4, gshare significantly outperforms as the
BHR length increases. It is well known that g-share’s per-
formance dramatically improves as the BHR length increases.
The predictor trained by learning conjunctions does not see
this same increase in performance because the predictor is
trying to create a prediction per branch, meaning it is trying
to encompass the outcome of all branch histories in two
conjunctions and an always taken term. Thus, as the branch
history length increases, there are exponentially more possible
branch histories, making it difficult for two conjunctions to
encompass all the data.

The main flaw with this branch predictor is its ability
to adapt to data points inconsistent with previous data. As
can be seen from the following graphs for four different
branches that plots the number of times the branch was not
taken divided by the number of times the branch was taken
every 100 iterations, the behavior of a branch is constantly
changing.

Thus, the key to any branch predictor lies in its ability
to adapt to new trends in data. Our branch predictor’s main
adaptive feature lies in the 4 state always taken term, but as
the results indicate, this is not as effective as indexing into a
pattern history table indexed by a combination of the program
counter and branch history. Future work on this predictor
may explore different and more effective implementations in
adapting to new trends in data.

ACKNOWLEDGMENT

I would like to thank Prof. Craig Zilles for his time and his
invaluable feedback and insights.


