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Abstract: We design a state-feedback controller to impose prescribed performance attributes
on the output regulation error for uncertain nonlinear systems, in the presence of unknown
time-varying delays appearing both to the state and control input signals, provided that
an upper bound on those delays is known. The proposed controller achieves pre-specified
minimum convergence rate and maximum steady-state error, and keeps bounded all signals
in the closed-loop. We proved that the error is confined strictly within a delayed version of the
constructed performance envelope, that depends on the difference between the actual state
delay and its corresponding upper bound. Nevertheless, the maximum value of the output
regulation error at steady-state remains unaltered, exactly as pre-specified by the constructed
performance functions. Furthermore, the controller does not incorporate knowledge regarding
the nonlinearities of the controlled system, and is of low-complexity in the sense that no hard
calculations (analytic or numerical) are required to produce the control signal. Simulation results
validate the theoretical findings.
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1. INTRODUCTION

In networked control systems (NCSs) the plant and the
controller operate remotely and share information over
digital communication networks. The operation of the un-
derlying network besides many benefits (e.g., low cost, easy
installation and maintenance, high reliability), inevitably
introduces to the control architecture a number of signif-
icant technological constraints that formulate challenging
control problems. Network induced delays, which occur in
both the sensor and the control input channels, is one of
the most recognized issues, mainly owing to the severe
consequences on the closed-loop system operation, ranging
from performance degradation to instability.

Control input delays have been thoroughly examined
in (Fischer et al. (2013); Li et al. (2014); Bekiaris-
Liberis and Krstic (2017); Obuz et al. (2017); Zuo et al.
(2017); Mazenc and Malisoff (2017); Bresch-Pietri et al.
(2018); Ran et al. (2020)), and state measurement delays
in (Chakrabarty et al. (2018); Sanz et al. (2019)). However,
the concurrent appearance of state and input delays is
typical in NCSs. In this direction, significant progress has
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been reported in (Karafyllis and Krstic (2012); Selivanov
and Fridman (2016); Zhou et al. (2017); Battilotti (2019);
Weston and Malisoff (2019)). A further challenging aspect
related to delays is the consideration of uncertainty in the
delay values. Unknown control input delays are considered
in (Li et al. (2014); Obuz et al. (2017)), and unknown
state delays in (Selivanov and Fridman (2016)). All above
works consider, however, fully known system dynamics, an
assumption rarely met in practice. Incorporating uncertain
dynamics in the analysis is considered in (Fischer et al.
(2013); Obuz et al. (2017); Ran et al. (2020)), restricted,
however, exclusively to control input delays.

Despite the progress in the field, the majority of existing
results address the stabilization problem, while perfor-
mance issues are typically overlooked. In this direction,
model predictive control was employed in (Li and Shi
(2013); Sun et al. (2016)). However, performance is in-
troduced via minimizing certain indices, which are not
directly connected with the actual system response in
terms of maximum overshoot, minimum convergence rate,
and maximum steady-state error, making the selection of
the aforementioned metrics in advance, infeasible.

In a delay-free setup, two methodologies exist to a priori
guarantee those performance-related metrics; funnel con-
trol (FC) approach (Ilchmann et al. (2002); Hackl et al.
(2013); Berger et al. (2018)), and prescribed performance
control (PPC) methodology (Bechlioulis and Rovithakis
(2008, 2014); Bechlioulis and Rovithakis (2017); Bikas
and Rovithakis (2019)). Steps towards introducing delays
while guaranteeing pre-specified performance are reported



in (Liberzon and Trenn (2013); Bikas and Rovithakis
(2019)), where FC and PPC approaches were followed, re-
spectively, to address constant and known delays. Recently
in (Bikas and Rovithakis (2021)), the PPC framework
was extended for time-varying delays with the additional
possibility of having uncertainty exclusively on the control
input delay.

In this paper, we utilize the PPC approach to address
unknown time-varying delays in both state and control
input signals provided that an upper bound on those
delays is known, while guaranteeing pre-specified perfor-
mance of the output regulation error in terms of minimum
convergence rate and maximum steady-state-error 1 . We
prove that the output regulation error is confined strictly
within a delayed version of the constructed performance
envelope, that depends on the difference between the
actual state delay and its corresponding upper bound.
Nevertheless, the controller guarantees that the maximum
error at steady-state is achieved exactly as pre-specified by
the constructed performance functions. On the other hand,
the requested performance is established irrespectively
of the uncertainty on the control input delay. Further,
we guarantee that all signals in the closed-loop remain
bounded. Finally, the control scheme we propose inherits
the low-complexity property of the PPC controllers, as
it does not incorporate any prior knowledge regarding
the controlled system nonlinearities, and does not utilize
approximation/adaptive techniques to acquire such knowl-
edge; resulting in a control scheme which does not involve
hard calculations (analytic or numerical) to produce the
control signal.

The rest of the paper is organized as follows. Section 2
states the problem. The proposed control scheme is pre-
sented in Section 3, and the main results are proved in
Section 4. In Section 5 simulation studies verify the theo-
retical findings, and in Section 6 we conclude the paper.

2. PROBLEM FORMULATION

Consider nonlinear systems of the following form

ẋi = xi+1, (1a)

ẋn = f(x̄, t) + g(x̄, t)u(t− τu(t)), (1b)

where x̄ = [x1 . . . xn]
T ∈ Rn is the state, u ∈ R is the

control input, x1 ∈ R is the output, τu(t) is a time-
varying control input delay satisfying 0 ≤ τu(t) ≤ τ̄ for all
t ≥ −2τ̄ for some known τ̄ > 0, and f(x̄, t), g(x̄, t) : Rn ×
R≥−2τ̄ → R are nonlinear functions locally Lipschitz in
x̄ and piecewise-continuous in t with unknown analytical
expressions. Further, assume that the state measurements
are also subject to time-varying delay denoted by τs(t),
satisfying 0 ≤ τs(t) ≤ τ̄ for all t ≥ −2τ̄ .

In this work we consider the problem of regulating the
output x1(t) to a constant desired value denoted by xd ∈
R, and define the output regulation error as

e(t) = x1(t)− xd. (2)

Assumption 1. The function g(x̄, t) is either strictly
positive or strictly negative for all x̄(t) ∈ Rn and t ≥ −2τ̄ ,
and its sign denoted by sgn(g) is considered known.

1 In this work we disregarded possible restrictions on the maximum
overshoot to simplify notation.

Assumption 2. The delays τs(t), τu(t) are unknown
though continuously differentiable functions of time, sat-
isfying τ̇s(t), τ̇u(t) ∈ L∞ with τ̇u(t) < 1 and τ̇s(t) ≤ ¯̇τs for
some unknown constant ¯̇τs < 1.

Assumption 3. The initial solution of (1) on [−2τ̄ , 0]

denoted by φ = [φ1 . . . φn]
T ≜ x̄(t) exists, is bounded

and considered available for control design. Moreover, we
assume that u(t) = 0, for all t ≤ t0, with t0 ∈ [−τ̄ , 0]
denoting the time instant when the controller is initiated.

Remark 1. Assumption 1 is standard and imposes a
strong controllability condition on (1) (Bechlioulis and
Rovithakis (2011)). In Assumption 2, by the bounded-
ness requirement imposed on τ̇s(t), τ̇u(t), the first-in/first-
out principle is guaranteed (Mazenc and Malisoff (2017);
Bresch-Pietri et al. (2018)). Assumption 3 is common in
literature (Karafyllis and Krstic (2012); Zhou et al. (2017);
Ran et al. (2020)) and is necessary to guarantee a well-
defined closed-loop system for all t ≥ 0.

Remark 2. Owing to the uncertainty in the state mea-
surement delay, the analysis of this work is restricted to
the regulation problem. Extension of this work to the
problem of tracking a time-varying desired trajectory with
prescribed performance is important and demanding, and
deserves further investigation.

The problem addressed in this paper reads as follows.

Prescribed Performance Regulation in the presence of Un-
known Delays (PPC-UD) Problem: Consider system (1),
with state measurement and control input delays τs(t)
and τu(t), respectively, a desired output value xd, and
Assumptions 1-3. Design a state-feedback controller to
meet the following objectives:

• all signals in the closed-loop are bounded,
• system output x1 is regulated to the desired value
xd, exhibiting a pre-specified maximum steady-state
error and convergence rate no less than a pre-
determined value,

• the derived controller should be of low-complexity
by satisfying the following constraints: i) it should
not incorporate knowledge regarding the controlled
system nonlinearities; ii) it should not employ approx-
imation/adaptive structures to acquire such knowl-
edge; iii) no hard calculations (analytic or numerical)
should be required to produce the control signal.

3. CONTROLLER DESIGN

Select any strictly increasing function T(s) : (−1, 1) → R,
satisfying lims→1− T(s) = +∞ and lims→−1+ T(s) = −∞.
The following serves as a feasible candidate selection:

T(s) = ln

(
1 + s

1− s

)
. (3)

Further, by Assumption 3, we straightforwardly derive
constants φ̄i > 0, i = 1, . . . , n, such that |φi(t)| ≤ φ̄i, for
all t ∈ [−2τ̄ , 0]. Moreover, it holds that t0 − τs(t0) ≥ −2τ̄ ,
and t0 − 2τ̄ ≥ −3τ̄ , for any t0 ∈ [−τ̄ , 0]. Therefore, as
x̄(t) = φ(t) for all t ∈ [−2τ̄ , 0] and u(t) = 0 for all t ≤ t0 by
Assumption 3, we guarantee that xi(t−τs(t)), i = 1, . . . , n,

and
∫ t

t−2τ̄
u(θ)dθ, are well-defined at t = t0.

To solve the PPC-UD Problem we propose for all t ≥ t0:



Step 1 : Select the exponentially decaying output perfor-
mance functions

ρ1(t) =
(
ρ01 − ρ∞1

)
e−λ1t + ρ∞1 , (4)

with parameters satisfying ρ∞1 > 0, λ1 ≥ 0 and

ρ01 >
φ̄1 + |xd|+ (eλ1τ̄ − 1)ρ∞1

eλ1τ̄
. (5)

Choose a control gain k1 > 0, and design the first
intermediate control signal as

a1(x1, t) = −k1T

(
e(t− τs(t))

ρ1(t− τ̄)

)
. (6)

Further, by Assumption 3 and (6), we guarantee that

|a1(t)| ≤ āt01 ≜ k1

∣∣∣T(
φ̄1+|xd|

ρ∞
1

)∣∣∣ > 0, for all t ∈ [t0, 0].

Step i (i = 2, . . . , n− 1): Select the performance function

ρi(t) =
(
ρ0i − ρ∞i

)
e−λit + ρ∞i , (7)

with parameters satisfying ρ∞i > 0, λi ≥ 0 and

ρ0i >
φ̄i + āt0i−1 + (eλiτ̄ − 1)ρ∞i

eλiτ̄
. (8)

Choose a control gain ki > 0, and design the intermediate
control signals as

ai(x1, . . . , xi, t) = −kiT

(
xi(t− τs(t))− ai−1(t)

ρi(t− τ̄)

)
. (9)

Further, we deduce |ai(t)| ≤ āt0i ≜ ki

∣∣∣∣T(
φ̄i+ā

t0
i−1

ρ∞
i

)∣∣∣∣ > 0,

for all t ∈ [t0, 0].

Step n : Select the performance functions

ρn(t) =
(
ρ0n − ρ∞n

)
e−λnt + ρ∞n , (10)

with parameters satisfying ρ∞n > 0, λn ≥ 0 and

ρ0n >
φ̄n + āt0n−1 + (eλnτ̄ − 1)ρ∞n

eλnτ̄
. (11)

Choose a control gain kn > 0, and design the control input
as

u(x̄, t) = −sgn(g)knT (ζ(t)) , (12)

where

ζ(t) =
xn(t− τs(t)) + sgn(g)

∫ t

t−2τ̄
u(θ)dθ − an−1(t)

ρn(t− τ̄)
.

(13)

Remark 3. The selection of ρ1(t) in (4), directly intro-
duces the required performance attributes on the output
regulation error. Indeed, it is not difficult to verify that if

|e(t)| < ρ1(t− (τ̄ − τs(t))) ≤ ρ1(t− τ̄), ∀t ≥ 0, (14)

then x1(t) is regulated at xd, exhibiting a pre-specified
maximum steady-state error given by ρ∞1 , and a pre-
determined minimum convergence rate given by e−λ1(t−τ̄).

Remark 4. Continuing the discussion of Remark 3, e(t)
will be proved to evolve strictly within (−ρ1(t − (τ̄ −
τs(t))), ρ1(t− (τ̄ − τs(t)))), representing a delayed version
of the constructed performance envelope (−ρ1(t), ρ1(t)).
Therefore, owing to (4) and (14), the minimum rate of con-
vergence is obtained by e−λ1(t−(τ̄−τs(t))). Hence, for large
values of τ̄ and for τs(t) = 0, we conclude that (−ρ1(t −
τ̄)), ρ1(t − τ̄)) is the most delayed performance envelope
that can be realized, which, owing to the fact that τs(t) is
unknown, it represents the performance envelope that can

be a priori specified, thus, leading to minimum conver-
gence rate e−λ1(t−τ̄). On the other hand, for any τ̄ , τs(t),
we have limt→+∞ ρ1(t − (τ̄ − τs(t))) = limt→+∞ ρ1(t) =
ρ∞1 , which implies that at steady-state e(t) is guaranteed
to evolve strictly within (−ρ∞1 , ρ∞1 ). Finally, we stress that
the requested performance is achieved irrespectively of the
uncertainty on the control input delay.

Remark 5. The proposed controller (4)-(13) does not
incorporate prior knowledge regarding the controlled sys-
tem nonlinearities. Further, approximation structures or
adaptive techniques are avoided, and no hard calculations
(analytic or numerical) are used to produce the control
signal. Hence, the controller satisfies all design constraints
requested by the PPC-UD Problem, and therefore, it con-
stitutes a low-complexity control solution.

4. MAIN RESULTS

Let us introduce the change of coordinates

z1 =
e(t− τs(t))

ρ1(t− τ̄)
, (15a)

zi =
xi(t− τs(t))− ai−1(t)

ρi(t− τ̄)
, i = 2, . . . , n− 1, (15b)

zn = ζ(t), (15c)

and define the transformed errors

ϵi = T(zi), i = 1, . . . , n. (16)

By employing (15), (16), the control signals (6), (9) and
(12) become

ai = −kiϵi, i = 1, . . . , n− 1, (17a)

u = −sgn(g)knϵn. (17b)

The time derivative of (15) in view of (17) yields

ż1 ≜ h1(z1, z2, t)

=
1

ρ1(t− τ̄)

[
(1− τ̇s)z2ρ2(t− τ̄)

− z1ρ̇1(t− τ̄)− (1− τ̇s)k1ϵ1

]
, (18a)

żi ≜ hi(z1, . . . , zi+1, t)

=
1

ρi(t− τ̄)

[
(1− τ̇s)zi+1ρi+1(t− τ̄)

− ziρ̇i(t− τ̄)− ȧi−1 − (1− τ̇s)kiϵi

]
, (18b)

żn ≜ hn(z1, . . . , zn, t)

=
1

ρn(t− τ̄)

[
(1− τ̇s)f(x̄, t− τs(t))− znρ̇n(t− τ̄)

+ (1− τ̇s)g(x̄, t− τs(t))u(t− τs(t)− τu(t))

− ȧn−1 − sgn(g)u(t− 2τ̄)− knϵn

]
. (18c)

Further, define z̄ = [z1 . . . zn]
T ∈ Rn. The z̄-coordinate

closed-loop system can be written in compact form as

˙̄z = h(z̄, t) = [h1 . . . hn]
T ∈ Rn. (19)

Finally, define the open set Ωz = (−1, 1)n ⊂ Rn.

The main results of this work are summarized in the
following theorem.

Theorem 1. Consider system (1), with state measurement
and control input delays τs(t), τu(t) ≥ 0, respectively, a



desired output regulation value xd, and Assumptions 1-
3. The controller (4)-(13) guarantees the solution of the
PPC-UD Problem.

Proof. The set Ωz is non-empty and open. Further, owing
to Assumption 3, xi(t−τs(t)), i = 1, . . . , n, are well-defined
at t = 0, and by recalling (5), (8) and (11), we obtain
that z̄(0) ∈ Ωz. Therefore, owing to the continuity of the
right-hand sides of (18), the existence and uniqueness of
solutions of (19) over a maximal time interval [0, tf ) for
some tf ∈ (0,+∞], is established (Khalil, 2001, Theorem
3.1). Hence, z̄(t) ∈ Ωz for all [0, tf ), and the signals (16)
are well-defined for all [0, tf ).

In what follows, a recursive step-like procedure is adopted
to prove that all signals in the closed-loop remain bounded
and that z̄(t) evolves strictly within a compact subset of
Ωz for all t ∈ [0, tf ).

Step 1 (t ∈ [0, tf )): Consider the positive definite and
radially unbounded function V1 = 1

2ϵ
2
1. The time derivative

of V1 in view of (18a) yields

V̇1 = ϵ1r1

[
(1− τ̇s)z2ρ2(t− τ̄)− z1ρ̇1(t− τ̄)− (1− τ̇s)k1ϵ1

]
,

(20)
where r1 = 2

(1−z2
1)ρ1(t−τ̄)

. At this point, notice that 1 −
τ̇s ≥ 1− ¯̇τs > 0 owing to Assumption 2, and ρ1(t− τ̄) > 0,
z̄(t) ∈ Ωz, for all [0, tf ). Thus, we deduce that r1 > 0,
for all [0, tf ). Further, ρ̇1(t− τ̄), ρ2(t− τ̄) are bounded by
construction, z1, z2 are bounded as z̄ ∈ Ωz, and 1 − τ̇s is
bounded owing to Assumption 2. Therefore, we derive the
existence of a constant F̄1 > 0, satisfying∣∣(1− τ̇s)z2ρ2(t− τ̄)− z1ρ̇1(t− τ̄)

∣∣ ≤ F̄1. (21)

Consequently, we arrive at

V̇1 ≤ |ϵ1|r1
(
F̄1 − (1− ¯̇τs) k1|ϵ1|

)
, (22)

which is negative provided |ϵ1| > F̄1

(1−¯̇τs)k1
. Therefore,

|ϵ1| ≤ ϵ̄1 ≜ max

{
|ϵ1 (0)| ,

F̄1

(1− ¯̇τs) k1

}
. (23)

Taking the inverse of the T-function we obtain

−1 < T−1(−ϵ̄1) ≤ z1 ≤ T−1(ϵ̄1) < 1. (24)

In addition, owing to (17a) and (24), a1 and r1 are
also bounded. Finally, notice that by the continuity of
h1(z1, z2, t) in (18a) and the Extreme Value Theorem,
there exist constant h̄1 > 0 such that |h1(z1, z2, t)| ≤
h̄1. Hence, employing (17a), we conclude |ȧ1| = ρ1(t −
τ̄)r1k1|h1(z1, z2, t)| ≤ ¯̇a1 for some constant ¯̇a1 > 0,
implying the boundedness of ȧ1.

Step i (i = 2, . . . , n− 1, t ∈ [0, tf )): Consider the posi-
tive definite and radially unbounded function Vi = 1

2ϵ
2
i .

Repeating the line of proof of Step 1, we guarantee the
existence of constants ϵ̄i > 0 such that

−1 < T−1(−ϵ̄i) ≤ zi ≤ T−1(ϵ̄i) < 1, (25)

and similarly with Step 1 by recalling (17a), we deduce
the boundedness of ȧi.

Step n (t ∈ [0, tf )): Consider the positive definite and ra-
dially unbounded function Vn = 1

2ϵ
2
n. The time derivative

of Vn in view of (18c) yields

V̇n = ϵnrn

[
(1− τ̇s)f(x̄, t− τs(t))− znρ̇n(t− τ̄)

+ (1− τ̇s)g(x̄, t− τs(t))u(t− τs(t)− τu(t))

− ȧn−1 − sgn(g)u(t− 2τ̄)− knϵn

]
,

(26)

where rn = 2
(1−z2

n)ρn(t−τ̄) . Identically with Step 1, we

deduce rn > 0.

To proceed, the following statement is necessary.

Proposition 1. For all t ∈ [0, tf ), there exist constant ū >
0 satisfying |u(t−τs(t)−τu(t))| ≤ ū for all τs(t), τu(t) > 0,
and |u(t− 2τ̄)| ≤ ū.

Proof. To prove Proposition 1, we employ the fact that
z̄(t) evolves continuously in Ωz for all t ∈ [0, tf ), i.e.,
zn(t) ∈ (−1, 1). Let limt→tf |zn(t)| = 1. By the continuity
of zn(t), we directly deduce the existence of arbitrarily
small constants β, δ > 0 such that β < limt→tf (τs(t) +
τu(t)), and |zn(t)| ≤ |zn(tf − β)| < 1 − δ, for all t ∈
[0, tf − β]. Thus, we conclude that limt→tf (t − τs(t) −
τu(t)) = tf−τs(tf )−τu(tf ) < tf−β, which guarantees that
t− τs(t)− τu(t) < tf − β, for all t ∈ [0, tf ). Consequently,
|zn(t− τs(t)− τu(t))| < 1− δ, for all t ∈ [0, tf ), which by
(16), (17b) implies the the boundedness of u(t − τs(t) −
τu(t)) for all t ∈ [0, tf ). Similarly, we deduce |zn(t−2τ̄)| <
1 − δ, for all t ∈ [0, tf ), which implies the boundedness
of u(t − 2τ̄) for all t ∈ [0, tf ). On the other hand, if
|zn(t)| < 1, for all t ∈ [0, tf ), we straightforwardly deduce
that u(t − τs(t) − τu(t)) and u(t − 2τ̄) are bounded for
all t ∈ [0, tf ). Therefore, we guarantee the existence of a
constant ū > 0 satisfying |u(t − τs(t) − τu(t))| ≤ ū for all
τs(t), τu(t) > 0, and |u(t − 2τ̄)| ≤ ū, for all t ∈ [0, tf ),
completing the proof of Proposition 1. □

We continue the proof of Theorem 1 by distinguishing two
cases.

Case A (τs(t)+τu(t) = 0): In this case it holds that τ̇s = 0,
and (26) becomes

V̇n = ϵnrn

[
f(x̄, t)− znρ̇n(t− τ̄)

− ȧn−1 − sgn(g)u(t− 2τ̄)− (|g|+ 1)knϵn

]
.

(27)

By the continuity of f(x̄, t), g(x̄, t), application of the
Extreme Value Theorem yields the existence of constants
f̄ > 0 and ḡ > 0, such that |f(x̄, t)| ≤ f̄ and |g(x̄, t)| ≤ ḡ.
Furthermore, by Assumption 1, we conclude the existence
of a constant g∗ > 0 such that 0 < g∗ ≤ |g(x̄, t)|. Moreover,
ρ̇n(t − τ̄) is bounded by construction, ȧn−1 is proven
bounded in Step n − 1, and zn is bounded as z̄ ∈ Ωz.
Utilizing the preceding analysis and Proposition 1, we
guarantee the existence of a constant F̄A

n > 0, satisfying∣∣f(x̄, t)− znρ̇n(t− τ̄)

− ȧn−1 − sgn(g)u(t− 2τ̄)
∣∣ ≤ F̄A

n .
(28)

Therefore, (27) becomes

V̇n ≤ |ϵn|rn
(
F̄A
n − (g∗ + 1)kn|ϵn|

)
, (29)

which is negative provided |ϵn| > F̄A
n

(g∗+1)kn
. Consequently,

|ϵn| ≤ ϵ̄An ≜ max

{
|ϵn (0)| ,

F̄A
n

(g∗ + 1)kn

}
. (30)

Taking the inverse of the T-function we obtain



−1 < T−1(−ϵ̄An ) ≤ zn ≤ T−1(ϵ̄An ) < 1. (31)

Case B (τs(t) + τu(t) > 0): By recalling the arguments
of Case A and employing Proposition 1, we guarantee the
existence of a constant F̄B

n > 0, satisfying∣∣(1− τ̇s)(f(x̄, t− τs(t)))− znρ̇n(t− τ̄)

+ (1− τ̇s)g(x̄, t− τs(t))u(t− τs(t)− τu(t))

− ȧn−1 − sgn(g)u(t− 2τ̄)
∣∣ ≤ F̄B

n .

(32)

Therefore, (26) becomes

V̇n ≤ |ϵn|rn
(
F̄B
n − kn|ϵn|

)
, (33)

which is negative provided |ϵn| > F̄B
n

kn
. Consequently,

|ϵn| ≤ ϵ̄Bn ≜ max

{
|ϵn (0)| ,

F̄B
n

kn

}
. (34)

Taking the inverse of the T-function we obtain

−1 < T−1(−ϵ̄Bn ) ≤ zn ≤ T−1(ϵ̄Bn ) < 1. (35)

Combining (31) and (35) we conclude that

−1 < T−1(−ϵ̄n) ≤ zn ≤ T−1(ϵ̄n) < 1, (36)

where ϵ̄n ≜ max
{
ϵ̄An , ϵ̄

B
n

}
. Further, by recalling (17b),

we straightforwardly deduce the boundedness of u, and

consequently of
∫ t

t−2τ̄
u(θ)dθ, for all t ∈ [0, tf ). To con-

clude, owing to (24), (25), (36), and the analysis presented
in Step 1-Step n, we conclude that z̄(t) evolves strictly
within a compact subset of Ωz for all t ∈ [0, tf ), Therefore,
following standard arguments (Khalil, 2001, Theorem 3.3),
the solution is extended to tf = +∞. Finally, recalling
(15), we obtain that for all t ≥ 0,

|e(t)| < ρ∗1(t), (37a)

|xi(t)− ai−1(t+ τs(t))| < ρ∗i (t), (37b)

|xn(t)− w(t)| < ρ∗n(t), (37c)

where ρ∗i (t) = ρi(t− (τ̄ − τs(t))), i− 1, . . . , n, and w(t) =

an−1(t+τs(t))−sgn(g)
∫ t+τs(t)

t+τs(t)−2τ̄
u(θ)dθ. The above result

implies that prescribed performance of the output regula-
tion error is achieved in the sense that was clarified in
Remark 3, and that all signals in the closed-loop remain
bounded for all t ≥ 0, thus completing the proof of
Theorem 1. □

5. SIMULATION RESULTS

To verify the theoretical findings we perform simulation
studies on a single-link robotic manipulator. Denoting
with q1 [rad] and q2 [rad/s] the link position and velocity,
respectively, the aforementioned system has the following
form

q̇1 = q2, (38a)

q̇2 = − g

m
sin (q1)−

c

m
q2 +

1

m
u(t− τu(t)), (38b)

where u(t − τu(t)) [N m] is the delayed control input
torque and q1 is the output of the system. Further, the
measurements of q1 and q2 are subject to delay τs(t). The
system parameters are m = 5 [N m s2/rad], g = 10 [N m]
and c = 1 [N m s/rad]. The system initially rests at
q1(t) = π

14 , q2(t) = 0, for all t ∈ [−2τ̄ , 0], which results
in φ̄1 = π

14 and φ̄2 = 0. The desired value for the output
is given by qd = π

8 [rad]. The required performance indices
are given by ρ∞1 = 0.075, and λ1 = 4.

To illustrate the influence of the delays on the closed-loop
system performance, we consider two different scenarios
regarding the values of τs(t), τu(t) and τ̄ , summarized in
Table 1. We stress that only τ̄ is available for control
design. The remaining controller parameters for both
scenarios are selected as ρ01 = 2 satisfying (5) for any τ̄
of Table 1, and moreover k1 = 1.25, and ρ02 = 5 satisfying
(11) for any τ̄ of Table 1. In addition, ρ∞2 = 0.75, λ2 = 2,
and k2 = 75.

Table 1. Delay functions

Scenario τs(t) τu(t) τ̄

1 0.01(1− sin (πt)) 0.01(1 + cos (πt)) 0.02
2 0.02(1− sin (πt)) 0.02(1 + cos (πt)) 0.04

Simulation results are presented in Fig. 1. For both sce-
narios of Table 1 we illustrate: i) the output regulation
error e(t) alongside the corresponding performance bounds
ρ∗1(t), −ρ∗1(t), ii) the intermediate error q2(t)−w(t) along-
side the corresponding performance bounds ρ∗2(t), −ρ∗2(t),
and iii) the produced control input torque u(t). It is clearly
shown that the increase of the delay values results in
producing control input torque with larger magnitude and
more intense high-frequency content. Nevertheless in both
scenarios the quality of the evolution of the output regu-
lation error within the performance envelope is preserved.

6. CONCLUSION

We proposed a controller for uncertain nonlinear systems,
to achieve performance attributes on the output regulation
error in terms of minimum convergence rate and maximum
steady-state error, when both state and control input sig-
nals are subject to unknown and time-varying delays. State
delay uncertainty dictate that the error is confined within
a delayed version of the constructed performance enve-
lope affecting the obtained minimum convergence rate,
however, the maximum error at steady-state is obtained
exactly as specified by the pre-selected performance func-
tions. We validated the theoretical results by simulation
studies on a single-link robotic manipulator.
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