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Abstract. The Fast Fourier Transform is probably one of the most studied algorithms of all time. New
techniques regarding hardware and software are often applied and tested on it, but the interest in FFT
is still large because of its applications - signal and image processing, numerical computations, etc. In
this paper, we start from a trivial recursive version of the algorithm and we speed it up using AVX-512
Single Instruction Multiple Data (SIMD) instructions on an Intel i7 CPU with native support to AVX-512.
In particular, we study the impact of two different storage choices of vector of complex numbers: block
interleaving and complex interleaving. Experimental results show that automatic vectorization provides a
10.65% (∼ 1.12×) speedup, while with vectorization done by hand the speedup reaches 33.78% (∼ 1.51×).
We have made our code publicly available, which could be helpful for SIMD instructions teaching purposes.

Keywords: Recursive Fast Fourier Transform, SIMD instructions, AVX-512, complex number arithmetic,
complex interleaving/block interleaving, memoization, automatic vectorization.

1 Introduction

FFT has been studied far and wide. Every year, new results about its implementation appear, boosting the
speed of some of the most famous versions, such as FFTW [1]. Recently, NEC-SX Aurora Vector Engine has
been used to test the behaviour of some FFT’s implementations on large vector registers (256 double, 16384
bit per register) [2]. That is an important result for our work, since it pushes the usage of SIMD/vectorized
architectures. Nevertheless, outside the world of High Performance Computing (HPC), the most available SIMD
technology is the AVX-512 extension (see Section 3) which is spreading among x86 CPUs, both Intel and AMD.
Hence in this work we focus on the latter, with the following contributions:

– we experiment a different and uncommon way to memorize complex numbers;
– we work on a manual vectorization of the FFT, keeping it simple and readable so that it can be used for

teaching purposes;
– we measure the performances of different versions, pointing out the advantages of using AVX-512.

2 Different data layouts: an overview

We can memorize complex numbers as pairs of floating point numbers, choosing the dimension (single/double
precision) best suited for the needs of the computation at hand. Once we have a complex structure, by instan-
tiating an array we obtain a sequence of numbers where the real and imaginary parts are staggered. We can
call this kind of memorization complex interleaved (Figure 1a).

An alternative is to memorize separately the two components in two arrays of floating point numbers. This
is called block interleaved memorization (Figure 1b): that is not common at all since existing software and
standards for C/C++ only support the interleaved data format [3], but it could be useful dealing with vector
registers and data gathering from memory.

Exploiting a mixture of these memorizations to boost the performance of algorithms on SIMD architec-
tures has already been studied [3], achieving up to 2x performance improvements over state of the art library
implementations. Our work will study and compare both types of memorization.

3 The AVX-512 instruction set

It has been a while now since computers have had some kind of SIMD extensions. SSE and AVX2 are fundamental
in the history of this process, though their usage was limited by the length of their registers, respectively 128
and 256 bits. AVX-512 came out in 2013 as an improvement of the latter, introducing new instructions and
providing registers 512 bits long.

https://orcid.org/0000-0002-7020-1524
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(a) Complex Interleaved (b) Block Interleaved

Fig. 1: Different memorizations for array of complex numbers

Despite the speedup you can get from these instructions, AVX-512 is not always appropriate: it does not make
IO-bound programs faster, as well as programs with complex conditional behaviours, since there are no parallel
operations to execute; the tasks which can be boosted because of their parallelism regard AI, cryptography,
mathematical computations... Programmers should understand where and when this extension could be useful,
in order to gain a speedup which is independent from the algorithm itself.

Browsing the Intel’s intrinsics guide1 is a great starting point: this way one may familiarize with nomenclature
and the different available instructions.

3.1 Loop unrolling

One of the main usage of SIMD instructions is through loop unrolling, which allows to avoid loops or diminish
the number of iterations. For instance, suppose one need to compute an Hadamard porduct of two arrays of 8
doubles each. Exploiting AVX-512, one can proceed in this way:

1 // Declaration of the arrays

2 double vector1 [8];

3 double vector2 [8];

4 double result [8];

5 // Load the two arrays

6 __m512d _vec1 = _mm512_load_pd ((void*) vector1);

7 __m512d _vec2 = _mm512_load_pd ((void*) vector2);

8 // Compute the sum using an AVX -512 intrinsic

9 __m512d _res = _mm512_add_pd(_vec1 , _vec2);

10 // Store the result

11 _mm512_store_pd ((void*)result , _res);

In case the length of the arrays was greater than 8 (but, for simplicity, still multiple of 8) one could iterate this
snippet N/8 times.

3.2 Superword Level Parallelism

SLP is another technique widely adopted by programmers and compilers to perform vectorization. It consists
of gathering instructions which are similar but not directly linked, and computing them using SIMD registers.
An example of this technique is shown in Section 5.2.

4 The recursive version of the FFT algorithm

Radix-2 algorithm is the simplest way to decrease the complexity of the DFT (Discrete Fourier Transform),
from O(N2) to O(NlogN), though nowadays FFT algorithms are thousands of lines of code long (they perform
different operations based on different kinds of input and of the available hardware). Furthermore, an iterative
version of the algorithm can be way more optimized than a recursive one, which is forced to use the stack an
exponential amount of times.

Despite this, our work just aims to experiment with the operation of manual vectorization of the code;
for this reason, we looked for an algorithm which is both interesting and useful in real-world applications: the
recursive FFT is simple and follows the mathematical expression provided by Cooley and Tukey in 1965 [4].
It was easier to get into, but feasible enough to test AVX-512 capabilities and the two types of memorization
as shown above. As most of the real-world use cases of the FFT, we will just consider input whose length is a
power of 2.

1 https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
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4.1 Twiddle factor: how memoization can help

The first thing we observed about the trivial version of FFT we used was the enormous usage of trigonometric
functions to calculate the roots of the unity. For each call of the function on an input of length N , one have to
use all the roots of order N , expressed as

e−j 2πk
N = cos(

2πk

N
)− j sin(

2πk

N
) k ∈ {0, 1, ..., N − 1}

The trigonometric functions are tremendously time-consuming for CPUs. We made a simple benchmark2 of
the FFT with an input of 213 both using and avoiding the computation of these roots: the latter was two times
faster than the former.

An immediate observation is that once one computed the roots of order N , the following calls of the function
with an input of the same length can use them again. This technique is well known in literature as twiddle
factor [5].

The needed roots can be both calculated before executing the algorithm or computed them on the way
and saved for further use. That is what we did: we introduced a look-up table where we saved the results
of the computation for N , so that we could access them later. The idea recalls the memoization of dynamic
programming.

5 The vectorized version of the recursive FFT

We made two different versions of the AVX-512 FFT, one with a complex-interleaved memorization (called
CI AVX), another with a block-interleaved memorization (called BI AVX). The C++ source code of both
the versions has been made public available and can be downloaded from this link: https://github.com/
pcineverdies/FFT-AVX-512.

5.1 Link to Hadamard Product

The main element to vectorize the function is to exploit the radix-2 expression of the FFT: given an input X
of size N = 2M , its DFT is equal to

DFT (X)k = DFT (Xe)k + e−j 2πk
N ·DFT (Xo)k k ∈ {0, 1, ..., N − 1}

where DFT (Xe) is the DFT of the even terms of X, DFT (Xo) is the DFT of its odd terms. As we compute
these two elements using recursion, the result is made by the element-wise product between the vector of the
roots and DFT (Xo), added to DFT (Xe). That is an interesting result, since element-wise product can be
easily vectorized with both the memorizations of complex numbers. An intuitive idea of the process is shown in
Figure 2 (that figure is inspired by one found in [3]).

(a) Complex Interleaved’s case (b) Block Interleaved’s case

Fig. 2: Element-wise product using two memorizations.

2 The machine we used has an Intel® Xeon®, 15 GiB of RAM and Ubuntu 4.15.0-171 as OS.

https://github.com/pcineverdies/FFT-AVX-512
https://github.com/pcineverdies/FFT-AVX-512
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5.2 Base cases of recursion

As a consequence of the DFT’s expression, when the input is a sequence of 4 or 2 elements everything can be
brought back to additions and subtractions between real and imaginary parts of the input. That is why we can
avoid a recursion up to a sequence of length 1 (the DFT of a number is the number itself), and stop at a length
of 4. We also added the cases of input with a length of 2 and 1, which are stand-alone situations.

In this base cases, we tried to apply SLP, as shown in the snippet below (DFT of an input of length 4 in
the array of complex wave, with CI memorization): the first block of instructions gathers data in a correct way,
while the second one computes the additions/subtractions which give us the final result.

1 // ...

2 // _vecX are __m512d data

3 if(n == 4){

4 // Load of data

5 _vec0 = _mm512_broadcast_f64x2(_mm_load_pd (( double *)&(wave [0])));

6 _vec1 = _mm512_broadcast_f64x2(_mm_load_pd (( double *)&(wave [1])));

7 _vec1 = _mm512_permute_pd(_vec1 , 0b01100110);

8 _vec2 = _mm512_broadcast_f64x2(_mm_load_pd (( double *)&(wave [2])));

9 _vec3 = _mm512_broadcast_f64x2(_mm_load_pd (( double *)&(wave [3])));

10 _vec3 = _mm512_permute_pd(_vec3 , 0b01100110);

11

12 // Compute DFT

13 _vec0 = _mm512_mask_sub_pd(_vec0 , 0b01111000 , _vec0 , _vec1);

14 _vec0 = _mm512_mask_add_pd(_vec0 , 0b10000111 , _vec0 , _vec1);

15 _vec0 = _mm512_mask_sub_pd(_vec0 , 0b11001100 , _vec0 , _vec2);

16 _vec0 = _mm512_mask_add_pd(_vec0 , 0b00110011 , _vec0 , _vec2);

17 _vec0 = _mm512_mask_sub_pd(_vec0 , 0b10110100 , _vec0 , _vec3);

18 _vec0 = _mm512_mask_add_pd(_vec0 , 0b01001011 , _vec0 , _vec3);

19

20 // Store result

21 _mm512_store_pd ((void*)&wave[0], _vec0);

22

23 return;

24 }

25 // ...

6 Experimental results

In the next subsection we provide the obtained numerical results, while in the following we discuss why, in our
implementation, block interleaved does not give any additional speedup.

6.1 Numerical Results

We measured the performance of six versions of the FFT:

– NO AVX, which is a standard version of the FFT, optimized with the twiddle factor, compiled with O3 flag
but without auto-vectorization;

– VE AVX, which is the same as above, though auto-vectorization is enabled;
– CI AVX, which is the version vectorized by hand with complex interleaved memorization, compiled with O3

flag.
– BI AVX, which is the version vectorized by hand and block interleaved memorization, compiled with O3 flag.

In order to do that, we calculated how much time passed between the call of the function and its termination:
after 213 measures, we extracted the median of the data, which is more statistically stable than the arithmetic
average.

Some of the results are shown in Table 1, while a complete overview for N between 23 and 217 can be found
in Figure 3. As it is evident from the numbers, the vectorized versions are more efficient the the standard one,
by the 33.78%(∼ 1.51×).

6.2 Why is Block Interleaved not good enough in our setting?

As we immediately notice from the result, the block interleaved version is quite similar to the complex interleaved
one; in some cases it is even slightly slower. That is not what we expected: since this memorization method is
not common, we would need a major speedup to use it.
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Table 1: Execution time (µs) of FFT for some values of N

N NO AVX VE AVX CI AVX BI AVX

4096 976.0 952.0 717.0 730.0
8192 1955.0 1887.0 1415.0 1444.0
16384 2918.0 2784.0 2393.0 2312.0
32768 4506.0 4244.0 3168.0 3368.0
65536 8078.5 7778.5 5892.0 5489.5
131072 15409.0 13767.0 10203.5 10379.5
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In [3] the authors use a mixed version of the two methods: they start from a CI input, then they use the
computations of the algorithm itself to get a BI memorization (which makes some operations faster, such as the
element-wise product, since it reduces the usages of slow instructions as permutations) and they finally end up
with a CI result. Instead, since we start directly from a block interleaved version, we are note able to replicate
their speedups when using BI.

7 Conclusions

The final result of our experiments is a speedup of a 33.78%(∼ 1.51×) between the first trivial version and the
vectorized one. The automatic vectorization reaches a much lower speedup, which amounts to 10.66%(∼ 1.12×).
We have shown that BI memorization, while being not common and not compatible with standards like POSIX,
does not provide any advantage over CI.

We would like to point out the importance of the AVX extension for programs which aim to achieve efficiency
and speed. Clearly, writing our own vectorized code is not the best way to exploit this functionality, since we
could make mistakes and it becomes difficult to maintain: the right approach should be to ask the compilers to
introduce the functionality mentioned in the previous sections, suggesting some choices using pragmas.

In the end, the result could be not satisfying enough: in that case the programmer can disassemble the
compiled code and try changing some instructions to speedup the program. And that is why it is important to
be familiar with this extension. This is what we have learnt in this study. As a future work, we will:

– extend the code to exploit multi-threading, using the recently introduced C++ standard class for multi-
threading;

– realize a port on CPU clusters [6];
– investigate how to optimize the impact on cache hierarchies [7].
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