
Mission Planning and Motion Models for
Autonomous Underwater Vehicles in OMNeT++

Willi Brekenfelder, Peter Danielis, Gunnar Kulat, Mohammad Salouh,
Finn Ole Stadtaus, Lara Tauch, Helge Parzyjegla
Institute of Computer Science, University of Rostock

Rostock, Germany
{willi.brekenfelder, peter.danielis, helge.parzyjegla}@uni-rostock.de

Abstract—Autonomous Underwater Vehicles (AUVs) are well
suited to perform underwater work that is too dangerous or
inaccessible for humans. In order to better plan, test, and
optimize AUV missions, simulations with adequate models are
essential. In this paper, we review existing motion models for the
OMNeT++ simulation environment. We determine their ability
to store and navigate to the waypoints of a planned mission.
Based on the review results, we present a tool and workflow (i)
to extract waypoint data from AUV mission plans created in
the Neptus software, (ii) to check the planned trajectories for
plausibility, and (iii) to convert the data into the appropriate
formats for selected motion models. Finally, we demonstrate and
evaluate our tool and workflow in a case study.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are unmanned,
self-propelled vehicles that are well suited for exploring and
developing underwater areas. AUVs can be equipped with dif-
ferent kinds of tools, instruments, and sensors (e. g., sonar sys-
tems, video cameras, CTD profilers, Doppler current meters)
enabling them to complete various tasks and missions. Once
deployed, usually from a surface vessel, an AUV executes its
tasks independent of direct human control and without a cable
connection to its mother ship. This way, it can safely operate
in areas that are too dangerous for manned submersibles or
inaccessible for Remotely Operated Vehicles (ROVs), e. g.,
AUVs can operate under large ice sheets in polar regions, can
inspect small underwater caves or man-made structure, or can
safely search ocean floors for unexploded ordnance.

Because of the non-existent permanent connection to the
mother ship, an AUV has to fulfill additional requirements. On
the one hand, an AUV has to follow a planned course moving
in a predetermined way in order to safely navigate to its oper-
ation area as well as back again to the mother ship for pick up.
On the other hand, it has to react independently to unforeseen
circumstances and difficulties such as an obstacle blocking the
planned course. Obstacles need to be autonomously avoided in
order to prevent collisions. Furthermore, in critical situations,
the AUV needs always to be able to cancel a mission and
return to the mother ship, for example, if it runs low on energy.

The AUV’s ability of adapting tasks whenever necessary
makes the planning of an AUV mission a non-trivial en-
deavor [1]. To support AUV operators in this planning phase,
simulations of the AUV’s mission are a very valuable tool.

Simulations enable operators to better study the vehicle’s be-
havior in specific or even dangerous situations without putting
the actual AUV at any risk. In addition, alternate mission plans
can be analyzed and compared or even optimized for certain
objectives, e. g., to set waypoints that maximize the search area
covered by the AUV for a given energy budget. Furthermore,
AUV engineers and researchers also benefit greatly from simu-
lations. Simulations can help to develop and investigate search
strategies or cooperation schemes in detail. In particular, for
the latter, movement patterns and communication protocols
need to be coordinated and synchronized between multiple
AUVs on cooperative missions. This is especially important
since underwater communication by acoustic modems tends
to be costly, slow, and error-prone.

In this paper, we present a toolchain enabling AUV op-
erators, engineers, and researchers to extract the movement
data of AUVs as planned in the Neptus command and control
software [2] and to simulate these routes and trajectories in the
OMNeT++ simulation environment [3]. The key component
of the toolchain is a conversion program that parses a Neptus
mission plan, extracts planned waypoints and routes, checks
those for physical plausibility w.r.t. the AUV’s maneuvering
capabilities, and creates a corresponding movement trajec-
tory as input for the simulation models. For the latter, our
tool supports the motion models BonnMotionMobility and
TurtleMobility that are part of the INET framework [4] in
OMNeT++. Hence, our toolchain offers a convenient way to
make real-world AUV missions available for detailed simula-
tions and a further analysis in OMNeT++.

The remainder of the paper is structured as follows: Sec-
tion II introduces the Neptus software showing how to create
and export AUV mission plans. In Sect. III, an overview about
the OMNeT++ simulator is given and existing motion models
are briefly reviewed that are shipped together with the simula-
tion framework. In this process, two suitable mobility models
for AUV missions are identified and further characterized.
Section IV presents our conversion tool, explains its features,
and demonstrates the whole workflow leveraging our toolchain
in a case study. Finally, Sect. V concludes the paper.

II. MISSION PLANNING IN NEPTUS

Neptus [2] is a command and control software for unmanned
vehicles developed by the Underwater System and Technology

 Proceedings of MARESEC 2022
20th of June 2022, Bremerhaven, Germany

Table I
COMMON MANEUVERS SUPPORTED BY NEPTUS.

Maneuver Description

Goto Navigate towards a waypoint.
Loiter (Circular) holding pattern keeping the AUV in

a specific area.
Station Keeping Keep the AUV within an area without enforc-

ing a holding pattern.
Rows Lawn mower pattern for surveying an area.
RI Pattern Reacquire-Identify (RI) search pattern com-

posed of three rows patterns.
Cross Hatch Pattern Another search pattern composed of two rows

patterns.
Follow Path/Trajectory Follow a given path (with time constraints).
Elevator Change depth while staying within an area.

Laboratory (LSTS) at the University of Porto. It supports AUV
operators throughout the whole mission lifetime including
the planning of the mission, monitoring and controlling the
AUV during mission execution, and analyzing the mission
logs and results afterwards [5]. Furthermore, Neptus is an
integral part of the LSTS open source software toolchain [6]
that additionally features a communication protocol [7] and
API [8] as well as a development framework for the AUV’s
on-board software [9]. This software stack has matured over
the years and is successfully deployed on various AUVs sent
on real-world missions [10]–[12]. However, in this paper, we
solely focus on the planning phase. Our objective is to use
such realistic mission plans created with the Neptus software
as the basis for simulations in the OMNeT++ framework.

There are several approaches to create an AUV mission
plan [13]. Neptus mission plans are based on primitives
which are commands and/or tasks the AUV can execute
autonomously, e. g., operating a sensor or navigating towards a
waypoint. Basic motion primitives are called maneuvers [13].
Table I gives an overview about common maneuvers that can
be planned with Neptus. More complex maneuvers are build
from simpler ones, e. g., all search patterns to cover a specific
area are eventually determined by a series of waypoints to
visit. Please note that, depending on its autonomous capabil-
ities, the AUV may not support all of the listed maneuvers.
Neptus then enables human AUV operators to directly specify
the mission plan by arranging and composing these maneuvers
in a convenient Graphical User Interface (GUI).

Figure 1 shows a screenshot of the mission planning view in
Neptus. The major part of the window (top left) is occupied by
the map panel. The map shows the river Warnow in Rostock at
the city harbor. On this map, the planned course of the AUV
is displayed as an overlay. As an example, we have planned a
small mission to demonstrate some of the maneuvers above.
From its deployment zone, the AUV is sent by Goto maneuvers
to two waypoints to the left in order to reach the area to be
surveyed. For surveying, we use the Rows maneuver resulting
in a course of five parallel lines (called rows) by which the area
is covered. Finally, the AUV travels to three more waypoints
in order to return to its starting zone for pick up. The bottom

Table II
COMMON MOBILITY MODELS PROVIDED BY OMNET++/INET.

Mobility Model Description

Stationary Stationary deterministic or random placement.
StaticGrid Stationary placement in a rectangular grid.
StaticConcentric Stationary placement in concentric circles.
Linear Linear movement with constant speed.
Circle Circular movement with constant speed.
Rectangle Rectangular movement with constant speed.
Tractor Movement according to a rows pattern.
Vehicle Curves when turning, constant speed.
Turtle Programmable, linear movement.
Facing Stationary, but orients towards the position of

another mobility model.
BonnMotion Replays BonnMotion trace files.
Ns2Motion Replays ns2 trace files.
Ansim Replays ANSim trace in XML.
RandomWaypoint Moves to/with random waypoint/speed.
GaussMarkov Variable randomness up to Brown motion.
Mass Random movement of a mass (physical laws).
Chiang Uses probabilistic transition matrix.
Superpositioning Combines several other mobility models.
Attached Static offset from another mobility model.

panel lists each maneuver of the mission plan, whereas the
panel right of the map allows to edit further parameters of
the selected maneuver, e. g., the speed with which the AUV
navigates towards a waypoint. The rightmost panel contains
the mission tree that stores the mission elements: the home
reference, defined beacons, and created plans. In Neptus, a
mission may have multiple plans for one or even more AUVs
operating in parallel.

Furthermore, Neptus allows to simulate the execution of a
mission plan. For this purpose, Neptus computes and visual-
izes the current position of the AUV on the map in fast mo-
tion. In particular, the simulation considers the maneuvering
capabilities of the AUV that are defined by the type of vessel
deployed. Figure 2 shows a section of the map zoomed in
towards the top right corner of the rows pattern. The simulated
course, depicted by green dots, deviates from the planned
path, represented as yellow line, since the AUV does not
immediately turn by 90°. Unfortunately, the more realistic,
simulated trajectory cannot be exported from Neptus. Instead,
it is only possible to save the created mission plan in a .mis
file containing all maneuvers and their original waypoints.

III. MOBILITY MODELS IN OMNET++

OMNeT++ [3] is an extensible, component-based C++
framework for discrete event simulations. It is well-proven for
simulating communication networks and networked systems.
It comes with its own Integrated Development Environment
(IDE) based on the Eclipse platform [14] that is well suited
for developing own simulation models [15]. For this purpose,
OMNeT++ also features the Network Topology Description
(NED) language enabling developers to easily combine and
compose new components from existing building blocks and

 Proceedings of MARESEC 2022
20th of June 2022, Bremerhaven, Germany

Figure 1. Neptus mission planning view with example route in the city harbor of Rostock.

Figure 2. Planned path (yellow solid line) vs. simulated course (dotted green
line) in Neptus.

new modules. The graphic capabilities of the IDE, including
2D and 3D animations, allow to visualize and even explore
the state of running simulations and, thus, help new users and
non-simulation experts to better familiarize with the simulation
framework and the interworking of its components.

In addition, many well-tested simulation models are already
available for OMNeT++. The INET framework [4] is one
of the oldest and largest collections of simulation models
covering the Internet protocol stack as well as closely related
protocols such as Ethernet and Wireless LAN. Over the years,
it thus became a natural choice as basis for many more specific
simulation models (e. g., SimuLTE, Veins) [15]. Likewise,

we also build our AUV (communication) models on top of
OMNeT++/INET.

Table II gives an overview about mobility models that
are already available in INET [16]. In particular, we are
interested in those models in which it is basically possible
to specify the path of an AUV as planned by Neptus. For
this purpose, the mobility model has to offer the notion of
a waypoint or a way to somehow emulate it. Furthermore, it
needs to be deterministic in order to follow a planned path.
After reviewing the mobility models, two suitable candidates
remained, i. e., BonnMotionMobility and TurtleMobility
that are discussed next.

A. BonnMotion Mobility Model
BonnMotion [17] is a mobility scenario generation and

analysis tool developed at the University of Bonn, Germany,
in order to study mobile multi-hop networks for disaster areas.
However, the BonnMotionMobility model in OMNeT++
does not re-implement any of the original logic. Instead, it is
able to parse trace files generated by the external BonnMotion
tool. Compared to the other trace-based mobility models
in INET (i. e., Ns2MotionMobility and AnsimMobility)
that provide similar functionality, BonnMotion uses a much
simpler file format. In fact, it is a plain text file in which each
line contains all waypoints of a mobile actor (e. g., an AUV).
Each waypoint is defined by four values ”t x y z” where t
specifies the time when the actor has to be at the position
(x, y, z) in the simulation’s coordinate system. The segments

 Proceedings of MARESEC 2022
20th of June 2022, Bremerhaven, Germany

1 <movement>
2 <set x="10" y="10" z="0" speed ="2"/>
3 <forward d="60"/>
4 <wait t="10"/>
5 <set speed ="1"/>
6 <turn heading ="90" elevation ="−10"/>
7 <forward t="40"/>
8 <moveto x="10" y="10" z="0" t="80"/>
9 </ movement>

Listing 1. Example of a TurtleMobility program.

between waypoints are then interpolated by straight lines that
are travelled with constant speed.

B. Turtle Mobility Model

The turtle is probably the most well-known feature of the
educational programming language Logo [18]. By controlling
the movement of the Logo turtle that is equipped with a
retractable pen, one can produce line graphics. Likewise, using
similar movement commands, the TurtleMobilityModel in
INET allows to specify the motion of an actor. By executing a
corresponding turtle program, we can thus make a simulated
AUV follow a preplanned path in OMNeT++.

Listing 1 shows a program example written in the XML-
based dialect used by the TurtleMobilityModel. The first
command set (line 2) specifies the initial position using the
coordinates x, y, and z. Additionally, the initial speed is
defined too. The next command forward (line 3) makes the
actor travel in the direction it is currently facing. It stops after
the distance d is covered. Alternatively, it can stop after a time
interval t (line 7). A wait command (line 4) is required to let
the actor stay at its current position for the time t, whereas
another set command is necessary to adjust the speed (line
5). The command turn (line 6) makes the actor turn by an
angle of heading clockwise within the horizontal plane and
by elevation vertically. Finally, the command moveto (line 8)
makes the actor face and move towards the position (x, y, z). If
the optional parameter t is given, the current speed is adjusted
so that the actor arrives at the specified position after time t.

IV. CONVERSION TOOL AND TOOLCHAIN

Simulating AUV missions before putting them into action
has many advantages. In particular, alternative mission plans,
different mission parameters, varying environmental condi-
tions, etc. can be studied safely beforehand without putting the
AUV at any risk. Based on the simulation results, the AUV
operator can then decide on the best option. Our workflow for
simulating AUV missions has the following three steps:

1) Mission planning. The mission for the AUV is planned
in Neptus and exported into a .mis file. It is important
that, for mission planning, the same software tools are
used independent of whether the mission is simulated or
carried out in reality.

2) Converting the mission plan. From the saved mission
file, input for the simulation’s mobility models has to
be generated. For BonnMotionMobility, a .movements

file with waypoints is created. For TurtleMobility, a
.xml file with movement commands is produced.

3) Mission simulation. The generated mobility files are used
as input for the corresponding mobility models in an
OMNeT++ simulation. Depending on the simulation’s
objectives, the degree of flexibility required, and personal
preferences, we leave it to the user (e. g., researcher, AUV
operator) which mobility model to use.

Sect. II and Sect. III already discuss the planning and simu-
lation, respectively. Challenges and details of the intermediate
conversion step, that glues the former together, are covered
in the following. Afterwards, we demonstrate the developed
conversion tool and the toolchain in a small case study.

A. Conversion Tool

Besides the mechanical, yet tedious parsing and generation
of different file formats, the conversion of a planned course
of an AUV into a motion description for simulation purposes
include some challenges that are not obvious at first glance.

Geographic coordinates vs. Cartesian coordinates. Mission
plans created by Neptus use geographic coordinates, whereas
many simulation environments such as OMNeT++/INET work
with Cartesian coordinates. In fact, the coordinate system is
not a property of the simulation framework, it is rather an
assumption of the simulation models that are actually used.
Nevertheless, we decided to translate the waypoint coordinates
of the mission plan rather than adapting the simulation models.
For this purpose, we calculate the distances between Neptus
waypoints according to [19]. Choosing a waypoint as a refer-
ence, we are then able to transform the other waypoints into
Cartesian coordinates.

Trace-based mobility models. Trace-based models are well
suited to replay an observed activity. When recording the
movements of an actor, it is a natural choice to store the
current time and position either periodically or on an event-
driven basis, e. g., whenever a waypoint is reached. However,
an AUV mission plan does not have timestamps yet. Instead,
the plan sends the AUV towards the next waypoint with a
given speed. But knowing the distance to the next waypoint
allows to estimate the time of arrival. Please note that this is
only an estimation (although usually quite exact) because the
AUV may deviate slightly from the planned path (e. g., when
turning) or the specified speed (e. g., when accelerating).

Absolute waypoints vs. relative waypoints. Most mobility
models specify a waypoint using absolute coordinates. How-
ever, it is also possible to define the next waypoint by an offset
relative to the current one. Interestingly, TurtleMobility
offers both specification variants. With the help of the moveto
command, the AUV is sent to absolute coordinates, whereas
a sequence of a turn and a forward command defines the
next waypoint relative to the current position. We implemented
both variants that, except for numerical errors, lead to identical
results. The relative variant might be better suited when ex-
tending the AUV’s autonomous behavior in future simulation
models so that it can leave its planned path (e. g., for collision
avoidance).

 Proceedings of MARESEC 2022
20th of June 2022, Bremerhaven, Germany

Figure 3. Mission plan for rostock habour in developed tool.

Turning at waypoints. Neither Neptus’ mission plans nor the
selected mobility models support curves. Hence, the turning
behavior at waypoints (i. e., immediately moving towards next
waypoint in a straight line) is not realistic at all. Neptus solves
this issue via an internal simulation when visualizing the
planned mission. We take the same approach by pre-simulating
the AUV’s path trajectory in the developed tool. Please note
that we take kinetic constraints as well as constraints related to
the AUV’s design into account. For example, there is a margin
defining when the AUV considers a waypoint to be reached
and starts turning. Furthermore, the maximal turning velocity
as well as the speed with which it can dive down or up are
limited. All constraints are customizable for the type of AUV
used. By comparing the computed trajectory with the planned
path, we can warn if the deviation exceeds a certain threshold
indicating that the mission plan is at least unsuited for the par-
ticular AUV. Checking the mission plan w.r.t. feasibility is thus
a side effect of our pre-simulation. Finally, we interpolate the
curve segments in the path trajectory by small line segments
as required by the mobility models used in our OMNeT++
simulation.

B. Case Study

To demonstrate our tool and the toolchain, we simulate the
example mission that we planned for an AUV in the Rostock
city harbor in Sect. II. After finishing the work in Neptus
and saving the created mission plan, the file can seamlessly
be processed by our conversion tool. The tool parses the
mission plan, transforms waypoint coordinates, checks the
plan’s feasibility by pre-simulating the AUV’s path trajectory,
interpolates resulting curve segments with lines, and outputs
the final result either as a trace-based .movement file for
BonnMotionMobility or as a .xml file with turtle program
for TurtleMobility.

Figure 3 shows the originally planned path by Neptus (red
line) as well as the pre-simulated trajectory (light blue line) in
our conversion tool. First, both lines red and light blue look

Figure 4. Mission plan for rostock habour in simulated in OMNeT++.

similar to what has originally been planned in Neptus (cf.
Fig. 1). Second, the simulated light blue trajectory follows
very closely the planned red path. Third, exceptions are only
near waypoints where the computed trajectory shows a more
realistic turning behavior.

The files, generated by our conversion tool, can then be used
in simulations without further modifications. They describe
the movement of an AUV based on a realistically planned
mission. Moreover, no special mobility models are needed
since both BonnMotionMobility and TurtleMobility are
automatically shipped with any OMNeT++/INET version.

Figure 4 shows the OMNeT++ GUI during a simulation.
The resulting trajectory from our motion models is displayed
as purple line, whereas the originally planned path is drawn
as yellow line for comparison. The main visualization panel
is zoomed to two waypoints of the rows maneuver in order
to better exemplify the smooth interpolation of the trajectory
when the AUV starts turning towards the next waypoint.

V. CONCLUSIONS

In this paper, we developed a conversion tool and presented
a toolchain to ease the simulation of planned AUV missions.
The developed tool parses the mission plan of an AUV
mission created in the Neptus software. It extracts waypoints
of planned maneuvers and generates corresponding input files
for the OMNeT++ motion models BonnMotionMobility and
TurtleMobility that are shipped with the INET standard
library. Furthermore, it pre-simulates the AUVs path trajectory,
checks it for feasibility, and interpolates curve segments as
needed. The presented workflow better integrates the mission
planning and simulation of AUV missions, thus, supporting
AUV operators and researchers alike. For future work, we want
to also extract more data from Neptus files, e. g., when which
sensors are used, and make these information available in
OMNeT++ simulations. These will help us to better integrate
the individual models within the simulation.

 Proceedings of MARESEC 2022
20th of June 2022, Bremerhaven, Germany

REFERENCES

[1] M. P. Brito, R. Lewis, N. Bose, P. Alexander, G. Griffiths, and J. Fer-
guson, “The role of adaptive mission planning and control in persistent
autonomous underwater vehicles presence,” in Proceedings of the 2012
IEEE/OES Symposium on Autonomous Underwater Vehicles (AUV).
Southampton, UK: IEEE, Sep. 2012, pp. 1–9.

[2] LSTS. (2022, Jun.) Neptus source code repository. [Online]. Available:
https://github.com/LSTS/neptus

[3] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in Proceedings of the 1st International Conference
on Simulation Tools and Techniques for Communications, Networks
and Systems & Workshops (SIMUTools ’08). Marseille, France:
ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), Mar. 2008. [Online]. Available:
https://doc.omnetpp.org/workshop2008/omnetpp40-paper.pdf

[4] L. Mészáros, A. Varga, and M. Kirsche, “INET framework,” in Recent
Advances in Network Simulation: The OMNeT++ Environment and
its Ecosystem, A. Virdis and M. Kirsche, Eds. Cham, Switzerland:
Springer, 2019, ch. 2, pp. 55–106.

[5] P. S. Dias, G. M. Gonçalves, R. M. F. Gomes, J. B. Sousa, J. Pinto,
and F. L. Pereira, “Mission planning and specification in the Neptus
framework,” in Proceedings of the 2006 IEEE International Conference
on Robotics and Automation (ICRA 2006). Orlando, FL, USA: IEEE,
May 2006, pp. 3220–3225.

[6] J. Pinto, P. S. Dias, R. Martins, J. Fortuna, E. Marques, and J. Sousa,
“The LSTS toolchain for networked vehicle systems,” in Proceedings
of 2013 MTS/IEEE OCEANS – Bergen. Bergen, Norway: IEEE, Jun.
2013, pp. 1–9.

[7] R. Martins, P. S. Dias, E. R. B. Marques, J. Pinto, J. B. Sousa, and
F. L. Pereira, “IMC: A communication protocol for networked vehicles
and sensors,” in Proceedings of OCEANS 2009 – Europe. Bremen,
Germany: IEEE, May 2009, pp. 1–6.

[8] LSTS. (2022, Jun.) IMC source code repository. [Online]. Available:
https://github.com/LSTS/imc

[9] ——. (2022, Jun.) DUNE source code repository. [Online]. Available:
https://github.com/LSTS/dune

[10] L. Madureira, A. Sousa, J. Sousa, and G. Gonçalves, “Low cost au-
tonomous underwater vehicles for new concepts of coastal field studies,”
Journal of Coastal Research, vol. 1, pp. 238–242, Apr. 2009, Special
Issue No. 56. Proceedings of the 10th International Coastal Symposium
(ICS 2009).

[11] L. Madureira, A. Sousa, J. Braga, P. Calado, P. Dias, R. Martins, J. Pinto,
and J. Sousa, “The light autonomous underwater vehicle: Evolutions and
networking,” in Proceedings of 2013 MTS/IEEE OCEANS – Bergen.
Bergen, Norway: IEEE, Jun. 2013, pp. 1–6.

[12] M. Costa, J. Pinto, M. Ribeiro, K. Lima, A. Monteiro, P. Kowalczyk,
and J. Sousa, “Underwater archaeology with light auvs,” in Proceedings
of OCEANS 2019 – Marseille. Marseille, France: IEEE, Jun. 2019, pp.
1–6.

[13] M. Kothari, J. Pinto, V. S. Prabhu, P. Ribeiro, J. B. de Sousa, and
P. Sujit, “Robust mission planning for underwater applications: Issues
and challenges,” IFAC Proceedings Volumes, vol. 45, no. 5, pp. 223–
229, Apr. 2012, proceedings of the 3rd IFAC Workshop on Navigation,
Guidance and Control of Underwater Vehicles.

[14] Eclipse Foundation. (2022, Jun.) Eclipse platform overview. [Online].
Available: https://www.eclipse.org/eclipse/eclipse-charter.php

[15] A. Varga, “A practical introduction to the omnet++ simulation frame-
work,” in Recent Advances in Network Simulation: The OMNeT++
Environment and its Ecosystem, A. Virdis and M. Kirsche, Eds. Cham,
Switzerland: Springer, 2019, ch. 1, pp. 3–51.

[16] INET Developers. (2022, Jun.) INET user’s guide – INET
4.4.0 documentation. [Online]. Available: https://inet.omnetpp.org/
docs/users-guide

[17] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn,
“BonnMotion: A mobility scenario generation and analysis tool,” in
Proceedings of the 3rd International ICST Conference on Simulation
Tools and Techniques (SIMUTools ’10). Torremolinos, Malaga, Spain:
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), Mar. 2010.

[18] B. Harvey, Computer Science Logo Style, Volume 1: Symbolic Comput-
ing, 2nd ed. Cambridge, MA, USA: MIT Press, 1997.

[19] N. de Lange, Geoinformatik. Berlin / Heidelberg, Germany: Springer,
2013.

 Proceedings of MARESEC 2022
20th of June 2022, Bremerhaven, Germany

