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Abstract— In this work, a control scheme for approaching
and unveiling a partially occluded object of interest is proposed.
The control scheme is based only on the classified point cloud
obtained by the in-hand camera attached to the robot’s end
effector. It is shown that the proposed controller reaches in the
vicinity of the object progressively unveiling the neighborhood
of each visible point of the object of interest. It can therefore
potentially achieve the complete unveiling of the object. The
proposed control scheme is evaluated through simulations and
experiments with a URSe robot with an in-hand RealSense
camera on a mock-up vine setup for unveiling the stem of a
grape cluster.

I. INTRODUCTION

As opposed to the structured industrial environment, farm-
ing fields are unstructured and the objects of interest (OOI),
e.g. fruits, stalks, or stems, are in many cases either partially
or completely occluded, when the robot attempts to acquire
information related to them. Furthermore, in most cases, the
fruit cannot be concretely modelled, as it involves structural
uncertainties and its location is not known a priori [1].
Therefore, the challenge of visually unveiling the OOI, by
tackling the problem of avoiding possible occlusions, e.g.
leaves or branches, is widely reported and is considered as
a non-trivial issue in agricultural robotics [1]-[3].

In this work we consider the problem of approaching and
unveiling a partially occluded object of interest by an eye-in-
hand robot to enable a subsequent task of grasping or cutting.
We assume a perception system that can on-line classify
the obtained points of the cloud to those belonging to the
object of interest and the rest of the objects that potentially
occlude it and develop a novel method to achieve increasing
visibility of the partially occluded object by moving the
manipulator. This method is developed to be integrated in
the mobile bi-manual robot depicted in Fig. [I] performing
grape harvesting. The method can be generalized to multiple
applications involving humanoid robots attempting to reach
an occluded OOI, while operating in cluttered, unstructured
environments. In this paper, the initial lab tests with a static
manipulator are presented.

II. RELATED LITERATURE AND CONTRIBUTIONS

The methods for visually unveiling the OOI, by addressing
the problem of occlusions considering a robot with an in-
hand camera, can be divided in three main categories: RGB
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Fig. 1: Mobile bi-manual harvesting robot

image based optimization approaches, 3D scene geometry
based approaches and machine learning based approaches.

A. RGB image-based optimization approaches

According to the optimization-based approaches, which
exploit only RGB information, an optimization function is
defined, and the motion of the robot aims at maximizing (or
minimizing) this function. In the context of visual unveiling
of the OOI, one commonly selected optimization function is
the visible area of the object of interest, i.e. the number of
pixels of the OOI within the image captured by the camera.
More specifically, in [2], an agricultural harvesting scenario
is considered and the optimization function involves the
pixels of the visible OOI, as well as a manipulability mea-
sure. However, for finding the gradient of the optimization
function, which defines the direction towards the function’s
maximization, 9 cameras placed in a 3x3 grid-fixture were
utilized and attached to the robot’s end-effector. On the other
hand, methods relying on a single camera for maximizing an
optimization function involve either a predefined scanning
path to obtain multiple views [4], which may be time and
energy consuming, or probing strategies for exploration [5],
which yield suboptimal solutions.

B. 3D scene geometry-based approaches

Methods that utilize information about the 3D scene
geometry are the most popular solutions amongst the robotics
literature. According to such approaches, the control signal
which actuates the in-hand camera is based on the informa-
tion about the 3D geometry of the environment, acquired via
appropriate sensors, e.g. RGB-D cameras or LiDARs.



Most of the methods of this category assume a known and
modelled environment and/or involve a known target (i.e.
an object with known and predefined geometry/structure)
[6]-[12]. More specifically, in [6], an autonomous drone
equipped with a camera is considered, with the obstacles
being modelled by spheres and the target (i.e. the OOI) being
a point-feature having a known position. In [7], the authors
propose a control scheme for self-occlusion avoidance during
visual servoing, considering a complete knowledge of the
object’s model. In [8], a trajectory planning algorithm for
reaching a specific target is presented, which assumes that the
complete occlusion-free space is known and/or is computable
a priori. Similarly, in [9], the complete geometry of the
obstacles (clutter) within the environment is assumed to be
known, e.g. by the CAD in an industrial task, based on
which the occlusion-free space is analytically calculated,
considering a sphere-like visual target with a known position.
Following this line of thought, the approaches of [10] and
[11] also assume that the 3D model of the target object and
the obstacles in the workspace are known a priori. Lastly,
in [12], although the obstacles are not modelled, the normal
vectors at each point of the surface of the OOI are assumed to
be known or computable, which implies that the OOI surface
is either pre-modelled or can be modelled on-line.

In [13], a method which does not involve the modelling
of the environment or the target is proposed. However, it is
applicable only in the case of a 2D navigation of a platform,
as a number of virtual 1-dof curves are defined around the
robotic platform, having a geometry which cannot be directly
extended to the 3D space.

C. Machine learning based approaches

A machine learning approach is proposed in [1], built
on top of [2]. In particular, in [1] as opposed to [2], a
convolutional neural network (CNN) is utilized, to estimate
the gradient of the optimization function, making the method
also applicable by utilizing only a single camera setup
instead of 9 cameras required in [2]. However, the training
of the CNN requires a large and representative training
dataset. Although this dataset can be gathered via a simulated
environment, transferring the trained controller to the field is
still a challenging task. In [14], an eye-in-hand grasping task
is considered and a CNN is utilized for calculating a grasping
feasibility map. However, to find the “next best view”, the
method requires the exploration of the task space (e.g. to
pass through various viewpoints), and the calculation of the
grasping map at each view point of the task space, making
this method time and energy consuming.

Finally, a work which cannot be easily classified in one
of the aforementioned categories is [15], in which a wavelet
transformation is utilized in order to perform a visual ser-
voing task by avoiding occlusions. However, this method
requires the knowledge of the exact pattern or model of the
OOI, to assess the similarity via the wavelet transformation.
Unfortunately, this information is usually not available in
robotically assistive farming applications.

D. Main contributions

As opposed to the RGB image-based optimization ap-
proaches and the machine learning based approaches, the
proposed method does not involve task space exploration
motions and does not require the availability of multiple
in-hand cameras. Furthermore, as opposed to the geometry-
based approaches, the proposed method does not require the
models of the OOI or the surrounding obstacles but their
related point clouds. To the best of the authors knowledge
there are no previous methods for unveiling an OOI that do
not involve exploration motions, do not require the models
of the OOI and the environment or they utilize only one
RGB-D in-hand camera.

III. PROBLEM DESCRIPTION

Consider the availability of an N-dof robotic manipulator
with an RGB-D camera attached to its end-effector. Let q €
R be the vector of the joint variables of the manipulator,
with IV being the number of joints. In the case of a mobile
manipulator the degrees of freedom include those of the
mobile platform (3 dof). In the rest of the paper, most
variables are expressed in the camera frame. Expressions in
other frames (e.g the world frame) will be denoted by a left
superscript.

Let °T. € SE(3) be the homogeneous transformation
expressing the generalized pose of the camera frame {C} in
the world inertial frame {0}, involving its position °p.(q) €
R? and its orientation °R.(q) £ [x. y. z.] € SO(3). Let
us further denote by v. the generalized body velocity of
the camera’s frame consisted of the translational velocity
ORT%, and the rotational velocity S(w,) = °RI°R., with
S(.) denoting the skew-symmetric matrix. We assume that
the system is aware of the center of the region of interest
(ROI) that is defined as a sphere and includes at least one
object of interest (OOI), that should not necessarily be visible
by the robot when it is away from the ROI. For example,
a grape cluster in the center of ROI has an associated stem
that may not be visible at start.

Let p, € R3 be the center of the ROI and » € Ry be
its radius. We assume that given the point-cloud perceived
by the RGB-D camera, the perception algorithm can on-line
classify the points of the cloud in two categories: a) those
belonging to the OOI and b) the rest of the point-cloud which
may belong to surfaces that occlude the OOI. For instance,
in the grape harvesting case, the OOI is the stalk of the grape
cluster, while the rest of the point cloud may be points of
the leaves, branches, supporting wires or even the rest of
the fruit. Let p; € R3, i = 1,...,n be the currently visible
points of the OOI and p, ; € R3, j = 1,...,m be the rest
of the points which belong to surfaces that may occlude the
observation of the OOL

We assume a robot that provides a position or velocity
control interface which is true for most of the commercially
available collaborative robots. In the kinematic level, the
controlled system can be expressed in the joint space as
q = J'(q)u., where J*T € RV*6 is a pseudo inverse of
the end-effector Jacobian matrix J(q) € R®*¥ and u, € R®



is the control input that takes the form of the body reference
velocity of the camera’s frame and which should be designed
in order to achieve the following objectives:

1) The end-effector has to smoothly reach the region of
interest (ROI), which can be mathematically expressed
as: limy_,o0||pr(t)||— 7 < r, for some 7 > 0.

2) To maintain the center of ROI at the center of the
field of view, as much as possible, which can be
mathematically expressed as: 6(p,) — 0, for t — oo,
where (p,) £ cos™! ﬁ;pﬁ

p- and the camera’s view direction which we assume

without loss of generality that coincides with the z-axis

of the camera’s frame z = [0 0 1]T. Notice that § cannot
be more than g, since the center of ROI p,. is within
the field of view of the camera.

3) To maximize the visible area of the object of interest,
i.e. to maximize the perceived number of points of the
point-cloud of OOI.

Objective [T] aims at moving the end-effector to any of the
points of the ROI while objective [2| aims at aligning the z-
axis of the camera with the vector pointing to the center
of ROI. Clearly these two objectives can be achieved by
reaching any point in ROI with specified two orientation
degrees of freedom (DOF) of the camera frame. Given the
task redundancy the third objective is set to select the point
in ROI that visually unveils the OOI as much as possible.

is the angle between

IV. PROPOSED CONTROL SCHEME

The controller superimposes two control signals v.1, Vo
as follows:

U; = V1 + Ve, (D

in the form of end-effector body velocities which are:

e v.1 € RS ROI reaching & centering control signal,
which is designed to fulfill the first two control objec-
tives (Objective [1] and Objective [2)).

e Ve € RS: OOI active perception control signal, which
is designed to fulfill the last objective (Objective [3)),
which is related to the maximization of the visible area
of the OOL.

Each signal, acting alone, aims at achieving the respective
objective. The proposed control scheme is designed so that
veo = 0 when no points of the OOI are visible, i.e. n = 0.
Then the ROI reaching & centering controller is acting alone.
Such a case may occur during the start of the motion when
the camera is far from the ROI and the OOI starts being
visible only when it approaches or enters the ROIL.

A. ROI reaching & centering control signal

Notice that control objectives [I] and 2| can be achieved
by appropriately translating and rotating the end-effector
camera. Mathematically, the first objective is fulfilled when
the camera position p,. converges to the manifold °€2:

%02 {p. e R*: f(°p. — "p;) <0}, 2)

with f(x) £ xTx — r? for any x € R3. Since ’p, =
R.p, + p. the manifold () condition can be expressed in
the camera frame C as f(p,) < 0.

Objective [2] regards the orientation of the camera. It is
achieved when the camera’s z-axis points to the center of
the ROIL.

To achieve these objectives, we propose the control signal:

A kpmax(O, f(pr))pr
vcl - koek I (3)

where for the translational part we use the approach of [16]
and k,, k, € R are constant positive gains for translation
and orientation respectively and ¢ € [0, 7] and k are the
angle and axis of the minimum rotation between p, and

z £ [0 0 1]7, which can be calculated by the following

expressions:
S(z)pr
k = & (4)

T
6 = cos™! (z pr> , ,
|-l 1S(z)p:|

where S(z) is the skew symmetric matrix of the z.
Notice that v.; is continuous and its value is zero if and
only if f <0 and 6§ =0.

Proposition 1. Setting u. = v, achieves asymptotic con-
vergence to a point that fulfills Objectives [I] and [2}

The proof can be found in the Appendix.

B. Visually unveiling OOI active perception control

Assume the simple case depicted in Figure |2} Let p; be a
visible point of the object of interest (OOI). Let p, be the
center of a spherical obstacle that can potentially occlude the
OOI for a camera pose. The ray from the camera p. to p;
shown Figure 2] is in the camera’s field of view since p; is
visible. The vector normal to this ray from p, intersects the
ray at point p. Let # € R>( be the distance along the normal
from the obstacle surface to p. It is clear that the maximum
visible spherical region centered at p; has a radius r, which
is always greater or equal to 7. Comparing instances A and
B of Figure [2] notice that if the distance of the camera from
Pp: remains constant or less, the greater the value of 7, the
greater the volume of the neighborhood of p; that is unveiled.

Based on this observation, we design a control signal for
the camera’s body velocity v, which can be seen as a
rotation of the camera around p; in order to guarantee that
7 > d., and that its derivative is positive, i.e., that 7 will
increase so that the unveiled region around p; will increase.

Consider the general case of p; € R®,i = 1,...,n cur-
rently visible points and p, ; € R®,j = 1,...,m obstacles.
Given the aforementioned idea we draw our inspiration from
our previous work [17] where virtual constraints are imposed
on the surface of a forbidden region given as a point cloud
via repulsive artificial potentials for surgical applications.
We propose the utilization of a barrier artificial potential
field around each obstacle, which induces a virtual repulsive
velocity u; ;, acting at P, j, which is the nearest point of the
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Fig. 2: Basic concept involving a single point of the OOI and a
single point as an obstacle.

i-th ray from the j-th obstacle and is calculated by:

0, if np oo <0

~ A iPy

Pij = g}; Poj, if Hp ToqPos € (0 lpil) . (5
Pi, fm 0,j = ||Pz||

The proposed barrier artificial potential function, depicted
in Figure [3] is designed to induce a repulsive velocity only
within a predefined distance dy € Rso from the obstacle
surface; it is defined as follows:

V() =42 @) - (©6)
0, otherwise
where
Fij = [[Pij — Pojll—de

with d. € R+ the obstacle’s spherical radius that is selected
for minimizing the coverage of the empty space between
neighboring points of the obstacle cloud. Notice that the
value of the artificial potential tends to infinity when the
surface of the obstacle is reached from outside in order to
guarantee obstacle/occlusion avoidance.

15

Tij

Fig. 3: Artificial potential function for vyz.

The virtual commanded repulsive velocity is then given
by

P (7)
d2
aZ—(do—71.,)2 In (dg (do—7; )2> e;j, iff;; <do
03, otherwise
where e; ; € R? is given by:
. DPij—Poj
eij = (do —-raj)iﬁg??gjj1;9;?7~ ®)
ij — Po,j

which is a vector at the direction of the normal to the ray
with magnitude proportional to the distance along the normal
from the obstacle’s surface.

The virtual repulsive velocity possesses the following
properties:

o |lu; ;|I# 0, if and only if 0 < 7; ; < do, and u; ; # O if
and only if #; ; > do, which means that the signal will
not be affected by rays that are not within the range of
influence of the j-th obstacle point, defined by dj.

e |[uj [[— oo, when 7; ; — 0, i.e. when the i-th ray
approaches the surface of the j-th obstacle. Notice that
lPi,; — Po,jll cannot be less than d,, as it reflects the
accuracy of the RGB-D camera, by definition.

e u; ; is continuous with respect to P; ;.

e However, u;; is, in general, not continuous in time,
as P;,Po,; and even n,m depend on the point-cloud
perceived by the RGB-D camera during its motion; as
more points of the OOI, previously occluded, enter into
the field of view, it is possible that some of them induce
a non-zero control signal. This discontinuity can be
remedied by a first order low-pass filter.

To synthesize the total proposed control signal v.o, we
calculate the angular velocity w; ;, which is induced by the
virtual repulsive velocity u; ; around an axis passing from
p: and defined by the cross product of the directions of u
and p;. This angular velocity is given by:

S(Pi.;—pi .o p]
i, {Hu if piyPos € Ollpil) o)
03, otherwise

By summing the w; j-s acting on the i-th pivot point, we

get the total angular velocity for the i-th OOI point, which

is given by:
m
£ Z Wi j € R3.
j=1

Lastly, to synthesize the total control signal v.o, the w;-s
are superimposed after calculating the corresponding linear
velocity at the end-effector. This superimposition is given

by: .
é Z|: pz]wZ€R6

where k € R is a positive tunable gain.

Taking the time derivative of the artificial potential (6)),
we find that: V = wu su; 4, which is less or
equal than O, given that Hp”||< ||pZ|| which is true by
construction. This means that V' is bounded and that 7; ;
is increasing within the area of influence, due to the fact
that V(7 ;) is a decreasing function of 7;; (see Fig. [3).
Therefore, p; will not be occluded by the obstacle centered
at p,, ;. Furthermore, given that the linear velocity of vy is
orthogonal to p;, which implies that ||p;|| remains constant,
the maximum radius of visibility around p; is increased
with the proposed control signal. As a result, the progressive
unveiling of more points of the OOI occurs in a chain-
reaction manner, i.e. by unveiling progressively more and
more OOI points.

(10)

(1)



V. PERFORMANCE ANALYSIS THROUGH SIMULATIONS

To assess the performance of the proposed con-
troller, which involves the superposition of the two body
camera/end-effector velocities (]I[), we tested it for 100 ran-
domly 3D generated scenes with m = 5 spherical obstacles
that may occlude the OOI. We considered a linear segment
as being the OOL. In particular, the procedure of the random
scene generation is the following:

« The five obstacle points are randomly placed within a
cube with an edge of 0.5m. In particular, this procedure
can be described by: °p, ; = UI(—0.5,0.5) + [1.8 —
0.7 0.1]7 where U3z(—0.5,0.5) € R3 symbolizes the
3-dimensional random uniform process between —0.5

and 0.5.
e The camera at the robot’s end-effector starts from the
same initial pose, which is °p, = 03 and R, =

[001;100;010].

o The linear segment which corresponds to the OOI is
defined in a parametric form as: ’pp(c) = %pg +
o(°p1 — %pg), where py = [3 — 0.1 0.6]T and
Op; =[30.11.4]T and o € [0, 1].

o The center of the ROI is p, = 0.5(pg + p1) and the
radious is set to r = 3.262, which means that the camera
is initially within the ROIL

A representative generated scene and the solution achieved
by the proposed method are depicted in Figure ] The
histogram of the initial visible percentage of visible OOI
at the beginning of the simulations is depicted in Figure [5a]
Notice that the mean value of the initially visible portion of
the OOI is 48.09% for the 100 randomly generated scenes.

Initial state Final state

Fig. 4: Automatically generated scene. The OOI is denoted with
black line and its visible part with red line, while the blue spheres
represent the possible obstacles.

The parameters used in the simulations are d. = 0.1, dy =
0.3, k = 0.04, k, = 5, k, = 200, while the control signal is
filtered via a first order low pass filter having a pole at —10.

The histogram of the visible percentage of the OOI at
the end of the motion under the proposed control scheme
is depicted in Figure [5a] Considering as a success only the
case where the whole OOI is visually unveiled, the success
rate of the proposed controller reached 98%. The histogram
of the duration required for the motion is depicted in Figure
[3b] for all 100 simulation runs. It is clearly visible that the
duration of motion is bounded, i.e. the system reaches an
equilibrium and the mean duration of motion is 2.53s, with
the selected values of the control parameters.
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Fig. 5: Histograms of the evaluation through 100 simulated scenes.

Through the simulation results it is evident that the control
signal for the ROI reaching, i.e. v.;, does not reduce the
efficiency of the controller which is responsible for the visual
unveiling of the OOI, i.e. v 2, while it is worth noting that
the camera remained in the vicinity of the OOI and within
the ROI during its motion, due to v.;.

VI. EXPERIMENTAL EVALUATION

For the experimental evaluation of the proposed method,
a lab setup was built with a mock-up vine, involving a
plastic grape cluster and leaves, as illustrated in Figure [6]
For emulating realistic field conditions, a fan was utilized for
artificial wind. We consider a pre-cutting scenario, in which
the arm with the cutting tool is equipped with an in-hand
camera at its end-effector. Our aim is to approach the region
of interest (ROI), which is defined as a sphere with radius
7 = 0.4m around the center of the grape cluster and visually
unveil the stalk of the grape, which is considered to be the
object of interest (OOI). In order to distinguish the points of
the point-cloud which belong to the stalk (OOI), a red plastic
tube was utilized, as the identification of the stalk is out of
the scope of this work. The points not belonging in this red
tube are considered to be obstacles. To make the scenario
more realistic, we further assume that the OOI is detectable
only within a range of 0.5m by the perception algorithm and
the experiment starts outside of this range, i.e. without any
points of the OOI being initially detected.

Fig. 6: Experimental setup.

A URSe robot, under position control, fixed on a static



desk was utilized with a control cycle of 2ms. The reference
trajectory was given as ¢ = J(q)u, where u. was given by
(I). The RGB-D camera was capturing the RGB point-cloud
with a framerate of 15fps, a resolution of 1280x720 pixels
and the point-cloud was uniformly under-sampled 5 times
for decreasing the total number of points. Furthermore, the
control code for was parallelizecﬂ employing 6 parallel
threads of the CPU, utilizing the OpenMP library in C++.
Owing to the parallel implementation, v.o is generated with
a control cycle of approximately 67ms. In contrast, the ROI
reaching & centering control signal, i.e. v, which does not
generally involve a high computational load, had a control
cycle of 2ms, i.e. it was synchronized with the control cycle
of the robot. To superimpose these two control signals as
dictated by (]II), sample-and-hold was utilized for v.o. The
control parameters were selected to be d. = 1073m, dy =
0.0lm, k& = 0.05 for (I)-(T1), k, = ko, = 5 for (3) and a
pole of a = —2.5 for the low pass filtering of the signal.
The initial camera view of the stalk is shown in Figure [7a]
Notice that initially no points of the stalk are detected by the
system, due to the initial distance from the stalk being more
than the sensor’s range. The path followed by the camera
at the end-effector with the proposed controller is shown in
Figure [8a) and the final resulted camera view is provided
in Figure Notice that due to the fact that no points are
initially visible/detectable by the system, v.; acts alone and
therefore the robot moves initially towards the center of ROI
until reaching the range in which the first points of the OOI
are detected, i.e. until entering the red sphere in Fig. [8a).

(a) Initial.

(b) Final.

Fig. 7: Initial and final camera view.

The number of visible points of OOI during the motion
evolution, under the proposed control scheme, is depicted in
Fig. It is clearly visible that the number of visible points
is increasing, which directly implies an increase at the visible
area of the OOI from the camera, validating the results of
the evaluations through simulations. In Figure 9} the time
evolution of distance between the end-effector and the center
of ROI is depicted, as well as the orientation error k6 for
centering of the view. Notice that the distance asymptotically
reaches the radius of the ROI and the orientation error
smoothly reaches zero, which demonstrates the fulfilment of
the control objectives [T] and [2] respectively.

Experimental results demonstrate that the control signal
for the ROI reaching & centering, i.e. v.1, and that respon-

IThe code parallelization involves the summation of (TI).
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the experiment.

Fig. 8: Experimental reults.

sible for the visual unveiling of the OOI, i.e. v 2, can be
successfully superimposed achieving all set objectives for
ROI reaching & centering and visual unveiling of the OOL.
Initial field-tests of the implementation of the proposed
control scheme utilizing a mobile bi-manual robot with self-
collision and joint limit avoidance are conducted on a real
vineyard and can be found in the following link: https:
//youtu.be/YFMtkUO2r7A|
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Fig. 9: Distance from the center of ROI and centering orientation
error.

VII. CONCLUSIONS

This work addresses the problem of reaching and visually
unveiling an object of interest by a robot with a camera in
hand based on the point cloud perceived by the camera. The
proposed solution is synthesized by superimposing two body
velocities for the camera/end-effector. The control scheme
effectiveness for reaching the vicinity of the object of interest
while simultaneously optimizing the view of the object is
revealed from both the simulation study and the experimental
results. In particular, a success rate of 98% is shown to
be achieved in simulations while the object of interest is
shown to be significantly unveiled starting from just a few
visible pixels, as demonstrated by the experimental results.
Our future plans involve the extensive field-tests of the
implemented method utilizing the BACCHUS mobile bi-
manual robot on a real vineyard.

APPENDIX: PROOF OF PROPOSITION 1

Equations (3), @) can be written in the world frame as
follows:
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v & [lomex(Q fCene)

e kot'k
with %e,, = %p,. —°p,, where p, is the camera position and
0 -1 (ZTORZOQP) Ok S(°Rcz)’e,

= cos —— ), k=

IS("Rcz)%p||

with "R, the rotation matrix corresponding to the camera
orientation.

The kinematic system is [°pT YwI|T = Ov.. We will

now prove that the directions of e, and “k remain constant

13)

0
during the system evolution. Differentiating ﬁ we get:
P

d Ve, 1 g, eI
— = I — )% (14)
dt |[%epll  [%ey|l Ioep | [1°€p]1 )

But since Oép is in the direction of Hziﬁ from , is
P

equal to 0. Defining °a = S(°R.z)%, = ("R.z) x"e,, with

X denoting the cross product operator and differentiating the

second equation of (T3) we get:

. d Ca 1
0 01,0 0.
-2 - Is — "kkT) Ya (15)
dt [|all — |al| ( )
where
%a =", x "R,z x "e, + ("R.z) x "¢,  (16)

Using the double cross product identity we get:

%4 = ("e]%w.)’Rez— ("]’ Rcz)’w.+ ("R.z) x e, (17)
From the second equation of and (13), °w, is orthogonal
to “R.z, thus “e]%w. = 0. Furthermore, %¢, is in the
direction of ‘e, and thus ("R.z) x %¢, is in the direction
of %k. Since "R,z is also in the direction of °k, we infer
that %a is in the direction of “k. Using the fact that "R,z is
in the direction of °k we can conclude that °k is zero. This
implies that the second row of (I2) which can be interpreted
as the logarithmic orientation error, is the error between the
camera orientation "R, and a constant orientation R such
that 0°k = log "R,"R].

_The angular velocity corresponding to the orientation error
‘R £ 'R,;°RY is equal to °@ £ Owy — "“ROw,. Since "Ry
is constant, w,; = 0. We can also utilize the Rodrigues’
rotation formula to get “Rw. = (I3 + S(°k)(sinf) +
S?(°k)(1—co0s0))°w,. = w,. Therefore °w is equal to —w,.
However the following equation holds [18]:

0% = %k + sin 0%k + (1 — cosA)S(°k)°k  (18)
Since %k = 0, implies w, = —A°k. and thus:
0= —k,0 (19)
Define the Lyapunov-like function W:
W= %max (0, £(°e,))* + %92 (20)
Differentiating W using (12)) and (19) yields:
W= —kp max (O, f(oep))%e;oep — k,0? 21

Notice that W is zero, if and only if both the Objectives
and 2] are satisfied and it is negative in all other cases.
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[2]

[3]
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=
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