

Centre of Excellence in Simulation of Weather and Climate in Europe

Phase 2

Report of Appliances Available for Testing
Deliverable D4.2

The project Centre of Excellence in Simulation of Weather and Climate in Europe
Phase 2 (ESiWACE2) has received funding from the European Union’s

Horizon 2020 Research and Innovation Programme
under Grant Agreement No 823988

ESiWACE2 Deliverable D4.2

 2

About this document

Work package in charge: WP4 Data Systems for Scale

Actual delivery date for this deliverable: September 30th 2022
Dissemination level: PU (for public use)

Lead authors:
Seagate Systems UK (Seagate): Ganesan Umanesan, Sai Narasimhamurthy
Data Direct Networks (DDN): Jean-Thomas Acquaviva, Konstantinos Chasapis

Other contributing authors:
Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC): Donatello Elia

Contact details:
Project Office: esiwace@dkrz.de
Visit us on: www.esiwace.eu

Access our documents in Zenodo:
https://zenodo.org/communities/esiwace

Follow us on Twitter: @esiwace

Disclaimer: This material reflects only the authors’ view and the Commission is not responsible for any use that may be made of the
information it contains.

mailto:esiwace@dkrz.de
http://www.esiwace.eu/
https://zenodo.org/communities/esiwace
https://twitter.com/esiwace

ESiWACE2 Deliverable D4.2

 3

Table of Contents
1. Abstract / publishable summary 4

2. Conclusion & Results 4

3. Project objectives 5

4. Detailed report on the deliverable 5

4.1 CORTX Motr (Seagate) 5

4.1.1 Introduction and Background 6

4.1.2 CORTX Motr User Space Demonstration Steps 6

4.1.3 ESDM on user space CORTX Motr - Steps 12

4.1.4 Issues and Challenges 18

4.1.5 Next steps (Seagate) 18

4.2 ESDM with IME integration (DDN) 18

4.2.1 Introduction and background 18

4.2.2 ESDM with IME native interface integration 21

4.2.3 ESDM with IME data backend benchmarking 22

4.2.4 Active Storage Introduction and background 24

4.2.5 Active Storage Architecture Overview 24

5. References 26

6. Changes made and/or difficulties encountered, if any 27

7. How this deliverable contributes to the European strategies for HPC 28

8. Sustainability 29

9. Dissemination, Engagement and Uptake of Results 30

ESiWACE2 Deliverable D4.2

 4

1. Abstract / publishable summary
This deliverable reports on the two storage technologies from two vendors, DDN and Seagate, which were
designed to work with the Earth System Data Middleware (ESDM) - details of which were reported in
Deliverable D4.1 “Advanced software stack for Earth system data”[ESiWACE2 D4.1]. The expectation was
that various storage appliances would have support for ESDM and could be deployed with ESDM at the
weather and climate sites as ESDM would become available.

Seagate demonstrated the CORTX Motr (formerly Mero) software installation being capable of working
with commodity hardware, with the ability to be installed at the German Climate Computing Center (DKRZ)
and other centres in the future as per their requirements. This is a change in strategy from Seagate for
CORTX Motr. At the beginning of the project, the plan was to have an appliance based on Mero – as Mero
was closed source software. However, during the time frame of ESiWACE2, Mero was open sourced as
CORTX Motr – making it feasible to be deployed very widely on commodity hardware. Showcasing CORTX
Motr’s capability to work on commodity hardware working with ESDM, we believe is a powerful message
for the community rather than providing just a “closed” appliance. This deliverable hence takes that
approach.

DDN demonstrated the relevance and the efficiency of the Earth Systems Data Middleware (ESDM)
developed during the ESiWACE project on state-of-the-art industrial storage technologies. DDN
implemented a sophisticated integration of ESDM with the flash native, burst buffer solution product of
DDN’s portfolio, Infinite Memory Engine (IME). As part of the integration ESDM now supports the IME
native interface that bypasses the FUSE, allowing to obtain the maximum performance of IME. The code of
the integration is available and accessible to everyone through GitHub. Using IME, DDN was able to
produce performance results significantly beyond the state of the art in term of hardware / software
cooperation. Furthermore, ESDM provides performance in the range of the low-level API while still offering
a higher level of semantic to the end-user. The results were obtained within one of DDN’s labs using 5 IME
appliances and 10 clients. With an aggregated peak I/O bandwidth of 100 GB/sec, this setting is
representative of the core of the HPC / technical computing market. In addition to the lab set-up and the
integration effort, DDN has led more theoretical and research-oriented work. In respect to the Active
Storage task, DDN provided a complete design architecture and implemented a proof of concept (PoC). The
prototype is expected to be ready within the Q1 of 2023. The PoC code of the active storage is available on
GitHub.

2. Conclusion & Results
The following were the main conclusions and outcomes from the work:

1. ESDM works with CORTX Motr from Seagate through the CORTX Motr API backend. The adaptation
for ESDM on Mero (through the “Clovis backend”) was implemented early on in the project and
reported in D4.1. The Clovis backend was renamed to CORTX Motr API after it was open sourced.
ESDM was hence made to work with that backend and proven in this deliverable.

2. The CORTX Motr software with ESDM was successfully deployed on a virtual machine emulating
commodity hardware and requirements at DKRZ - suitable for adoption by other weather and
climate centres.

3. DDN has ported ESDM on its IME flash native appliance. Obtained results on ESDM are extremely
good: ESDM provides a semantic consistent with the expectations of scientists while achieving
performance comparable to the one obtained with low level proprietary API from DDN.

4. DDN designed the architecture of the active storage/computational storage feature. An initial
prototype is already available and the solution is planned to be ready within the Q1 of 2023.

https://github.com/kchasapis/esdm
https://github.com/jean-thomas/Excalibur-CS

ESiWACE2 Deliverable D4.2

 5

3. Project objectives
This deliverable contributes directly and indirectly to the achievement of all the macro-objectives and
specific goals indicated in section 1.1 of the Description of the Action:

Macro-objectives Contribution of
this deliverable?

(1) Enable leading European weather and climate models to leverage the available
performance of pre-exascale systems with regard to both compute and data capacity
in 2021.

Yes

(2) Prepare the weather and climate community to be able to make use of exascale
systems when they become available.

Yes

Specific goals in the workplan Contribution of
this deliverable?

Boost European climate and weather models to operate in world-leading quality on
existing supercomputing and future pre-exascale platforms

Establish new technologies for weather and climate modelling Yes

Enhance HPC capacity of the weather and climate community Yes
Improve the toolchain to manage data from climate and weather simulations at
scale

Yes

Strengthen the interaction with the European HPC ecosystem Yes
Foster co-design between model developers, HPC manufacturers and HPC centres Yes

4. Detailed report on the deliverable
We will detail the approaches taken by Seagate and DDN on the appliances for weather and climate
centres.

4.1 CORTX Motr (Seagate)
This section will discuss the implementation and deployment of CORTX Motr [Motr] on a virtual machine
with ESDM. The original plan was to deploy CORTX Motr on the DKRZ working environment. However, after
discussion with the DKRZ system administrators, it was decided to do this in a phased approach where:

(a) We demonstrate CORTX Motr in User Space – as it minimises risks from a system admin
perspective, rather than deploying experimental software in kernel space

(b) Show that CORTX Motr in User Space with ESDM passes all the tests and satisfies the requirements
for installation at DKRZ. This also gives tremendous flexibility for deploying CORTX Motr on any
commodity hardware, if it is a User Space program

(c) Start the work on moving this to an actual deployment

We show (a) and (b) in this deliverable. (c) will be work that will continue in earnest in the future even after
the end of the project – where Seagate will also continue to support DKRZ through the CORTX community.

We next discuss the successful deployment of CORTX Motr in user space.

ESiWACE2 Deliverable D4.2

 6

4.1.1 Introduction and Background
CORTX Motr is an object storage system developed by Seagate and now fully open sourced. CORTX works
on adapting any commodity storage hardware into a storage server suitable for HPC and cloud applications.
In the following, the overall architecture of CORTX Motr server (also called just as “Motr”) is described and
presented in Figure 1.

Motr exposes an object I/O and Key Value (KV) interface through an access API and an extension API. The
Key Values can be used to describe the Objects and overlay any higher level semantics on top of the object
store such as POSIX, pNFS, S3, etc as indicated above. So the applications can access CORTX Motr natively
or through such “gateways” through their respective clients. The extension interface is used to build
various third party applications on top of the object store such as those needed for Hierarchical Storage
Management (HSM), Replication, Indexing, File System Consistency Checking (FSCK), etc. Motr works on
top of any commodity hardware server with HDDs, SDDs or NVRAM. The individual nodes of Motr are
connected through a network that uses protocols such as “libfabric” [libfabric].

Many HPC applications can use the CORTX Motr native access interface. In ESiWACE2 the native access
interface is accessed through the “ESDM” gateway.

A user space version of the CORTX Motr object store suitable for ESDM, and, weather and climate
applications (and its usage and setup in a virtual environment) and its demonstration is described next.

4.1.2 CORTX Motr User Space Demonstration Steps
The original CORTX Motr is developed as a kernel module and it was dependent on various kernel mode
modules such as “lnet” [lnet] which runs in kernel space – required for running the networking services.
Most of the motr services used to run with root user privileges and hence in root user session. The result
was that one machine (hence all its storage pools) could be part of only one motr cluster. Also running a
motr cluster required to have “Sudo” or equivalent privileges which posed security concerns if the cluster is
to be controlled by a normal user and not admin/sudo-user. Further bugs in the kernel module could result
in system crashes and making the system unusable.

Figure 1: CORTX Motr Architecture.

ESiWACE2 Deliverable D4.2

 7

In order to eliminate the above-mentioned limitations and security concerns, motr code is further
enhanced to work as a user-mode driver and use libfabric instead of lnet. Libfabric is a user-mode library
providing similar network functionality as lnet as required by motr. Also, all the sudo/root access
requirements have been removed and now it can be run by a normal user without any special sudo
privilege requirement. Each user session is independent and is expected to be capable of running multiple
motr instances on a single machine and users can control the cluster independently. All user specific
code/data resides in respective user home directory to avoid any interference.

These outcomes were as a result of continued discussions with DKRZ, including the system administrators
and the ESiWACE2 project stakeholders from WP4.

We next demonstrate CORTX Motr working in user space and the steps that need to be undertaken to
achieve it – as presented to someone that wants to perform it. A package usermode-motr.tar.gz1 was
supplied by Seagate to run a single node CORTX Motr cluster through the following steps.

With this package, the following steps demonstrated CORTX Motr in user space (suitable for deployment on
commodity hardware at DKRZ) along with ESDM tests on top of it. Please note that we summarise the steps
– but then also provide some commands and screen shots inline, used to reproduce these. We will also
make the below instructions openly available.

Step 1 - Checking Operating System (OS) and machine requirements
The following are the hardware and Operating System (typical of commodity hardware) that was
successfully tested for the user space version of CORTX Motr (in a virtual machine). A similar environment
needs to be used for CORTX Motr deployment.

(a) Hardware tested: x86_64 machine was tested as below

(b) OS tested: Centos version 8 was tested (with systemd>=239) as below

Step 2 - Checking Red Hat Package Managers (RPMS) requirements
The usermode-motr.tar.gz package that is supplied has the following RPMs that are available. These include
core CORTX Motr core functionality, CORTX Utilities and development tools, the configuration and high
availability component called CORTX Hare, Intel’s intelligent storage acceleration library that contains
erasure coding API functions and some python utility programs provided by Seagate.

1) isa-l-2.30.0-1.el7.x86_64.rpm (Intelligent storage acceleration library)

1 https://seagatetechnology.sharepoint.com/:u:/r/sites/gteamdrv1/tdrive1224/Shared
Documents/Components/EsiWACE Motr Cluster/Vimlesh/USERMODE/usermode-
motr.tar.gz?csf=1&web=1&e=DCZRQe Available upon request

https://seagatetechnology.sharepoint.com/:u:/r/sites/gteamdrv1/tdrive1224/Shared%20Documents/Components/EsiWACE%20Motr%20Cluster/Vimlesh/USERMODE/usermode-motr.tar.gz?csf=1&web=1&e=DCZRQe
https://seagatetechnology.sharepoint.com/:u:/r/sites/gteamdrv1/tdrive1224/Shared%20Documents/Components/EsiWACE%20Motr%20Cluster/Vimlesh/USERMODE/usermode-motr.tar.gz?csf=1&web=1&e=DCZRQe
https://seagatetechnology.sharepoint.com/:u:/r/sites/gteamdrv1/tdrive1224/Shared%20Documents/Components/EsiWACE%20Motr%20Cluster/Vimlesh/USERMODE/usermode-motr.tar.gz?csf=1&web=1&e=DCZRQe

ESiWACE2 Deliverable D4.2

 8

2) cortx-py-utils-2.0.0-2_72f9d68.noarch.rpm (Utilities)
3) cortx-motr-2.0.0-1_git450998d6.el8.x86_64.rpm (Core Functionality)
4) cortx-motr-devel-2.0.0-1_git450998d6.el8.x86_64.rpm (Development Tools)
5) cortx-hare-2.0.0-1_git032746b.el8.x86_64.rpm (Configuration and High Availability)

Step 3 - Building the RPMS
The following RPMs are built as per the below instructions:

motr rpms:
$ git clone https://github.com/Seagate/cortx-motr.git
$ cd ~/cortx-motr
$ git checkout -b esiwace remotes/origin/esiwace2-dkrz
$./autogen.sh
$./configure --with-user-mode-only
$ make clean; make rpms

cortx-utils rpms:

$ cd ~/cortx-utils
$./jenkins/build.sh -v 2.0.0 -b 2

cortx-hare rpms:

Please install cortx-motr rpms before building hare rpms and erase/uninstall after
cortx-hare rpm is built.
$ cd ~
$ git clone https://github.com/Seagate/cortx-hare.git
$ cd cortx-hare
$ git checkout -b esiwace remotes/origin/esiwace2-dkrz
$ make rpm

isa-l rpms:

$ git clone https://github.com/daos-stack/isa-l
$ cd isa-l
$ git checkout -b isl-2.30 845f488c54ef27dfbee66b498099acda65344cf1
$ make

Step 4 - Setting up the Config requirements
The below scripts available in usermode-motr.tar.gz are then run.

- user-journal-enable.sh
- motr-script.sh

“user-journal-enable.sh” is an optional script and is required to provide user mode journalctl access to non-
root user. Journalctl is a utility for querying and displaying logs from journald, systemd's logging service.
“motr-script.sh” script is required to perform initial user-mode environment setup from available rpms and
other sources inside the usermode-motr directory obtained after running untar of usermode-motr.tar.gz

https://github.com/Seagate/cortx-motr.git
https://github.com/Seagate/cortx-hare.git
https://github.com/daos-stack/isa-l

ESiWACE2 Deliverable D4.2

 9

Step 5 - Setting up motr cluster environment
The following are the steps needed to set up the Motr cluster in user space.
Untar usermode-motr.tar.gz:

$ tar –xf usermode-motr.tar.gz
$ cd usermode-motr

Configure user-mode access to journalctl:
The script user-journal-enable.sh is run to enable/configure user-mode access to journalctl logs by non-root
user so that users can view logs generated by user-unit services run by them.

$ sudo sh user-journal-enable.sh

Configure /etc/libfab.conf:
The user needs to configure libfabric by providing network protocol (like tcp/ib) and interface (like
eth0/enp0s3, as on your system) to be used.
Example:

$ sudo sh -c 'echo "networks=tcp(enp0s3)" > /etc/libfab.conf'
$ cat /etc/libfab.conf networks=tcp(enp0s3)

Step 6 - Operating the CORTX Motr user mode cluster
The below steps demonstrate the basic operation of the CORTX cluster in user mode. We demonstrate
successful starting, shutting down and querying the status of the CORTX Motr cluster (single node).
“hctl” or “Hare control” commands control the operation of the CORTX Motr cluster through the Hare
module described earlier.
All the operations/services are executed on behalf of user executing hctl cluster commands. So, each user
session is independent. All directories generated during cluster operations reside within the user home
directory inside $HOME/seagate/.
Examples:

$HOME/seagate/var/lib/hare,
$HOME/seagate/var/motr,
$HOME/seagate/var/log/motr,
$HOME/seagate/var/log/seagate/,
$HOME/seagate/etc/motr

ESiWACE2 Deliverable D4.2

 10

Before setting up cluster

After setting up cluster (/bootstrapping]), we get new directories created as intel/ for (isa-l), .config/ and
Seagate under $HOME/.

Setting up (per-user) environment:
The following script is run to setup motr preboot user mode environment. Cortx-motr/utils/hare/isa-l rpms
are by-default taken from usermode-motr directory, the rpms names/location in the script are modified if
required.

$ sh motr-script.sh
$ source env.sh

Bootstrapping the cluster:

$ htcl bootstrap --mkfs ~/CDF.yaml

ESiWACE2 Deliverable D4.2

 11

Status of the cluster:
$ hctl status

Shutting down the cluster:

$ htcl shutdown

Starting the cluster:

$ htcl start

Step 7 - Checking CORTX Motr logs in user-mode
Use journalctl facility to view logs generated by motr. Journalctl provides user-specific log messages and
the user running journalctl is able to see only logs which belong to them and not from any other users or
system logs.
Example commands:

$ journalctl –-user –xe
$ journalctl --since "2 min ago"

ESiWACE2 Deliverable D4.2

 12

4.1.3 ESDM on user space CORTX Motr - Steps
The following steps demonstrate ESDM on the user space instantiation of CORTX Motr.

Step 1 – Building CORTX Motr for ESDM integration
Cortx-motr should be built with the following configuration for ESDM integration.

$ git clone https://github.com/Seagate/cortx-motr.git
$ cd cortx-motr
$./autogen.sh
$./configure --enable-finject
$ make rpms
$ yum localinstall cortx-motr-2.0. 0-1_git*.el8.x86_64.rpm

Step 2 – Building & Installing ESDM with NetCDF
Before embarking for building ESDM, the following dependencies need to be installed.

Step 2-1 – Installing Spack tool
“Spack” [Spack] is a multiplatform package manager that builds and installs multiple versions and
configurations of software. It is installed as follows.
Clone the git repository

$ git clone --depth=2 https://github.com/spack/spack.git spack
$. spack/share/spack/setup-env.sh

Set a gcc version to be used

$ export gccver=8.5.0

Install dependencies

$ spack install gcc@$gccver +binutils
$ spack compiler find

https://github.com/Seagate/cortx-motr.git
https://github.com/spack/spack.git

ESiWACE2 Deliverable D4.2

 13

$ spack install autoconf%gcc@$gccver
$ spack install openmpi%gcc@$gccver
$ spack install gettext%gcc@$gccver
$ spack install jansson%gcc@$gccver
$ spack install glib%gcc@$gccver
$ spack install cmake%gcc@$gccver

Load dependencies

$ spack load gcc@$gccver
$ spack load autoconf%gcc@$gccver
$ spack load libtool%gcc@$gccver
$ spack load openmpi%gcc@$gccver
$ spack load jansson%gcc@$gccver
$ spack load cmake%gcc@$gccver
$ spack load glib%gcc@$gccver

These dependencies need to be loaded every time, enabling a user login into new session.

Step 2-2 – Installing ESDM with NetCDF enablement
ESDM from the GitHub repository is cloned and configured as below.

$ git clone https://github.com/ESiWACE/es

Configure the repository as follows:

$ cd esdm
$ pushd deps
$./prepare.sh
$ popd
$./configure \$ --prefix=${PREFIX} \$ --enable-netcdf4
$ cd build
$ make
$ make install

Step 2-3 – Installing netCDF with ESDM
After the installation of ESDM, the NetCDF module is installed as below. The steps below are followed for
the cloning, configuration and installation.

$ git clone https://github.com/ESiWACE/esdm-netcdf-c.
$ cd esdm-netcdf-c
$./bootstrap
$ export INSTAPATH=/path-to-ESDM-installation/
$./configure \
 --prefix=$prefix \
 --with-esdm=$INSTPATH \
 LDFLAGS="-L$INSTPATH/lib" \
 CFLAGS="-I$INSTPATH/include" \
 CC=mpicc \
 --disable-dap
$ make -j
$ make install

https://github.com/ESiWACE/es
https://github.com/ESiWACE/esdm-netcdf-c

ESiWACE2 Deliverable D4.2

 14

Step 3 – Testing ESDM with Motr Cluster
Step 3-1 – Generation of the ESDM.conf file
For testing with the motr cluster, ESDM should be provided with the Motr connection parameters in the
esdm.conf file located in the search path. esdm.conf will be loaded with the following contents for the
same purpose.

{
 "esdm": {
 "backends": [
 {
 "type": "MOTR",
 "id": "c1",
 "target": "inet: tcp:192.168.50.39@21501
inet: tcp:192.168.50.39@22001 0x7000000000000001:0x4f 0x7200000000000001:0x29",
"performance-model”: {"latency”: 0.0137, "throughput”: 3218.0},
 "max-threads-per-node”: 8,
 "max-fragment-size”: 268435456,
 "max-global-threads”: 64,
 "accessibility”: "global"
 }
],
 "metadata": {
 "type": "metadummy",
 "id": "md",
 "target": “. /metadummy"
 }
 }

The contents in bold type in the above snippet should be replaced with the corresponding parameters
specific to the cluster (DKRZ cluster).
The parameters “target” are interpreted as : <local address>, <hax_address>, <Profile ID>,
<local_process_fid>.

The same could be obtained, if the cluster had been started already, and then using the following command
located in the clovis (cortx-motr-apps) application, if installed in the system.

$ cd cortx-motr-apps
$ sudo ./script/motraddr.sh -d

ESiWACE2 Deliverable D4.2

 15

The cortx-motr-app client application can be installed using the following GitHub link:
https://github.com/Seagate/cortx-motr-apps.git [cortx apps]. These apps perform four basic operation
such as 1.) creating an object, 2.) writing to an object, 3.) reading from an object, and 4.) deleting an object.

Step 3-2 – Running test cases designed for ESDM testing
For running the esdm test cases located in the esdm/src/test directory, the below steps should be followed.
The cortx-motr user mode tar file (usermode-motr.tar.gz) is downloaded into the user's local home
directory.

The user mode cortx motr code base is untarred in the home directory using the following commands and a
few bash scripts are executed as shown to setup the user mode cortx.

$ tar -xf usermode-motr.tar.gz
$ cd usermode-motr
$ source ./motr-script.sh
$ source ./env.sh

The cluster is then bootstrapped using the following commands

$ hctl bootstrap --mkfs ~/CDF.yaml

If the cluster comes up, it will be greeted by the following screen.

If required, the following command can be used to assess the state of the cluster.

$ hctl status

After going through the above steps successfully, we can run the esdm test cases on the CORTX Motr user
mode cluster.

$ cd ~/esdm/build
$ make test

https://github.com/Seagate/cortx-motr-apps.git

ESiWACE2 Deliverable D4.2

 16

Step 3-3 – Verifying results
The current motr cluster has been tested with ESDM using:

$ cd ~/esdm/build
$ make test

[753123@ssc-vm-g4-rhev4-1305 build] # make test
Running tests...
Test project /root/pkg/esdm/build
 Start 1: basic-types-conversion-tst
 1/38 Test #1: basic-types-conversion-tst Passed 0.00 sec
 Start 2: basic types
 2/38 Test #2: basic types Passed 0.00 sec
 Start 3: derived-attr-serde
 3/38 Test #3: derived-attr-serde Passed 0.00 sec
 Start 4: derived-types
 4/38 Test #4: derived-types Passed 0.00 sec
 Start 5: ser-dtype
 5/38 Test #5: ser-dtype Passed 0.00 sec
 Start 6: serde
 6/38 Test #6: serde Passed 0.00 sec
 Start 7: string-stream-benchmark
 7/38 Test #7: string-stream-benchmark Passed 2.88 sec
 Start 8: tst-conversion-all
 8/38 Test #8: tst-conversion-all Passed 0.00 sec
 Start 9: tst-conversion-lu
 9/38 Test #9: tst-conversion-lu Passed 0.00 sec
 Start 10: tst-conversion
10/38 Test #10: tst-conversion. Passed 0.00 sec
 Start 11: tst-precision
11/38 Test #11: tst-precision Passed 0.00 sec
 Start 12: metatest
12/38 Test #12: metatest Passed 0.03 sec
 Start 13: a-many-dims-stress-test
13/38 Test #13: a-many-dims-stress-test Passed 22.21 sec
 Start 14: a-many-fragments-stress-test
14/38 Test #14: a-many-fragments-stress-test ***Failed 0.02 sec
 Start 15: a-writeback-benchmark
15/38 Test #15: a-writeback-benchmark ***Failed 0.04 sec
 Start 16: attributes
16/38 Test #16: attributes Passed 0.02 sec
 Start 17: data-conversion
17/38 Test #17: data-conversion Passed 0.02 sec
 Start 18: data-copy-benchmark
18/38 Test #18: data-copy-benchmark Passed 1.80 sec
 Start 19: datatype-serializer
19/38 Test #19: datatype-serializer Passed 0.03 sec
 Start 20: fill-value
20/38 Test #20: fill-value Passed 0.58 sec
 Start 21: fragment-selection-benchmark
21/38 Test #21: fragment-selection-benchmark ***Failed 1.03 sec
 Start 22: fragmentation-method
22/38 Test #22: fragmentation-method ***Failed 0.03 sec
 Start 23: grid
23/38 Test #23: grid Passed 0.67 sec
 Start 24: hypercube
24/38 Test #24: hypercube Passed 0.07 sec
 Start 25: incomplete-copy
25/38 Test #25: incomplete-copy Passed 0.02 sec
 Start 26: init
26/38 Test #26: init Passed 1.42 sec
 Start 27: metadata_nc
27/38 Test #27: metadata_nc Passed 0.94 sec
 Start 28: readwrite-benchmark
28/38 Test #28: readwrite-benchmark Passed 7.24 sec
 Start 29: readwrite-conversion
29/38 Test #29: readwrite-conversion Passed 0.65 sec
 Start 30: readwrite
30/38 Test #30: readwrite Passed 1.51 sec
 Start 31: scil
31/38 Test #31: scil Passed 0.63 sec
 Start 32: unlim-dim
32/38 Test #32: unlim-dim Passed 1.79 sec

ESiWACE2 Deliverable D4.2

 17

 Start 33: write-simple
33/38 Test #33: write-simple Passed 0.57 sec
 Start 34: write-stream
34/38 Test #34: write-stream Subprocess aborted***Exception: 0.37 sec
 Start 35: write
35/38 Test #35: write Passed 2.74 sec
 Start 36: zopen-dset-2x
36/38 Test #36: zopen-dset-2x Passed 0.53 sec
 Start 37: zread-stream
37/38 Test #37: zread-stream Passed 0.52 sec
 Start 38: zread
38/38 Test #38: zread Passed 0.68 sec

87% of the tests passed, and 5 tests out of 38 failed.

Total Test time (real) = 49.07 sec

The following tests FAILED:
 14 - a-many-fragments-stress-test (Failed)
 15 - a-writeback-benchmark (Failed)
 21 - fragment-selection-benchmark (Failed)
 22 - fragmentation-method (Failed)
 34 - write-stream (Subprocess aborted)

Errors while running CTest
Output from these tests can be found in: /root/pkg/esdm/build/Testing/Temporary/LastTest.log
Use "--rerun-failed --output-on-failure" to re-run the failed cases verbosely.
make: *** [Makefile:71: test] Error 8

33 out of 38 tests have passed.
Test case #34 failed due to missing implementation of the one ESDM motr API

(static int esdm_backend_t_motr_fragment_write_stream_blocksize (esdm_backend_t * b,
estream_write_t * state, void * c_buf, size_t c_off, uint64_t c_size).

And 4 tests failed due to their Posix setup requirement.
Please note that the failed tests, however, have been confirmed as not critical from the perspective of a
demonstration of ESDM on CORTX Motr.

To run one testcase at a time, the following commands should be followed.

For example, if it is required to run testcase #20 only, the command is composed using the
following template: ctest -I <start test case no> <end test case no> --output-on-failure

$ cd ~/esdm/build
$ ctest -I 20,20 --output-on-failure

To view the test log, use the following command:

$ cat ~/ esdm/build/Testing/Temporary/LastTest.log

ESiWACE2 Deliverable D4.2

 18

4.1.4 Issues and Challenges
We next discuss some of the implementation issues and challenges that we faced in the Cortx Motr user
mode deployment with ESDM. More general challenges are discussed later.

Challenges

• Understanding the CMake build system
ESDM follows the CMake type build system, but due to its versatileness, and not having proper
understanding initially, it took a little arduous effort to assimilate and to fix the motr connection
issue with ESDM. But however, after having put in a fair share of effort, it was fixed successfully.

Issues

• Motr was not connecting with ESDM
Solution: In the current ESDM build, there happens to be a lack of a few motr-specific changes in
order to connect to cortx motr. This build only serves the purpose of Posix-based unit testing. So,
the required CMake files were modified to make cortx motr connection in order.

• A few ESDM test cases were failing due to block aligned issue with Cortx-motr

Solution: Since cortx motr has the constraint of only accepting block aligned amounts of data
either for reading or writing, a few ESDM test cases failed. The required code changes were made
in the ESDM code base to take care of the same. Most of the failed test cases ran successfully after
that.

• Test #34: write-stream failed even after the block aligned issue removal

34/38 Test #34: write-streamSubprocess aborted***Exception: 1.11 sec
The above-mentioned test case was failing, even after the block aligned issue had been fixed. This
is due to the lack of implementation of motr specific API. This API is currently under development.

• User mode cortx-motr cluster setup should be made generic and run by any user non-intrusively

Motr-script.sh was modified appropriately with generic variables, so that any user can set up the
cluster without worrying about any user-specific changes in their configuration files.

4.1.5 Next steps (Seagate)
The user mode version of CORTX Motr + ESDM, as demonstrated, was agreed to be sufficient to move
forward with the actual installation at DKRZ. To start with, the installation will be done on a test cluster.
This is work in progress. Seagate will continue to support the installation even after the end of the project
(through the CORTX Community). The user mode VM will be made available to other weather and climate
data centres – which we hope will be a precursor for actual deployment. The performance will depend on
the hardware on which CORTX Motr is installed since its open source software. Performance tests will be
planned once we have the hardware instantiation at DKRZ.

4.2 ESDM with IME integration (DDN)
4.2.1 Introduction and background

The goal pursued by this work is two-fold, first to help application developers to keep the focus on their
problem without requesting in-depth analysis of the storage system, second to deliver the highest level of
I/O performance. ESDM is targeting to improve I/O performance for earth system simulation as used in
climate and weather applications from the perspective of an I/O library. It exploits structural information
exposed by workflows, applications as well as data description formats such as HDF5 and NetCDF to
organise metadata and data more efficiently across a variety of storage backends. ESDM provides as well a

ESiWACE2 Deliverable D4.2

 19

higher level of abstraction, thus allowing scientists to keep the focus on the expression of their problems,
while shielding them from the underlying storage complexity.
On the other hand, storage is still undergoing a deep revolution with the arrival of Flash devices, storage
class memory and cloud. Within the scope of the project, DDN worked on integrating Flash storage devices
in ESDM, to provide the best performance without impacting the end users' codes. The flash integration
within ESDM is implemented with the Infinite Memory Engine (IME) [IME] product of DDN. IME is a Scale-
Out Flash Cache Layer using NVMe SSDs inserted between the compute cluster and the back-end parallel
file system. It leverages the intrinsic flash properties, such as low latency, high bandwidth and the capability
to be byteaddressable at minimal performance cost.

Figure 2 illustrates the I/O path from the compute nodes to the parallel file system with the IME inserted
between them. IME is configured as a cluster with multiple NVMe servers. IME handles the I/O data traffic
and forwards the metadata requests to the parallel file system. The purpose of IME is to accelerate difficult
I/O patterns such as small or random I/O, and targeting shared files with high concurrency by taking
advantage of Flash device characteristics. IME is implemented as thin software I/O management and shifts
the burden of complex metadata operations to the underlying file system layer. IME is not a full-fledged file
system and thus relies on the underlying file system to serve metadata calls. Furthermore, IME storage
capacity is usually more limited than the file system’s one, as IME is fully built with expensive NVMe
devices. A spill-over mechanism is implemented in IME to move data to the file system when IME reaches
capacity saturation.
From an end user standpoint, there are two major methods that ESDM can utilise to interact with IME.
Without any modification to the ESDM, it can benefit from IME using the IME FUSE client utilising the POSIX
backend. However, the IME FUSE client adds overhead, which includes a system call and the use of the fuse
module with an additional copy from user to kernel space. These software overheads are known issues, but
were considered as negligible in respect of the high latency of rotating devices. The disruptive apparition of
Flash devices, with order of magnitude lower latency, suddenly shifts the bottleneck from the hardware to
the software layers. Figure 3 shows a few of the layers within the kernel space that must be crossed to
serve an I/O system call. Apart from the cost of the hardware operation itself, the software overhead is also
significant. Fuse adds a copy of the data from user space to kernel space using a 128 KB buffer (The 128 KB
limit has been extended to 1 MB for kernel starting 4.2). The size of this buffer prevents large I/O request to
mitigate the latency cost for the call chain. For I/O of large size, the call stack will have to be traversed
multiple times.

Figure 2: IME as part of the I/O path from the compute node to the parallel file system.

ESiWACE2 Deliverable D4.2

 20

A second induced bottleneck is that fuse requires a lock between processes writing from the same node to
a shared file. This lock can have a dramatic performance overhead for I/O highly concurrent accesses. It
should be noted that this lock is not needed in the case of Flash systems which provide byte addressable
accesses, thus avoiding the false sharing issue. In addition to the system call overhead, any fuse file system
implementation must pay an extra penalty for crossing twice from user to kernel space and vice versa. As
illustrated in Figure 3, any fuse call from the user application must cross from the user space to kernel, is
forwarded to the fuse kernel module, propagated to the fuse user space library, served from the user level
implementation of the file system, and finally returned through all the layers. IME tackles this overhead by
offering applications a custom I/O interface called IME native. The IME native interface is publicly available
at [IME_NATIVE]. This interface remains similar to POSIX but requires explicit calls of the API. IME provides
a client library that can be exposed to the application directly with the IME client eliminating additional
layers and minimising overhead as shown in Figure 5.

As illustrated by the previous figures, Fuse is a critical component for the performance of the data flows.
Out of this work on Flash, DDN acknowledges the importance of Fuse, both the kernel module and the
user-space library. While not being directly within the scope of the ESiWACE project, following IME
development, DDN is dedicating engineering resources to deliver improvements (software patches) to the
fuse open-source code. All the produced code is pushed upstream to the fuse and kernel community.

Figure 3: Summary of function calls and layers to serve an I/O call from user space up to storage device in
respect to the execution time.

Figure 5: I/O path with ESDM and IME fuse client
Figure 4: I/O path with ESDM and IME

native integration.

ESiWACE2 Deliverable D4.2

 21

4.2.2 ESDM with IME native interface integration
To integrate the ESDM with the IME native interface we implemented a new data backend for ESDM. The
I/O path from the application to ESDM and to the IME client is illustrated in Figure 4 for the case of the IME
Fuse and in Figure 5 for the case of IME native. Using Fuse offers genericity at the cost of a more complex
data flow, form a portability perspective it is possible to run directly ESDM software on IME Fuse interface.
However, at the expense of performance degradation. The IME backend support also the Native interface,
where application directly call the IME client API, bypassing all the need of buffering attached to POSIX calls
managed by Fuse. The goal of our work was to interface the ESDM software with the IME native client API.
Any applications using ESDM will then transparently get the high performance provided by IME native API.
To summarize, IME native interfaces the ESDM links directly to the IME client, in contrast to IME fuse,
which requires crossing the user to kernel space barrier two times. Furthermore, IME native is an
application-level call, thus saving the overhead of a system call. Therefore, the IME Native API is the most
performant and shortest call path from an application to the IME client.

The new IME native ESDM data backend is implemented at: src/backemds-data/ime2. The implementation
is based on the POSIX backend and has been modified accordingly to support the IME native interface. The
following commands demonstrate how one can utilise the IME backend for ESDM. The initial step is to
clone the GitHub repository of ESDM, the integration of IME native has been already merged in the master
brunch of ESDM. The second step is to configure ESDM with IME support. In order to properly configure
ESDM, a configuration parameter is needed to specify the paths to IME libraries and header files. The rest
of the compilation and installation steps are the same and are described in section 4.1.2 Step 8.

$: git clone https://github.com/ESiWACE/esdm.git
$: cd esmd
$: ./configure --with-ime-include=/opt/ddn/ime/include/ --with-ime-lib=/opt/ddn/ime/lib
--enable-netcdf4

To utilise the IME native interface, one must specify ΙΜΕ as the backend type and provide the path to the
IME mount point in the target field in the ESDM configure file. Figure 6 illustrates an example configuration
file of where IME is mounted in the /tmp/esdm directory. Last, we have verified that the integration of the
IME native interface did not affect the results of the internal ESDM test results.

Figure 6: ESDM configuration with IME native data backend.

2 https://github.com/kchasapis/esdm/tree/master/src/backends-data/ime

https://github.com/kchasapis/esdm/tree/master/src/backends-data/ime

ESiWACE2 Deliverable D4.2

 22

4.2.3 ESDM with IME data backend benchmarking
Evaluation methodology
To measure the performance improvement of the IME native integration with ESDM we leverage the
“netcdf-bench” [Netcdf-Bench] and run tests in an internal DDN cluster. The netcdf-bench is a tool
dedicated to measure the I/O performance of scientific workloads on large scale systems. One of the
motivations of the development of netcdf-bench is to fill the gap between pure I/O benchmarks, which
tend to be focused on the lower level of the software stack, and application coarse grain measurements,
which tend to overlook I/O. This tool mimics the typical I/O behaviour of scientific climate applications and
in combination with the support of the ESDM backend makes it relevant for performance testing. To
leverage the ESDM backend with the netcdf-bench, one must link ESDM with the custom ESDM-NetCDF.
For our experiments we perform all the steps needed to compile and link ESDM with ESDM-NetCDF as
described in detail in the ESDM GitHub [ESDM].

The experimental parameter space of our testing is structured by 4 parameters of netcdf-bench:

• Type of I/O to be performed: Independent / Collective I/O,
• Chunk geometry,
• Block geometry,
• Interface to be selected for the low level I/O calls: IME Fuse (POSIX) or IME native.

By experimenting with different chunk/block geometries and the type of I/O, we can quantify the sensitivity
of performance in relation to the low-level interface used. We focus our evaluation on the write path, since
this is the most demanding scenario from a scientific applications perspective, specifically for those
applications using check-pointing.

Although in our experiments we do not compare the performance of IME against traditional file systems,
this comparison has been already published at [IME_PERF]. This publication utilised the IO500 [IO500]
benchmark and clearly illustrates the benefits of IME in contrast to a traditional file system.

Experimental Results
Our experimental testbed consists of 10 client/compute nodes connected to 5 IME servers which
themselves are connected to the backing parallel file system (BFS) as illustrated in Figure 7.

 Figure 7: Benchmarking Testbed setup.

ESiWACE2 Deliverable D4.2

 23

Each client node is equipped with 2 X Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz, 128 GB DDR4 RAM and a
Mellanox Technologies MT27500 Family [ConnectX-3] InfiniBand card. As for the IME servers, we use the
IME 240 machines, which have: 2 X Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, 128 GB RAM, 2x InfiniBand
cards Mellanox Technologies MT27700 Family [ConnectX-4] and 21 Intel Corporation DC P3520 SSD. Each
IME server has a data capacity of 25 TB. The 4 servers' configuration can host up to 100 TB of data on its
flash devices. However, since the number of compute clients is a bit limited in respect of real-world
systems, we have configured the IME cluster to utilise only one InfiniBand card on each server. This allows
compute nodes to put more pressure on the server and measure the impact of saturation.

As for the backing parallel file system we use a single server with Lustre that is equipped with Mellanox
Technologies MT27700 Family [ConnectX-4], 2 X Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz and 256 GB
DDR4 RAM. For all the experiments the BFS is used only to serve the metadata requests and the IME
servers’ data inject performance is not impacted by the fact that a single node with limited bandwidth is
used as a BFS.

For all the experiments we write a total of 327 GB per node, which is sufficient to fill caches and provides
stable results across multiple runs and makes sure that each test result is reproduceable dropping caches
between each run. All the performance experiments have been conducted in exclusive mode, i.e., to limit
interference, no other users are allowed on the testbed, neither on IME servers nor on compute nodes.

Figure 8 presents the aggregated write throughput reported by the netcdf-bench varying the number of
processes (strong scaling) from 1 to 32 in a single client. The main takeaway from this figure is the
performance gap between ime-fuse and ime-native. As we can see, IME native outperforms IME-fuse and
this is aligned with the expectations, since fuse is introducing an additional lock, thus serialising accesses. In
terms of actual performance gain, depending on the number of processes, improvement ranges from 1.2x
to 1.6x. Furthermore, IME-native can achieve close to max performance with only 4 processes. We can also
notice a slight performance reduction of IME-fuse when using more than 16 processes, which reflects the
overhead of parallelism (lock overhead). Regarding IME-Native, performance still takes advantage of a
higher number of threads, but gains remain marginal.

Figure 9 illustrates the aggregated write throughput reported by the netcdf-bench varying the number of
client nodes (weak scaling). For this set up we use 16 processes per node. Like for the case above, IME-

Figure 8: netcdf-bench reported write throughput varying the number of processes in a single client.

ESiWACE2 Deliverable D4.2

 24

native outperforms IME-fuse even in the case that we utilise more client nodes. The performance benefit of
IME-native over IME-fuse is 1.2x to 1.3x.
Another set of tests that we did was with the type of I/O that the netcdf-bench will perform. The
benchmark supports three different types of I/O: i) independent, ii) collective and iii) file-per-process. In a
typical file system and without the use of an I/O library, the different I/O types would have resulted in
different I/O performance outcomes. However, with the case of IME and ESDM the performance
remainsidentical and independent on the type of I/O selected.

Conclusions
From our evaluation we demonstrate the performance improvement of the IME-native interface over IME-
fuse. Depending on the case we can reach a performance improvement from 1.2x up to 1.6x. Similar results
have also been obtained for the integration of IME with a different scientific I/O library named SION I/O.
The results of the integration have been published at [IME_SION].

4.2.4 Active Storage Introduction and background
Active Storage (AS), sometimes referred to as Computational Storage (CS), represents architectures in
which the storage devices/platforms not only host data but can also perform computation on these hosted
data. AS architectures can dramatically reduce data movements between storage plane and the compute
plane of an IT system. The benefits of such data reduction are several including: i) reduce network
utilisation ii) faster time to solution iii) cost efficiency especially in edge and cloud environments and iv)
energy savings.

Within the scope of the project, we worked on an AS design for the use case of a supercomputer that
utilises a parallel file system. In the following section we provide a detailed overview of the architecture
that we propose.

4.2.5 Active Storage Architecture Overview
The emergence of Flash storage devices has dramatically changed the I/O path in supercomputers. The
availability of a new technology with superior performance but higher cost has led to an increased
complexity of storage architectures with multiple tiers. The goal of these new architectures is to extract the
best performance from Flash while mitigating the cost. Nowadays, the storage system of a supercomputer
usually includes several tiers. Tiers can be implemented in several ways, as a discrete resource hosted in

Figure 9: netcdf-bench reported aggregated write throughput varying the number of nodes with 16
processes per node.

ESiWACE2 Deliverable D4.2

 25

the compute nodes themselves (local storage) or as a disaggregated resource, i.e. a shared pool of
resources, typically instantiated as a large burst buffer tier in between the compute nodes and the archive
tier. Notice that both architectures can be combined with local storage and a disaggregated pool as well.
Designing an AS solution in such a complex storage platform is not a trivial task since several layers are
involved in the I/O path. For our solution we view a storage server, a machine that holds an array of storage
devices, as a storage unit that provides read/write requests and we aim to add an extra request type to
perform a rather simple computation on the data requested and return the result of the computation
rather than the actual data. After a thorough examination we decided to apply the AS at the file system (FS)
level.

There are two main advantages of an AS implementation at the FS layer. Firstly, at the file system layer we
have the semantic information in respect of data distribution across storage servers. Therefore, we can
point to the exact storage servers that hold the data we are interested in. Secondly, I/O libraries that are
implemented on top of the file system can integrate AS without any additional effort. We expect that the
AS will be transparent to the end user and that the I/O libraries will handle the additional steps internally.
Such integration is crucial for the success of the AS. Otherwise, each application would have to manually
integrate AS hampering its acceptance by the scientific community. ESDM is an ideal candidate for such an
I/O library.

To implement AS at the FS layer, we utilise the input/output control (IOCTL) [IOCTL] mechanism. The IOCTL
is a system call that allows device specific I/O operations that are not able to be expressed by the regular
system calls. As a parameter it takes the file descriptor (the file must be already opened previously by a
regular open system call), the command code to execute and then a variable number of arguments
depending on the needs of each command. For our use case, the IOCTL that are implemented in addition to
the command code and a pointer to a buffer where the result will be stored get the same arguments as a
read system call.

The type of computations that would be possible to execute in an AS should be lightweight (with a low
arithmetic intensity) to prevent saturation of the storage servers CPU, which could harm the performance
of the file system service. Targeting to support a subset of computations offered with MPI reduce
[MPI_REDUCE] are examples of such operations. The calculation of the min/max/sum over some values is
another example of light weight operations. Such calculations can be heavily utilised by the libraries/tools
that operate on high level data formats that contain semantic information and a description of the actual
data, such as ESDM.

Figure 10 demonstrates an example of a pseudo-code with and without AS that would appear in an I/O
library. As we can see, without the use of the AS one must first issue the read request to fetch the data
from the storage servers to the client and then issue the compute function call. With the AS we merge
these two requests into one that is polymorphic and has as a parameter the type of computation to be
executed.

The complete architecture of the I/O path from our AS solution is presented in Figure 11. As can be seen,
there are two major components for the AS implementation: i) the client side and ii) the storage server
side.

Figure 10: I/O calls pseudo-code with and without Active Storage

ESiWACE2 Deliverable D4.2

 26

On the client side we have the application connecting with the I/O library that will have the AS integrated.
The I/O library then will issue the AS call to the file system client (in the example illustrated, it involves a
fuse implementation of a client-side file system that is the more complicated case in terms of the I/O path).
The file system client has the following tasks to serve and AS request: i) receive the AS request from the I/O
library directly or from the fuse client, ii) identify the storage servers that hold the pieces of data that the
request is for, iii) propagates the call to the storage servers, iv) retrieve the partial result from each storage
server, v) aggregate the partial result from each server and vi) return the final result to the I/O library.

On the storage server side, the following tasks are executed to serve an AS request. Firstly, the server
receives the AS request from the FS Client. Then it gathers file data belonging to the requested region. In
case that the actual data are not present in the high-performance storage it will send a read request to the
high-capacity storage servers to fetch all data. Once all data have been collected it executes the function
indicated by the AC request on the data. As a final step it submits the generated result back to the FS Client.

5. References
[ESiWACE2 D4.1] ESiWACE2 D4.1. (2021). Advanced softwarestack of Earth system data - Deliverable D4.1.
On Zenodo https://zenodo.org/record/4651493.

[cortx apps] https://github.com/Seagate/cortx-motr-apps.git, Accessed 30/08/2022

[libfabric] https://ofiwg.github.io/libfabric/, Accessed 30/08/2022

[lnet] https://wiki.lustre.org/Lustre_Networking_(LNET)_Overview, Accessed 30/08/2022

[Motr] https://github.com/Seagate/cortx-motr, Accessed 30/08/2022

[Spack] https://github.com/spack/spack, Accessed 30/08/2022

[IME] https://www.ddn.com/products/ime-flash-native-data-cache/, Accessed 30/08/2022

[IME_NATIVE] https://github.com/DDNStorage/ime_native, Accessed 30/08/2022

[ESDM] https://github.com/kchasapis/esdm, Accessed 30/08/2022

Figure 11: I/O PATH from the Application to the Storage Servers with Active Storage.

https://zenodo.org/record/4651493
https://github.com/Seagate/cortx-motr-apps.git
https://ofiwg.github.io/libfabric/
https://wiki.lustre.org/Lustre_Networking_(LNET)_Overview,
https://github.com/Seagate/cortx-motr
https://github.com/spack/spack
https://www.ddn.com/products/ime-flash-native-data-cache/
https://github.com/DDNStorage/ime_native
https://github.com/kchasapis/esdm

ESiWACE2 Deliverable D4.2

 27

[IO500] https://io500.org, Accessed 30/08/2022

[IOCTL] https://en.wikipedia.org/wiki/Ioctl, Accessed 30/08/2022

[Netcdf-Bench] https://github.com/joobog/netcdf-bench, Accessed 30/08/2022

[IME_PERF] Konstantinos Chasapis, Jean-Yves Vet, and Jean-Thomas Acquaviva (2019). Benchmarking
Parallel File System Sensitiveness to I/O patterns. In IEEE 27th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE, 427–428.

[IME_SION] Konstantinos Chasapis, Jean-Thomas Acquaviva, and Sebastian Lührs (2021). Integration of
Parallel I/O Library and Flash Native Ac- celerators: an Evaluation of SIONlib with IME. In Workshop on Chal-
lenges and Opportunities of Efficient and Performant Storage Systems (CHEOPS ’21), April 26, 2021, Online,
United Kingdom. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3439839.3458736

[MPI_REDUCE] https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/, Accessed 30/08/2022

6. Changes made and/or difficulties encountered, if any
The main change from Seagate’s side was to show the deployment of CORTX Motr on commodity hardware
at a Weather and Climate centre (DKRZ) since Mero was fully open sourced as CORTX Motr. The original
plan had been to provide an appliance based on Mero – considering that Mero was a closed source
product. This plan was changed after CORTX Motr had been made open source as discussed earlier. It was
decided to implement a user mode version of CORTX Motr in a VM, which can be easily installed on
commodity hardware.
The original cortx-motr and its support packages such as cortx-hare/cortx-utils etc are written to be
installed and operate system wide. All the required directories/binaries/logs etc used to be
installed/created in /root space. There used to be single motr session on a system to be operated by an
authorised user. Systemctl commands used to create motr sessions are not available to a normal user
(before Centos 8) since there used to be single system wide instance of Motr on sudo behalf and most of
the directories/binaries/logs location were hardcoded in Motr/Hare code.

So the major challenges encountered were:

1) Modification of the code to install all the required rpms in the user’s home directory instead of
/root space. This has been resolved by extracting all the required rpms in the user’s home
directory, and by performing the required environment setup to make it runnable/accessible by the
respective user. Mainly cortx-motr, cortx-hare, cortx-utils and isa-l rpms are used for this.

2) Modification of the code to make it runnable per user instead of only for a single root user, so that

individual users can run a motr session from their home directory location. It required larger scale
code changes to be made in cortx-motr as well as its support packages like cortx-hare to make it
runnable from the user's home directory independent of each other (cortx-motr and cortx-hare)

3) Find a way to run systemctl/motr-services on non-sudo user behalf so that different users can have

their own independent motr sessions. It required code changes to be made to run systemctl
services in user mode and use Centos 8 with updated systemd support, which allows running
systemctl services on non-sudo user behalf as well.

4) Once RPMS have been installed in a user’s home directory, make the required code changes so that

all the required binaries, as well as the required libraries, are searched and found at runtime, as by
default in the search is performed in system standard locations. Libmotr and libisal are major
libraries that required code changes in cortx-hare to pick it from the respective home directory at
runtime.

https://io500.org/
https://en.wikipedia.org/wiki/Ioctl
https://github.com/joobog/netcdf-bench
https://doi.org/10.1145/3439839.3458736
https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/

ESiWACE2 Deliverable D4.2

 28

Updated version of motr obtained after overcoming these challenges does not require any sudo privilege
for any motr cluster operations. On a single system, different users are expected to run and control their
respective motr cluster session independently without interfering with each other. All the required code is
installed/extracted in the seagate subfolder of the respective user’s home directory. Also, any logs or other
runtime-generated data are kept in user-specific directories to avoid any interference.

On the side of DDN the main challenge was related to the integration of IME within a new I/O library. While
this had been done previously on another scientific I/O library (SionLib), entering into the code of another
library is always technically committing. The validation of the code changes both from a functional and
performance standpoint is also an important element that requires a considerable engineering effort.The
most challenging part has been to set-up dedicated hardware resources in one of DDN’s lab, furthermore
as we are targeting large systems the testbed had to be of meaningful size. This means not only aggregating
the needed computing and storage resources but also the set-up and maintenance of the testbed (including
a back-end file system with a Lustre deployment).This effort was required because IME servers are
instantiated as appliances and cannot be easily shipped and installed on a partner cluster. Inserting storage
servers in an existing environment would have required root access and non-negligible security and
administrative hurdles. A lightweight validation on virtual machines or ad-hoc servers (white boxes) would
have been possible but at the cost of limiting the validation to functional validation and not performance
validation. Thus, we believe that with the help of netcdf-bench and the dedicated testbed in the DDN lab
we have offered the best validation process, even if this has required a large devops effort.We do believe
that future actions or projects should take into account these aspects and integrate a dedicated budget line
for in-house hosting of appliances and the corresponding process for remote root access at a scientific
partner site.

7. How this deliverable contributes to the European strategies for
HPC

This deliverable is very much aligned to the EuroHPC Joint Undertaking’s goals and missions as adopted by
the European Council in July 20213 to develop world class HPC capabilities in Europe. We provide below the
stated goals and show the alignment.

a) further develop, deploy, extend and maintain in the EU a world-class supercomputing and data
infrastructure, driven by key scientific, industrial and social applications;

b) develop and deploy a quantum computing and quantum simulation infrastructure
c) reach the next frontier of high-performance computing by acquiring the first exascale

supercomputers. These supercomputers are capable of more than a billion billion operations per
second (when compared to ten billion operations per second of an ordinary laptop device);

d) federate European supercomputing and quantum computing resources and make them accessible
to a wide range of public and private users everywhere in Europe, including for the European public
data spaces, as presented in the 2020 European Data Strategy;

e) provide secure cloud-based supercomputing services for a wide range of public and private users
everywhere in Europe;

f) support the development of innovative supercomputing technologies and applications to underpin
a world-class European HPC ecosystem;

3 https://digital-strategy.ec.europa.eu/en/policies/high-performance-computing-joint-
undertaking#:~:text=EuroHPC%20JU%20mission,top%205%20in%20the%20world.

https://digital-strategy.ec.europa.eu/en/policies/high-performance-computing-joint-undertaking#:%7E:text=EuroHPC%20JU%20mission,top%205%20in%20the%20world
https://digital-strategy.ec.europa.eu/en/policies/high-performance-computing-joint-undertaking#:%7E:text=EuroHPC%20JU%20mission,top%205%20in%20the%20world

ESiWACE2 Deliverable D4.2

 29

g) develop greener computing, and exploit the synergies of HPC with artificial intelligence, big data
and cloud technologies;

h) extend and widen the use of supercomputing to a wide range of scientific and industrial users, for
instance by helping SMEs develop innovative business cases using supercomputers and providing
them with training opportunities and the critical HPC skills they need via National HPC Competence
Centres;

i) deploy Centres of Excellence in HPC applications and the industrialisation of HPC software, with
novel algorithms, codes and tools optimised for future generations of supercomputers;

j) put in place large-scale industrial pilot test-beds and platforms for HPC and data applications and
services in key industrial sectors;

This deliverable has contributed towards maintaining a world class data infrastructure through innovate
storage solutions (a). The innovative storage technologies that are being assessed (from DDN and Seagate)
contribute to (f). Also, we hope that the appliances and technologies provided in this deliverable will
support the development of larger scale industrial test beds leveraging the storage technologies provided
here, and hence the deliverable contributes to (j). Technologies from DDN and Seagate also provide APIs to
support data ingest from the cloud as part of large scientific workflows. This also helps to provision these
storage resources as part of larger cloud federations that are very much applicable to initiatives such as
EOSC (European Open Science Cloud)4 and potentially the HPC side of GAIA-X5. Hence it contributes to (e)
and (f). Technologies developed in ESiWACE2 such as CORTX Motr are used in EuroHPC projects such as IO-
SEA6, helping to position Europe towards Exascale – especially in the area of storage and I/O. Hence the
work contributes to (c). The design effort for Active Storage is directly linked to a reduced energy footprint
for scientific data management and addresses (g).

8. Sustainability
The work in this deliverable is very synergistic to the IO-SEA project, in which CORTX Motr is being taken
forward to work with other applications and use cases through novel usage scenarios. Lessons learnt from
the Weather and Climate use cases are hence more broadly applied in IO-SEA. The storage system based on
CORTX Motr will also be provided to RED-SEA7 and DEEP-SEA8, which are part of the SEA projects.
A key aspect of the work performed in ESiWACE is the importance of I/O libraries. The ability to decouple
applications from the lower-level of the storage stack without performance impact is an important step
toward sustainability. Scientific applications are made more maintainable, and similarly storage frameworks
can evolve as long as the API with the I/O library is enforced. This shifts the focus toward careful API
definition and standardisation. The importance of decoupled software architectures and API design has
been addressed thoroughly in the ADMIRE EuroHPC project. On this aspect ESiWACE has been instrumental
for DDN. The design effort made for Active Storage is also part of a long-term R&D effort for DDN regarding
future storage product and their articulation with scientific applications.
This work is also highly synergistic and indeed a continuation of the work in D4.1 of ESiWACE2.
Seagate has learnt that Object stores are indeed viable for HPC use cases in the weather and climate realm
and also to other use cases in HPC. However, one the challenges to note is that the CORTX Motr API to
work with Motr Object store is very low level. This needs to be exposed through higher level interfaces
(such as ESDM and S3) to make it more suitable.
DDN has learnt a lot about weather and climate applications. DDN had the opportunity to invest in netcdf
and ESDM, which are respectively established and emerging standards for I/O management. Furthermore,

4 https://eosc-portal.eu
5 https://gaia-x.eu
6 https://iosea-project.eu/
7 https://redsea-project.eu/
8 https://www.deep-projects.eu/

https://eosc-portal.eu/
https://gaia-x.eu/
https://iosea-project.eu/
https://redsea-project.eu/
https://www.deep-projects.eu/

ESiWACE2 Deliverable D4.2

 30

and this should be noted, the project has been an opportunity to collaborate with other industrial partners
(i.e. Seagate), which we believe is important and fruitful for the community as a whole.

9. Dissemination, Engagement and Uptake of Results

a. Target audience
As indicated in the Description of the Action, the audience for this deliverable is:
X The general public (PU)
 The project partners, including the Commission services (PP)
 A group specified by the consortium, including the Commission services (RE)

 This report is confidential, only for members of the consortium, including the Commission services
(CO)

b. Record of dissemination/engagement activities linked to this deliverable

Type of
dissemination
and
communication
activities

Details Date and
location of the
event

Type of audience Zenodo Link Estimated
number of
persons
reached

Dissemination of
CORTX
Motr+ESDM
work by Seagate
- PLANNED

CORTX Meet
an Architect
Event

October 2022 Storage
technologists and
administrators

TBD 50

Discussion at
Emerging Open
Storage Systems
and Solutions
Workshop’23
(Organised
through IO-SEA
Project)
- PLANNED

EMOSS’23
Workshop

June 2023 Storage
Technologies and
administrators, HPC
application experts,

TBD 50

c. Publications in preparation OR submitted

In preparation
OR submitted?

Title All authors Title of the periodical or
the series

Is/Will open
access be
provided to
this
publication?

In Preparation Earth Systems Data
Middleware with CORTX
Motr

Ganesan Umanesan,
Sai Narasimhamurthy

White Paper (In
preparation) – initially
disseminated through
CORTX Open-Source
channels

Yes

d. Intellectual property rights resulting from this deliverable

Seagate – None
DDN – None. All codes produced are fully open source.

	1. Abstract / publishable summary
	2. Conclusion & Results
	3. Project objectives
	4. Detailed report on the deliverable
	4.1 CORTX Motr (Seagate)
	4.1.1 Introduction and Background
	4.1.2 CORTX Motr User Space Demonstration Steps
	4.1.3 ESDM on user space CORTX Motr - Steps
	4.1.4 Issues and Challenges
	4.1.5 Next steps (Seagate)
	4.2 ESDM with IME integration (DDN)
	4.2.1 Introduction and background
	4.2.2 ESDM with IME native interface integration
	4.2.3 ESDM with IME data backend benchmarking
	4.2.4 Active Storage Introduction and background
	4.2.5 Active Storage Architecture Overview
	5. References
	6. Changes made and/or difficulties encountered, if any
	7. How this deliverable contributes to the European strategies for HPC
	8. Sustainability
	9. Dissemination, Engagement and Uptake of Results

