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1. Abstract / publishable summary 
This deliverable reports on the two storage technologies from two vendors, DDN and Seagate, which were 
designed to work with the Earth System Data Middleware (ESDM) - details of which were reported in 
Deliverable D4.1 “Advanced software stack for Earth system data”[ESiWACE2 D4.1]. The expectation was 
that various storage appliances would have support for ESDM and could be deployed with ESDM at the 
weather and climate sites as ESDM would become available.  

Seagate demonstrated the CORTX Motr (formerly Mero) software installation being capable of working 
with commodity hardware, with the ability to be installed at the German Climate Computing Center (DKRZ) 
and other centres in the future as per their requirements. This is a change in strategy from Seagate for 
CORTX Motr. At the beginning of the project, the plan was to have an appliance based on Mero – as Mero 
was closed source software. However, during the time frame of ESiWACE2, Mero was open sourced as 
CORTX Motr – making it feasible to be deployed very widely on commodity hardware. Showcasing CORTX 
Motr’s capability to work on commodity hardware working with ESDM, we believe is a powerful message 
for the community rather than providing just a “closed” appliance. This deliverable hence takes that 
approach.  

DDN demonstrated the relevance and the efficiency of the Earth Systems Data Middleware (ESDM) 
developed during the ESiWACE project on state-of-the-art industrial storage technologies. DDN 
implemented a sophisticated integration of ESDM with the flash native, burst buffer solution product of 
DDN’s portfolio, Infinite Memory Engine (IME). As part of the integration ESDM now supports the IME 
native interface that bypasses the FUSE, allowing to obtain the maximum performance of IME. The code of 
the integration is available and accessible to everyone through GitHub. Using IME, DDN was able to 
produce performance results significantly beyond the state of the art in term of hardware / software 
cooperation. Furthermore, ESDM provides performance in the range of the low-level API while still offering 
a higher level of semantic to the end-user. The results were obtained within one of DDN’s labs using 5 IME 
appliances and 10 clients. With an aggregated peak I/O bandwidth of 100 GB/sec, this setting is 
representative of the core of the HPC / technical computing market. In addition to the lab set-up and the 
integration effort, DDN has led more theoretical and research-oriented work. In respect to the Active 
Storage task, DDN provided a complete design architecture and implemented a proof of concept (PoC). The 
prototype is expected to be ready within the Q1 of 2023. The PoC code of the active storage is available on 
GitHub. 

2. Conclusion & Results 
The following were the main conclusions and outcomes from the work:  

1. ESDM works with CORTX Motr from Seagate through the CORTX Motr API backend. The adaptation 
for ESDM on Mero (through the “Clovis backend”) was implemented early on in the project and 
reported in D4.1. The Clovis backend was renamed to CORTX Motr API after it was open sourced. 
ESDM was hence made to work with that backend and proven in this deliverable. 

2. The CORTX Motr software with ESDM was successfully deployed on a virtual machine emulating 
commodity hardware and requirements at DKRZ - suitable for adoption by other weather and 
climate centres.  

3. DDN has ported ESDM on its IME flash native appliance. Obtained results on ESDM are extremely 
good: ESDM provides a semantic consistent with the expectations of scientists while achieving 
performance comparable to the one obtained with low level proprietary API from DDN. 

4. DDN designed the architecture of the active storage/computational storage feature. An initial 
prototype is already available and the solution is planned to be ready within the Q1 of 2023.  

 

https://github.com/kchasapis/esdm
https://github.com/jean-thomas/Excalibur-CS
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3. Project objectives 
This deliverable contributes directly and indirectly to the achievement of all the macro-objectives and 
specific goals indicated in section 1.1 of the Description of the Action: 
 

Macro-objectives Contribution of 
this deliverable? 

(1) Enable leading European weather and climate models to leverage the available 
performance of pre-exascale systems with regard to both compute and data capacity 
in 2021. 

Yes 

(2) Prepare the weather and climate community to be able to make use of exascale 
systems when they become available. 

Yes 

 
 

Specific goals in the workplan Contribution of 
this deliverable? 

Boost European climate and weather models to operate in world-leading quality on 
existing supercomputing and future pre-exascale platforms 

 

Establish new technologies for weather and climate modelling Yes 

Enhance HPC capacity of the weather and climate community Yes 
Improve the toolchain to manage data from climate and weather simulations at 
scale 

Yes 

Strengthen the interaction with the European HPC ecosystem Yes 
Foster co-design between model developers, HPC manufacturers and HPC centres Yes 

 

4. Detailed report on the deliverable 
We will detail the approaches taken by Seagate and DDN on the appliances for weather and climate 
centres. 

4.1 CORTX Motr (Seagate) 
This section will discuss the implementation and deployment of CORTX Motr [Motr] on a virtual machine 
with ESDM. The original plan was to deploy CORTX Motr on the DKRZ working environment. However, after 
discussion with the DKRZ system administrators, it was decided to do this in a phased approach where:  

(a) We demonstrate CORTX Motr in User Space – as it minimises risks from a system admin 
perspective, rather than deploying experimental software in kernel space 

(b) Show that CORTX Motr in User Space with ESDM passes all the tests and satisfies the requirements 
for installation at DKRZ. This also gives tremendous flexibility for deploying CORTX Motr on any 
commodity hardware, if it is a User Space program 

(c) Start the work on moving this to an actual deployment 

We show (a) and (b) in this deliverable. (c) will be work that will continue in earnest in the future even after 
the end of the project – where Seagate will also continue to support DKRZ through the CORTX community. 

We next discuss the successful deployment of CORTX Motr in user space.  
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4.1.1 Introduction and Background  
CORTX Motr is an object storage system developed by Seagate and now fully open sourced. CORTX works 
on adapting any commodity storage hardware into a storage server suitable for HPC and cloud applications. 
In the following, the overall architecture of CORTX Motr server (also called just as “Motr”) is described and 
presented in Figure 1. 

 
 
Motr exposes an object I/O and Key Value (KV) interface through an access API and an extension API. The 
Key Values can be used to describe the Objects and overlay any higher level semantics on top of the object 
store such as POSIX, pNFS, S3, etc as indicated above. So the applications can access CORTX Motr natively 
or through such “gateways” through their respective clients. The extension interface is used to build 
various third party applications on top of the object store such as those needed for Hierarchical Storage 
Management (HSM), Replication, Indexing, File System Consistency Checking (FSCK), etc. Motr works on 
top of any commodity hardware server with HDDs, SDDs or NVRAM. The individual nodes of Motr are 
connected through a network that uses protocols such as “libfabric” [libfabric].  
 
Many HPC applications can use the CORTX Motr native access interface. In ESiWACE2 the native access 
interface is accessed through the “ESDM” gateway.  
 
A user space version of the CORTX Motr object store suitable for ESDM, and, weather and climate 
applications (and its usage and setup in a virtual environment) and its demonstration is described next.  

4.1.2 CORTX Motr User Space Demonstration Steps 
The original CORTX Motr is developed as a kernel module and it was dependent on various kernel mode 
modules such as “lnet” [lnet] which runs in kernel space  – required for running the networking services. 
Most of the motr services used to run with root user privileges and hence in root user session. The result 
was that one machine (hence all its storage pools) could be part of only one motr cluster. Also running a 
motr cluster required to have “Sudo” or equivalent privileges which posed security concerns if the cluster is 
to be controlled by a normal user and not admin/sudo-user. Further bugs in the kernel module could result 
in system crashes and making the system unusable. 

Figure 1: CORTX Motr Architecture. 
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In order to eliminate the above-mentioned limitations and security concerns, motr code is further 
enhanced to work as a user-mode driver and use libfabric instead of lnet. Libfabric is a user-mode library 
providing similar network functionality as lnet as required by motr. Also, all the sudo/root access 
requirements have been removed and now it can be run by a normal user without any special sudo 
privilege requirement. Each user session is independent and is expected to be capable of running multiple 
motr instances on a single machine and users can control the cluster independently. All user specific 
code/data resides in respective user home directory to avoid any interference. 

These outcomes were as a result of continued discussions with DKRZ, including the system administrators 
and the ESiWACE2 project stakeholders from WP4. 

We next demonstrate CORTX Motr working in user space and the steps that need to be undertaken to 
achieve it – as presented to someone that wants to perform it. A package usermode-motr.tar.gz1 was 
supplied by Seagate to run a single node CORTX Motr cluster through the following steps.  

With this package, the following steps demonstrated CORTX Motr in user space (suitable for deployment on 
commodity hardware at DKRZ) along with ESDM tests on top of it. Please note that we summarise the steps 
– but then also provide some commands and screen shots inline, used to reproduce these. We will also 
make the below instructions openly available.  

Step 1 - Checking Operating System (OS) and machine requirements 
The following are the hardware and Operating System (typical of commodity hardware) that was 
successfully tested for the user space version of CORTX Motr (in a virtual machine). A similar environment 
needs to be used for CORTX Motr deployment.  

(a) Hardware tested: x86_64 machine was tested as below 

      
(b) OS tested: Centos version 8 was tested (with systemd>=239) as below 

 
 
Step 2 - Checking Red Hat Package Managers (RPMS) requirements 
The usermode-motr.tar.gz package that is supplied has the following RPMs that are available. These include 
core CORTX Motr core functionality, CORTX Utilities and development tools, the configuration and high 
availability component called CORTX Hare, Intel’s intelligent storage acceleration library that contains 
erasure coding API functions and some python utility programs provided by Seagate. 

1) isa-l-2.30.0-1.el7.x86_64.rpm (Intelligent storage acceleration library) 

                                                 
1 https://seagatetechnology.sharepoint.com/:u:/r/sites/gteamdrv1/tdrive1224/Shared 
Documents/Components/EsiWACE Motr Cluster/Vimlesh/USERMODE/usermode-
motr.tar.gz?csf=1&web=1&e=DCZRQe  Available upon request 

https://seagatetechnology.sharepoint.com/:u:/r/sites/gteamdrv1/tdrive1224/Shared%20Documents/Components/EsiWACE%20Motr%20Cluster/Vimlesh/USERMODE/usermode-motr.tar.gz?csf=1&web=1&e=DCZRQe
https://seagatetechnology.sharepoint.com/:u:/r/sites/gteamdrv1/tdrive1224/Shared%20Documents/Components/EsiWACE%20Motr%20Cluster/Vimlesh/USERMODE/usermode-motr.tar.gz?csf=1&web=1&e=DCZRQe
https://seagatetechnology.sharepoint.com/:u:/r/sites/gteamdrv1/tdrive1224/Shared%20Documents/Components/EsiWACE%20Motr%20Cluster/Vimlesh/USERMODE/usermode-motr.tar.gz?csf=1&web=1&e=DCZRQe
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2) cortx-py-utils-2.0.0-2_72f9d68.noarch.rpm (Utilities)  
3) cortx-motr-2.0.0-1_git450998d6.el8.x86_64.rpm (Core Functionality) 
4) cortx-motr-devel-2.0.0-1_git450998d6.el8.x86_64.rpm (Development Tools) 
5) cortx-hare-2.0.0-1_git032746b.el8.x86_64.rpm (Configuration and High Availability) 

 
Step 3 - Building the RPMS  
The following RPMs are built as per the below instructions:  

motr rpms: 
$ git clone https://github.com/Seagate/cortx-motr.git 
$ cd ~/cortx-motr 
$ git checkout -b esiwace remotes/origin/esiwace2-dkrz 
$ ./autogen.sh 
$ ./configure  --with-user-mode-only 
$ make clean; make rpms 

 
cortx-utils rpms: 

$ cd ~/cortx-utils 
$ ./jenkins/build.sh -v 2.0.0 -b 2 

 
cortx-hare rpms: 

Please install cortx-motr rpms before building hare rpms and erase/uninstall after  
cortx-hare rpm is built. 
$ cd ~ 
$ git clone https://github.com/Seagate/cortx-hare.git 
$ cd cortx-hare 
$ git checkout -b esiwace remotes/origin/esiwace2-dkrz 
$ make rpm 

 
isa-l rpms: 

$ git clone https://github.com/daos-stack/isa-l 
$ cd isa-l 
$ git checkout -b isl-2.30 845f488c54ef27dfbee66b498099acda65344cf1 
$ make 

 
Step 4 - Setting up the Config requirements  
The below scripts available in usermode-motr.tar.gz are then run.  

- user-journal-enable.sh 
- motr-script.sh 

“user-journal-enable.sh” is an optional script and is required to provide user mode journalctl access to non-
root user. Journalctl is a utility for querying and displaying logs from journald, systemd's logging service. 
“motr-script.sh” script is required to perform initial user-mode environment setup from available rpms and 
other sources inside the usermode-motr directory obtained after running untar of usermode-motr.tar.gz 
  

https://github.com/Seagate/cortx-motr.git
https://github.com/Seagate/cortx-hare.git
https://github.com/daos-stack/isa-l
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Step 5 - Setting up motr cluster environment 
The following are the steps needed to set up the Motr cluster in user space. 
Untar usermode-motr.tar.gz: 

$ tar –xf usermode-motr.tar.gz 
$ cd usermode-motr 

 
 
Configure user-mode access to journalctl:  
The script user-journal-enable.sh is run to enable/configure user-mode access to journalctl logs by non-root 
user so that users can view logs generated by user-unit services run by them. 

$ sudo sh user-journal-enable.sh 
 
Configure /etc/libfab.conf: 
The user needs to configure libfabric by providing network protocol (like tcp/ib) and interface (like 
eth0/enp0s3, as on your system) to be used.  
Example: 

$ sudo sh -c 'echo "networks=tcp(enp0s3)" > /etc/libfab.conf' 
$ cat /etc/libfab.conf networks=tcp(enp0s3) 

 
Step 6 - Operating the CORTX Motr user mode cluster 
The below steps demonstrate the basic operation of the CORTX cluster in user mode. We demonstrate 
successful starting, shutting down and querying the status of the CORTX Motr cluster (single node). 
“hctl” or “Hare control” commands control the operation of the CORTX Motr cluster through the Hare 
module described earlier.  
All the operations/services are executed on behalf of user executing hctl cluster commands. So, each user 
session is independent. All directories generated during cluster operations reside within the user home 
directory inside $HOME/seagate/.  
Examples:  

$HOME/seagate/var/lib/hare,  
$HOME/seagate/var/motr,  
$HOME/seagate/var/log/motr, 
$HOME/seagate/var/log/seagate/,  
$HOME/seagate/etc/motr  
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Before setting up cluster  

 
 
After setting up cluster (/bootstrapping]), we get new directories created as intel/ for (isa-l), .config/ and 
Seagate under $HOME/. 

 
 
Setting up (per-user) environment: 
The following script is run to setup motr preboot user mode environment. Cortx-motr/utils/hare/isa-l rpms 
are by-default taken from usermode-motr directory, the rpms names/location in the script are modified if 
required. 

$ sh motr-script.sh 
$ source env.sh 

 
Bootstrapping the cluster: 

$ htcl  bootstrap --mkfs ~/CDF.yaml 
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Status of the cluster: 
$ hctl status 

 
 

 
 
Shutting down the cluster: 

$ htcl shutdown 

 
 
Starting the cluster: 

$ htcl start 

 
 
Step 7 - Checking CORTX Motr logs in user-mode 
Use journalctl facility to view logs generated by motr. Journalctl provides user-specific log messages and 
the user running journalctl is able to see only logs which belong to them and not from any other users or 
system logs. 
Example commands:  

$ journalctl –-user –xe 
$ journalctl --since "2 min ago" 
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4.1.3 ESDM on user space CORTX Motr - Steps 
The following steps demonstrate ESDM on the user space instantiation of CORTX Motr.  

Step 1 – Building CORTX Motr for ESDM integration 
Cortx-motr should be built with the following configuration for ESDM integration. 

$ git clone https://github.com/Seagate/cortx-motr.git 
$ cd cortx-motr 
$ ./autogen.sh 
$ ./configure  --enable-finject 
$ make rpms 
$ yum localinstall cortx-motr-2.0. 0-1_git*.el8.x86_64.rpm 

 
Step 2 – Building & Installing ESDM with NetCDF 
Before embarking for building ESDM, the following dependencies need to be installed. 
 
Step 2-1 – Installing Spack tool  
“Spack” [Spack] is a multiplatform package manager that builds and installs multiple versions and 
configurations of software. It is installed as follows.  
Clone the git repository 

$ git clone --depth=2 https://github.com/spack/spack.git spack 
$ . spack/share/spack/setup-env.sh 

 
Set a gcc version to be used  

$ export gccver=8.5.0 
 
Install dependencies 

$ spack install gcc@$gccver +binutils 
$ spack compiler find 

https://github.com/Seagate/cortx-motr.git
https://github.com/spack/spack.git
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$ spack install autoconf%gcc@$gccver 
$ spack install openmpi%gcc@$gccver  
$ spack install gettext%gcc@$gccver 
$ spack install jansson%gcc@$gccver  
$ spack install glib%gcc@$gccver 
$ spack install cmake%gcc@$gccver 

 
Load dependencies 

$ spack load gcc@$gccver 
$ spack load autoconf%gcc@$gccver 
$ spack load libtool%gcc@$gccver 
$ spack load openmpi%gcc@$gccver 
$ spack load jansson%gcc@$gccver 
$ spack load cmake%gcc@$gccver 
$ spack load glib%gcc@$gccver 

 
These dependencies need to be loaded every time, enabling a user login into new session. 
 
Step 2-2 – Installing ESDM with NetCDF enablement 
ESDM from the GitHub repository is cloned and configured as below.  

$ git clone https://github.com/ESiWACE/es 
 
Configure the repository as follows:  

$ cd esdm 
$ pushd deps 
$ ./prepare.sh 
$ popd 
$ ./configure \$    --prefix=${PREFIX} \$    --enable-netcdf4 
$ cd build 
$ make 
$ make install  

 
Step 2-3 – Installing netCDF with ESDM 
After the installation of ESDM, the NetCDF module is installed as below. The steps below are followed for 
the cloning, configuration and installation. 

$ git clone https://github.com/ESiWACE/esdm-netcdf-c. 
$ cd esdm-netcdf-c 
$ ./bootstrap 
$ export INSTAPATH=/path-to-ESDM-installation/ 
$ ./configure \ 
      --prefix=$prefix \ 
      --with-esdm=$INSTPATH \ 
      LDFLAGS="-L$INSTPATH/lib" \ 
      CFLAGS="-I$INSTPATH/include" \ 
      CC=mpicc \ 
      --disable-dap 
$ make -j 
$ make install 

 
 
 

https://github.com/ESiWACE/es
https://github.com/ESiWACE/esdm-netcdf-c
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Step 3 – Testing ESDM with Motr Cluster 
Step 3-1 – Generation of the ESDM.conf file 
For testing with the motr cluster, ESDM should be provided with the Motr connection parameters in the 
esdm.conf file located in the search path. esdm.conf will be loaded with the following contents for the 
same purpose. 

{ 
        "esdm": { 
                "backends": [ 
                        { 
                                "type": "MOTR", 
                                "id": "c1", 
                             "target": "inet: tcp:192.168.50.39@21501  
inet: tcp:192.168.50.39@22001 0x7000000000000001:0x4f 0x7200000000000001:0x29", 
"performance-model”: {"latency”: 0.0137, "throughput”: 3218.0}, 
                                "max-threads-per-node”: 8, 
                                "max-fragment-size”: 268435456, 
                                "max-global-threads”: 64, 
                                "accessibility”: "global" 
                        } 
                ], 
                "metadata": { 
                        "type": "metadummy", 
                        "id": "md", 
                        "target": “. /metadummy" 
                  } 
        } 

The contents in bold type in the above snippet should be replaced with the corresponding parameters 
specific to the cluster (DKRZ cluster). 
The parameters “target” are interpreted as :  <local address>, <hax_address>, <Profile ID>, 
<local_process_fid>. 

The same could be obtained, if the cluster had been started already, and then using the following command 
located in the clovis (cortx-motr-apps) application, if installed in the system. 

$ cd cortx-motr-apps 
$ sudo ./script/motraddr.sh -d 
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The cortx-motr-app client application can be installed using the following GitHub link: 
https://github.com/Seagate/cortx-motr-apps.git [cortx apps]. These apps perform four basic operation 
such as 1.) creating an object, 2.) writing to an object, 3.) reading from an object, and 4.) deleting an object. 
 
Step 3-2 – Running test cases designed for ESDM testing 
For running the esdm test cases located in the esdm/src/test directory, the below steps should be followed.  
The cortx-motr user mode tar file (usermode-motr.tar.gz) is downloaded into the user's local home 
directory.  
 
The user mode cortx motr code base is untarred in the home directory using the following commands and a 
few bash scripts are executed as shown to setup the user mode cortx. 

$ tar -xf usermode-motr.tar.gz 
$ cd usermode-motr 
$ source ./motr-script.sh 
$ source ./env.sh 

 
The cluster is then bootstrapped using the following commands 

$ hctl bootstrap --mkfs   ~/CDF.yaml 
 
If the cluster comes up, it will be greeted by the following screen. 

 
  
If required, the following command can be used to assess the state of the cluster. 

$ hctl status 

  
 
After going through the above steps successfully, we can run the esdm test cases on the CORTX Motr user 
mode cluster. 

$ cd ~/esdm/build 
$ make test 

https://github.com/Seagate/cortx-motr-apps.git
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Step 3-3 – Verifying results  
The current motr cluster has been tested with ESDM using:  

$ cd ~/esdm/build 
$ make test 

 
[753123@ssc-vm-g4-rhev4-1305 build] # make test 
Running tests... 
Test project /root/pkg/esdm/build 
      Start 1: basic-types-conversion-tst 
 1/38 Test #1: basic-types-conversion-tst        .......   Passed    0.00 sec 
      Start 2: basic types 
 2/38 Test #2: basic types        ......................   Passed    0.00 sec 
      Start 3: derived-attr-serde 
 3/38 Test #3: derived-attr-serde      ...............   Passed    0.00 sec 
      Start 4: derived-types 
 4/38 Test #4: derived-types         ....................   Passed    0.00 sec 
      Start 5: ser-dtype 
 5/38 Test #5: ser-dtype         ........................   Passed    0.00 sec 
      Start 6: serde 
 6/38 Test #6: serde     ........................   Passed    0.00 sec 
      Start 7: string-stream-benchmark 
 7/38 Test #7: string-stream-benchmark         ..........   Passed    2.88 sec 
      Start 8: tst-conversion-all 
 8/38 Test #8: tst-conversion-all         ...............   Passed    0.00 sec 
      Start 9: tst-conversion-lu 
 9/38 Test #9: tst-conversion-lu         ................   Passed    0.00 sec 
      Start 10: tst-conversion 
10/38 Test #10: tst-conversion.         .................   Passed    0.00 sec 
      Start 11: tst-precision 
11/38 Test #11: tst-precision        ....................   Passed    0.00 sec 
      Start 12: metatest 
12/38 Test #12: metatest    .........................   Passed    0.03 sec 
      Start 13: a-many-dims-stress-test 
13/38 Test #13: a-many-dims-stress-test   ..........   Passed   22.21 sec 
      Start 14: a-many-fragments-stress-test 
14/38 Test #14: a-many-fragments-stress-test        .... ***Failed    0.02 sec 
      Start 15: a-writeback-benchmark 
15/38 Test #15: a-writeback-benchmark       ............ ***Failed    0.04 sec 
      Start 16: attributes 
16/38 Test #16: attributes      .......................    Passed    0.02 sec 
      Start 17: data-conversion 
17/38 Test #17: data-conversion        ..................   Passed    0.02 sec 
      Start 18: data-copy-benchmark 
18/38 Test #18: data-copy-benchmark        ..............   Passed    1.80 sec 
      Start 19: datatype-serializer 
19/38 Test #19: datatype-serializer        ..............   Passed    0.03 sec 
      Start 20: fill-value 
20/38 Test #20: fill-value        .......................   Passed    0.58 sec 
      Start 21: fragment-selection-benchmark 
21/38 Test #21: fragment-selection-benchmark        ....   ***Failed  1.03 sec 
      Start 22: fragmentation-method 
22/38 Test #22: fragmentation-method        .............  ***Failed  0.03 sec 
      Start 23: grid 
23/38 Test #23: grid        .............................   Passed    0.67 sec 
      Start 24: hypercube 
24/38 Test #24: hypercube        ........................   Passed    0.07 sec 
      Start 25: incomplete-copy 
25/38 Test #25: incomplete-copy        ..................   Passed    0.02 sec 
      Start 26: init 
26/38 Test #26: init        .............................   Passed    1.42 sec 
      Start 27: metadata_nc 
27/38 Test #27: metadata_nc        ......................   Passed    0.94 sec 
      Start 28: readwrite-benchmark 
28/38 Test #28: readwrite-benchmark        ..............   Passed    7.24 sec 
      Start 29: readwrite-conversion 
29/38 Test #29: readwrite-conversion        .............   Passed    0.65 sec 
      Start 30: readwrite 
30/38 Test #30: readwrite        ........................   Passed    1.51 sec 
      Start 31: scil 
31/38 Test #31: scil        .............................   Passed    0.63 sec 
      Start 32: unlim-dim 
32/38 Test #32: unlim-dim        ........................   Passed    1.79 sec 
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      Start 33: write-simple 
33/38 Test #33: write-simple        .....................   Passed    0.57 sec 
      Start 34: write-stream 
34/38 Test #34: write-stream .....  Subprocess aborted***Exception:   0.37 sec 
      Start 35: write 
35/38 Test #35: write        ............................   Passed    2.74 sec 
      Start 36: zopen-dset-2x 
36/38 Test #36: zopen-dset-2x        ....................   Passed    0.53 sec 
      Start 37: zread-stream 
37/38 Test #37: zread-stream        .....................   Passed    0.52 sec 
      Start 38: zread 
38/38 Test #38: zread        ............................   Passed    0.68 sec 
  
87% of the tests passed, and 5 tests out of 38 failed.  
  
Total Test time (real) = 49.07 sec 
  
The following tests FAILED: 
         14 - a-many-fragments-stress-test (Failed) 
         15 - a-writeback-benchmark (Failed) 
         21 - fragment-selection-benchmark (Failed) 
         22 - fragmentation-method (Failed) 
         34 - write-stream (Subprocess aborted) 
 
Errors while running CTest 
Output from these tests can be found in: /root/pkg/esdm/build/Testing/Temporary/LastTest.log 
Use "--rerun-failed --output-on-failure" to re-run the failed cases verbosely. 
make: *** [Makefile:71: test] Error 8 

 
33 out of 38 tests have passed.  
Test case #34 failed due to missing implementation of the one ESDM motr API 

(static int    esdm_backend_t_motr_fragment_write_stream_blocksize (esdm_backend_t * b, 
estream_write_t * state, void * c_buf, size_t c_off, uint64_t c_size).  

And 4 tests failed due to their Posix setup requirement. 
Please note that the failed tests, however, have been confirmed as not critical from the perspective of a 
demonstration of ESDM on CORTX Motr.  
 
To run one testcase at a time, the following commands should be followed. 

For example, if it is required to run testcase #20 only, the command is composed using the 
following template:  ctest -I <start test case no> <end test case no> --output-on-failure  
 
$ cd ~/esdm/build 
$ ctest -I 20,20 --output-on-failure 

  
 
To view the test log, use the following command: 

$ cat   ~/ esdm/build/Testing/Temporary/LastTest.log 
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4.1.4 Issues and Challenges  
We next discuss some of the implementation issues and challenges that we faced in the Cortx Motr user 
mode deployment with ESDM. More general challenges are discussed later.  
 
Challenges 

• Understanding the CMake build system  
ESDM follows the CMake type build system, but due to its versatileness, and not having proper 
understanding initially, it took a little arduous effort to assimilate and to fix the motr connection 
issue with ESDM. But however, after having put in a fair share of effort, it was fixed successfully. 

 
Issues 

• Motr was not connecting with ESDM 
Solution:  In the current ESDM build, there happens to be a lack of a few motr-specific changes in 
order to connect to cortx motr. This build only serves the purpose of Posix-based unit testing. So, 
the required CMake files were modified to make cortx motr connection in order. 

 
• A few ESDM test cases were failing due to block aligned issue with Cortx-motr 

Solution:  Since cortx motr has the constraint of only accepting block aligned amounts of data 
either for reading or writing, a few ESDM test cases failed.  The required code changes were made 
in the ESDM code base to take care of the same. Most of the failed test cases ran successfully after 
that.  

 
• Test #34: write-stream failed even after the block aligned issue removal 

34/38 Test #34: write-stream .....................Subprocess aborted***Exception:   1.11 sec 
The above-mentioned test case was failing, even after the block aligned issue had been fixed. This 
is due to the lack of implementation of motr specific API. This API is currently under development. 

 
• User mode cortx-motr cluster setup should be made generic and run by any user non-intrusively 

Motr-script.sh was modified appropriately with generic variables, so that any user can set up the 
cluster without worrying about any user-specific changes in their configuration files.  

 

4.1.5 Next steps (Seagate) 
The user mode version of CORTX Motr + ESDM, as demonstrated, was agreed to be sufficient to move 
forward with the actual installation at DKRZ. To start with, the installation will be done on a test cluster. 
This is work in progress. Seagate will continue to support the installation even after the end of the project 
(through the CORTX Community). The user mode VM will be made available to other weather and climate 
data centres – which we hope will be a precursor for actual deployment. The performance will depend on 
the hardware on which CORTX Motr is installed since its open source software. Performance tests will be 
planned once we have the hardware instantiation at DKRZ.  
 

4.2 ESDM with IME integration (DDN) 
4.2.1 Introduction and background 

The goal pursued by this work is two-fold, first to help application developers to keep the focus on their 
problem without requesting in-depth analysis of the storage system, second to deliver the highest level of 
I/O performance. ESDM is targeting to improve I/O performance for earth system simulation as used in 
climate and weather applications from the perspective of an I/O library. It exploits structural information 
exposed by workflows, applications as well as data description formats such as HDF5 and NetCDF to 
organise metadata and data more efficiently across a variety of storage backends. ESDM provides as well a 
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higher level of abstraction, thus allowing scientists to keep the focus on the expression of their problems, 
while shielding them from the underlying storage complexity. 
On the other hand, storage is still undergoing a deep revolution with the arrival of Flash devices, storage 
class memory and cloud. Within the scope of the project, DDN worked on integrating Flash storage devices 
in ESDM, to provide the best performance without impacting the end users' codes. The flash integration 
within ESDM is implemented with the Infinite Memory Engine (IME) [IME] product of DDN. IME is a Scale-
Out Flash Cache Layer using NVMe SSDs inserted between the compute cluster and the back-end parallel 
file system. It leverages the intrinsic flash properties, such as low latency, high bandwidth and the capability 
to be byteaddressable at minimal performance cost. 

 
Figure 2 illustrates the I/O path from the compute nodes to the parallel file system with the IME inserted 
between them. IME is configured as a cluster with multiple NVMe servers. IME handles the I/O data traffic 
and forwards the metadata requests to the parallel file system. The purpose of IME is to accelerate difficult 
I/O patterns such as small or random I/O, and targeting shared files with high concurrency by taking 
advantage of Flash device characteristics. IME is implemented as thin software I/O management and shifts 
the burden of complex metadata operations to the underlying file system layer. IME is not a full-fledged file 
system and thus relies on the underlying file system to serve metadata calls. Furthermore, IME storage 
capacity is usually more limited than the file system’s one, as IME is fully built with expensive NVMe 
devices. A spill-over mechanism is implemented in IME to move data to the file system when IME reaches 
capacity saturation.  
From an end user standpoint, there are two major methods that ESDM can utilise to interact with IME. 
Without any modification to the ESDM, it can benefit from IME using the IME FUSE client utilising the POSIX 
backend. However, the IME FUSE client adds overhead, which includes a system call and the use of the fuse 
module with an additional copy from user to kernel space. These software overheads are known issues, but 
were considered as negligible in respect of the high latency of rotating devices. The disruptive apparition of 
Flash devices, with order of magnitude lower latency, suddenly shifts the bottleneck from the hardware to 
the software layers. Figure 3 shows a few of the layers within the kernel space that must be crossed to 
serve an I/O system call. Apart from the cost of the hardware operation itself, the software overhead is also 
significant. Fuse adds a copy of the data from user space to kernel space using a 128 KB buffer (The 128 KB 
limit has been extended to 1 MB for kernel starting 4.2). The size of this buffer prevents large I/O request to 
mitigate the latency cost for the call chain. For I/O of large size, the call stack will have to be traversed 
multiple times.  

Figure 2: IME as part of the I/O path from the compute node to the parallel file system. 
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A second induced bottleneck is that fuse requires a lock between processes writing from the same node to 
a shared file. This lock can have a dramatic performance overhead for I/O highly concurrent accesses. It 
should be noted that this lock is not needed in the case of Flash systems which provide byte addressable 
accesses, thus avoiding the false sharing issue. In addition to the system call overhead, any fuse file system 
implementation must pay an extra penalty for crossing twice from user to kernel space and vice versa. As 
illustrated in Figure 3, any fuse call from the user application must cross from the user space to kernel, is 
forwarded to the fuse kernel module, propagated to the fuse user space library, served from the user level 
implementation of the file system, and finally returned through all the layers. IME tackles this overhead by 
offering applications a custom I/O interface called IME native. The IME native interface is publicly available 
at [IME_NATIVE]. This interface remains similar to POSIX but requires explicit calls of the API. IME provides 
a client library that can be exposed to the application directly with the IME client eliminating additional 
layers and minimising overhead as shown in Figure 5.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
As illustrated by the previous figures, Fuse is a critical component for the performance of the data flows. 
Out of this work on Flash, DDN acknowledges the importance of Fuse, both the kernel module and the 
user-space library. While not being directly within the scope of the ESiWACE project, following IME 
development, DDN is dedicating engineering resources to deliver improvements (software patches) to the 
fuse open-source code. All the produced code is pushed upstream to the fuse and kernel community. 
 

Figure 3: Summary of function calls and layers to serve an I/O call from user space up to storage device in 
respect to the execution time. 

Figure 5: I/O path with ESDM and IME fuse client 
Figure 4: I/O path with ESDM and IME 

native integration. 
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4.2.2 ESDM with IME native interface integration 
To integrate the ESDM with the IME native interface we implemented a new data backend for ESDM. The 
I/O path from the application to ESDM and to the IME client is illustrated in Figure 4 for the case of the IME 
Fuse and in Figure 5 for the case of IME native. Using Fuse offers genericity at the cost of a more complex 
data flow, form a portability perspective it is possible to run directly ESDM software on IME Fuse interface. 
However, at the expense of performance degradation. The IME backend support also the Native interface, 
where application directly call the IME client API, bypassing all the need of buffering attached to POSIX calls 
managed by Fuse. The goal of our work was to interface the ESDM software with the IME native client API. 
Any applications using ESDM will then transparently get the high performance provided by IME native API. 
To summarize, IME native interfaces the ESDM links directly to the IME client, in contrast to IME fuse, 
which requires crossing the user to kernel space barrier two times. Furthermore, IME native is an 
application-level call, thus saving the overhead of a system call. Therefore, the IME Native API is the most 
performant and shortest call path from an application to the IME client.  
 
The new IME native ESDM data backend is implemented at: src/backemds-data/ime2. The implementation 
is based on the POSIX backend and has been modified accordingly to support the IME native interface. The 
following commands demonstrate how one can utilise the IME backend for ESDM. The initial step is to 
clone the GitHub repository of ESDM, the integration of IME native has been already merged in the master 
brunch of ESDM. The second step is to configure ESDM with IME support. In order to properly configure 
ESDM, a configuration parameter is needed to specify the paths to IME libraries and header files. The rest 
of the compilation and installation steps are the same and are described in section 4.1.2 Step 8.  

$: git clone https://github.com/ESiWACE/esdm.git 
$: cd esmd  
$: ./configure --with-ime-include=/opt/ddn/ime/include/ --with-ime-lib=/opt/ddn/ime/lib  
--enable-netcdf4  

 
To utilise the IME native interface, one must specify ΙΜΕ as the backend type and provide the path to the 
IME mount point in the target field in the ESDM configure file. Figure 6 illustrates an example configuration 
file of where IME is mounted in the /tmp/esdm directory. Last, we have verified that the integration of the 
IME native interface did not affect the results of the internal ESDM test results.  

 
Figure 6: ESDM configuration with IME native data backend. 

                                                 
2 https://github.com/kchasapis/esdm/tree/master/src/backends-data/ime 

https://github.com/kchasapis/esdm/tree/master/src/backends-data/ime
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4.2.3 ESDM with IME data backend benchmarking  
Evaluation methodology 
To measure the performance improvement of the IME native integration with ESDM we leverage the 
“netcdf-bench” [Netcdf-Bench] and run tests in an internal DDN cluster. The netcdf-bench is a tool 
dedicated to measure the I/O performance of scientific workloads on large scale systems. One of the 
motivations of the development of netcdf-bench is to fill the gap between pure I/O benchmarks, which 
tend to be focused on the lower level of the software stack, and application coarse grain measurements, 
which tend to overlook I/O. This tool mimics the typical I/O behaviour of scientific climate applications and 
in combination with the support of the ESDM backend makes it relevant for performance testing. To 
leverage the ESDM backend with the netcdf-bench, one must link ESDM with the custom ESDM-NetCDF. 
For our experiments we perform all the steps needed to compile and link ESDM with ESDM-NetCDF as 
described in detail in the ESDM GitHub [ESDM]. 
 
The experimental parameter space of our testing is structured by 4 parameters of netcdf-bench: 

• Type of I/O to be performed: Independent / Collective I/O, 
• Chunk geometry, 
• Block geometry,  
• Interface to be selected for the low level I/O calls: IME Fuse (POSIX) or IME native. 

 
By experimenting with different chunk/block geometries and the type of I/O, we can quantify the sensitivity 
of performance in relation to the low-level interface used. We focus our evaluation on the write path, since 
this is the most demanding scenario from a scientific applications perspective, specifically for those 
applications using check-pointing.  
 
Although in our experiments we do not compare the performance of IME against traditional file systems, 
this comparison has been already published at [IME_PERF]. This publication utilised the IO500 [IO500] 
benchmark and clearly illustrates the benefits of IME in contrast to a traditional file system.  
 
Experimental Results 
Our experimental testbed consists of 10 client/compute nodes connected to 5 IME servers which 
themselves are connected to the backing parallel file system (BFS) as illustrated in Figure 7. 
 

 Figure 7: Benchmarking Testbed setup. 
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Each client node is equipped with 2 X Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz, 128 GB DDR4 RAM and a 
Mellanox Technologies MT27500 Family [ConnectX-3] InfiniBand card. As for the IME servers, we use the 
IME 240 machines, which have: 2 X Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, 128 GB RAM, 2x InfiniBand 
cards Mellanox Technologies MT27700 Family [ConnectX-4] and 21 Intel Corporation DC P3520 SSD. Each 
IME server has a data capacity of 25 TB. The 4 servers' configuration can host up to 100 TB of data on its 
flash devices. However, since the number of compute clients is a bit limited in respect of real-world 
systems, we have configured the IME cluster to utilise only one InfiniBand card on each server. This allows 
compute nodes to put more pressure on the server and measure the impact of saturation. 
 
As for the backing parallel file system we use a single server with Lustre that is equipped with Mellanox 
Technologies MT27700 Family [ConnectX-4], 2 X Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz and 256 GB 
DDR4 RAM. For all the experiments the BFS is used only to serve the metadata requests and the IME 
servers’ data inject performance is not impacted by the fact that a single node with limited bandwidth is 
used as a BFS.  
 
For all the experiments we write a total of 327 GB per node, which is sufficient to fill caches and provides 
stable results across multiple runs and makes sure that each test result is reproduceable dropping caches 
between each run.  All the performance experiments have been conducted in exclusive mode, i.e., to limit 
interference, no other users are allowed on the testbed, neither on IME servers nor on compute nodes. 
 

 
 
Figure 8 presents the aggregated write throughput reported by the netcdf-bench varying the number of 
processes (strong scaling) from 1 to 32 in a single client. The main takeaway from this figure is the 
performance gap between ime-fuse and ime-native. As we can see, IME native outperforms IME-fuse and 
this is aligned with the expectations, since fuse is introducing an additional lock, thus serialising accesses. In 
terms of actual performance gain, depending on the number of processes, improvement ranges from 1.2x 
to 1.6x. Furthermore, IME-native can achieve close to max performance with only 4 processes. We can also 
notice a slight performance reduction of IME-fuse when using more than 16 processes, which reflects the 
overhead of parallelism (lock overhead). Regarding IME-Native, performance still takes advantage of a 
higher number of threads, but gains remain marginal. 
 
Figure 9 illustrates the aggregated write throughput reported by the netcdf-bench varying the number of 
client nodes (weak scaling). For this set up we use 16 processes per node. Like for the case above, IME-

Figure 8: netcdf-bench reported write throughput varying the number of processes in a single client. 
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native outperforms IME-fuse even in the case that we utilise more client nodes. The performance benefit of 
IME-native over IME-fuse is 1.2x to 1.3x.  
Another set of tests that we did was with the type of I/O that the netcdf-bench will perform. The 
benchmark supports three different types of I/O: i) independent, ii) collective and iii) file-per-process. In a 
typical file system and without the use of an I/O library, the different I/O types would have resulted in 
different I/O performance outcomes. However, with the case of IME and ESDM the performance 
remainsidentical and independent on the type of I/O selected. 
 

 
Conclusions 
From our evaluation we demonstrate the performance improvement of the IME-native interface over IME-
fuse. Depending on the case we can reach a performance improvement from 1.2x up to 1.6x. Similar results 
have also been obtained for the integration of IME with a different scientific I/O library named SION I/O. 
The results of the integration have been published at [IME_SION].  

4.2.4 Active Storage Introduction and background  
Active Storage (AS), sometimes referred to as Computational Storage (CS), represents architectures in 
which the storage devices/platforms not only host data but can also perform computation on these hosted 
data.  AS architectures can dramatically reduce data movements between storage plane and the compute 
plane of an IT system. The benefits of such data reduction are several including: i) reduce network 
utilisation ii) faster time to solution iii) cost efficiency especially in edge and cloud environments and iv) 
energy savings. 
 
Within the scope of the project, we worked on an AS design for the use case of a supercomputer that 
utilises a parallel file system. In the following section we provide a detailed overview of the architecture 
that we propose.  

4.2.5 Active Storage Architecture Overview  
The emergence of Flash storage devices has dramatically changed the I/O path in supercomputers. The 
availability of a new technology with superior performance but higher cost has led to an increased 
complexity of storage architectures with multiple tiers. The goal of these new architectures is to extract the 
best performance from Flash while mitigating the cost. Nowadays, the storage system of a supercomputer 
usually includes several tiers. Tiers can be implemented in several ways, as a discrete resource hosted in 

Figure 9: netcdf-bench reported aggregated write throughput varying the number of nodes with 16 
processes per node. 
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the compute nodes themselves (local storage) or as a disaggregated resource, i.e. a shared pool of 
resources, typically instantiated as a large burst buffer tier in between the compute nodes and the archive 
tier. Notice that both architectures can be combined with local storage and a disaggregated pool as well. 
Designing an AS solution in such a complex storage platform is not a trivial task since several layers are 
involved in the I/O path. For our solution we view a storage server, a machine that holds an array of storage 
devices, as a storage unit that provides read/write requests and we aim to add an extra request type to 
perform a rather simple computation on the data requested and return the result of the computation 
rather than the actual data. After a thorough examination we decided to apply the AS at the file system (FS) 
level.  
 
There are two main advantages of an AS implementation at the FS layer. Firstly, at the file system layer we 
have the semantic information in respect of data distribution across storage servers. Therefore, we can 
point to the exact storage servers that hold the data we are interested in. Secondly, I/O libraries that are 
implemented on top of the file system can integrate AS without any additional effort. We expect that the 
AS will be transparent to the end user and that the I/O libraries will handle the additional steps internally. 
Such integration is crucial for the success of the AS. Otherwise, each application would have to manually 
integrate AS hampering its acceptance by the scientific community. ESDM is an ideal candidate for such an 
I/O library.  
 
To implement AS at the FS layer, we utilise the input/output control (IOCTL) [IOCTL] mechanism. The IOCTL 
is a system call that allows device specific I/O operations that are not able to be expressed by the regular 
system calls. As a parameter it takes the file descriptor (the file must be already opened previously by a 
regular open system call), the command code to execute and then a variable number of arguments 
depending on the needs of each command. For our use case, the IOCTL that are implemented in addition to 
the command code and a pointer to a buffer where the result will be stored get the same arguments as a 
read system call. 
 
The type of computations that would be possible to execute in an AS should be lightweight (with a low 
arithmetic intensity) to prevent saturation of the storage servers CPU, which could harm the performance 
of the file system service. Targeting to support a subset of computations offered with MPI reduce 
[MPI_REDUCE] are examples of such operations. The calculation of the min/max/sum over some values is 
another example of light weight operations. Such calculations can be heavily utilised by the libraries/tools 
that operate on high level data formats that contain semantic information and a description of the actual 
data, such as ESDM. 
 
Figure 10 demonstrates an example of a pseudo-code with and without AS that would appear in an I/O 
library. As we can see, without the use of the AS one must first issue the read request to fetch the data 
from the storage servers to the client and then issue the compute function call. With the AS we merge 
these two requests into one that is polymorphic and has as a parameter the type of computation to be 
executed.  

 
 
The complete architecture of the I/O path from our AS solution is presented in Figure 11. As can be seen, 
there are two major components for the AS implementation: i) the client side and ii) the storage server 
side.  

Figure 10: I/O calls pseudo-code with and without Active Storage 
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On the client side we have the application connecting with the I/O library that will have the AS integrated. 
The I/O library then will issue the AS call to the file system client (in the example illustrated, it involves a 
fuse implementation of a client-side file system that is the more complicated case in terms of the I/O path). 
The file system client has the following tasks to serve and AS request: i) receive the AS request from the I/O 
library directly or from the fuse client, ii) identify the storage servers that hold the pieces of data that the 
request is for, iii) propagates the call to the storage servers, iv) retrieve the partial result from each storage 
server, v) aggregate the partial result from each server and vi) return the final result to the I/O library.  
 
On the storage server side, the following tasks are executed to serve an AS request. Firstly, the server 
receives the AS request from the FS Client. Then it gathers file data belonging to the requested region. In 
case that the actual data are not present in the high-performance storage it will send a read request to the 
high-capacity storage servers to fetch all data. Once all data have been collected it executes the function 
indicated by the AC request on the data. As a final step it submits the generated result back to the FS Client.  
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6. Changes made and/or difficulties encountered, if any  
The main change from Seagate’s side was to show the deployment of CORTX Motr on commodity hardware 
at a Weather and Climate centre (DKRZ) since Mero was fully open sourced as CORTX Motr. The original 
plan had been to provide an appliance based on Mero – considering that Mero was a closed source 
product. This plan was changed after CORTX Motr had been made open source as discussed earlier. It was 
decided to implement a user mode version of CORTX Motr in a VM, which can be easily installed on 
commodity hardware.  
The original cortx-motr and its support packages such as cortx-hare/cortx-utils etc are written to be 
installed and operate system wide. All the required directories/binaries/logs etc used to be 
installed/created in /root space. There used to be single motr session on a system to be operated by an 
authorised user. Systemctl commands used to create motr sessions are not available to a normal user 
(before Centos 8) since there used to be single system wide instance of Motr on sudo behalf and most of 
the directories/binaries/logs location were hardcoded in Motr/Hare code. 
 
So the major challenges encountered were: 
 

1) Modification of the code to install all the required rpms in the user’s home directory instead of 
/root space. This has been resolved by extracting all the required rpms in the user’s home 
directory, and by performing the required environment setup to make it runnable/accessible by the 
respective user. Mainly cortx-motr, cortx-hare, cortx-utils and isa-l rpms are used for this. 

 
2) Modification of the code to make it runnable per user instead of only for a single root user, so that 

individual users can run a motr session from their home directory location. It required larger scale 
code changes to be made in cortx-motr as well as its support packages like cortx-hare to make it 
runnable from the user's home directory independent of each other (cortx-motr and cortx-hare) 

 
3) Find a way to run systemctl/motr-services on non-sudo user behalf so that different users can have 

their own independent motr sessions. It required code changes to be made to run systemctl 
services in user mode and use Centos 8 with updated systemd support, which allows running 
systemctl services on non-sudo user behalf as well. 

 
4) Once RPMS have been installed in a user’s home directory, make the required code changes so that 

all the required binaries, as well as the required libraries, are searched and found at runtime, as by 
default in the search is performed in system standard locations. Libmotr and libisal are major 
libraries that required code changes in cortx-hare to pick it from the respective home directory at 
runtime. 

https://io500.org/
https://en.wikipedia.org/wiki/Ioctl
https://github.com/joobog/netcdf-bench
https://doi.org/10.1145/3439839.3458736
https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
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Updated version of motr obtained after overcoming these challenges does not require any sudo privilege 
for any motr cluster operations. On a single system, different users are expected to run and control their 
respective motr cluster session independently without interfering with each other. All the required code is 
installed/extracted in the seagate subfolder of the respective user’s home directory. Also, any logs or other 
runtime-generated data are kept in user-specific directories to avoid any interference.  
 
On the side of DDN the main challenge was related to the integration of IME within a new I/O library. While 
this had been done previously on another scientific I/O library (SionLib), entering into the code of another 
library is always technically committing. The validation of the code changes both from a functional and 
performance standpoint is also an important element that requires a considerable engineering effort.The 
most challenging part has been to set-up dedicated hardware resources in one of DDN’s lab, furthermore 
as we are targeting large systems the testbed had to be of meaningful size. This means not only aggregating 
the needed computing and storage resources but also the set-up and maintenance of the testbed (including 
a back-end file system with a Lustre deployment).This effort was required because IME servers are 
instantiated as appliances and cannot be easily shipped and installed on a partner cluster. Inserting storage 
servers in an existing environment would have required root access and non-negligible security and 
administrative hurdles. A lightweight validation on virtual machines or ad-hoc servers (white boxes) would 
have been possible but at the cost of limiting the validation to functional validation and not performance 
validation. Thus, we believe that with the help of netcdf-bench and the dedicated testbed in the DDN lab 
we have offered the best validation process, even if this has required a large devops effort.We do believe 
that future actions or projects should take into account these aspects and integrate a dedicated budget line 
for in-house hosting of appliances and the corresponding process for remote root access at a scientific 
partner site. 
 

7. How this deliverable contributes to the European strategies for 
HPC 

This deliverable is very much aligned to the EuroHPC Joint Undertaking’s goals and missions as adopted by 
the European Council in July 20213 to develop world class HPC capabilities in Europe. We provide below the 
stated goals and show the alignment.  
 

a) further develop, deploy, extend and maintain in the EU a world-class supercomputing and data 
infrastructure, driven by key scientific, industrial and social applications; 

b) develop and deploy a quantum computing and quantum simulation infrastructure 
c) reach the next frontier of high-performance computing by acquiring the first exascale 

supercomputers. These supercomputers are capable of more than a billion billion operations per 
second (when compared to ten billion operations per second of an ordinary laptop device); 

d) federate European supercomputing and quantum computing resources and make them accessible 
to a wide range of public and private users everywhere in Europe, including for the European public 
data spaces, as presented in the 2020 European Data Strategy; 

e) provide secure cloud-based supercomputing services for a wide range of public and private users 
everywhere in Europe; 

f) support the development of innovative supercomputing technologies and applications to underpin 
a world-class European HPC ecosystem; 

                                                 
3 https://digital-strategy.ec.europa.eu/en/policies/high-performance-computing-joint-
undertaking#:~:text=EuroHPC%20JU%20mission,top%205%20in%20the%20world. 

https://digital-strategy.ec.europa.eu/en/policies/high-performance-computing-joint-undertaking#:%7E:text=EuroHPC%20JU%20mission,top%205%20in%20the%20world
https://digital-strategy.ec.europa.eu/en/policies/high-performance-computing-joint-undertaking#:%7E:text=EuroHPC%20JU%20mission,top%205%20in%20the%20world
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g) develop greener computing, and exploit the synergies of HPC with artificial intelligence, big data 
and cloud technologies; 

h) extend and widen the use of supercomputing to a wide range of scientific and industrial users, for 
instance by helping SMEs develop innovative business cases using supercomputers and providing 
them with training opportunities and the critical HPC skills they need via National HPC Competence 
Centres; 

i) deploy Centres of Excellence in HPC applications and the industrialisation of HPC software, with 
novel algorithms, codes and tools optimised for future generations of supercomputers; 

j) put in place large-scale industrial pilot test-beds and platforms for HPC and data applications and 
services in key industrial sectors; 

This deliverable has contributed towards maintaining a world class data infrastructure through innovate 
storage solutions (a). The innovative storage technologies that are being assessed (from DDN and Seagate) 
contribute to (f). Also, we hope that the appliances and technologies provided in this deliverable will 
support the development of larger scale industrial test beds leveraging the storage technologies provided 
here, and hence the deliverable contributes to (j). Technologies from DDN and Seagate also provide APIs to 
support data ingest from the cloud as part of large scientific workflows. This also helps to provision these 
storage resources as part of larger cloud federations that are very much applicable to initiatives such as 
EOSC (European Open Science Cloud)4 and potentially the HPC side of GAIA-X5. Hence it contributes to (e) 
and (f). Technologies developed in ESiWACE2 such as CORTX Motr are used in EuroHPC projects such as IO-
SEA6, helping to position Europe towards Exascale – especially in the area of storage and I/O. Hence the 
work contributes to (c). The design effort for Active Storage is directly linked to a reduced energy footprint 
for scientific data management and addresses (g). 

8. Sustainability  
The work in this deliverable is very synergistic to the IO-SEA project, in which CORTX Motr is being taken 
forward to work with other applications and use cases through novel usage scenarios. Lessons learnt from 
the Weather and Climate use cases are hence more broadly applied in IO-SEA. The storage system based on 
CORTX Motr will also be provided to RED-SEA7 and DEEP-SEA8, which are part of the SEA projects. 
A key aspect of the work performed in ESiWACE is the importance of I/O libraries. The ability to decouple 
applications from the lower-level of the storage stack without performance impact is an important step 
toward sustainability. Scientific applications are made more maintainable, and similarly storage frameworks 
can evolve as long as the API with the I/O library is enforced. This shifts the focus toward careful API 
definition and standardisation. The importance of decoupled software architectures and API design has 
been addressed thoroughly in the ADMIRE EuroHPC project. On this aspect ESiWACE has been instrumental 
for DDN. The design effort made for Active Storage is also part of a long-term R&D effort for DDN regarding 
future storage product and their articulation with scientific applications. 
This work is also highly synergistic and indeed a continuation of the work in D4.1 of ESiWACE2. 
Seagate has learnt that Object stores are indeed viable for HPC use cases in the weather and climate realm 
and also to other use cases in HPC. However, one the challenges to note is that the CORTX Motr API to 
work with Motr Object store is very low level. This needs to be exposed through higher level interfaces 
(such as ESDM and S3) to make it more suitable.  
DDN has learnt a lot about weather and climate applications. DDN had the opportunity to invest in netcdf 
and ESDM, which are respectively established and emerging standards for I/O management. Furthermore, 

                                                 
4 https://eosc-portal.eu 
5 https://gaia-x.eu  
6 https://iosea-project.eu/  
7 https://redsea-project.eu/ 
8 https://www.deep-projects.eu/ 

https://eosc-portal.eu/
https://gaia-x.eu/
https://iosea-project.eu/
https://redsea-project.eu/
https://www.deep-projects.eu/
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and this should be noted, the project has been an opportunity to collaborate with other industrial partners 
(i.e. Seagate), which we believe is important and fruitful for the community as a whole. 

9. Dissemination, Engagement and Uptake of Results 
 

a. Target audience 
As indicated in the Description of the Action, the audience for this deliverable is: 
X The general public (PU) 
 The project partners, including the Commission services (PP) 
 A group specified by the consortium, including the Commission services (RE) 

 This report is confidential, only for members of the consortium, including the Commission services 
(CO) 

 
b. Record of dissemination/engagement activities linked to this deliverable  

Type of 
dissemination 
and 
communication 
activities 

Details Date and 
location of the 
event 

Type of audience Zenodo Link Estimated 
number of 
persons 
reached 

Dissemination of 
CORTX 
Motr+ESDM 
work by Seagate  
- PLANNED 

CORTX Meet 
an Architect 
Event 

October 2022 Storage 
technologists and 
administrators 

TBD 50 

Discussion at 
Emerging Open 
Storage Systems 
and Solutions 
Workshop’23 
(Organised 
through IO-SEA 
Project)  
- PLANNED 

EMOSS’23 
Workshop 

June 2023 Storage 
Technologies and 
administrators, HPC 
application experts,  

TBD 50 

 
c. Publications in preparation OR submitted 

In preparation 
OR submitted? 

Title All authors Title of the periodical or 
the series  

Is/Will open 
access be 
provided to 
this 
publication? 

In Preparation Earth Systems Data 
Middleware with CORTX 
Motr 

Ganesan Umanesan,  
Sai Narasimhamurthy 

White Paper (In 
preparation) – initially 
disseminated through 
CORTX Open-Source 
channels 

Yes 

 
d. Intellectual property rights resulting from this deliverable 

Seagate – None 
DDN – None. All codes produced are fully open source.  
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