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Abstract
This supplementary document contains additional simulations, coding examples, and other supporting

material for “Comment on Three Papers about Hardy-Weinberg Equilibrium Tests in Autopolyploids”.

This document was written in R Markdown and may be explored interactively. All code chunks are executable
in the order given. You can access the R Markdown file at https://doi.org/10.5281/zenodo.7019205.

The package {hexocto} contains the code from Wang et al. (2021) and Wang et al. (2022), formatted
in package form by me so that it is easier to compare. The original repos with the original code are
https://github.com/CCBBeijing/hexaploid and https://github.com/CCBBeijing/OctoploidDeer. You can
install this package using {devtools}:
# install.packages("devtools")
devtools::install_github("dcgerard/hexocto")

The package {hwep} contains the code from Gerard (2022). I use it for comparison purposes at times. You
can install the development version via:
# install.packages("devtools")
devtools::install_github("dcgerard/hwep")

I will load these packages into R now:
library(hexocto)
library(hwep)

S1 Difference between random mating and equilibrium
Here, I numerically demonstrate the difference between random mating and equilibrium in autohexaploids.

For illustration, let’s make an extreme example. Suppose the gamete frequencies for a hexaploid are
p <- c(0, 0, 1, 0)
p

## [1] 0 0 1 0

Then the genotype frequencies under random mating are
q <- convolve(p, rev(p), type = "open")
round(q, digits = 3)

## [1] 0 0 0 0 1 0 0

The allele frequency is
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r <- sum(0:6 * q) / 6
r

## [1] 0.667

This results in equilibrium frequencies of the following when α = 0, the lower bound,
hwep::hwefreq(r = r, alpha = 0, ploidy = 6, niter = Inf)

## [1] 0.00137 0.01646 0.08230 0.21948 0.32922 0.26337 0.08779

I can verify this by iterating the recursive scheme from Wang et al. (2022).
qw <- q
for (i in 1:20) {

qw <- hexocto::hex_onegen(yww = qw, alpha = 0)
}
qw

## [1] 0.00137 0.01646 0.08230 0.21948 0.32922 0.26337 0.08779

Equilibrium frequencies when α = 0.3, the upper bound (Huang et al. 2019), are
hwep::hwefreq(r = r, alpha = 0.3, ploidy = 6, niter = Inf)

## [1] 0.00537 0.03190 0.09792 0.20350 0.27748 0.25115 0.13268

I can also verify this by iterating the recursive scheme from Wang et al. (2022).
qw <- q
for (i in 1:20) {

qw <- hexocto::hex_onegen(yww = qw, alpha = 0.3)
}
qw

## [1] 0.00537 0.03190 0.09792 0.20350 0.27748 0.25115 0.13268

S2 Incorrect equilibrium genotype frequencies from Wang et al.
(2021)

I will begin at the same example genotype frequencies as Wang et al. (2021).
yww <- c(0.1, 0.1, 0.15, 0.1, 0.2, 0.1, 0.05, 0.1, 0.1)

Then I apply their recursive approach to obtain their equilibrium genotype frequencies
hexocto::octo_recursive(yww = yww, niter = 20, alpha = 0)

## [1] 0.0186 0.0677 0.1424 0.2064 0.2234 0.1793 0.1076 0.0443 0.0104

These are different from the theoretical binomial proportions Haldane (1930)
r <- sum(0:8 * yww) / 8
dbinom(x = 0:8, size = 8, prob = r)

## [1] 0.00577 0.04177 0.13228 0.23937 0.27071 0.19594 0.08864 0.02291 0.00259

My {hwep} package, on the other hand, correctly calculates these using my recursive formula
qcurrent <- yww
for (i in seq_len(20)) {

qcurrent <- hwep::freqnext(freq = qcurrent, alpha = c(0, 0))
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}
qcurrent

## [1] 0.00577 0.04177 0.13228 0.23937 0.27071 0.19594 0.08864 0.02291 0.00259

S3 Coding errors for χ2 statistics
Wang et al. (2022) use the following as an example for their tests for equilibrium and random mating on
page 5 of their manuscript.
nvec <- c(29, 21, 17, 10, 10, 10, 23)
nind <- sum(nvec)

Here, I will reproduce those tests, and demonstrate that they implemented their χ2 test statistics incorrectly.

Their recursive test gets a chi-squared value of 6.602, which I can get here.
hex_chisq(yww = nvec / nind,

nind = nind,
niter = 8,
alpha = 0,
method = "incorrect")

## $chisq
## [1] 6.6019
##
## $df
## [1] 6
##
## $p
## [1] 0.35924

This is the “incorrect” way because they forgot to account for the number of individuals in the chi-squared
test. It should be 120 times 6.602.
# generate their equilibrium frequencies
qhat <- hex_recursive(yww = nvec / nind, niter = 8, alpha = 0)
# does not use nind
sum((qhat - (nvec / nind))ˆ2 / (qhat))

## [1] 6.6019

# correct way
nind * sum((qhat - (nvec / nind))ˆ2 / (qhat))

## [1] 792.23

For the “gamete based test”, they get 6.649, but this is not correct. They were just calculating the same test
statistic as the 6.602 value, but ran it for a different number of iterations.
# Estimate gamete frequencies
hout <- hex_em(yww = nvec / nind, niter = 30)
# Feed those into recursive algorithm
rvec <- hex_recursive(yww = hout$q, niter = 8, alpha = 0)
# Incorrect way
sum((nvec/nind - rvec)ˆ2 / rvec)

## [1] 6.6487
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Here is the value they were trying to get.
# Incorrectly does not multiply by nind
sum((nvec/nind - hout$q)ˆ2 / hout$q)

## [1] 0.30123

# Correctly multiplies by nind
nind * sum((nvec/nind - hout$q)ˆ2 / hout$q)

## [1] 36.147

The authors’ two procedures would produce the same values if you ran them for long enough.
# "recursive test" from Wang et al. (2021)
hex_chisq(yww = nvec / nind,

nind = nind,
niter = 20,
alpha = 0,
method = "incorrect")$chisq

## [1] 6.7014

# Implementation of "gamete-based" test from Wang et al. (2021)
hout <- hex_em(yww = nvec / nind, niter = 30)
rvec <- hex_recursive(yww = hout$q, niter = 20, alpha = 0)
sum((nvec/nind - rvec)ˆ2 / rvec)

## [1] 6.7014

This is the exact same as just testing for binomial frequencies, but calculating the χ2 statistic incorrectly.
rhat <- sum(nvec / nind * 0:6) / 6
qhat <- dbinom(x = 0:6, size = 6, prob = rhat)
sum((nvec/nind - qhat)ˆ2 / qhat)

## [1] 6.7014

S4 Correct degrees of freedom
Here, I show that the method Wang et al. (2022) does not produce uniform p-values under the null of
equilibrium. I also show that my correct version, including the correct degrees of freedom of 5, not 6, does
produce uniform p-values under the null of equilibrium. I also find the correct degrees of freedom for the
recursive test in Wang et al. (2021) to be 7, not 8.

S4.1 Hexaploids
I generate data under the null of equilibrium. I then fit the incorrect method Wang et al. (2022), my corrected
version, and the likelihood ratio test from Gerard (2022).
qvec <- hwep::hwefreq(r = 0.5, alpha = 0.1, ploidy = 6)
nrep <- 1000
nsize <- 100000
pout_wang <- rep(NA_real_, length.out = nrep)
pout_correct <- rep(NA_real_, length.out = nrep)
pout_hwep <- rep(NA_real_, length.out = nrep)
for (i in seq_len(nrep)) {

nvec <- c(rmultinom(n = 1, size = nsize, prob = qvec))
pout_wang[[i]] <- hex_chisq(yww = nvec / sum(nvec),
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nind = sum(nvec),
alpha = 0.1,
method = "incorrect")$p

pout_correct[[i]] <- hex_chisq(yww = nvec / sum(nvec),
nind = sum(nvec),
alpha = 0.1,
method = "correct")$p

pout_hwep[[i]] <- hwep::hwelike(nvec = nvec, thresh = 0)$p_hwe
}

All of the p-values from Wang et al. (2022) are 1, so do not follow a uniform distribution.
summary(pout_wang)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 1 1 1 1 1

The QQ-plot of the correct p-values follow a uniform distribution.
library(ggplot2)
qplot(sample = pout_correct, geom = "qq", distribution = qunif) +

geom_abline()
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The QQ-plot of the {hwep} p-values follow a uniform distribution.
qplot(sample = pout_hwep, geom = "qq", distribution = qunif) +

geom_abline()
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S4.2 Octoploids
I generate data under the incorrect model of Wang et al. (2021), calculating the χ2 statistic each iteration.
yww1 <- c(0, 0, 0, 0, 1, 0, 0, 0, 0)
qvec <- octo_recursive(yww = yww1)
nrep <- 1000
nsize <- 100000
chstat_octo <- rep(NA_real_, length.out = nrep)
for (i in seq_len(nrep)) {

nvec <- c(rmultinom(n = 1, size = nsize, prob = qvec))
qemp <- nvec / sum(nvec)
qnew <- octo_recursive(yww = qemp)
chstat_octo[[i]] <- sum((qnew - qemp)ˆ2 / qnew) * sum(nvec)

}

The degrees of freedom is not 8:
pocto <- pchisq(q = chstat_octo, df = 8, lower.tail = FALSE)
qplot(sample = pocto, geom = "qq", distribution = qunif) +

geom_abline()
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The degrees of freedom is 7:
pocto <- pchisq(q = chstat_octo, df = 7, lower.tail = FALSE)
qplot(sample = pocto, geom = "qq", distribution = qunif) +

geom_abline()
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S5 Simulation study to estimate α

The model Wang et al. (2022) used to create an estimator for α is actually different from (1) and (2). Their
model to estimate double reduction says that (i) parent genotypes frequencies satisfy q̃ = p ∗ p for some p,
and (ii) the current genotype frequencies are q = f(q̃, α). So this indicates random mating for parents, and
one update of random mating for children given the double reduction rate.

I ran simulations with p = (1, 1, 1, 1)/4 or p = (0.1, 0.2, 0.3, 0.4), n ∈ {100, 200, 400}, and
α ∈ {0, 1/7, 1/5, 3/11}. This mimics the simulation settings from Wang et al. (2022). I ran each
unique combination of parameter settings for 100 replications. Each replication, I generated data according
to the assumed model from Wang et al. (2022), then used their code to obtain estimates of p and α. I always
initialized the algorithm at α = 0 and p = (1, 1, 1, 1)/4.

Below is my simulation code.
## Parameter settings ----
pvec1 <- rep(1, 4) / 4
qvec1 <- convolve(pvec1, rev(pvec1), type = "open")
pvec2 <- c(0.1, 0.2, 0.3, 0.4)
qvec2 <- convolve(pvec2, rev(pvec2), type = "open")

niter <- 100
paramdf <- expand.grid(seed = seq_len(niter),

n = c(100, 200, 400),
alpha = c(0, 1/7, 1/5, 3/11),
truth = c("A", "B"))

## Estimates to fill in ----
paramdf$alphahat <- NA_real_
paramdf$p0hat <- NA_real_
paramdf$p1hat <- NA_real_
paramdf$p2hat <- NA_real_
paramdf$p3hat <- NA_real_
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## Simulations ----
for (i in seq_len(nrow(paramdf))) {

set.seed(paramdf$seed[[i]])
## offspring genotype frequencies
if (paramdf$truth[[i]] == "A") {

qoff <- hex_onegen(yww = qvec1, alpha = paramdf$alpha[[i]])
} else {

qoff <- hex_onegen(yww = qvec2, alpha = paramdf$alpha[[i]])
}

## sample of offspring
nvec <- c(rmultinom(n = 1, size = paramdf$n[[i]], prob = qoff))

## estimate parameters
hout <- hex_estdr(NN = nvec, niter = 1000, tol = 0)
paramdf$alphahat[[i]] <- hout$alpha
paramdf$p0hat[[i]] <- hout$p[[1]]
paramdf$p1hat[[i]] <- hout$p[[2]]
paramdf$p2hat[[i]] <- hout$p[[3]]
paramdf$p3hat[[i]] <- hout$p[[4]]

}
write.csv(x = paramdf, file = "./sims.csv", row.names = FALSE)

The estimates of α are very biased (Figure S1), and the estimates of p are somewhat biased (Figure S2).

S6 Degrees of Freedom Calculations
Here, I list out the five instances of incorrect degrees of freedom calculations from Sun et al. (2021), Wang et
al. (2022), and Wang et al. (2021).

The degrees of freedom for the both the equilibrium and random mating tests are incorrect in Sun et al.
(2021). They list the degrees of freedom to be four in both tests. But there are already four free parameters
under the alternative (since q0 + q1 + q2 + q3 + q4 = 1). Since Sun et al. (2021) assume the double reduction
rate is known, under the null of equilibrium there is one free parameter (the allele frequency), and so the
degrees of freedom for the test for equilibrium is 4 − 1 = 3, not 4. Under the null of random mating, there
are 2 free parameters (since p0 + p1 + p2 = 1), and so the degrees of freedom for the test of random mating is
4 − 2 = 2, not 4.

The degrees of freedom for the random mating test is incorrect in Wang et al. (2022). On page 4 of Wang et
al. (2022), the authors say about their test for random mating that “this test statistic follows the chi-square
distribution with an unknown degree of freedom. However, we can empirically determine it as a value between
7 - 1 - 1 = 5 to 7 - 1 = 6.” I can theoretically determine the degrees of freedom here. There are 6 free
parameters under the alternative (since q0 + q1 + q2 + q3 + q4 + q5 + q6 = 1), and there are 3 free parameters
under the null (since p0 + p1 + p2 + p3 = 1), and so the degrees of freedom is 6 - 3 = 3, which is neither 5 nor
6.

The degrees of freedom for the recursive test is incorrect in Wang et al. (2022). They say, right after their
equation (1) that the degrees of freedom is 6. But there are already 6 free parameters under the alternative.
Because Wang et al. (2022) assume the double reduction rate is known, there is only 1 free parameter under
the null, the allele frequency. Thus, the true degrees of freedom is 6 - 1 = 5, not 6. See Appendix S4 for an
empirical demonstration.

The degrees of freedom for the recursive test is incorrect in Wang et al. (2021). Right after their equation (3),
they state that their χ2 statistic “is thought to follow a chi-square distribution with eight degrees of freedom.”
But there are already 8 parameters under the alternative (since

∑8
k=0 qk = 1). The number of parameters
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under the null is unclear since they are using a different (incorrect) model for meiosis than I have studied for
octoploids, but it likely at least 1 (for the allele frequency). Empirically, it seems the degrees of freedom is 7,
not 8 (Appendix S4).
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S7 Supplementary Figures
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Figure S1: Estimates of α (y-axis) stratified by sample size (x-axis) and true α (facets) using the method of
Wang et al. (2022). The red dashed horizontal line is the true α in each facet. The estimates are way off.
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Figure S2: Estimates of pk (y-axis) for k = 0, 1, 2, 3 (row facets) for different sample sizes (x-axis) and
different initial values (truth or random) using the method of Wang et al. (2022). The red dashed horizontal
line is the true pk in each facet. The estimates are somewhat biased.
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