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Abstract—Research regarding AUVs has increased over the
past decades. The interest is driven by the possibility to automa-
tize underwater missions, requiring human interaction only at the
base station for supervision. This avoids putting humans at risk,
e.g., for mine countermeasures. Since AUVs are also relatively
inexpensive and their mostly customizable equipment offers a
range of applications, they are attractive from an economic
perspective as well. This paper aims to provide an introduc-
tion to the networking of autonomous underwater vehicles to
enable cooperative missions such as cooperative hunting. To
give an overview, navigation methods and underwater acoustic
communication, which is challenging due to multiple factors,
are explained. Building upon this, different manifestations of
underwater acoustic network architectures with autonomous
underwater vehicles as mobile nodes are presented. We show
numerous applications in which networked AUV swarms provide
a significant benefit.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are unmanned,
self-propelled vehicles designed to accomplish a predefined
task in a self-organized way. AUVs have gained increasing
popularity over the past years, in line with autonomous ’ve-
hicles’ on terrestrial areas and in aerial space [1]. AUVs, in
comparison to submarines, automatize tasks, without the need
for human assistance underwater, making such missions less
expensive. The machines can also replace divers for dangerous
missions, such as mine reconaissance, and conduct pipeline
inspections for offshore oil platforms or even small repairs [2].
Advances in underwater communication techniques have en-
abled increasingly complex and flexible networks. The under-
water communication usually uses acoustic signals, while on
the surface radio signals are transmitted. These networks, so-
called underwater acoustic sensor networks (UASN), can be
enhanced using AUVs for, e.g., maintenance of their subma-
rine infrastructure or accomplishment of specific other tasks,
as will be mentioned in the following. Communication plays
an important role for AUV operations regarding data retrieval,
recharging, but most importantly also regarding the navigation
of AUVs [2]. AUVs have a wide range of possible applications
and tasks in different areas. The fact that they are able to
act without human interaction and their relative inexpensive
deployment contributed to an increasing popularity over the
past decade [2]. In the following, selected real-world use cases
of AUVs are listed. The main contribution of this paper is to
present numerous applications like those, in which networked
AUV swarms provide a significant benefit.

Security — Underwater surveillance: AUVs as part of an
underwater network detect and classify submarines [3].
Mine reconnaissance: Equipped with optical and acoustic
sensors, multiple AUVs cooperate to detect mine-like objects
by high resolution imaging. Special sensors are necessary to
detect in-volume mines [3].
Research — Seafloor mapping: The motivation behind creat-
ing seafloor maps and high quality images of the ground stems
from detecting and localizing possible dangers for marine traf-
fic (such as icebergs), exploring natural underwater resources
or determining potential offshore construction sites [2], [4].
Industry — Offshore maintenance: AUVs are utilized to
perform minor underwater repair works or inspections at
offshore facilities. For example, AUVs specifically developed
for pipeline inspection may be used for offshore oil platforms
or windmill parks. The AUVs scan for corrosion and for
deformations independently from surface vessels or the base
for up to 24 hours [2].

This paper will first give an introduction to underwater
acoustic sensor networks in Section II. Section III describes
multiple cooperative missions using AUV swarms. The paper
is concluded in Section IV.

II. UNDERWATER ACOUSTIC SENSOR NETWORKS

Advances in underwater communication techniques have
enabled increasingly complex and flexible networks. The un-
derwater communication usually uses acoustic signals, while
on the surface radio signals are transmitted. These networks,
so-called underwater acoustic sensor networks (UASN), can
be enhanced using AUVs for, e.g., maintenance of their
submarine infrastructure or accomplishment of specific other
tasks, as aforementioned in Section I. Communication plays
an important role for AUV operations regarding data retrieval,
recharging, but most importantly also regarding the navigation
of AUVs [2].

A. Common Navigation Methods

AUV communication and navigation are closely interrelated
and often share the same channel. Navigation methods need
accurate localization data for each target AUV. The choice of
the navigation function or path planning algorithm influences
the energy efficiency, obstacle avoidance ability, and adaptabil-
ity of the operation [5]. Section III will introduce research on
AUV swarm organization, which requires the understanding
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of some localization basics in AUV operations. There exist
two major categories of localization methods relevant for
Section III.

Inertial/dead reckoning positioning relies hardware-sided on
the inertial measurement unit (IMU). The IMU provides mea-
surements of a combination of accelerometers and gyroscopes.
These measurements support dead reckoning, which describes
the situation when an AUV navigates autonomously, without
additional positioning support from a surface vessel. Dead
reckoning suffers from unbounded growth of positioning error
due to its cumulative nature [6].

Acoustic positioning measures the time of flight of an
acoustic signal from a transponder with known GPS data, used
as reference for relative positioning. For ultra-short baseline
and short-baseline, the reference usually is a surface ship.

• Ultra-short baseline (USBL): Transducers on the baseline
are maximum 10 cm apart.

• Short baseline (SBL): Distance of transducers is the ship
length.

• Long baseline (LBL): Transducers are beacons located
on the seafloor and triangulation is used for positioning.

• Acoustic modem: Rely on inter-AUV communication via
acoustic modem instead of stationary sensors. This way,
AUVs can exchange positions directly [6].

B. Architecture

In general, the UASN consists of the following components:
underwater sensors at fixed positions, a main node, a surface
buoy, and a base station. The sensor nodes report to a main
node which in turn communicates with a surface buoy. In this
configuration, the surface buoy acts as a gateway to the base
station (a manned surface vessel or on-shore facility). This
type of UASN is built as an 2D architecture. If the UASN
additionally contains sensors which can vary their depth by
moving vertically, it is called a 3D UASN (Figure 1). Within
this architecture, AUVs act as mobile nodes [7].

C. Topologies

The topology shifted from fully connected peer-to-peer
networks towards clustered topologies for scalability reasons.
Clusters may consist of, e.g., an AUV and stationary sensors,
respectively. Within clusters, time-division multiple access is
used to regulate the access to the acoustic channel [9].

D. Challenges in Network Design

Designing UASN presents very particular challenges, due to
the characteristics of the submarine environment, compared to
terrestrial networks [10]. This section provides an overview
of the most critical aspects of underwater communication.
As reference [10] summarizes: ’Most of the described factors
are caused by the chemical-physical properties of the water
medium such as temperature, salinity and density, and by their
spatio-temporal variation’.

To be able to fulfill tasks in the aforementioned applications
of AUVs, it is desirable to cover large underwater areas
in sparse network deployments. AUV as well as stationary

AUV

sensor

buoy

acoustic communication link

radio communication link
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Fig. 1. A general underwater communication architecture [8]

sensors can act as relay nodes (hops). The distance between
the nodes of the network is limited by the range of acoustic
signals (around 20 km for long range communication, at cost
of an increasing propagation delay). However, radio waves
are only used at the surface level, but are usually infeasible
underwater, because the distance they can travel underwater is
smaller compared to acoustic signals [2]. The usage of optical
methods is also subject to research, even though the range is
shorter than the acoustic signal [11].

Additionally, sound travels slower than speed of light by a
factor of 2 ·105, leading to large propagation delays (speed of
sound in seawater, e.g., 1.5 km/s), i.e., the change in frequency
of the acoustic signal moving relative to the observer [12].
Another difficulty arises from the very limited bandwidth of
the underwater acoustic channel, resulting in low transmission
rates (as an example: 100 kbit/s for ranges ≤ 1 km, 10 - 50
kbit/s for medium ranges up to 10 km, and 10 kbit/s at 20
km). UASNs also suffer from high bit error probability due to
fluctuations in phase and amplitude underwater [12].

Multipath interference, fading, and shadow zones are com-
mon phenomenons in UASN. Multipath interference describes
the reflection of a signal causing the signal to arrive at the
receiver via multiple paths. Under water, reflections may be
caused by the surface, the seafloor, or obstacles and are time-
varying. The signal reaches the receiver via different paths
with different time delay, which can cause fading. Further-
more, this in turn may causes shadow zones - regions, where
the signal is not traceable at all. The latter eventually destroys
the network connectivity [10].

Not only the communication channel itself presents chal-
lenges to the engineers, but also considerations regarding
the energy consumption and recharging must be taken into
account. AUVs only have limited energy storage capabilities,
namely their on-board batteries and need to be able to surface
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at recharging stations in time. Lastly, sound signals affect
submarine environment. Animals such as dolphins use acoustic
communication. Therefore, the frequencies for AUVs must be
carefully chosen to fulfill ecological requirements [10].

E. Underwater Acoustic Protocol: the JANUS Standard

Research on AUV development and deployment has been
conducted for over five decades [13]. However, no official,
international standard for underwater communication existed
to support interoperability, until 2017 JANUS was included
in the NATO Standardization Agreement (STANAG). JANUS
(named after the Roman god of beginnings and gate opener)
was developed by the NATO Centre for Maritime Research and
Experimentation as a multiple-access acoustic protocol with
possible applications both in military and civilian missions. It
is characterized by its robustness and ’can easily be adopted
by a wide range of existing systems’ [14]. By including this
protocol in detail in this paper, the intention is to give an
example of how acoustic communication can be implemented
and how acoustic signal processing itself works [14].

JANUS is robust against multipath interference by using
frequency-hopping binary frequency shift keying (FH-BFSK)
on the physical layer. ’Frequency hopping is the periodic
changing of the carrier frequency of a transmitted signal.’ [15].
Binary frequency shift-keying (BFSK) uses a pair of discrete
frequencies to transmit binary information [15].

Figure 2 shows the transmission sequence and acoustic
waveform generation of a 64-bit JANUS Baseline packet. A
Cyclic Redundancy Checksum (CRC) is generated to ensure
data integrity. The requirement to handle frequency fading is
met by using a 2:1 convolutional encoder.

Optionally, three wake-up tones may be generated before
the transmission, in case that hardware within the network is
in sleep mode to save energy. This step should be completed
in time before the preamble starts, to allow the hardware to
wake up. The 32 chip (’chip’ replaces the term ’bit’ on the
physical layer, both referring to binary data) preamble serves
as synchronization mechanism, before the actual payload is
transmitted as a sequence of tones. The above described phases
are executed parallel to the generation of the 32 chip preamble
and - if selected - wake-up tones, to ensure that the actual
payload can be appended directly, without time delay. The
order of tones for the payload encoding is chosen to avoid
multipath interference or collision with JANUS packets from
other users. The chosen frequency band Bw, about 1/3 of the
center frequency Fc (default: Fc = 11520Hz, Bw = 4160Hz),
yields the chip duration Cd and the frequency slot width FSw
(default: FSw = 160Hz, Cd = 6.25ms). The chip sequence
may be transmitted using Tukey windowing to minimize
the sidelobes of the square wave signal. Sidelobes are the
consequence of sharp edges in signal modulation [16] and are
minimized to distinguish the signal from external interference.
After the baseline JANUS packet, the message’s ’body’, i.e.,
user-specified payload, may be appended [14].

Fig. 2. JANUS packet generation [14]

F. Routing Protocols

An important, complex control mechanism for adjustments
in networks are routing protocols. They can improve the
overall efficiency and are designed to adapt to the specifics
of the network. For UASN, there already exists a number
of protocols, which to present would have been out of the
scope for this paper. The routing protocols should satisfy the
condition of robustness in case of intermittent connectivity and
in event of connectivity loss should not provoke immediate
retransmissions due to the limited bandwidth [7].

III. COOPERATIVE MISSIONS

Underwater communication, as stated before, is key to
efficiently deploy more complex autonomous underwater op-
erations, whether the goal is to transmit data as reliably as
possible, or to extend the operation to coordinated, multiple
AUV tasks. Some advantages of networking multiple AUVs
are, that firstly completely new tasks can be fulfilled, such as
hunting [5], which would not be possible otherwise. Secondly,
it has been shown that AUVs position themselves more
accurately, if they are able to exchange location data. This
approach works even if communication with surface vessels
is not possible (e.g., ice-field operations) [17]. Lastly, existing
tasks can be completed in a more efficient and faster manner,
e.g., seafloor mapping [4]. Research on coordinated AUV
operations has become increasingly relevant and widespread,
because of those promising features. This section points out
selected coordinated missions of AUVs. The first research
topic is the formation of multiple AUVs, followed by the use
cases seafloor mapping and hunting.

A. Formation

The formation of multiple AUVs on a coordinated mission
can take communication constraints (limited bandwidth, large
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propagation delays) into account and is thereby a dedicated
field of research [2].

In [18], the authors present a formation-flying algorithm
which approaches the challenges of the acoustic channel by
minimizing the overall acoustic communication. The authors’
idea is to benefit from proximity to reduce data transmission
time and reaction time among the AUVs. In case that a
vehicle drops out of the formation (e.g., due to loss of
communication), the formation can also be recovered quickly
when the vehicles remain in close proximity at all times.

The formation consists of one leader and a number of fol-
lowers. The leader uses acoustic long baseline for navigation,
the followers use long baseline measurements of their inertial
position and the leader position. If communication with the
leader is lost, any other AUV may take over this position.
If all communication among the AUVs is lost, however, all
AUVs independently fulfill their respective tasks, localizing
themselves with their inertial LBL. The AUVs must keep a
certain distance to each other and the leader, due to formation
constraints and also due to their configuration. The distance
is calculated relative to the leader only, the leader serves as
central measurement point for all followers. If necessary, the
distance is corrected via change of velocity. The acoustic com-
munication only takes place in form of ’intermittent broadcasts
from the leader’ [18].

In [4], a swarm of AUVs is used to experimentally increase
the overall covered area in seafloor observation missions. For
this purpose, the AUVs are divided into two groups, the
main group and the sub group, respectively. Principally, the
procedure is described as follows: The main group consists of
the AUVs which act as alternating landmarks in the formation.
At any time, a single AUV takes the position of a landmark
and remains stationary at the seafloor for that time. All AUVs
calculate their state from the ground velocity, the angular
velocity and their relative positioning with this landmark AUV
A1. The AUVs can move and observe the area around the
landmark within the communication range. To switch the
landmark position, another AUV A2 from the main group
lands in some distance to A1. Then A2 performs multiple
positioning calculations relative to A1 to reduce uncertainties
in positioning. A2 sends its compressed state to A1. During
this role transfer, the AUVs - except A1 and A2 - use their
own navigation system. After the transfer, all AUVs except
A2 can move again, relative to the new landmark A2.

B. Simultaneous Localization and Mapping

Research for multi-AUV deployment has also adopted meth-
ods and integrated experimental results from terrestrial multi-
robot systems. An example is the simultaneous localization
and mapping technique (SLAM), where robots need to create
a map and localize themselves within the map concurrently.
The map is created by observing landmarks, e.g., detected
by side-scan sonars. It was shown in terrestrial experiments,
that the robots can improve their own state estimates and the
environmental observations if they share data [17]. As [17]
states: ’(...) terrestrial CSLAM systems are built upon assump-

tions of communications throughput and bandwidth, which
are unattainable underwater.’ This enforces adaptations of
the traditional, terrestrial tested CSLAM. In this section, a
CSLAM process developed for AUVs is presented.

Reference [17] proposes ’(...) a framework for cooper-
ative SLAM (CSLAM) for multiple AUVs communicating
only through acoustics.’ Therefore, a surface vessel becomes
expendable, which is advantageous when an AUV mission
requires covertness (security use case) or the mission takes
place in inaccessible areas (ice-fields). The authors specifi-
cally generate the communication packets to match with the
constraints of the underwater channel, mainly severely limited
bandwidth and packet loss (’develop the first multi-AUV
CSLAM algorithm that is specifically designed to operate
solely with low-bandwidth acoustic communications.’ [17]).

The authors state, that the communication packet size in
their proposed method increases linearly with the number
of observations since the last successful message passing
and constantly with the number of AUVs in the network.
This is advantageous in presence of the limited bandwidth
of the acoustic channel, because the overhead is not growing
extensively. This is achieved by reducing packet size with
an optimal marginalization of intermediate pose estimates
and converting the result into a sparse matrix. The pose is
determined by six degrees of freedom (three for orientation
and three for translation, respectively). Access to the acoustic
channel is regulated using time-division multiple-access with
statically assigned slots.

AUVs can make observations of each other either by direct
or indirect encounters. When the AUVs calculate the relative
range of each other after acoustic packet transmission, it is
a direct encounter. For that purpose, the AUVs are equipped
with synchronized clocks and calculate the time of flight of
communication packets. Otherwise, the AUVs can calculate
relative measurements from observing the same landmark in
the underwater environment (indirect encounter).

The approach uses decentralized estimation, avoiding single
points of failure. Each AUV keeps track of its own trajectory,
the poses of other AUVs, and the detected landmarks. This sys-
tem is represented in a special data structure for probabilistic
relationships, approved of in terrestrial SLAM: the so-called
factor graph. Factor graphs are bipartite, undirected graphs,
with variable nodes as one set of nodes, and factor nodes
as the other set. Factors are functions of only the adjacent
variables [19]. In this instance, the functions are odometry,
relative range measurements from time of flight, landmark
observations, GPS positioning data, and the resulting matrix
from the marginalization step. The GPS data may be obtained
(at surface) periodically or at least once before deployment to
get the initial relative distances between the AUVs.

The poses of the other AUVs are always obtained at
communication time. To achieve consistency of the factors
among all AUVs, the method implements a contact book for
each AUV, containing the most recent confirmed (= acknowl-
edgment packet received) in- and outgoing contacts. Since the
AUVs broadcast packets, it would not be possible to track the
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interactions otherwise. The contact points serve as reference
for generating the local factors, which are to be transmitted.
Additionally, the system does not fail if outgoing packets or
their acknowledgments are dropped.

observed landmarks

broadcast

Fig. 3. CSLAM data exchange at communication time t1, adopted from [17]

Figure 3 visualizes the process of coordinated simultaneous
mapping and localization using a simple scenario with two
AUVs (AUV1, orange and AUV2, blue). Both are scanning the
seafloor and add the detected landmarks to their local map (line
in their respective color). From left to right: at a certain time, t1
AUV2 makes a broadcast, which AUV1 receives. The receiver
now calculates the relative distance to AUV2 (localization),
using time of flight, and integrates the landmarks detected by
AUV2 in its local map (dotted line).

To validate the bounded uncertainty of the CSLAM ap-
proach in [17], MOOS, an open source software framework
developed by MIT was used. Two vehicles were simulated for
three cases within a predefined mapping area: no communica-
tion, application of the proposed scheme, and full bandwidth
simulation (which is unfeasible in a real-world scenario). The
parameters for the proposed scheme were chosen as follows:
packet transmission every 10s, drop rate 50% and maximum
packet size of 192 bytes. The results showed that uncertainty
was bounded and close to the full bandwidth simulation result,
but without communication the uncertainty was unbounded.

C. Cooperative Hunting Using Artificial Intelligence

The usage of cooperative AUVs is especially of interest
for search tasks (such as mine reconaissance), because of
the wider area the AUVs can span together within a shorter
timeframe [4]. Closely related to searching a moving target
are hunting tasks. The research of automated underwater
hunting aims to extend the search of static targets by dynamic
algorithms, to adjust the task assignment and path planning
according to the changing position of the target. Additionally,
the target is ’captured’ at the end, i.e., surrounded by AUVs to
prevent it from moving. Possible applications can be found in
the security section, comparable to those of unmanned aerial
vehicles (UAV), which have been enabled to capture/destroy
non-cooperative drones [20]. Under water, the targets could

be robot fishes, other AUVs, or submarines [2], [5]. In what
follows, we will describe the work of [5] in more detail.

In the aforementioned research, the authors present a so-
lution for cooperative hunting, taking into account groups of
AUVs with different speed, intelligent evaders, and obstacles.
The implementation consists of two main components: the
dynamic formation algorithm, to determine which of the AUVs
form a team to hunt an evader, and the path planning itself,
which combines a Glasius-inspired neural net (GBNN) with
a belief function. After the AUVs have located an evader,
the dynamic hunting algorithm is applied, yielding the team
scheduled to hunt the evader. Then, the path is planned to
capture the evader. These steps are repeated until all evaders
are captured. The proposed methodology can be applied to
both the 2D scenario (ground hunting, at seafloor level) as
well as the 3D environment. In 2D, four AUVs per team
are necessary to surround the target, while in 3D six AUVs
are required (additionally one above, one below the target).
Intelligent evaders are assumed to take two different basic
approaches (in 2D) to flee from the AUVs: in the first case,
the AUVs have not yet formed a cycle around the target. The
target will therefore try to escape in the opposite direction. If,
in the second case, the AUVs are forming a cycle, the evader
is assumed to choose the path between the two AUVs with
the largest distance.

Search for evaders: Approaches for this initial phase are
described, by the authors, in a previous publication [21]. To
exploit the potential for high parallelism and avoid double
searching of the same space, the underwater search space is
divided into equally sized subspaces. These are assigned to the
AUVs in a shortest-distance competition. The AUVs navigate
through their respective space, using a combination of a self-
organising map and a GBNN to achieve a high coverage rate
and avoid obstacles. Only the total number of targets and
the boundaries of their respective search space are known
beforehand. Targets are detected by, e.g., side-scan sonars, so
the AUVs must be capable to recognize a target in some way.

Dynamic hunting alliance formation: The hunting alliance
formation stage chooses the evader with the least estimated
hunting time, computed under consideration of the velocity
and distance of the AUVs, to be hunted first. Also, the team
of AUVs to hunt this evader is formed.

Path planning: After the team formation, the AUVs need to
plan their way to follow and eventually catch up to the evader.
The planning must be completed fast, to adapt if necessary to
the moving target. The authors propose the combination of
a neural net, GBNN, and a belief function. Neural nets stem
from the area of artificial intelligence and model the human
brain. Visually spoken, it consists of ’neurons’ connected by
’synapses’ [22]. For the underwater path planning, the neurons
represent single cells in a grid overlay of the environment and
can take a value (’activity’) in the interval [0,1]. The higher
the activity of a neuron, the more an AUV will be drawn
towards that cell. Belief functions are applied to a subset of a
set of possibilities, and their result represents the (subjective)
belief that the true possibility is part of this subset [23]. The
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authors chose the belief function, because it ’(...) has the
advantages of quick response, small calculation and certain
obstacle avoidance ability’ [5], while the GBNN requires more
complex calculations and therefore introduces a delay between
change of environment and reaction to that change.

The path planning processes as follows: while the AUV
is still not close to the target, the belief function effect is
larger than the GBNN effect to steer the AUV in the general
direction of the target. That is achieved by keeping the value of
the GBNN neurons representing free cells far away from the
target small, and increasing the value only when the AUV gets
closer to the target. Then, the GBNN effect in turn is larger
than the belief function effect, hence taking charge of steering
the AUV into the direction of the previously ’assigned’ target.
Simplified, the neurons representing free cells have increasing
values when approaching the target and the values of free cells
are always greater than zero, whereas the neurons representing
occupied cells (occupied by, e.g., other AUV or obstacles)
have a value of zero. The belief function is less than zero at
occupied cells. That means AUVs follow cells with increasing
neural activity while obstacles are avoided.

Capture: The hunting of one evader is completed upon
successful capture. That is, in the 3D scenario, the AUVs either
form a circle around the target ’close enough’ [5] and one
above, one beneath the target . For the 2D scenario, four AUVs
are required to surround the target. Applying to both cases, if
there exists an obstacle, blocking at least one direction, the
number of AUVs may be reduced.

Finally, the method showed better results in a 2D Matlab
simulation than comparable methods. The compared variable
was the average distance each AUV completed before all
evaders were captured. For the 3D scenario, no quantitative
comparison could be presented, because only the proposed
algorithm managed to complete the hunting task successfully.

Regarding the utilization of inter-AUV communication, the
challenges in underwater communication are not discussed,
except for explaining the choice to use competition-based
functions (fastest AUV wins) for cooperation instead of ne-
gotiation (make a joint decision), because the latter produces
too much load for the acoustic channel.

IV. CONCLUSION

This paper provides an introduction to the networking of
AUVs into swarms. We present different missions such as
formation, seafloor mapping, and cooperative hunting, which
can benefit from networked AUV swarms. For instance, the
hunting operation is a very specific use case, developed for
counteraction against microrobot fishes. This use case shows,
how neural nets can successfully take over the task of path
planning for a team of AUVs. As part of future work, we
will show how software-defined networking can be used for
underwater acoustic sensor networks and we will simulate
cooperative missions in the network simulator OMNeT++.
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