
FaaS Execution Models for Edge Applications

Claudio Cicconettia,∗, Marco Contia, Andrea Passarellaa

aIIT, National Research Council, Pisa, Italy

Abstract

In this paper, we address the problem of supporting stateful workflows follow-

ing a Function-as-a-Service (FaaS) model in edge networks. In particular we

focus on the problem of data transfer, which can be a performance bottleneck

due to the limited speed of communication links in some edge scenarios and

we propose three different schemes: a pure FaaS implementation, StateProp,

i.e., propagation of the application state throughout the entire chain of func-

tions, and StateLocal, i.e., a solution where the state is kept local to the workers

that run functions and retrieved only as needed. We then extend the proposed

schemes to the more general case of applications modeled as Directed Acyclic

Graphs (DAGs), which cover a broad range of practical applications, e.g., in

the Internet of Things (IoT) area. Our contribution is validated via a proto-

type implementation. Experiments in emulated conditions show that applying

the data locality principle reduces significantly the volume of network traffic

required and improves the end-to-end delay performance, especially with local

caching on edge nodes and low link speeds.

Keywords: Edge computing, Serverless, Function-as-a-Service, Distributed

computing, In-network intelligence

∗Corresponding author
Email addresses: c.cicconetti@iit.cnr.it (Claudio Cicconetti), m.conti@iit.cnr.it

(Marco Conti), a.passarella@iit.cnr.it (Andrea Passarella)

Preprint submitted to Elsevier September 25, 2022

1. Introduction

Computation offloading has been a trending topic in the networking and

cloud computing areas for some time now: it envisions that mobile or resource-

constrained devices offload part of their processing activities to external entities

with computation capabilities willing to undertake the effort. A few years ago,

the interest has then shifted towards the edge of the network [1], as this en-

ables latency-sensitive applications that cannot afford a trip to far-away data

centers. However, recent cloud deployments already delocalize data centers so

that they are closer to the users [2]: research activities should not rely only on

a closer-is-better-for-latency motivation for edge computing, but rather look to

the edge with a broader perspective and find what it can realistically provide in

specialized use cases and applications.

One such opportunity that is emerging is to employ at the edge a Function

as a Service (FaaS) model [3]: the application is decomposed into functions that

are invoked individually or in a chain. FaaS is very well suited to many Internet

of Things (IoT) applications of practical interest for what concerns the program-

ming model (functional event-based), an efficient utilization of resources (both

at device- and edge node-level) and the promises of high scalability. The latter

stems from symbiosis with a serverless computing framework, where functions

are invoked in containers that are orchestrated in a highly flexible virtualiza-

tion infrastructure [4]. Results have demonstrated that serverless is more suit-

able than a microservice architecture for unpredictable requests accompanied

by a large size of the response, due to the scaling agility [5]. Serverless/FaaS

are major trends in cloud computing [6], thus edge deployments/applications

could benefit from the ample availability of industry-grade commercial and open

source solutions [7], even though some advances beyond the state of the art are

required to make a good use of resources in this different environment [8].

In particular, serverless relies on the implicit assumption that the container

location is irrelevant to performance, which has led to a stateless FaaS paradigm:

applications that have a state rely on external services offered (and billed sepa-

2

rately) by the cloud provider [9]. In [10] the authors have analyzed open-source

and proprietary datasets and they have found that only 12% of the serverless

applications in production are truly stateless, whereas the others rely on man-

aged services such as storage (61%) and databases (48%). In the cloud, this

may lead to a slightly sub-optimal utilization of the resources, e.g., due to the

inability to keep hot content in caches [11], but at the edge the impact be-

comes much more ominous: here the cost of transferring data between function

executors and external services is, in general, much higher than in a data cen-

ter, hence the network may easily become a limiting factor [12]. Furthermore,

one of the most appealing features of FaaS is the opportunity for the service

provider to compose applications as complex workflows of invocations, so that

the output of a function is not returned immediately to the user but delivered

to one (or more) successors for further processing. This exacerbates the above

implications of location dependency, which become crucial when migrating from

a microservice to a serverless architecture [13].

In this paper, we address the problem of data transfer (including both ar-

guments/return values and the application state) within a workflow of stateful

functions, motivated by a practical use case illustrated in Sec. 2. Then, after

reviewing the state of the art (Sec. 3), we summarize in Sec. 4 the findings in our

previous work [14], where we have proposed three fully decentralized execution

models for applications that can be modeled as chains of functions: PureFaaS,

StateProp, and StateLocal. The execution models are extended to the more gen-

eral case of applications modeled as Directed Acyclic Graphs (DAGs) in Sec. 5.

As we will see later, PureFaaS, which is closest to state-of-the-art serverless plat-

forms, is surpassed by StateProp and StateLocal, which achieve reduced traffic

and smaller delays. However, they incur the cost of a slightly higher system

complexity, because they require the ability to embed the application’s state as

function arguments (StateProp) or keep the state at edge nodes (StateLocal),

in addition to a more profound knowledge of the application workflow (DAG of

function invocations and state dependencies). We have implemented a proto-

type of the proposed solutions, which we use to compare their performance in

3

acquisition
(audio)

acquisition
(video)

anonymization
(audio)

anonymization
(video)

synchronization

feature extr.
(audio)

feature extr.
(video)

decision-making
(multi-modal)

stateless task stateful task state

Figure 1: Archetypal smart city application for audio-video analytics in the MARVEL project.

emulated network experiments (Sec. 6). We draw the conclusions in Sec. 7.

2. Motivation

In this section we describe a motivating example, inspired from the activity

ongoing in the H2020 MARVEL collaborative R&D project1, co-funded by the

European Commission, in which we participate. The project defines a frame-

work for real-time analytics in smart cities, addressing several applications of

high impact to citizens validated in two pilots, municipality of Trento and public

streets in Malta: automated detection of anomalous traffic conditions, monitor-

ing of crowded areas, protection of vulnerable users (pedestrians, cyclists) in

street junctions, emotion recognition in public events, and many others.

All the applications have the same general structure illustrated in Fig. 1:

starting from the acquisition of data from sensors, first there is an anonymization

phase to remove personal data, then the relevant features are extracted and used

to trigger a Machine Learning (ML)-driven decision-making process. Despite its

potential benefits, vanilla serverless computing cannot be adopted here for two

reasons. First, a stateless execution is not sufficient: (some of) the components

require read/write access to a per-application state, e.g., with video streams to

cross-correlate the current frame with previous ones in a window. Second, FaaS

platforms support chain of functions but our applications have multiple sources

1https://www.marvel-project.eu/, last accessed Aug 12, 2022

4

Edge network

Cloud

Clientoption 1:
state in the client

option 2:
state in the edge

option 3:
state in the cloud

Figure 2: Architecture options on where to keep the application’s state: option 1: the state
remains in the client, which embeds it in the function arguments and return value so that the
execution remain stateless; option 2: the state is kept by the edge nodes; option 3: the state
is handled by a cloud service, which is the default today.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000

A
v
e
ra

g
e
 d

e
la

y
 (

m
s)

Video state size (kB)

state in the client
state in the edge
state in the cloud

Figure 3: Average delay of the workflow in Fig. 1 with the three options in Fig. 2. The edge
links have 1 Gb/s bandwidth with 1 ms latency, whereas the cloud node is connected through
a 10 Mb/s link with 20 ms latency. The full details on the methodology and tools used are in
Sec. 6.

per application (cameras + microphones), which requires the workflow to be

designed as a DAG for synchronization and fusion purposes.

In this paper we address both these aspects: in Sec. 4 we discuss the possible

options on where to maintain the application’s state, summarized in Fig. 2, while

the support of DAGs is illustrated in Sec. 5. In Sec. 6 we evaluate our proposed

system with a prototype implementation in a mininet testbed, which also used

for the motivating example in this section..

In Fig. 3 we show the average delay of the workflow when increasing the

state size of the feature extraction video function from 1 kB to 1 MB; the state

of the corresponding function for audio is 1/10 of the latter, those of the other

5

functions 1/100. The state sizes used here are arbitrary but representative of

real use cases. As can be seen, when the state is kept in the cloud the average

delay is always higher than that in the other cases, and it grows significantly as

the state size increases. On the other hand, there is no noticeable increase when

the state is maintained at the edge or in the client, with the latter exhibiting

the smallest delay (though at the cost of higher network traffic, not shown).

The results found in this motivating example show that the performance of

data-intensive applications made of DAG stateful functions, such as real-time

smart city analytics, significantly depends on where the state is kept, which is

the subject of this work. It is worth mentioning that these applications are not a

special case. For instance, also robotic applications are typically designed using

a DAG model [15] and, in general, we have analyzed the traces of real-life cloud

applications collected from a production system in an Alibaba data center2 and

we have found that a non-negligible fraction of applications consist of DAGs:

21.7%, with single tasks being 28.6% and chains 49.7%.

3. Related work

Serverless platforms in the cloud hinge on the underlying container orches-

tration systems, which handle autoscaling and are responsible for consistent

performance. However, these orchestration tools are inefficient when used at the

edge, where devices are heterogeneous and clustered, which causes sub-optimal

performance [16]. For a comprehensive review on all the aspects of resource

management in serverless systems we refer the interested reader to the survey

in [17]. In the following, we focus on some works that are especially relevant to

our contribution, that is the definition of suitable execution models to handle

chain/DAG composition of stateful functions in serverless edge networks.

At the edge, the problem of data locality has been introduced neatly in [12],

where the authors have proposed to influence resource scheduling in Kuber-

2https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_

2018.md, last accessed Aug 12, 2022.

6

netes (K8s) by adjusting its internal weights based on metadata specified by

the application developers. The more abstract problem of directly allocating

functions to edge nodes for complex applications consisting of multiple inter-

related functions has been studied in [18] with a mathematical formulation,

which takes into account different categories of cost (i.e., activation, placement,

proximity, sharing). The problem has been also studied in the context of Mo-

bile Edge Computing (MEC) with DAG-modeled applications in [19], where the

authors sought the goal of meeting as many application request deadlines as pos-

sible using an online algorithm approximating an NP-hard scheduling problem.

Finally, in [20] the authors have proposed SEND, an in-network storage man-

agement system realized through edge-deployed data repositories, which places

intelligently raw and processed data based on locality or popularity criteria.

Key difference: Our work is complementary to the above studies because we do

not address the allocation of containers/tasks to edge nodes, but rather propose

solutions to manage the applications’ state in FaaS under a given allocation.

Supporting stateful applications is one of the key research challenges identi-

fied in the position paper [4] for serverless computing in the cloud. A datastore

for edge computing with consistent replicas has been also proposed in [21],

which reconciles only the data that are relevant to a given session for perfor-

mance reasons. In [22] the authors have proposed HydroCache, a distributed

data caching system with multi-site causal consistency, which can be used as

state management for serverless DAG functions and has been shown to outper-

form uncached platforms in the cloud. Fault tolerant function execution, with

embedded garbage collection, has been addressed by the authors in [23] and

found to be both effective and affordable on AWS Lambda. Finally, Boki [24]

has been proposed as a serverless platform that enables stateful applications via

shared logs, which have ordering, consistency and fault tolerance properties.

Key difference: Currently stateful FaaS in edge networks is largely unexplored,

which is a motivation for our work to explore different approaches for argu-

ment and state distribution with chains and DAGs of function invocations. In

a practical deployment, sophisticated state management systems can be used in

7

combination with the execution models that we propose in this work.

The need for efficient serverless platforms that can scale down to small edge

devices is illustrated in [25], which proposes to integrate a computation model

based on the actor pattern with content-based networking. To address also

microcontrollers, the authors have used a pub-sub messaging system under-

neath. A similar approach has been followed in [26], which presents Faasm,

where user-space isolation abstraction is provided via the use of the WebAssem-

bly run-time environment and applications can share state using a hierarchical

Key-Value Store (KVS).

Key difference: The actor model has interesting similarities with serverless.

As a matter of fact, the integration of WebAssembly platforms using the actor

pattern with FaaS platforms is under way (e.g., wasmcloud3 and OpenFaaS4).

We believe our work makes a valid contribution across both domains, as we

propose different execution models for stateful execution of chain/DAG work-

flows, which can be combined or tailored to the specific needs of the scenario

and applications.

Some recent works have focused on the specific issue of resource management

for DAG workflows in serverless platforms. In [27] the authors have identified

a set of techniques to make DAG schedulers aware of the serverless platform

they are running on, tested on AWS Lambda. The opposite approach has been

followed in [28], where the authors have defined an orchestration framework to

match the application performance requirements via appropriate provisioning

of containers in a K8s cluster.

Key difference: These works contribute to the motivation of our research ac-

tivity, as they deal with applications that can be modeled with DAGs, which

however remains complementary: we focus on different schemes to pass on the

arguments and states of the application, which is a different (though possibly

related) problem to container resource management.

3https://wasmcloud.dev/, last accessed Aug 12, 2022
4https://www.openfaas.com/, last accessed Aug 12, 2022

8

Client Network deviceEdge node x Container of type y

Figure 4: System model.

Finally, we mention that practical applications might also require mecha-

nisms for the realization of patterns beyond the execution of stateful DAGs.

Microsoft’s commercial serverless platform, Azure Durable Functions (ADFs),

also allows to define critical sections for the atomic execution of some functions

in a workflow [29], whereas explicit parallelization of function execution has

been investigated in [30].

Key difference: We recognize that some applications have specific needs that

cannot be addressed efficiently by a single solution. In this work we have focused

on chain and DAG workflows, which are very common and already cover a broad

range of applications of practical interest, and we leave for future work further

specializations, including critical sections and explicit parallelism.

4. Stateful function chains

In this section we introduce the system model and notation used in the paper

and we summarize the findings in [14], which tackled the execution of chains

of functions on serverless platforms deployed at the edge, which are extended

to the more general case of DAG-modeled applications in the next section. We

conclude the section with considerations about confidentiality in Sec. 4.1.

The system model is illustrated with the help of the example in Fig. 4. In

the figure we have four edge nodes indicated as ni, each hosting a serverless

platform that can execute lambda functions of one or more types, indicated as

9

Chain of function
invocations

State
dependencies

Figure 5: Example chain application.

Client

Figure 6: PureFaaS execution diagram of the application in Fig. 5 at the edge in Fig. 4.

λi, via a pool of workers. For instance, n1 can execute lambda functions λ1 and

λ4 but not λ2 and λ3.

Let us now consider the example user application depicted in Fig. 5: the

client needs the input to be provided to λ1, which also requires (and possibly

modifies) the application state SA, whose output out1 needs to be provided

to λ2, also requiring access to SB , which feeds λ3 and so on, until the final

output out4 is returned to the client. The target application is colored in yellow

and represented running on the client device, also showing its two states SA

and SB . In the cloud, stateful functions are realized by means of stateless

functions that access external services, such as in-memory databases or storage

services. However, this approach is not efficient at the edge, as shown in Sec. 2.

Our alternatives are to keep the state in the client vs. in the edge nodes. In

[14] we have explored three different approaches, which are summarized below:

PureFaaS and StateProp (the state remains in the client) and StateLocal (the

state is kept by the edge nodes). In the following we assume that the allocation

of functions to nodes is: [λ1, λ2, λ3, λ4]→ [n1, n4, n2, n1].

With PureFaaS, the functions in the chain are executed one after another,

10

Client

Figure 7: StateProp execution diagram of the application in Fig. 5 at the edge in Fig. 4.

Client

Figure 8: StateLocal execution diagram of the application in Fig. 5 at the edge in Fig. 4.

and the required state of each function is transferred back and forth with every

invocation, as illustrated in Fig. 6. This strategy can be easily realized on

commercial/open source serverless platforms provided that: (i) the signature of

the function (both arguments and return value) supports the client embedding

the required state5; (ii) the client is aware a priori of the state that will be

needed by every next function invoked.

StateProp is similar but it makes use of the chaining capability made avail-

able by most serverless platforms. As shown in Fig. 7, the client embeds the

full state of the application into the function arguments and return values: a

function that does not use the embedded state will simply let it pass through,

while the others will embed as function arguments the modified state received,

which will eventually be returned to the client.

5Commercial platforms may limit the amount of data that can be embedded into function
invocations [31]: for instance, with AWS this limit is a mere 32 KB, whereas with IBM
it is 5 MB, but the overhead has been shown to increase non-linearly with the arguments’
size. Only with Microsoft’s ADFs it seems there is no theoretical limit, but a compression
mechanism is triggered automatically above 60 KB.

11

Finally, StateLocal keeps the state in the edge nodes as illustrated in Fig. 8:

rather than embedding the state in the function invocations, only pointers are

passed. When a lambda function needs a state, it retrieves it via the pointer,

and then it becomes its new owner, thus modifying the state’s pointer in the

subsequent function invocation along the chain. This way, the client will be

eventually returned the list of updated pointers to all its states, to use them

in subsequent application executions or to withdraw the states from the edge

nodes, if ever needed.

4.1. Disclosure of proprietary information

Function composition in any serverless platform introduces the risk of dis-

closing proprietary information about the application’s logic to the platform

provider: even though the implementation of a single function can remain pri-

vate, as only the end-points are needed for the sake of function invocation,

some information about the algorithms being executed could be deduced by

the way the functions are chained and their usage patterns. This risk becomes

even greater with DAG applications made of elementary building blocks, as

their richer expressivity could offer further insights about the overall service

logic. While we recognize that there can be use cases where disclosing this

minimal amount of information to a third party (and potentially a competitor)

may not be deemed acceptable, we believe such a risk cannot be considered

a show-stopper in the majority of practical scenarios. Therefore, we defer the

investigation of the issue to future works in this area.

5. Extension to DAGs

In this section we extend the execution models in Sec. 4 to applications that

can be modeled as DAGs. We introduce DAG-specific notation in Sec. 5.1, then

address the extension of the stateful execution models in the previous section

separately for PureFaaS (Sec. 5.2) and StateProp/StateLocal (Sec. 5.3).

12

Figure 9: Task-state dependency graph of an example application.

5.1. State consistency

An application modeled as a DAG consists of a set of tasks (we use the

terms tasks and functions interchangeably) with precedences: an edge λi →

λj exists if task λi must be executed before task λj . The set of precedences

define a directed graph, called task dependency graph, which cannot contain

cycles by definition (recall the ‘A’ in DAG stands for Acyclic), otherwise the

execution would never end. Dependencies can be of the input/output type, i.e.,

λi → λj means that the output of task λi is needed by task λj , or a means of

synchronization like in a message-passing system, the distinction is irrelevant to

our purposes. To keep the notation consistent with Sec. 4, we indicate with outi

the output of task i, even though we note that in a DAG there could be multiple,

possibly different, outputs for each task. Support of different task outputs is a

mere implementation detail, which does not affect the contribution illustrated

in this section, except for a trivial generalization of the derivations.

In our work we address workflows make of stateful functions, thus any task

may also depend on some states. As in [14] (summarized in Sec. 4), we capture

the stateful nature of functions via the state dependency graph, which is an

undirected graph where edge λi → Sx means that the task λj needs to access

state Sx. The union of the task dependency graph and the state dependency

graph produces the task-state dependency graph; an example is illustrated

in Fig. 9 for an application made of four tasks, two of which (λ2 and λ3) use

state S.

It can happen, like in the example in Fig. 9, that multiple tasks need to

operate on the same state during a single execution of the application. De-

13

(a) (b)

Figure 10: Virtual links added between tasks λ2 and λ3, both depending on state S.

Figure 11: Causal consistency induces a cycle in the augmented task-state dependency graph.

pending on the internal logic of the application, it can happen that: (i) the

order of execution does not matter; (ii) λ2 must be executed before λ3; (iii) λ3

must be executed before λ2. The serverless platform needs to know from the

application the temporal order of execution of tasks that depend on a shared

state to maintain the causal consistency of the states. We then capture

such temporal order by augmenting the task-state dependency graph as follows:

a virtual edge λi → λj , represented as a dashed line in the figures below, is

added if λi and λj both use the same state and λi must be executed before λj

to guarantee causal consistency of the shared state. In the previous example,

this means adding an edge λ2 → λ3 if λ2 has to be executed first (case ‘a’ in

the figure) vs. λ3 → λ2 if λ3 has to be executed first (case ‘b’ in the figure). In

this section we assign a superscript to states shared by multiple tasks to express

the temporal dependency order: in Fig. 10 S1 must be accessed first, S2 second.

14

Figure 12: Augmented task-state dependency graph of an example application used to illus-
trate the extension of the execution models proposed in Sec. 4 to the case of DAG.

The addition of the virtual edges affects the parallelism that can be achieved:

without state dependencies the DAG in Fig. 9 can executed as {λ1, λ2|λ3, λ4
(where | means that the two tasks can be executed in parallel), but with that in

Fig. 10 this is not possible. Furthermore, in order for the augmented task-state

dependency graph to remain well-formed, no cycles must exist, also including

the virtual edges, i.e., the state-induced temporal order dependencies. Let us

consider for instance the application in Fig. 11. The virtual edge λ4 → λ2 would

be needed, however this would create the cycle λ2 → λ3 → λ4, which in turn

leads to a deadlock : λ4 cannot be executed until it receives the output of λ3,

which in turn cannot run until it receives the output of λ2, which cannot access

state S before the execution of λ4 is complete. Since this kind of situations

can be detected by the application, and they reflect a logic design issue, we

assume hereafter that our applications of interest are only those with an acyclic

augmented task-state dependency graph.

Key point: With stateful DAG applications, the causal consistency of the execu-

tion must be guaranteed. We propose to do so by defining, for each state, the

order in which the tasks depending on it will be executed, as reflected by virtual

edges in the augmented task-state dependency graph.

5.2. Pure Faas

The extension of PureFaaS approach is straightforward. At each step, there

is a set of callable functions, which are all those whose task-state dependen-

15

Client

Figure 13: Execution of the example DAG application in Fig. 12 with PureFaaS.

cies are verified. The client can call them in parallel or in sequence (order is

arbitrary) depending on its internal logic and capabilities.

To better illustrate our point, we make use of the example application in

Fig. 12. The sequence diagram with PureFaaS is shown in Fig. 13, where we

assume for better readability that function λi is always executed on edge node

i. Moreover, with a slight overload of notation, with Si we not only indicate

the temporal order dependency of the state S in the augmented task-state de-

pendency graph (as defined in Sec. 5.1), but we also refer to its subsequent

modifications: S0 is the initial state before the workflow invocation, S1 its

modified version after the execution of λ4 (which connects to S1 in the graph),

and so on until the final version S3 of the state at the end of the workflow. As

16

yield

Figure 14: Example of execution of λ4 with yield in the application in Fig. 9.

can be seen, the tasks λ2 and λ4 are executed in parallel, but the client has to

wait for the slowest of the two (in the example: λ4) before it can continue: this

waiting time is represented in the diagram with a black rectangle. Apart from

the opportunity to parallelize some tasks, there is no other change with respect

to PureFaaS when used with chains of functions invocations.

Key point: PureFaaS remains the same with chains and DAGs.

5.3. StateProp/StateLocal

On the other hand, StateProp and StateLocal cannot be used with DAG ap-

plications without modifications like PureFaaS. There are different reasons for

this, which we will explain hereafter. Briefly, we recall that StateProp/StateLocal

both rely on the worker invoking the next function as the current one is com-

plete; they differ on the way they manage the state: StateProp carries it along

the function invocation chain, whereas StateLocal keeps it within the edge node

that last used it.

First, it can happen that a task has more than one input, e.g., λ4 in Fig. 9:

in this case, both λ2 and λ3 want to execute λ4 at the end of their respective

tasks, so the whole notion of “every function executes the next one” is not as

well-defined as with a chain of functions. We address this point by introducing

the concept of asynchronous calls: when a function terminates, it always invokes

the next function(s), i.e., its direct descendants according to the DAG, but this

only triggers the execution of a task if all its inputs are available. If this is not

the case, then the output of the predecessor is stored temporarily on the edge

17

node and the function yields (the term is borrowed from asynchronous program-

ming models and languages). A graphical illustration of the yield operation can

be found in Fig. 14. Supporting this pattern increases the complexity of the

serverless platform on the edge nodes, which have to maintain an ephemeral

state for each incomplete operation. Such asynchronous calls, by themselves,

do not solve the problem: in the example in Fig. 14 we have assumed that λ2

and λ3 both invoke λ4 on the same edge node n4, but in general this is not a

piece of information that they have: the serverless platform treats every func-

tion call independently from others, which can result into the execution of the

same function on different edge nodes. So, for instance, λ2 may invoke λ4 on

edge node nx (x 6= 4), which would result in a deadlock, since both the instances

of λ4 on nx and n4 will yield forever waiting for an input that will never come.

To support StateProp/StateLocal it is necessary that the mapping between

functions and edge nodes is known to all the workers at least during a single

execution of a DAG application. This way, we can make sure that all the workers

will invoke the execution of descendants on the same edge nodes (i.e., n4 from

both λ2 and λ3 in the previous example). The main practical consequences are

two: (i) the information on the mapping between functions and edge nodes has

to be carried along the execution DAG, which slightly increases the protocol

overhead; (ii) there must be a process that is able to “resolve” all the functions

at the time the DAG is invoked (e.g., this can be done by the client), which can

increase the start-up latency.

Frustratingly, all this is not sufficient to support StateProp/StateLocal. Con-

sider again the trivial example in Fig. 9: both λ2 and λ3 depend on the same

state S. Irrespective of the relative order, it will be necessary to transfer the

updated state, modified by the first one to be executed (e.g., λ2), to the other

one (e.g., λ3). But there is no invocation path between the two, i.e., λ3 is

not a descendant of λ2 in the DAG, which makes it impossible to rely on the

propagation of the state alone. Therefore, we propose a second modification:

rather than embedding the state in the function arguments (or their references,

for StateLocal), every function accessing a state will send it directly to the next

18

Client

Figure 15: Sequence diagram of the execution of the example DAG application in Fig. 12 with
StateProp/StateLocal.

worker that will use it, according to the state dependency graph and causal

consistency constraints, both already known. Thus, the workers of a function

must be ready to not only receive asynchronous calls, and temporarily store

their arguments, but to also store updates states, also arriving asynchronously.

We note that these modifications are not required with PureFaaS, as illustrated

in Sec. 5.2 above, because the client provides implicit synchronization with that

model.

In Fig. 15 we illustrate the sequence diagram with the application in Fig. 12

of StateProp/StateLocal, the only difference between the two being that with

StateLocal the state has to be retrieved from the last owner (unless the worker

executes on the same edge node). The amount of data transmitted with StateProp

19

Table 1: Traffic exchanged for the different policies (Chain results are from [14]).

Chain/DAG Policy Traffic exchanged

Both Pure FaaS =
∑N

i=0 outi +
∑N−1

i=1 outi + 2
∑M

j=1 deg(Sj)Sj

Chain StateProp =
∑N

i=0 outi + (N + 1)
∑M

j=1 Sj

Chain StateLocal ≤
∑N

i=0 outi +
∑M

j=1 deg(Sj)Sj

DAG StateProp =
∑N

i=0 deg
+(λi)outi +

∑M
j=1 (1 + deg(Sj))Sj

DAG StateLocal ≤
∑N

i=0 deg
+(λi)outi +

∑M
j=1 (1 + deg(Sj))Sj

then becomes:

DDAG
sp =

N∑
i=0

deg+(λi)outi +

M∑
j=1

(1 + deg(Sj))Sj , (1)

where deg+(λi) is the out-degree of vertex λi, i.e., the number of its direct

descendants. For StateLocal, DDAG
sp is an upper bound.

Key point: StateProp and StateLocal can support DAG applications, but the

following major modifications are needed: workers must support asynchronous

function calls, the binding between functions and edge nodes must be known to

all workers during a single DAG execution, and the states cannot be propagated

along with the arguments. Collectively, these changes increase the complexity of

the software to be run on edge nodes and the protocol overhead, as well as ex-

acerbate possible concerns on disclosing proprietary information (see Sec. 4.1).

Table 1 summarizes the amount of traffic exchanged with all the schemes.

6. Performance evaluation

In this section we illustrate the prototype we have realized of PureFaaS,

StateProp, and StateLocal (Sec. 6.1) and we report the results obtained in an

emulated network (Sec. 6.2), which complement the simulations experiments in

[14].

6.1. Implementation

We have implemented the execution models in ServerlessOnEdge, which is

a decentralized framework to dispatch stateless FaaS functions at the edge, de-

veloped and maintained within our research group. The software is open source

20

with a permissive MIT license and publicly available on GitHub6 [32]. In Server-

lessOnEdge the clients request the invocation of functions via e-routers, which

play the role of intermediary with the serverless platforms by forwarding state-

less requests to one of many destinations available depending on the load and

network conditions. For the purpose of evaluating the performance of protocols

and algorithms in controlled and repeatable conditions, we have also imple-

mented so-called e-computers, which emulate serverless platforms with a given

configuration, in terms of computation speed, memory, number of containers,

etc. ServerlessOnEdge uses Google’s gRPC7 for communication among clients,

e-routers, and e-computers.

PureFaaS was implemented as follows: (i) the client embeds the required

states within the arguments at each function invocation; (ii) the e-computers

return the embedded states as part of the function return value; (iii) multi-

ple functions are invoked if the precedences are met (only in a DAG). On

the other hand, implementing StateProp and StateLocal required more struc-

tural upgrades. We start with StateProp, which requires any intermediate

e-computer to invoke the next function(s) in the chain/DAG and pass on all the

application’s states. First, we have implemented asynchronous function calls:

they return immediately an empty acknowledgment, while the real output is

provided to the client as an unsolicited response-only message by the last e-

computer in the chain. Furthermore, an e-computer in our system does not

know the destination of the next function in the chain: to solve this problem,

we have installed on every e-computer a companion e-router that is used to

dispatch the function calls generated by its e-computer as part of the function

chain execution. To obtain consistent performance of StateProp for both chains

and DAGs, we have implemented the same state propagation mechanism, even

though this means that not all possible combinations of DAG and state depen-

dencies are supported, see Sec. 5.3 (all those in the experiments are feasible).

6https://github.com/ccicconetti/serverlessonedge/, tag ≥ 1.2.1.
7https://grpc.io/, last accessed Aug 12, 2022

21

Host 0

Host 1 Host 2

Host 5 Host 4

Host 3

client

SS

EC SS ER EC SS ER

ER SS EC ER SS EC

EC

SS

ERER

client EC ER SS

1
2

3

4

5

FaaS client e-computer
(FaaS platform) e-router state server

(StateLocal only) network device

Figure 16: Scenario used for the validation with ServerlessOnEdge.

An example of invocation of the two-function chain {λ1, λ4} is shown in

Fig. 16 in a network with 5 edge nodes (from Host 1 to Host 5), while the

client application is on Host 0. As can be seen, the e-router on Host 0 is

used by the client for the invocation of the first function in the chain (λ1,

forwarded to Host 1), while the e-router on Host 1 receives the next invocation

to λ4 (forwarded to Host 4). The e-computer on Host 4 does not need to go

through its companion e-router as it can send the final response to the client on

Host 0. The system messages had to be modified so that the chain or DAG is

embedded in every function request, along with the callback end-point for the

final response.

Finally, StateLocal required the same upgrades as StateProp and a few

others: (i) the system messages had to support remote states, i.e., states that

are not embedded in the function call/response, but only referenced indirectly

(in our case by their name and an end-point); (ii) the states are managed by new

components called state servers, which are simple in-memory KVSs co-located

with each e-computer and client, as shown in Fig. 16; (iii) the flow of messages

is exactly the same as with StateProp, but at each function invocation the

e-computer retrieves the remote states needed and then copies them into its

22

local state server; to do this, the state dependencies were also embedded in the

function invocation request messages.

6.2. Results

We have used the prototype implementation to carry out a campaign of ex-

periments in an emulated environment, using mininet8 to reproduce the topol-

ogy illustrated in Fig. 16 above. The experiments are reproducible by means of

the scripts published in the ServerlessOnEdge GitHub repository (experiment

numbers: 400 and 401), which also includes pointers to the raw results obtained

in the research group servers. Since we are only interested in measuring the traf-

fic, and its induced latency, for the different execution models proposed in Sec. 4,

we use a single client, i.e., there is no contention on processing resources.

We have carried out two batches of experiments, respectively with function

chains and DAGs. Let us start with function chains: the client executes back-

to-back function chains of constant length L (3 or 6), in number of functions,

where each function is drawn randomly from λ1, . . . , λ5, possibly with repeti-

tions. We assume that the application has S states (3 or 6), where state si has

size (1+i)×10 kB (0-based indexing); each state depends on a randomly drawn

set of functions, with random cardinality drawn from 0 (no dependencies) and L

(all functions in the chain depend on the state). The size of the input argument

and return value is assumed to be the same and equal to A (10 kB or 100 kB).

In Fig. 17 we compare the average end-to-end delay obtained with the exe-

cution models in all the scenarios separately, as the link rate between network

devices increases from 1 Mb/s to 100 Mb/s. Note that the results are plotted

in logarithmic scale in both axes. In the top left plot, PureFaaS and StateProp

are almost overlapping: this is because the size of both states and argument is

relatively small. Instead, until the link rate is below 20 Mb/s, StateLocal has a

much lower average delay, thanks to its wiser only-as-needed transfer of states.

However, with higher link rates, the advantage diminishes progressively until

8http://mininet.org/, last accessed Aug 12, 2022

23

 0.01

 0.1

 1

 10

 1 2 5 10 20 50 100

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 d

e
la

y
 (

s)

Link rate (Mb/s)

S=3, L=6, A=10k

PureFaaS
StateProp

StateLocal

 0.1

 1

 10

 1 2 5 10 20 50 100

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 d

e
la

y
 (

s)

Link rate (Mb/s)

S=6,L=3,A=10k

PureFaaS
StateProp

StateLocal

 0.1

 1

 10

 1 2 5 10 20 50 100

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 d

e
la

y
 (

s)

Link rate (Mb/s)

S=3, L=6, A=100k

PureFaaS
StateProp

StateLocal

 0.1

 1

 10

 1 2 5 10 20 50 100

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 d

e
la

y
 (

s)

Link rate (Mb/s)

S=6,L=3,A=100k

PureFaaS
StateProp

StateLocal

Figure 17: Function chains: Average end-to-end delay.

the delay becomes higher than that of PureFaaS/StateProp with 50 Mb/s and

100 Mb/s link rates: at such high connectivity rates, the data transfer becomes

comparable with (or higher than) the time to establish the TCP connections to

retrieve/update the states. This disadvantage of StateLocal could be reduced

by employing persistent TCP connections towards the state servers or using a

connection-less protocol, such as QUIC9. In the opposite scenario, i.e., bottom

right plot in Fig. 17, the performance with StateProp and StateLocal are com-

parable, except for high link rates: this is because the chains are shorter than

in the other scenario and the data transfer is dominated by the input/output

argument, which is treated the same by the two schemes. The other cases, i.e.,

top right and bottom left in Fig. 17, are intermediate, with StateLocal achieving

a better performance for all slow link rates, and PureFaaS always lying on top

of StateProp.

9QUIC: A UDP-Based Multiplexed and Secure Transport – https://datatracker.ietf.

org/doc/html/rfc9000, last accessed Aug 12, 2022.

24

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

PureFaaS

StateProp

StateLocal

PureFaaS

StateProp

StateLocal

PureFaaS

StateProp

StateLocal

PureFaaS

StateProp

StateLocal

A
v
e
ra

g
e
 n

e
tw

o
rk

 t
ra
ffi

c
(M

b
/s

)

S=6,L=3,A=100kS=3,L=6,A=100kS=6,L=3,A=10kS=3,L=6,A=10k

Figure 18: Function chains: Network traffic, with link rate 100 Mb/s.

Key point: With function chains, when taking into account realistic protocol

overheads, there is a trade-off between keeping the state local to edge nodes

(StateLocal) and embedding it into function invocations, depending on the state

size and network speed. StateProp always performs better than PureFaaS.

We then provide a direct measure of the overhead in Fig. 18 by showing the

average network traffic in all the scenarios, for the link rate 100 Mb/s, which is

the one where StateLocal exhibits worst performance. As can be seen (in linear

scale in this plot) the traffic generated with PureFaaS is always greater than

that generated with StateProp, which in turn is always greater that that with

StateLocal. We note that, unlike our previous results in [14], the data reported

here include all protocol overhead, since the traffic is measured on the ports of

the emulated network switches. The advantage of StateLocal is more prominent

with a smaller argument size, i.e., with A = 10 kB, but it is significant in all

cases.

Key point: With function chains, even with a high network speed, StateLocal

has a significantly lower overhead than the other schemes, in terms of the traffic

rate required, but this not always translates into a lower end-to-end latency.

We now move to the DAG case, for which we considered applications made

of a sequence of stages, each with a branch function that spawns multiple state-

less calls followed by a stateful collect task. This structure is very typical of

ML applications, which are today dominant in cloud and edge environments:

this was confirmed by the study [33], where the authors have synthesized an

25

 0.1

 1

 10

 100

 1 2 5 10 20 50 100

A
v
e
ra

g
e
 e

n
d

-t
o
-e

n
d

 d
e
la

y
 (

s)

Link rate (Mb/s)

A=10k

PureFaaS
StateProp

StateLocal

 0.1

 1

 10

 100

 1 2 5 10 20 50 100
A
v
e
ra

g
e
 e

n
d

-t
o
-e

n
d

 d
e
la

y
 (

s)

Link rate (Mb/s)

A=100k

PureFaaS
StateProp

StateLocal

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

PureFaaS

StateProp

StateLocal

PureFaaS

StateProp

StateLocal

A
v
e
ra

g
e
 n

e
tw

o
rk

 t
ra
ffi

c
(M

b
/s

)

A=100kA=10k

Figure 19: DAGs: Average delay, with variable link rates, and network traffic, with link rate
100 Mb/s.

artificial generator of workloads that captures accurately, in a statistical sense,

the behavior of real-life applications in the wild. In the results below, we have

used 3 stages with 5 branches per stage. The functions are selected randomly

among those on the edge nodes, and the state dependencies are also random

using the same approach as with chains. In Fig. 19 we show the average delay,

with increasing link rate from 1 Mb/s to 100 Mb/s (with a log-log plot), as well

as the network traffic only for the link rate 100 Mb/s. As above, we have used

two argument sizes: A = 10 kB and A = 100 kB. Unlike with function chains,

in this scenario we find that PureFaaS outperforms StateProp in all conditions,

with the advantage being more prominent with a smaller argument size. This

is because the total number of functions called is much higher than in the chain

scenario, which penalizes significantly the embedding of all the states in invoca-

tions and responses. Such a fee is not paid by StateLocal, which only transfers

references to states and performs best in all conditions except with very high

link rates, due to the overhead of state retrieve/update operations, as already

discussed.

Key point: With a high number of functions in DAGs, state propagation is

only effective if references are carried within the function invocations and re-

sponses.

26

7. Conclusions

In this paper we have explored the support of stateful applications on server-

less platforms distributed on edge nodes. We have focused on the problem of

transferring the state along an invocation of functions in chain and DAG work-

flows, and we have identified three alternative schemes, with different character-

istics. We have developed a prototype implementation to prove the feasibility of

our approaches and to measure performance with realistic protocol overheads.

The results have shown that propagating the state along the chain of function

invocations can reduce significantly the communication overhead. This leads

to lower end-to-end application latency, especially with limited connectivity.

However, with large DAG workflows, embedding the state for propagation is

not effective anymore: in these cases it becomes mandatory to store the states

locally on edge nodes and carry their references instead.

Acknowledgment

This work was partially supported by the European Union’s Horizon 2020

research and innovation programme under grant agreement No 957337, project

MARVEL.

[1] M. Campbell, Smart Edge : The Center of Data Gravity Out of the Cloud,

Computer 52 (December) (2019) 99–102. doi:10.1109/MC.2019.2948248.

[2] N. Mohan, L. Corneo, A. Zavodovski, S. Bayhan, W. Wong, J. Kan-

gasharju, Pruning Edge Research with Latency Shears, ACM HotNets 2020.

[3] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski, D. Taibi,

M. Assuncao, S. S. Gill, R. K. Gaire, S. Dustdar, Serverless Edge Comput-

ing: Vision and Challenges, AusPDC 2021.

[4] A. Khandelwal, A. Kejariwal, K. Ramasamy, Le Taureau: Deconstructing

the Serverless Landscape & A Look Forward, ACM SIGMOD 2020.

27

[5] C. F. Fan, A. Jindal, M. Gerndt, Microservices vs serverless: A performance

comparison on a cloud-native web application, CLOSER 2020.

[6] P. Castro, V. Ishakian, V. Muthusamy, A. Slominski, The Rise of Serverless

Computing, Commun. ACM 62 (12) (2019) 44–54.

[7] V. Yussupov, J. Soldani, U. Breitenbücher, A. Brogi, F. Leymann, FaaS-

ten your decisions: A classification framework and technology review of

function-as-a-Service platforms, Journal of Systems and Software 175.

[8] R. Xie, Q. Tang, S. Qiao, H. Zhu, F. Richard Yu, T. Huang, When Server-

less Computing Meets Edge Computing: Architecture, Challenges, and

Open Issues, IEEE Wireless Communications (2021).

[9] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti,

A. Tumanov, C. Wu, Serverless computing: One step forward, two steps

back, CIDR 2019.

[10] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann,

N. Herbst, C. Abad, A. Iosup, The State of Serverless Applications: Col-

lection, Characterization, and Community Consensus, IEEE Transactions

on Software Engineering 5589 (c) (2021).

[11] M. Shahrad, J. Balkind, D. Wentzlaff, Architectural implications of

function-as-a-service computing, MICRO 2019.

[12] T. Rausch, A. Rashed, S. Dustdar, Optimized container scheduling for

data-intensive serverless edge computing, Future Generation Computer

Systems 114 (2021) 259–271.

[13] Z. Jin, Y. Zhu, J. Zhu, D. Yu, C. Li, R. Chen, I. E. Akkus, Y. Xu, Lessons

learned from migrating complex stateful applications onto serverless plat-

forms, ACM APSys 2021.

[14] C. Cicconetti, M. Conti, A. Passarella, On Realizing Stateful FaaS in

Serverless Edge Networks: State Propagation, IEEE SMARTCOMP 2021.

28

[15] S. Alirezazadeh, L. Alexandre, Optimal Algorithm Allocation for Single

Robot Cloud Systems, IEEE Transactions on Cloud Computing (to ap-

pear).

[16] F. Carpio, M. Delgado, A. Jukan, Engineering and Experimentally Bench-

marking a Container-based Edge Computing System, IEEE ICC 2020.

[17] A. Mampage, S. Karunasekera, R. Buyya, A Holistic View on Resource

Management in Serverless Computing Environments: Taxonomy and Fu-

ture Directions, ACM Computing Surveys (to appear).

[18] L. Wang, L. Jiao, T. He, J. Li, H. Bal, Service Placement for Collaborative

Edge Applications, IEEE/ACM Transactions on Networking (2020).

[19] H. Liao, X. Li, D. Guo, W. Kang, J. Li, Dependency-aware Application

Assigning and Scheduling in Edge Computing, IEEE Internet of Things

Journal 4662 (c) (2021).

[20] A. C. Nicolaescu, S. Mastorakis, I. Psaras, Store edge networked data

(SEND): A data and performance driven edge storage framework, IEEE

INFOCOM 2021.

[21] S. H. Mortazavi, M. Salehe, B. Balasubramanian, E. De Lara,

S. Puzhavakathnarayanan, SessionStore: A Session-Aware Datastore for

the Edge, IEEE ICFEC 2020.

[22] C. Wu, V. Sreekanti, J. M. Hellerstein, Transactional Causal Consistency

for Serverless Computing, ACM SIGMOD 2020.

[23] C. Zhang, H. Tan, H. Huang, Z. Han, S. H. Jiang, N. Freris, X. Y. Li,

Online dispatching and scheduling of jobs with heterogeneous utilities in

edge computing, ACM MobiHoc 2020.

[24] Z. Jia, E. Witchel, Boki: Stateful Serverless Computing with Shared Logs,

ACM SIGOPS 2021.

29

[25] R. Hetzel, T. Kärkkäinen, J. Ott, µactor: Stateful Serverless at the Edge,

MobileServerless 2021.

[26] S. Shillaker, P. Pietzuch, FAASM: Lightweight isolation for efficient stateful

serverless computing, USENIX ATC 2020.

[27] B. Carver, J. Zhang, A. Wang, Y. Cheng, In search of a fast and efficient

serverless DAG engine, IEEE/ACM PDSW 2019.

[28] V. M. Bhasi, J. R. Gunasekaran, P. Thinakaran, C. S. Mishra, M. T. Kan-

demir, C. Das, Kraken: Adaptive Container Provisioning for Deploying

Dynamic DAGs in Serverless Platforms, ACM SoCC 2021.

[29] S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. Mcmahon, C. S. Meik-

lejohn, Durable Functions : Semantics for Stateful Serverless, PACMPL

2021.

[30] W. Zhang, V. Fang, A. Panda, S. Shenker, Kappa: A programming frame-

work for serverless computing, ACM SoCC 2020.

[31] P. Garcia Lopez, M. Sanchez-Artigas, G. Paris, D. Barcelona Pons, A. Ruiz

Ollobarren, D. Arroyo Pinto, Comparison of FaaS orchestration systems,

IEEE/ACM UCC 2018.

[32] C. Cicconetti, M. Conti, A. Passarella, A Decentralized Framework for

Serverless Edge Computing in the Internet of Things, IEEE Transactions

on Network and Service Management 18 (2) (2020) 2166–2180.

[33] H. Tian, Y. Zheng, W. Wang, Characterizing and Synthesizing Task De-

pendencies of Data-Parallel Jobs in Alibaba Cloud, ACM SoCC 2019.

30

