UAV-assisted topological mapping for AGV navigation in vineyards
Description
Topological maps have proven to be an effective representation to be used for outdoor robot navigation. These typically consist of a set of nodes that represent physical locations of the environment and a set of edges representing the robot’s ability to move between these locations. They allow planning to be more efficient and to easily define different robot navigation behaviours depending on the location. In the literature, the topological maps are sometimes manually created in an 2d occupancy map previously built by a robot, but this is not very practical or scalable when it has to be done in a 50ha vineyard with hundreds of rows. Other works focus on the vine rows classification using mainly Color Vegetation indices, however this assumes there is a green canopy which is not always the case depending on the time of the year. Focusing only on the rows also leaves other non-traversable structures such as fences, buildings and poles unmapped. To overcome the aforementioned limitations, we propose a pipeline to use UAV imagery as an input to create a topological map of the vineyard where an AGV has to be deployed.
Files
poster_uav_topomapping_SMolina.pdf
Files
(3.0 MB)
Name | Size | Download all |
---|---|---|
md5:5fd58e15cc9e28efe43620dfe64e7484
|
3.0 MB | Preview Download |