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ABSTRACT The [1-7, 11-13] researchs show that problem solving which
about nonstationary flow of elastic adhesive fluid in flat channels and pipes leads to
serious mathematical difficulties. Therefore simplification methods are used to
solve problems , or problem [5-10] is solved on the basis of average velocities along
the pipe section. In some sceintific works ([11-13]) In most cases in a nonstationary
flow, fluids flowing in them, the occurrence of anomalous (non-traditional) events
in the transition processes that depend on their rheological properties. In this
article, specific problems of nonstationary flow of elastic viscous fluids in flat
channels are solved. The main goal in this, study the motion of elastic viscous fluids
on the basis of simplified mathematical models and compare the results with the
laws of transition processes in a non-stationary Newtonian fluid, is to identify new
hydrodynamic effects that differ from it.

Keywords. Elastic viscous fluids, simplified mathematical models, average
velocities along, transition processes, transition processes, Newtonian fluid,
Nonlinear relaxation, Laplace-Carson substitution.

MAIN PART AND CALCULATION

Based on the rheological models of the elastic adhesive fluid proposed by

Shulman in [11-13], the fluid is an elastic adhesive and incompressible, and its
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motion solves the problems of nonstationary flow in channels occurring in a laminar
symmetrical axis. The motion of such a fluid in the canals is represented by the

system of simplified equations proposed below, taking into account its rheological

properties:
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(2.1)

To solve the system of equations (2.1) we need to form the initial and
boundary conditions. For this at t =0 we assume that the fluid is in the initial “calm”
state, that is

0
t=00a u=0, L=o
OX . (2.2)
when 120 the pressure gradient in the channel is greater than zero, creates a
nonstationary flow. These boundary conditions are appropriate for this case
t>06a y=0 0a 8—u=0; t>06a y=h 0a u=0
% (23)

In order to solve the system of equations (2.1) analytically on the basis of the
initial and boundary conditions formed (2.2) and (2.3), the i 9 functions in the

system of equations (2.1) must be fi=1 g,=1 and the spectra of relaxation time

are finite.
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Nonlinear relaxation involves the use of complex methods of mathematical
physics or a finite number of methods in the study of the most complex flows of a
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fluid with a time spectrum.. However, the system of linear equations (2.1) using the
Laplace-Carson [8-9] substitution for time based on the above conditions, taking into

account the initial (2.2) conditions, using the following formulas on the t variable,

0 =s[¢udt, 7, =s[¢ 7, dt
0 0

(2.5)
Here - S is the switch parameter. Using the following substitutions
ou _ ou da
— —>s(U—u,),
t dy
or 0 dp
~ > sT,, P_,oP
T OX dx (2.6)

By applying the Laplace-Carson substitution (2.1) to the system of equations,

taking into account the given initial conditions, it appears following form

_dp d
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The boundary conditions take the following form

y=0 oa OI—u=0; y=h oa u=0
dy (2.8)

We now define Fry from Equation (2.7) as follows:

S
k2 1+sA, dy dy (2.9)
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where k=+7T A Is the relaxation function found for the Shulman-Husid

model [11]. Instead of its:
n

——=11(8)
The (1+s4) [7,10] function for the Maxwell model, For the oldroid model
n (1+BsA4) _n(s) B—ﬁ
[7,10], the (L+s4) function can be cited, here A . Substituting the

expression (2.9) into the first equation of the system of equations (2.7) we obtain

du ps - 1 dp
2~ u=
dy* 7n(s) n(s) dx | (2.10)
dp
In this equation, dx does not depend on the channel length, therefore its
solution Y — can be obtained in the form of a trigonometric function on a variable
X — the variable bleeds in the form of a constant parameter in the equation. In this
case, the solution of equation (2.10), taking into account the boundary conditions

(2.8), is as follows

.| pS
B cos| i (S)y
U(y,s):i(—d—pj 1- 7
PS dx . 0S
cos| i s)h
n( | (2.11)

The resulting solution (2.11) is the pictorial solution of equation (2.10), found
a solution to the given problem by bringing it to its original state.
To do this, we find the solution in Figure (2.11) using Laplace-Carson's return

formula
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We use the theory of deductions (balances) to calculate the integral of a
complex variable (2.12). To do this, we find the values that make the fractional
denominator under the integral zero. These values will be the special points of the
integral. In Integral (2.12), such special points are as follows

S)

,n

S
s=0, s=-v—, S=-V—2
h h (2.13)

The special points in these values consist only of simple poles. Therefore, we use
the meromorph function to extend to a simple fraction [8]. To do this, we write the
expression under the integral in fractional form in this view
F(s) C, < = C
( ) +Z Z 2n
F(s) s Ss-s, t=s-s, (2.14).

C

Here ~0 -to find the discount (balance) by multiplying both sides of equation (2.14)

by S , then by pushing the S to zero, we calculate this limit
2
C, = lim 318 _ 1 (_a_pjhz 1-2

S—>0 F,(s) 277 OX h

To find Cin, multiply both sides of equation (2.14) by, we calculate the limit of the

(2.15)

S—S;

generated expression in aspiration. That is

i () F(sy)

sos, F (S) F (S ) B Fll(sin)
S =Sy




Results of National Scientific Research Volume 1| Issue 6
2022 SJIF- 4.431 ISSN: 2181-3639

o _Fils)
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So in this case the value of Cin will be equal to R (S'n) . Now we find >

from the following equation

2
N (2n+1) 72

ELE()5% - E(a)k®s =0
4 (2.16)
14 = 1 vV _
L—F/l, f(a)—ék—a, S=——S

2
Here h
Equation (2.16) is a quadratic equation whose roots are two and it is defined

as follows

. K@) K& (@) - (2n+1) T°ELE(a)
1n,2n 2EL§(a) (2.17)

Based on the values found (2.15) and (2.16), we construct the solution of the

equation

P de) [ Y ].$%vs (-D"¢(a «
Lyt = 77( dxj“ h2j+ZZZ (k- 2ELs, )

2n+1)°%7°

k=1 (k“ — ELsm)2

(2.18)
0,t ° 2 )" — St
U(uo - 2. 2.2, : (3 )(i(f 2ELs) °
I Ene bz Z(ka ELs;,)" ] (2.19)

o5
Up=—| ——
here 2u\  dx

For simplicity, we examine the process of transition of an elastic viscous fluid from

the non-stationary state to the stationary state at the asymptotic values of the
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Shulman-Husid model. For the Shulman-Husid model, the coefficient of elastic
dynamic adhesion is equal to "(g):”ﬁ(g), where 77 is the dynamic viscosity
coefficient of the Newtonian fluid. In this case, the coefficient of dynamic adhesion

of elasticity in dimensionless form is determined as follows

For simplicity in solving this equation we use two limit states. That is t1) 4 when
- _2n+1
As|0 1 : S = > 7 . N
, 1t will be . This represents the process of transition of a

Newtonian fluid from a non-stationary state to a stationary state. In the case of tlJ 4

itis |’1S|D 1, we will examine this point separately. When this |’1S|D 1condition IS

satisfied, equation (2.20) is reduced to the following asymptotic equation [ 66 ]

7(s)= . L
cf(a)asinZ(;ts) a

(2.21)
If we take @ =2 here, in which case (2.21) takes the following view
_ T
7(s)= 1
2£(2)(4s)? (2.22)

We find the solution of this equation by substituting the expression (2.22) into the

in _(@n+)
equation W 77(3) 2

(2n+1)3 2 ih 1 i@)
" ayfe (2)EL\/_ 2 (2.23)

In this case, we write the integral value (2.16) in the following form
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The solution (2.24) can be used to study the transition of an elastic adhesive fluid

from a non-stationary state to a stationary state.

We now adopt the Oldroid model with two relaxation coefficients for elastic

viscous fluid. In that case the relaxation function is visible, where 5(t) is Dirac's

delta function.

1+ Bs _
] TS _rcs)
7(5) s determined as follows 1 +54)
The installation of elastic adhesive fluid relaxation processes in the ring

interval, excluding inertia, corresponds to the results of the work [64-69]. In flat

h2
S=——7F5
channels, the root V' in the Oldroid model is defined as follows:
2
—EL§+M7Z'2EL@ =0,
4 1-SEL (2.25)
EL :@
here as h , (2.25) Equation (2.25) looks like this:

2 2
§2E|_—[1+(2”2+1j nZBELJ§+(2n2+1J 72 =0
(2.26).

Solution of this equation takes following form.

on+1y , 2n+1Y ) w
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This equation has complex roots when it changes in the EL 06<EL<4 figq

1
n=0, B==
at 4 . At N=0 this field determined from following condition

2 2 2
{1%2”2”) nZBEL:l —4(2”2”) Z2EL <0
(2.28)

In all other N=0, Sin S2nvalues, the equation has real roots. From this

T
cos X =0 root of the 2 equation generates oscillations in the transition processes,
3z Sz
the remaining 22 cases will only have real roots, therefore cannot generate
EL <0,6

vibrations. Thus at small values and at large EL >4 values the flow obeys

the law corresponding to the Newtonian fluid. Here is the following calculation

formula for Oldroid made
2 o
n"(1- ELs)
t——— h — |-32 X
M=o, ) [( j Z}; 2n+1)37z3(1 2ELS, +BELS;)

e |

U0 |y gpyy CWAZELS)
uOmax i=1 n—1 2n +1)37Z'3(1_ 2EI—§|n t BEL2§|§)

h?( dp
Uomax = 2_ T
ul o dx

Maxwell model, As a special case of the Oldroid model, at £ =0 the Oldroid

(2.29)

(2.30)

here

model becomes the Maxwell model. The calculation formulas for the Maxwell

model can be generated by putting a value of £ =0 in formulas (2.29) and (2.30).

Analysis of solutions and conclusions
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One of the physical properties of elastic viscous fluid flow is that at the initial
moment of momentum the velocity reaches its maximum value, then enters a phase
of monotonous decrease and switches to a stationary flow. Vibrating changes in
velocity, fluid flow, and other hydrodynamic quantities are observed in the flow.
The process of transition from a non-stationary state to a stationary state in the
movement of Newtonian viscous fluid in flat channels is manifested in the form of
monotonous growth. We can observe this through Figure 1. As can be seen in the
figure, the state of nonstationary fluid begins at zero value of motion and ends with
the process of co-existence. This process corresponds to an approximate value of 1.5
without dimensionless time.

m The ratio of the maximum velocity of a
nonstationary Newtonian adhesive fluid
a to the maximum velocity in the steady
06} state time dependence.

N Information about this is given in many
| publications

02y [13,21,27,28,34,53,55,57,61]. However,
. studies on the transition of elastic

0.5 10 15 2.0 i
viscous

Figure 1.
fluids from a nonstationary stream to a stationary stream are insufficient. They are
also available [34,59,60,66,67,69], the elastic adhesive fluid in some annular tubes
Is devoted to nostational problems of motion, which have been solved on the basis
of the method of numerical finite separations. In this study, we solve the
nonstationary motion of elastic viscous fluids in flat channels by analytical methods
using Laplace-Carson transformations. Using formulas (2.29) and (2.30) given as a

solution to the problem, first of all, we analyze the process of transition from a non-
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stationary motion of an elastic viscous fluid in a flat channel to a stationary state,
given by the Maxwell model.

20+
15 The time dependence of the ratio of the
maximum velocity of the nonstationary
10+

elastic adhesive fluid to the maximum

05 velocity in the steady state (when EL =1

in the example of the Maxwell model).

Figure 2 shows the time dependence of
Figure 2.

the ratio of the maximum value of the longitudinal velocity directed along the plane
channel axis to the value of the stationary maximum velocity on the same axis of the
process of transition of the elastic viscous fluid from the nostalgic state to the
stationary state. As can be seen from the figure, the transition of an elastic viscous
fluid from a non-stationary state to a stationary state is manifested in a wavy form,
in contrast to a Newtonian fluid. The transition time would be several times greater
than the Newtonian fluid transition time. Let us now examine such a case at large
values of the coefficient of elasticity. Figures 3 and 4 show the process of transition
of the coefficient of elasticity from the non-stationary state to the stationary state at
the values of EL =5 and EL = 10.
af The time dependence of the ratio of
3l the maximum velocity of the
nonstationary elastic adhesive fluid

to the maximum velocity in the

steady state (when EL = 5 in the

example of the Maxwell model).
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6 The time dependence of the ratio
of the maximum velocity of the
nonstationary elastic adhesive
fluid to the maximum velocity in

| | /\/ the steady state (when EL = 10 in

10 20\/ 30 ) 50
the example of the Maxwell

model).

N
T

N
T

As can be seen from the figures, as the value of the coefficient
4 - figure.

of elasticity increases, the amplitude of the wave in the current and the time of
transition from the nonstationary state to the stationary state increase. We now
analyze the process of nonstationary motion of an elastic viscous fluid in a flat
channel using the Oldroid model. The solutions to the problems found on the basis
of this model are given in formulas (2.29)
and (2.30).

Time dependence of the ratio of the

15+

10+

o5 maximum velocity of the nonstationary

elastic adhesive fluid to the maximum

velocity in the steady state (when EL =1, B
= 0.1 in the example of the Oldroid model).

Figure 5.

12+t

The time dependence of the ratio of the

11}

maximum velocity of the nonstationary

10+

elastic adhesive fluid to the maximum

09+

velocity in the steady state (when EL =1
B = 0.5 in the example of the Oldroid

0.8

model).
Figure 6.
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The time dependence of the ratio of the
maximum velocity of the nonstationary
elastic adhesive fluid to the maximum
velocity in the stationary state (when EL =
it 10, B = 0.1 in the example of the Oldroid

model).

15 20

Figure 7.

15t

The time dependence of the ratio of the
7l maximum velocity of the nonstationary elastic
05! adhesive fluid to the maximum velocity in the

steady state (when EL = 10 B-0.5 in the

example of the Oldroid model).
Figure 8

The above mentioned figures show the process of transition from the
nonstationary state to the stationary state of the maximum longitudinal velocity of
edastic adhesive fluid in flat channels according to the Oldroid model at different
values of elasticity and Oldroid coefficients. As can be seen from the figures, in the
Oldroid model, all the processes of transition of the edastic adhesive fluid from the
non-stationary state to the stationary state of the maximum longitudinal velocity are
in the form of waves. This maximum value of the maximum longitudinal velocity
oscillation amplitude occurs at values of constant coefficients EL = 10, B =0.1. In
this case, the deviation of the maximum longitudinal velocity oscillation amplitude
from the value of the maximum longitudinal velocity of the fluid in the stationary
state is increased by 3-4 times.
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