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Abstract. The pervasiveness of deep neural networks (DNNs) in edge
devices enforces new requirements on information representation. Low
precision formats from 16 bits down to 1 or 2 bits have been proposed
in the last years. In this paper we aim to illustrate a general view of
the possible approaches of optimizing neural networks for DNNs at the
edge. In particular we focused on these key points: i) limited non-volatile
storage ii) limited volatile memory iii) limited computational power. Fur-
thermore we explored the state-of-the-art of alternative representations
for real numbers comparing their performance in recognition and detec-
tion tasks, in terms of accuracy and inference time. Finally we present
our results using posits in several neural networks and datasets, showing
the small accuracy degradation between 32-bit floats and 16-bit (or even
8-bit) posits, comparing the results also against the bfloat family.
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1 Introduction

Recently, it has been shown that Machine Learning in general, and Deep Neural
Networks (DNNs) in particular, tolerate low-precision representations for their
parameters. This constitutes an opportunity for speeding up the computations,
to reduce storage, and, more importantly, to reduce power consumption. The
latter is of paramount importance at the edge and on embedded devices.

However, to allow the porting of trained DNNs on difference devices, there
is the need to standardize low precision formats for machine learning.

The aim of this work is to grab the attention to this very important topic,
with the hope that sooner or later a standard, like the well-known IEEE 754 one
(see [1]), will be put in place.

This is a necessity strongly felt by practitioners and industry, even if aca-
demics and researchers seem to be less aware of its importance.

To make the picture of the situation more complex, we should also take into
account the requirements of safety critical applications, where low-precision is
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less encouraged, but can still be considered, provided that it does not hamper
the safety of the system.

Safety critical applications at the edge not only put more stringent require-
ments on the binary representation for small reals in DNNs, but can also add
constraints of reproducibility of the computations. This latter aspect can impact
the design of the representation. As an example, consider the use of stochastic
rounding: even if it has been proved to increase the effectiveness during the train-
ing of a DNN (especially when using 8-bit precision floating point numbers [2]),
it undermines the reproducibility of the computations. Since we are confident
that sooner or later a standard will be created, it is important to start to make
comparison between the existing alternative ways to represents real numbers in
deep neural networks, in particular when planned to be used at the edge. Before
doing this, we provide a review of all the techniques proposed so far to reduce
power consumption, such as quantization, network pruning, etc.

The paper is organized as follows: in Section 2 we reviewed the state of art
of deploying Deep Neural Networks at the edge and the main trends of research
activities in this field. In Section 2.1 we briefly described the network pruning
technique and its applications in simplifying neural networks. In Section 2.2 we
summarized the network quantization approach, also covering networks work-
ing with binary or ternary weights (we have called the latter cases as ”drastic
quantization”). In Section 2.3 we reviewed a family of low-precision format for
DNNs, called small reals, that include all the types we analysed later on. In
Section 3 we analysed the most promising alternatives to IEEE 32-bit floats:
bfloat family in Section 3.1, flexpoint in Section 3.2 and Logarithmic Numbers
in Section 3.3. In Section 4 we presented and deeply analysed the positTM for-
mat, highlighting some important properties. Furthermore, we showed the main
contributions of this work, consisting of the integration of the cppPosit library
and bfloats inside some interesting machine learning frameworks. In Section 5
we presented results on deploying neural networks on a low-power constrained
device, the Raspberry Pi 3B and in Section 6 we analyse the obtained results
and their impact, other than discussing future developments of the proposed
approach. Finally, in Section 7 we draw a few conclusions.

2 Deploying DNNs at the edge: state of the art

In the last decade, a lot of research efforts in DNNs has been devoted to re-
duce the resources required to exploit neural networks with limited memory,
storage or computing power (such as smartphones or network edge devices), as
demonstrated by the success of TensorFlow Lite, the low-precision counterpart
of Google TensorFlow library. Two research lines emerged, the first one focusing
on the inference phase only, leading to reduced-precision representation for the
neural network parameters, the second one aimed at additionally speeding up
the training phase using low-precision numerical formats also for the gradients.

Concerning low-precision numerical formats currently used in DNNs, three
main approaches can be distinguished:



Small reals representations for Deep Learning at the edge 3

1. use of low-precision floating-point formats;
2. use of low-precision fixed-point real numbers or integer numbers;
3. use of binary/ternary formats.

These alternative representations can be limited to the weights, or to the
weights and activations, or include all involved quantities (weights, activations
and gradients). When following the first approach (i.e., low-precision floats),
research and development efforts are converging toward a 16-bit floating point
representation instead of the classical 32-bit one (which is called binary32) [1].
The same IEEE 754 standard [1] which has standardized binary32 has also stan-
dardized a 16-bit counterpart, called binary16, which reserves 5 bits to the ex-
ponent. However, most of the general purpose CPUs do not have full hardware
support for binary16. In addition, it seems to be not particularly effective in
deep learning. For these reasons, IBM has proposed a 16-bit floating point for-
mat having 6 bit for the exponent [3], called DLFloat (which stands for ”deep
learning float”), while Google has proposed the 8-bit alternative for the ex-
ponent [4], called bfloat16. This gap in the standard might be resolved soon,
as there is a strong push from the machine learning community for suitable
arithmetic formats. Another shortcoming of this approach is the lack of hard-
ware support: as said above, most CPUs support 32- and 64-bit floats, but not
16- or 8-bit floats. Moreover, there are proposals to use a completely different
representation for real numbers, like the posit format introduced in 2017 [5].
Although the posit format is promising for low-precision DNNs [6, 7, 8, 9], the
not widespread availability of hardware support on CPUs still limits a large
scale adoption (a list of hardware implementations of posits can be found at
https://en.wikipedia.org/wiki/Unum_(number_format)).

The second approach (i.e., low-precision fixed-point numbers or integer num-
bers) is popular since it allows running DNNs even on entry-level CPUs micro-
controllers not equipped with a Floating Point Unit (FPU), since the Arithmetic
Logic Unit (ALU) is enough. On the one hand, fixed-point representations for
real numbers are widely used (especially in financial applications and to improve
the graphics in video games) even though C++ has not yet a standard library
supporting them. DNN implementations using low-precision fixed-point for the
both the weights and the activations are appearing [10]. Recently, a few papers
discussed the specific issues of training DNNs with a fixed-point representa-
tion [11]. On the other hand, low-precision integer numbers are very interesting
for time-sensitive applications, because operations between integer numbers have
predictable computing times. However, the use of (low-precision integers), like
8-bit or less, usually requires a tailored training algorithm [12]. This approach
is called quantization, for its obvious meaning.

The third approach takes the use of low-precision integer numbers in DNNs to
the extreme, using ternary or even binary weights. Remarkable results have been
obtained: DNNs with ternary weights (i.e., −1, 0 and 1) have been demonstrated
to achieve the same classification accuracy as DNNs using binary32 weights [13].
DNNs with binary weights have been also devised, again with little or no degra-
dation in the classification accuracy [14]. These results were confirmed on the
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very challenging ImageNet dataset, considered as the most demanding open-
source dataset for visual object recognition, with more than 20,000 different
object categories [15]. The use of models with precision down to INT2 (i.e., 2-bit
integer) has been demonstrated with a more than tolerable accuracy loss [16,
17]. As a result, NVIDIA has added the support down to binary numbers to
its top-level GPUs to perform tensor operations [18]. Quantization can be ap-
plied either during the training phase or after it, just to perform the inference.
However, DNN training using these numerical formats is more difficult com-
pared to the two previously presented solutions as the gradient descent cannot
be exploited, requiring the implementation of ad-hoc learning algorithms.

In [19] a series of challenges for DNN edge computing was presented. In par-
ticular the authors pointed out 4 main challenges to obtain a so called ”TinyML”:
i) profiling the energy consumption is critical and the power consumption can
vary wildly between different devices ii) edge systems often have very limited
memory, two orders of magnitude smaller than usual smartphones, so optimiza-
tions are required iii) edge devices can be very different from each other, thus
there is the need to normalize the benchmarks and the results obtained in those
heterogeneous environments. iv) there is the need for software abstraction, even
if this means losing a bit of low-level optimization that comes from hand-written
and hand-tuned code.

2.1 Network pruning

When deploying trained model to edge devices we must balance the model ac-
curacy performance with the inference processing time and resource utilisation.
Indeed, the principal aim of network pruning is to reduce the computational cost
of DNNs.

Typically DNNs are deployed with a large number of layers if several types,
with most of them having their own weights and feature maps: traditionally,
pruning is aimed to drastically reduce the amount of parameters in the network
by removing some ”redundant” connection between the layers. The idea is to
delete such parameters whose removal will impact the less the training error.
For example, we can delete very small-magnitude weights (when compared to
the rest of the network). After deletion the network can continue its training,
and so on, deleting weights at each step applying different deletion strategy. As
a drawback the training process is significantly slowed down, since it requires a
particular fine-tuning after each pruning step. The core idea expressed in [20] is
to express an optimal brain damage, that is a theoretical measure of the saliency
of weights in a network. In particular, a model of the training error functions
is built and it is analytically associated with the effect of a perturbation of
the parameters. From this expression the authors can express, with a series of
transformations, the saliency sk for each parameter k in the network.

The paper iterative approach is explained hereafter:

1. The neural network is first trained until a result (good enough) is reached
2. Each parameter is associated with a saliency, sk
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3. The parameters are sorted according to sk and low-saliency parameters are
deleted. Go to (1).

Deleting a parameter means setting it to 0 and making it immutable from
that moment on.

2.2 Network quantization

During the years, as the deep neural networks models grew in accuracy over
the most famous datasets (e.g. ImageNet and others) the network complexity in
terms of Floating Point operations (FLOPs) and model footprint increased. In
particular the footprint of network models (e.g. AlexNet model size is around 233
MB) is particularly critical in low-power and edge devices that can be particu-
larly constrained in non-volatile storage capacity. Typically quantization involves
the compression of weights using small integers, like 8-bit integer types.

In [21] the authors presented an overview of quantization techniques on deep
neural networks. In particular the authors were able to compress complex net-
works like AlexNet by a factor 35, using a combination of quantization and
weight sharing, while inducing a very minimal increase in the recognition error.

Drastic quantization (binary and ternary networks) Another approach
to quantization is pushing the compression further, aiming to binary or ternary
weights representations. In [22] the authors presented an overview of several
approaches to drastic quantization, using the Hybrid Binary Neural Network
(HBN) model. This model is based on a combination of 32-bit integer layers and
binary layers. Typically, the input layer and the prediction output layer have 32-
bit integer weights, while the intermediate ones are implemented using binary
weights. We report an example of HBN from Quantized Keras (QKeras), where
the 95% of weights are binary:

1. 2-dimensional convolution with 32-bit weights

2. Batch Normalization with 32-bit weights

3. Quantization layer

4. 2-dimensional convolution with binary weights

5. Batch Normalization with 32-bit parameters

6. Quantization layer

7. Fully Connected layer with binary weights

8. Output layer with 32-bit predictions.

The authors showed how the choice of layers to be quantised (binarised in
this case) is critical to reduce the network footprint and complexity without
impacting the accuracy of the model.
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2.3 Small reals

Since quantization employs vary small integers for numerical representation, we
lose the possibility to fine-tune our models on the edge without changing any
aspect of the training algorithm. The idea of using small reals is based on the
need for continuity between the original network model representation and the
edge one. In particular, we want to remain in the real number domain. There
are several formats that can be classified as small reals, each of them having at
most 16-bit representation:

1. binary16: the standard IEEE 16-bit representation with 5-bit exponent and
10-bit fraction

2. bfloat family (in detail in Section 3.1) with 16 or 8 bit representations
3. posit numbers (in detail in Section 4) with 16 or 8 bit representations (but

also intermediate variants can be used, such as 6, 10, 12 or 14 bits if we
accept the cost of memory misalignment).

In the next section we provide the state of the art for alternative representa-
tions of real numbers, with special emphasis on small ones (16-bit or less). Then,
in section 4, we review the posit format, which is considered at the moment the
main challenger to the IEEE 754 format.

3 Alternative Real Number representation: state of the
art

3.1 The bfloat family

The bfloat family is an alternative representation to IEEE 32-bit floating point
numbers. In particular, the aim of bfloat is to propose a format that has very
common characteristics with the IEEE 32-bit format, with a reduction on the
format length.

bfloat16 The first format proposed in this family was the bfloat16. We summa-
rize hereafter its structure:

– 1-bit sign
– 8-bit exponent
– 7-bit fraction

It substantially differs from its predecessor 16-bit IEEE Floating Point (bi-
nary16) because it has the same number of exponent bits as the 32-bit IEEE
Floating Point (binary32). This allows a very fast conversion between the two
types, since it only involves a truncation on the fraction (or an appropriate
rounding, depending on the cases). This format can be employed both for low-
precision inference and for mixed precision training [23].

There is a light support for bfloat16 in the latest generations of Intel Xeon
CPUs; in particular BF16 instructions were added to the AVX2 vector extension
of the architecture.
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bfloat8 The bfloat8 format represents a further reduction in bits. Indeed, the
format employs 5-bit exponent (as binary16) and only 2-bit for the fraction.
This choice makes the conversion from binary16 to bfloat8 very fast, being it
just a matter of truncation. The same cannot be said from binary32: in this case
the conversion is more complex. A particular implementation of bfloat8 (in [24])
enabled the use of stochastic rounding during mixed precision training on this
format. This approach allowed bringing in more randomization into the training
phase. Let us consider a number represented on a float with a higher number
of bits, let us say k bits, and we want to find its representation on k′ bits, with
k′ < k. Let x = s ·2e ·(1+f) (sign, exponent and fraction respectively) be such a
number. As an example, xmight be a binary32 and x′ a bfloat8. We may compute

the probability p = f−f ′

ϵ where f ′ is the truncation of the larger fraction into the
smaller one and ϵ = 2−k. With probability p we round x to y = s ·2e ·(1+f ′+ϵ),
while with probability 1−p we round it to y = s ·2e ·(1+f ′). With this approach
the authors were able to train several neural networks model on common datasets
(e.g. CIFAR10 and ImageNet) with 8-bit floating point numbers: they reported
very little degradation in DNN accuracy while reducing the model size by a
factor ∼ 2.

3.2 Flexpoint

The flexpoint format [25] is characterized by a shared tensor exponent. This
exponent is used as a common exponent for all the reals in a given neural network
layer or slice. This allows for example to have a 16-bit fixed-point representation
in an entire DNN layer, with just additional 5-bits for the whole layer as an
exponent. The exponent can be adjusted during the training, to match dynamic
range variations that happen during the process. It should be noted that the
idea behind flexpoint was already introduced earlier, but in different contexts,
as ”block floating point” representations (see, for example, [26]). Finally observe
how the flexpoint approach, although interesting and powerful, cannot be used
as a drop-in replacement to binary32: software changes are required to the DNN
software libraries. This also makes cumbersome the reuse of pre-trained DNNs.

3.3 Logarithmic numbers

As reported in [27], the main problem with floating point operations in hardware
is the transistors occupation for multiplication and division operations, which
occupy the main part of the FPU, being significantly more complex than the
circuitry for addition/subtraction. To address this issue, the Logarithmic Num-
ber System (LNS) was proposed decades ago in [28]. This system represents a
number x a number as y = 2x, in a pure logarithmic way. Following the loga-
rithm properties this means that multiplication and division are just a matter
of adding and subtracting logarithmic numbers (e.g. y1 × y2 = 2x1+x2).

However, this approach requires huge hardware lookup tables to compute the
sum or difference of two logarithmic numbers [27]. This has been one of the main
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bottlenecks for the format, since handling these tables can be more expensive
than basic hardware multipliers.

Although this approach is really promising and can be combined with other
formats, it has not been demonstrated yet that logarithmic numbers are more
effective than floats for DNNs. Thus more research is clearly needed before re-
sorting to this solution.

4 The posit format and innovative contributions of this
work

Posit numbers [5] are a representation for real numbers that can be configured in
two parameters, the number of bits nbits and the maximum number of exponent
bits esbits.

The format can have at most 4 fields (3 when esbit is chosen equal to 0):

1. 1-bit sign
2. Variable length regime
3. Variable length (up to esbits if present) exponent3

4. Variable length fraction4

The novelty of the format is all in the regime field. This field is encoded
with a run-length approach; indeed, its value depends on its length. To compute
the length l of the regime we just need to look at the number of subsequent
identical bits, interrupted by a bit of the opposite value (e.g. the bitstring 1110

has a length of 3, as well as the bitstring 0001). To compute the actual value of
the regime we need to take into account also the value of the single bit that is
repeated in the sequence, let’s call it b. The regime value is then:

k =

{
−l, if b = 0

l − 1, otherwise
(1)

The strong point of the variable length format is inside the regime: when
numbers are small (around the values ±1), the regime length is low and the
fraction length is high, thus giving the numbers in this area a high decimal
accuracy. This makes perfectly sense when matched with Deep Neural Networks,
where we can keep weights and activations across the layers near ±1 exploiting
weight decay and normalization techniques. Furthermore, if we look at the posit
range, most of the values are in the range [−1, 1]; this means that, a neural
network whose weights are entirely contained in this range will lose very little
accuracy if represented using posit numbers [29].

Particular properties of the posit format emerge when configuring the format
with 0 exponent bits. In detail:

3 An different way to look at the exponent field is to consider it having a fixed length
of esbit, where possible missing ones bits are implicitly considered equal to zero.

4 The same consideration done for the exponent field also applies to the fraction, which
could be regarded as a fixed-length field too, with implicit zeros.
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1. In the range [−1, 1] it is identical to a fixed point format
2. Simple operations such as doubling, halving and inverting can be computed

without decoding, directly on the posit integer representation [29]
3. Several DNN activation functions can be computed decoding free (see next

section)

4.1 Fast approximated activation functions

When we configure posit numbers with 0 exponent bits we can implement DNN
activation functions using fast and approximated versions that can be computed
directly on the integer representation, without decoding the posit.

Fast Approximated Sigmoid As pointed out in the original posit paper, the
Sigmoid can be computed directly on the posit representation as follows (v is the
integer representing the argument number, while Y is the integer representing
the result number):

Y = ((1 ≪ nbits− 1) + v + 2) ≫ 2

Fast Approximated Hyperbolic Tangent From the sigmoid function we
can build other activation functions by manipulating the expression using the
operations described in the previous section (doubling, halving, inverting and
others). The hyperbolic tangent (tanh) can be implemented using the following
expression (if substituting the sigmoid with its approximated version, we obtain
the fast approximated tanh):

tanh(x) = − (1− 2 · sigmoid(2x))

Fast approximated Extended Linear Unit The same approach can be fol-
lowed with the Extended Linear Unit (ELU), by combining the fast approxi-
mated sigmoid function and the other approximated operations seen above:

ex − 1 = −2 ·
[
1− 1

2 · sigmoid(−x)

]
In [30] the authors proposed a way to adopt posit numbers at the edge. They

introduce a variant of posits called adaptive posit weight representation. When
converting weights from 32-bit float representation they are also quantised to
the adaptive posit format. This posit variant has a hyperparameter that control
the dynamic range; it can be defined as a regime bias or as a maximum regime
bit-width called rs. When rs = 1 the adaptive posit format is identical to a
floating point with the same number of bits (the regime is non-existent in this
case). When rs = n − 1 the adaptive posit format is a pure posit number.
Thanks to this approach the authors were able to test their approach on different
datasets and neural networks, without losing too much accuracy even with 5-
bit adaptive posits. Furthermore they reported the maximum frequency (on
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ASIC) obtained during conversions, peaking 1200 MHz with pure posit to float
conversion with 5-bit posits. On the contrary, in this work we used standard
16-bit and 8-bit precision posits, and we have compared them with bfloat16 and
bfloat8, respectively. The results of this comparison are reported in Section 5.

The aim of our approach is to compare different representations of real num-
bers on DNN fine tuning at the edge, avoiding any change in the training al-
gorithm. In particular, we replace binary32 with bfloat16, bfloat8, posit16 and
Posit8, and we report their classification accuracy on standard DNN classifica-
tion benchmarks.

The added-value of this approach is that no software-hardware change are
required, other than having an FPU supporting bfloat16/8 or posit16/8.

In particular, we are not requesting the support of the Stochastic Rounding,
nor a different loss function or a tailored training algorithm.

In order to support posit numbers, in the past, we developed the cppPosit
library [31]. To us, declaring a posit number is just simple as:

auto p8 = Posit<8,0,...>;

The greatest struggle in designing such a library was that we wanted a format
that could be plug and play, so that we could just add it to any other machine
learning library with just a type definition. To achieve this goal we focused on
some core aspects of modern C++ (from 11 to 17):

– Type traits
– Extensive use of constexpr keyword to evaluate most of the branches at

compile time, to gain as branchless portions of code as possible
– Extensive use of templates to generalize posit operations when compiling the

code using -Ofast -std=c++17

When using novel types such as posit numbers, the lack of hardware is a
critical aspect. We explicitly did not want to compute operations on posits (e.g.
addition/multiplication and other) directly manipulating the posit bits. Instead,
we only wrote the coding and decoding operations and the conversions to an-
other type, called backend. The backend is a type that can leverage hardware
acceleration to some extent. For example, two widely used backends in cppPosit
are the fixed-point backend and the floating-point backend. Moreover, using a
look-up table as a backend for such operations proved to be effective, but at
greater memory cost.

Another obstacle to seamless integration of cppPosit with machine learning
libraries was the interoperability with standard math library <cmath> or other
linear algebra libraries (e.g. Eigen). Thanks to the extensive use of templates we
easily integrated these two libraries within the cppPosit library, so that it could
be easily used both with Eigen and the standard C++ math library.

This kind of interoperability out-of-the-box is not common in other posit li-
braries such as SoftPosit, that leverages a SoftFloat-like approach to arithmetic
emulation. Furthermore, the cppPosit library is header only, therefore, its inte-
gration in a machine learning framework is simplified to just the inclusion of the
main posit.h header.
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Thanks to these design choices we integrated the posit library into the fol-
lowing machine learning framework:

– tinyDNN [32]: CPU-oriented DNN framework for small neural networks
– TensorFlow [33]: one of the most used DNN libraries, which offers a huge

collection of datasets and pre-trained models.

A particular mention must be done to our posit-based TensorFlow imple-
mentation:

– The posit format was integrated alongside the other formats as a new dtype
(a dtype is a data format in the TensorFlow name scheme)

– We needed to write a Python wrapper for cppPosit to accommodate the
high-level Python interface.

As a result, we could load, store and convert pre-trained networks between
posit format and the other format available in the TensorFlow library. In par-
ticular, we could manage to use 8-bit posits in TensorFlow (that typically does
not allow 8-bit formats outside Tensorflow Lite) without passing through net-
work optimization and quantization that are applied to the other 8-bit formats
in TensorFlow. We achieved this by leveraging the posit encapsulation to mask
the 8-bit type with a 16-bit memory alignment.

5 Comparison results

In this section we present some results on deploying neural networks on a con-
strained resource device. We used a Raspberry Pi 3B, equipped with a Cortex-
A53 (ARMv8) CPU running at 1.4GHz and 1GByte of LPDDR2 SDRAM. We
tested neural network models that were trained in a much more powerful system
using 32-bit floating point numbers. Then we converted such models to different
numerical formats to evaluate the accuracy degradation of such representation.
Furthermore, we reported the sample inference time of the models on the Rasp-
berry board.

We used the following network models:

– LeNet-5 like convolutional neural network ([34]),
– EfficientNet deep convolutional neural network ([35])
– Single Shot Detector (with 300× 300 input images) ([36])

We used the following evaluation datasets:

– MNIST: hand-written digits recognition benchmark [37], 32× 32 grey scale
images

– GTSRB: German Traffic Sign Recognition benchmark [38], 32 × 32 RGB
images

– CIFAR10: general purpose image recognition benchmark [39], 32× 32 RGB
images
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– ImagenetV2: additional test-set that uses the same Imagenet classes but with
new images [40], 224× 224 RGB images

– Pascal VOC 2007: object detection dataset [41], 300× 300 RGB images

In Table 1 we reported the accuracy results of the first three small datasets
(MNIST, GTSRB, CIFAR10) with the LeNet-5 like neural network. Since we
hand-trained on these three datasets, we were able to add a normalization on
our data pipeline, in order to represent the images on the range [−1, 1], enabling
us to perform inference using low-bit posits and bfloat.

In Table 2 we reported the accuracy results of the big datasets (Imagenet,
PASCAL VOC) with the very deep neural networks (EfficientNet and SSD300).
Since we were using a pre-trained model, we could not control the image en-
coding; indeed, the images in these two model were expected to be encoded in
[0, 255]. This prevented us to use 8-bit posits and 8-bit bfloat due to numerical
ranges.

Table 1: Inference (test-set) accuracy on small, edge convolutional neural
network trained with binary32, on different small datasets.

LeNet-5 like CNN
MNIST GTRSB CIFAR10

binary32 98.86% 91.9% 83.5%
posit16,1 98.83% 91.8% 83.5%
posit16,0 98.50% 90.5% 83%
bfloat16 98.86% 91.9% 82%
posit8,0 98.34% 90.4% 78%
bfloat8 69.57% 80.45% 67.5%

Table 2: Inference accuracy test on very deep neural networks with big datasets
(again, pre-trained using binary32).

EfficientNetB0 + ImagenetV2
(accuracy)

SSD300 + VOC 2007
(mean avg. precision)

binary32 81.9% 80.39%
posit16,2 79.7% 78.49%
bfloat16 78.9% 73.29%
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Table 3: Sample inference time (frames per second in brackets) on different
neural network models and input size. The times were evaluated on a

Raspberry Pi3 Model B. Concerning posit16,x and posit8,x, we used x = 0, 1, 2
exponent bits, without observing changes in the speed.

LeNet-5 EfficientNet SSD300

Input Size: 32× 32× 1 32× 32× 3 224× 224× 3 300× 300× 3

posit16,x 9.2ms (108.5 fps) 23.9ms (41.72 fps) 17.05s (0.05 fps) 730s (0.0010 fps)
bfloat16 4.8ms (208.97 fps) 9.7ms (103.37 fps) 12.73s (0.08 fps) 472s (0.0020 fps)
posit8,x 9.1ms (110.38 fps) 21ms (46.94 fps) 15.89s (0,06 fps) 714s (0.0013 fps)
bfloat8 5.7ms (173.03 fps) 11ms (86.11 fps) 11.49s (0.09 fps) 528s (0.0018 fps)

6 Analysis of the Results and Future Developments

In Table 1 we can see how different formats perform in a scenario with small
networks and simple datasets. As reported, all the 16-bit alternatives we analysed
matched the baseline accuracy of the IEEE 32-bit floating point format. If we
halve the bits again, with the 8-bit formats, we can see how 8-bit posits widely
outperform bfloat8 numbers. This result show how 8-bit posits benefits from the
non-fixed fraction bits, having the possibility to expand them at the expense
of the regime when numbers are small. On the other hand, having only 2-bit of
fraction in bfloat8 can be an issue when we plug directly the novel format without
fine-tuning; indeed, if we could fine-tune the networks for a few epochs using
only bfloat8 we could benefit from the stochastic gradient approach. However,
without bfloat8 proper hardware support, this approach is still not feasible due to
emulation overhead. We could think of applying the same idea to posit numbers,
adding the support for such characteristic to a possible Posit Processing Unit
(PPU).

From Table 2 we can see the behaviour of the 16-bit formats, when employed
in more complex neural networks (EfficientNet has around 800 layers) and more
challenging DNN tasks. As reported, the two 16-bit formats struggle to match
the baseline accuracy, with the posit format losing 2 percentage point in both
cases and the bfloat16 losing respectively, 3 and 7 percentage points.

In Table 3 we can see the sample inference time of the various networks,
with different input sizes. When analysing these results we need to take in mind
that we are completely emulating the behaviour of the different formats since we
clearly do not have the proper hardware support and acceleration. Indeed, we rely
on a floating point backend to perform the computation while weights and images
are stored using the emulated format. This means that, for each multiplication
or addition, we will convert the number to the floating point backend and then
we will convert it back after computation to the original emulated format. This
results show how bfloat family largely benefits from the strict similarity with
IEEE floats; indeed, the conversion between a bfloat16 number and a binary32
one, is just a left shift of 16 positions (and vice versa) while the conversion
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between a posit and a binary32 numbers is way more complex, involving more
operations.

If we combine both results from the tables we can envision a scenario where
we use a 16-bit bfloat16 to perform mixed precision inference/training on 16-bit
while we stick to posit8 for low-precision inference, having a clear advantage over
bfloat8 in our tests.

6.1 Future developments

When analysing bfloat8 we saw that it could benefit from a few epochs of fine-
tuning using the stochastic rounding proposed by the authors. The most common
framework that employs 8-bit formats, such as Tensorflow/Lite , widely use the
quantization technique and network pruning to simplify networks for deployment
in edge devices. This approach can introduce some issues: i) loss of performance
in terms of accuracy ii) no guarantee of meeting target platform requirements
iii) no guarantee on inference time or frames processed per second. An idea could
be optimizing the network adding a multi-objective genetic algorithm that takes
into account some parameters as constraints to match the target platform: i)
maximum number of hidden layers, and ii) maximum number of active neurons
per layer. With such constraints, we will be able to control both the time com-
plexity for the training, the RAM request, and the inference latency (which, on
his turn, impacts the frame per second that can be processed, in computer vision
applications).

Future works may involve exploiting posit numbers for a family of micro-
controllers that are equipped with an FPU (e.g. STM32 or Cortex F4) to be
used as back-end unit for the computation.

7 Conclusions

In this paper we reviewed several techniques to optimize neural network for
deployment to the edge. We have highlighted the quest for a new standard
for computations with small reals at the edge. In particular we analysed the
behaviour of two very promising formats, the bfloat family and the posit format.
We presented some results concerning the use of the posit representation and
compared them to results with bfloat numbers. From the results we saw that
16-bit posits and bfloat can match the baseline IEEE 32-bit float accuracy in
several DNN task. Furthermore, we saw how 8-bit posit can outperform 8-bit
bfloat in simple DNN tasks. Despite the good results obtained so far using posits,
we think that there is still much to explore in order to fully exploit the potential
of this novel format. In particular we expect to obtain more interesting results
with the proper hardware support for both posit numbers and bfloat, which
would allow the native training of really deep neural networks, or the fine tuning
at the edge.
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Associates Inc., 2018, pp. 7686–7695.
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