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Abstract—Learning-based modeling and control of soft robots is
advantageous due to neural network’s ability to capture complex
dynamical effects with low computational cost. Continual Learning
techniques add further value to these methods by allowing net-
works to learn from continuously available data without incurring
into catastrophic forgetting. In the context of soft robotic control,
such capability can be exploited to design controllers able to con-
tinuously adapt to changes in robot dynamics, frequently due to
material degradation or external interactions. This should be done
without forgetting the control under normal working conditions
which can be recovered as soon as the external interactions return
to normal. In this letter elastic weight consolidation is used to con-
tinuously re-tune a neural network-based controller while changing
the external loading of a soft robot. We demonstrate experimentally
on a soft robot arm that this method outperforms plain stochastic
gradient descent in tracking tasks, in the context of a continuously
changing loading condition. We also show that the proposed control
architecture can improve its performances when exposed to loading
conditions already experienced. This letter represents a first step
towards the introduction of continual learning methods in the soft
robot control field.

Index Terms—Modeling, control, and learning for soft robots,
learning and adaptive systems, soft robot applications.

I. INTRODUCTION

SOFT manipulators are typically made of a single backbone
of soft and flexible material which bends and twists ac-

cording to the actuation which can be either distributed, such
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as in pneumatic actuators, or exerted to a specific section of the
backbone, such as in cable driven soft manipulators.

Unlike rigid-link robots, which have been thoroughly studied
and modeled with closed form equations and with a finite number
of parameters, soft and continuum robots are hard to model
due to the non linearity of the materials and to the absence
of joints and links that can be used to derive their kinematics
in the classical sense [1]. The modeling complexity associated
to soft robots makes them also difficult to control. Moreover,
soft robots typically lack the richness in sensors of rigid robots,
resulting in systems harder to control and making sensorization
of soft robots an open research field [2]. Although analytical
dynamic models of soft robot exist [3], their complexity and
computational costs have led to the research of assumptions to
simplify the control.

Soft robots have been most successfully and frequently con-
trolled by employing a constant-curvature (CC) model, which
assumes a constant curvature on all the length of the soft manip-
ulator. This allows steady-state control with low computational
cost [4]. By considering the soft robot backbone as multiple
constant-curvature sections the piecewise constant-curvature
model (PCC) is achieved [5]. In [6] the PCC model is aug-
mented and matched to a dynamically consistent rigid robot
model enabling dynamic soft robot control. However the CC and
PCC models themselves are kinematic and do not consider the
dynamics of a soft manipulator. Similarly, they are optimal only
when the manipulator is not subject to external disturbances.
These problems can be avoided by exploiting machine learn-
ing in the modeling of the soft robot. Approximating the soft
robot kinematics [7] and dynamics [8] with learning approaches
is a feasible and useful solution since it does not require a
priori analytical knowledge of the manipulator dynamics. Su-
pervised learning has also been proven effective in learning
neural network-based controllers for soft robots [9]. In [10], an
ANN is used to approximate the input-output relation of a cable
driven soft robot. The obtained forward model is differentiated
to compute an integral controller, with proof of robustness and
stability. In [11] the authors use a machine learning approach to
estimate the relationship between motor inputs and end-effector
position output of a soft robot and employ trajectory optimiza-
tion to perform quasi static tracking in open loop. These methods
however are usually tailored to a specific task and do not take
into account changes in robot dynamics or external loads. Other
approaches have taken external loading conditions into account
by involving the linearization of nonlinear dynamical systems
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by means of Koopman operator theory [12], or by reinforcement
learning methods [13].

In fact, typical of soft robots is that their dynamics are subject
to change, by degradation and hysteresis of the materials of their
bodies or of their actuators. Moreover, especially in tasks where
the robot must squeeze in tiny openings, it is subject to unknown
external forces and torques which, while being mathematically
tractable in rigid-link robots, introduce further complications in
exact soft robot modeling and also invalidate the assumptions
for CC and PCC models. Such interaction forces should also
be estimated which constitutes a further challenge. Importantly,
the changes in dynamics may not be permanent and the robot
may return to its original working conditions. To overcome
these limitations, Continual Learning (CL) techniques are of
great interest since they allow network-based control methods
to re-update their parameters, provided a stream of data [14]. By
using CL techniques it is possible for a neural network to learn
continuously by means of incrementally available data without
causing interference and catastrophic forgetting of previously
learnt tasks [15]. CL techniques can ensure that when the robot
returns to its original working conditions, the task can still be
performed with low error with minimal or no retraining. In this
work, we model the dynamics of a soft robot arm with a recurrent
neural network by means of supervised learning and we learn
a controller on top of the dynamic model with a multi-layer
perceptron (MLP). Then we exploit CL techniques to update
the weights of the controller, that is used to track a circular end-
effector trajectory with different external loading conditions. We
have chosen to use elastic weight consolidation (EWC) in this
work [16] since it is a simple CL technique which does not
imply neural network growth or expansive storage of data. We
show that, in a continual learning context, where the robot is
exposed to different loading conditions, our method performs
better in terms of task space error than a simple stochastic
gradient descent (SGD) method. We also show its convenience
with respect to a plain controller that is only trained once on
normal operating conditions (no load is attached to the robot),
and not re-tuned while using loads. Moreover, we show how the
proposed control architecture is able to improve its performance
when exposed to already experienced loading conditions. This
solution is greatly useful in the context of soft robotics, where
the robot is subject to unknown interactions and unpredictable
changes in its dynamics. The paper is structured as follows: in
Section II-A we describe the soft robotic platform used to test
the proposed controller. The data generation process, by means
of motor babbling, is described in Section II-B as well as the
structure and learning procedure of the forward dynamic model
and of the neural network-based controller. In Section II-C we
present the experiments. In Section III the results are displayed
and a statistical analysis on the performances of the control
method is discussed.

II. MATERIALS AND METHODS

A. Soft Robot Description

The soft robot arm I-support [17] has been used in this work as
a real world platform for testing the proposed control approach

Fig. 1. (a) A single module of the I-support arm in relaxed condition.
The locations where the external load will be placed are shown and labeled
w1, w2, . . ., w9. (b) The arm with an external load placed on location 2.

(Fig. 1). I-support is a modular soft robot intended for the
assistance of elderly and disabled people in daily bathing tasks.
Each module consists of three couples of extending McKibben
actuators placed along its length at a 120◦ angle. The activation
of each couple allows bending in a single direction. The actuators
are kept together by equally spaced plastic discs. Only the
proximal module of the I-support platform has been used in
this work. The McKibben actuators are activated by pneumatic
valves (Camozzi K8P) which are controlled by an Arduino Due
board. The Arduino is in turn controlled by a linux PC using
a serial port. The total length of the single module is 200 mm
while the total weight is 160 g.

B. Model Description

In order to provide a model of the robot dynamics for of-
fline learning of an appropriate controller, data pertaining to
the mapping between the applied pressures and the resulting
state of the arm must be provided. To do so, a pseudo random
sequence of 12000 pressure input samples for each couple of
pneumatic chambers has been generated for motor babbling.
The inputs follow a random walk, meaning that each value is
chosen randomly within a ±ε range of the previous value. The
random walk saturates at 0 bar, which is the lower range for
the actuation, and at 0.83 bar, a limit imposed to prevent the
damaging of the pneumatic chambers (Fig. 2(a)). To choose the
ε range value we have considered the following trade-off: a high ε
value would cause inputs samples to be more distant from each
other, preventing the pneumatic chamber to reach the desired
pressure before the next actuation sample (motor saturation).
Conversely, a lower ε would produce a less explored workspace
with the same amount of input samples [8]. In this work we
have chosen ε = 20 by trial and error. Every 100 samples the
actuators are shut down (0 pressures) for 20 samples, so as
to capture the dynamics of the arm in the phase from resting
position to actuated position and vice versa. The inputs were
sent to the soft robot for motor babbling at a rate of 10 Hz.
Simultaneously, the position of the tip of the arm was measured
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Fig. 2. (a) The first 100 samples of quasi random actuation inputs provided
to the robot for motor babbling. (b) The robot workspace recorded with an NDI
Aurora electromagnetic tracking system during a motor babbling session.

with an NDI Aurora electromagnetic tracking system (Fig. 2(b)).
The obtained input/output data were split into training and test
set with a 0.7 ratio for training set and a 0.3 ratio for test set, and
used for supervised learning of the robot’s forward model.

The ability of Recurrent Neural Networks (RNN) to learn
relationships between time sequences of data has been well
proven [18]. Therefore, in order to represent the robot’s dynam-
ics, an RNN layer has been used.

The model is built as the mapping between xi, xi−1,..., xi−3,
τi, τi−1,..., τi−3 andxi+1 wherexi,xi−1,...,xi−3, andxi+1 repre-
sent the current, previous and predicted end effector positions in
Cartesian space and τi,..., τi−3 represent the current and previous
actuator inputs. In this way the network has information of the
pressures and positions in time, so as to learn the dynamics of the
system. The forward model network consists of a RNN layer of
100 neurons followed by a linear layer with tanh() activation.
Equation (1) describes mathematically the system:

xi+i = ffwd(xi, xi−1, xi−2, xi−3,

τi, τi−1, τi−2, τi−3, θfwd) (1)

We choose the amount of delays for the feedback that result
in a faster reduction of the training loss. We have experimented
from one step feedback delay up to five steps feedback delay.
Out of these, we observed that a memory with 4 delays results in
a relatively faster reduction in model error. The model’s weights
θfwd are optimized on the training set by supervised learning
for 1200 epochs, with a mean square error (MSE) loss function:

θfwd = arg min
θfwd

Lfwd(θfwd)

Lfwd(θfwd) =

N∑
i=0

(x∗
i − xi)

2 (2)

where x∗
i is the end effector position obtained by motor

babbling and measured with the electromagnetic sensor, xi is

Fig. 3. The proposed adaptive control architecture. The inverse model model
receives in input the current and previous end effector positions xi, xi−1, the
next target xtask

i+1 , the current task space error ei = xtask
i − xi, and outputs

the actuation τi. The forward model takes as input a sequence of end effector
positions xi, xi−1,..., xi−3, and actuation τi, τi−1,..., τi−3 and outputs the next
end effector position xi+1.

the position obtained from the forward model fed with the inputs
used for motor babbling as in (1), andN = 8400 is the size of the
training set. A learning rate of 5 ∗ 10−4 has been set. In order to
prevent overfitting, a weight decay of 10−4 has been introduced.

The purpose of the forward model is to serve as a decent
approximation of the real robot forward dynamics mapping for
the training phase of the controller. The inverse model is learned
by a multilayer perceptron (MLP) with 2 hidden layers of 150
neurons with tanh() activation. The inverse model is built as
the mapping between xtask

i+1 , xi−1, xi, ei and τi where xtask

represents the desired end effector position target in Cartesian
space and e = xtask − x.

The training of the weights is performed while using the
controller in the control loop shown in Fig. 3. The weight update
occurs by minimization of the MSE error between the desired
task xtask, which is an input of the inverse model, and the output
of the forward model x, for 1200 epochs. The controller outputs
the actuation of the soft robot:

τi = finv
(
xi, xi−1, x

task
i+1 , ei, θinv

)
i =

⌊
t

dt

⌋
∀t = 0. . .tf (3)

where dt = 10ms and tf = 5 s. The vector θinv represents
the weights of the inverse model which are optimized by super-
vised learning with the following MSE loss function:

L(θinv) =
∑
i

(xtask
i − xi)

2

i =

⌊
t

dt

⌋
∀t = 0. . .tf (4)

where xtask are the points in cartesian space of the desired
task, and x are the end effector positions given by the forward
model.
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Future work may include training the inverse model directly
on the real robot.

Once the inverse model is learnt we have an evaluation of the
performance of the controller in simulation, with respect to the
desired task. After having optimized the controller it is possible
to test it on the physical platform by substituting the robot to its
forward model.

After this phase, the controller is optimized to let the robot ex-
ecute a single task. However if the robot is subject to an unknown
interaction, which we induce here by adding external loads, the
control of the desired task fails. For this reason we propose to
use continual learning which modifies the loss function in the
optimization of the inverse model, such that an explicit term
penalizes forgetting the older tasks. The goal is to sequentially
learn the modification of the dynamics that the robot undergoes
and simultaneously to maintain a good performance in terms of
task error, without incurring into catastrophic forgetting.

C. Soft Robot Control

First, to establish the necessity of a CL algorithm in this
type of problem, we evaluate the performance of the controller
with different loading conditions by keeping the parameters
optimized for the unloaded robot, without retraining. In this work
we consider ten loading conditions for the robotic platform. First
the robot is considered without any load, then with a load of 50 g,
corresponding to 31% of the robot’s mass, applied to different
locations of a single module of the I-support arm. The weights
are placed at a 120◦ angle at the tip of the module, in median
position, and in proximal position and are numbered from w1
to w9 (Fig. 1). We consider the performance of the robot in this
round of experiments as the baseline which should be improved
by the proposed method. We therefore call this non-retrained
controller ‘null’ method. In fact, when we test the same con-
troller on the arm with an additional load the error will be higher
because the dynamics of the robot are modified by adding the
external load. However, the input-output data gathered during
the failed test can be used to retrain the forward model so as to
learn its dynamics with the new loading condition, as in [19].
Therefore, in the proposed method the forward model network’s
weights are re-updated by supervised learning for 100 epochs,
minimizing the MSE error between the target circular trajectory
and the real robot tip position acquired during this testing phase.
This retraining phase takes considerably less time than the first
training of the forward model. By doing so we obtain a new
forward model which is updated on the recent modification of
the robot’s dynamics, introduced by the external load. Similarly,
the inverse model is updated on the newly trained forward model,
obtaining a controller tailored on the new dynamics of the robot.

During the retraining phase of the inverse model however,
an elastic weight consolidation (EWC) penalty is introduced.
EWC is a method which, by imitating the synaptic plasticity
of mammalian brains, allows continual learning in a supervised
learning context [16]. EWC consists in adding a penalty term
to the loss function which constrains the network parameters to
stay in an area of low error around the optimal parameters of the
previous task A, so as to prevent catastrophic forgetting while

learning the next task B:

L(θ) = Lb(θ) +
∑ λ

2
Fi(θi − θ∗A,i)

2 (5)

where L is the loss function, in this case the MSE error
between the model output and the real Cartesian position, Lb is
the loss only for task B, and the remaining term on the right-
side is the regularization term that ensures continual learning
without forgetting. F is the diagonal of the Fisher information
matrix, θ is the parameter vector to be optimized, θ∗A are the
optimized parameters for the first task. The Fisher matrix weighs
the importance of each neural network parameter θ in creating a
memory for the older tasks, and is the crucial term in the EWC
method. Ignoring the Fisher term makes the regularization term
in (5) a pure L2-norm on the network parameters, and it is shown
to be not very useful for continual learning without forgetting
older tasks [16]. λ is the importance parameter which determines
how much the memory of the old task is preserved. A higher
λ ensures the best memory recall of old tasks but impairs the
capability of learning new tasks while a lower λ degrades the
memory of previous tasks bringing the method near to a plain
Stochastic Gradient Descent (SGD) supervised learning. In this
work the hyper-parameter λ has been tuned by trial and error to
105. The retraining is done also without EWC for comparison:
in this case plain SGD is used for retraining, therefore we call
this method ‘naive’.

Using the proposed method the controller preserves the mem-
ory of the previously learned dynamics and avoids catastrophic
forgetting. In fact, if a plain stochastic gradient descent (SGD)
method is used, the network will learn the task only for that par-
ticular loading condition, forgetting all the other configurations.
Moreover, by using plain SGD, successive update of the same
weights on different tasks causes interference which degrades
the intended performance of the network. This procedure is
repeated while changing the loading conditions of the arm in
random order, until all loading conditions are tested twice on
the robot. Note that the forward model is retrained using the
data from the most recent task, always starting from forward
model 0 (meaning the model trained from the original motor
babbling data), so as to have an estimate of the current robot
dynamics altered by the external load. We assume in fact that a
retraining with data from a control trial on top of a fully trained
forward model of the unloaded robot is sufficient to have a good
approximation of the new dynamics. We want to stress that the
retraining of the inverse model with EWC and the one of the
inverse model with SGD are performed independently, meaning
that two retrained forward models are always built from data
obtained from the trial done using the EWC-controller and from
the one using the SGD-controller. The two retrained models are
used separately for the retraining phase of the EWC and SGD
controller respectively. The loading conditions are presented
randomly and are named w1, w2, . . ., w9 (see Fig. 1) while the
conditions with the subscript w12, w22, . . ., w92 represent that
the condition is encountered for the second time. Considering
also the no load condition, a total of 20 trials has been performed
for each round of experiments. The flowchart for the described
experiment is shown in Fig. 4 and has been repeated five times.
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Fig. 4. Flowchart of the performed experiments.

The experiment without retraining the inverse model has been
repeated five times as well, for every loading condition. The first
training of the forward model takes about 68 minutes on an Intel
CoreTM i7-4790 CPU @ 3.60 GHz × 8. The training/retraining
of the controller takes about 48 seconds, while the retraining
of the forward model takes 1.3 seconds. This is because the
retraining phase of the dynamic model updates the weights of
an already trained model using a small amount of data.

III. RESULTS AND DISCUSSION

In Fig. 5 the comparison between the mean RMS error in
Cartesian space with the EWC method, the naive (SGD) method,
and the null method (no retraining) is shown. The performance
metric is calculated as:

RMSE =

√∑N
i=1(x

task
i − xi)2

N
(6)

Where N = 50 is the number of points in the circular tra-
jectory, xtask is the desired trajectory and x is the real robot’s
end effector position. The bar represents the RMSE averaged
on the five repetitions of the experiment, for the particular
trial, while the standard deviation on the five trials is chosen

as confidence interval and shown in the plot. During the first
two trials (without weight and with weight in location 9, noted
as w9), only the error of the null trials is shown since there is
no retraining in between the trials (see Fig. 4). Therefore the
EWC penalty does not come into play. The error with no load
is comparable to the performance present in the literature with
similar neural network based control methods [8], in this case
12.92± 0.9 mm, corresponding to 6.46% of the robot’s length.
In the immediately subsequent trial, w3, where the EWC penalty
has been introduced in the retraining phase in between the trials,
we can immediately appreciate a lower error with the controller
retrained using EWC. This is because in this trial the controller
has been trained only to minimize the task error for the previous
loading condition w9, in the case of the plain SGD method,
and it is asked to control a manipulator with a different loading
condition. In the case of the EWC instead the controller has been
also trained on the previous loading condition, but by means of
the EWC penalty it also maintains the memory of the loading
conditions previously encountered, in this case the no weight
condition. This allows for a better performance, especially as the
encountered tasks succeed one another. Moreover, the plain SGD
method undergoes catastrophic forgetting and after successive
retraining erases the memory of the previously learnt robot
dynamics. We note that the more that the successive loading
conditions are differently affecting the robot’s dynamics (eg. the
weight are placed on opposite locations) the more the difference
in performance between SGD and EWC is in favour of EWC
(See for example w22 in Fig. 5). Conversely, if the two loading
conditions are similar it is possible that the two methods perform
equally or that the SGD method performs slightly better. This
is because the training performed on the first loading condition
remains valid for the subsequent loading condition, since the
dynamics have not changed significantly (See for example w4
in Fig. 5). However the performance in terms of task error is
overall better for the EWC method as we can verify using a
cumulative density function plot (Fig. 6).

In Fig. 5 the comparison between the mean RMS error with
EWC and the error resulting from not retraining is shown as well.
Here, since the controller in the ‘null’ method never undergoes
a retraining phase it is always tailored on the no load condition.
Therefore once any load is added the controller performance
will degrade. We observe that the worst performance is achieved
when the weight is placed closer to the tip of the robot, since it
exerts a higher momentum.

In Fig. 6 we plotted the cumulative density function of the task
errors (on the x-axis) resulting from different learning strategies
across the task conditions (of loading and unloading). Note that
here the task errors for each strategy (ewc, naive, and null)
correspond to the test errors obtained on a new task (new loading
condition), while the network was not yet retrained to reduce the
error on the current loading condition and has been trained only
until the preceding loading condition. We see clearly in Fig. 6
that the EWC method results in an overall lower mean error (blue
line) on new loading conditions when compared with the null
and naive strategies, thus justifying the need of such a controller.

See Fig. 8 for a comparison between the trajectories in task
space with and without EWC. In Fig. 7 we show the best achieved
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Fig. 5. The mean task space error computed for each trial shown for the EWC, SGD (naive) and null methods after training only on previous loading conditions,
and before retraining on the current condition. On the x-axis the conditions w1, w2, . . ., w9 are indicated, while the subscript w12, w22, . . ., w92 indicates that
the condition is encountered the second time.

Fig. 6. The cumulative density function plots of the Cartesian kinematic errors
from change in loading before network retraining for the new load. The dashed
lines represent the mean of each distribution.

Fig. 7. The best performance achieved by the EWC method on task w92.

performance of the EWC method (10.44± 0.89 mm) achieved
in a trial on task w92, corresponding to 5.22% of the robot’s
length. In Fig. 8(a) and (b) two particular cases are shown
where the difference in performance between the two methods
is highest in Fig. 8(a) and lowest in Fig. 8(b).

We have averaged the cartesian error across all the different
weights for each of the five repetitions of the experiment to

Fig. 8. (a) Task w22 and (b) task w72, (Top = EWC, bottom = SGD).

perform a one way ANOVA. First we have verified the normality
of the data with a Kolmogorov-Smirnov (KS) test. The KS
test shows that the data from the EWC, naive and null groups
come from a normal distribution. The ANOVA test shows that
there is a statistically significant difference between all groups
(p = 1.3180 ∗ 10−5). A multiple comparison test shows that
there is a statistically significant difference between the EWC
method and the naive method, and between the EWC method
and the null method (p = 1.4239 ∗ 10−5 andp = 1.7539 ∗ 10−4,
respectively). There was no statistically significant difference
between naive and null methods (p = 0.2179), implying that
the naive controller retrained without any EWC regularization
(see (5)) does not perform significantly different compared to
the use of a controller that is fixed in the beginning and never
retrained for changing loads. Both methods do not have memory
of newly encountered tasks, therefore their error is not signif-
icantly different. We display the statistical significance of the
differences between groups in Fig. 10(b).
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Fig. 9. The average cartesian error on the first round of weights compared
to the average error for the second round of weights, for the EWC and naive
methods.

Fig. 10. Average error across all trials for the null method, the SGD (naive)
method, and the EWC method with importance factor λ = 103, λ = 104, λ =
105, λ = 106. The statistical significance of the difference between the EWC
method with λ = 105 method and the naive and null methods is shown.

Fig. 9 shows a comparison between the average errors across
the loading conditions applied in the first and in the second
round of experiments. We have averaged all the cartesian errors
across the trials where a loading condition is experienced the first
time, and where it is experienced the second time respectively.
The standard deviation computed on the five repetitions of the
experiment is assumed as confidence interval and shown as a
error bar. We can appreciate a decrease in the mean error for
the EWC method when the weights are applied the second time.
We have performed a paired t-test of the hypothesis showing
that the two groups of average errors come from distributions
with equal means. The null hypothesis is rejected for the ewc
groups (p = 0.2924) confirming that there is a statistically sig-
nificant change in average error when the loading conditions
are repeated, showing the capability of the proposed method
to incrementally learn from repetitions without forgetting. The
average error for the naive groups, besides being consistently
higher, is not found to change in a statistically significant manner.

So far the results are for an importance factor of λ = 105. The
previous experiments have been repeated for λ = 106, λ = 104

and λ = 103. In Fig. 10(a) the average error across all trials for
the EWC method at varying values of lambda is shown. Since
we do not appreciate a significant change in the performance of
the EWC method we have chosen λ = 105 so as to maximize
the memorization capability of the method. A higher lambda
invalidates the capability of the controller to learn new tasks
as we can deduce from the increasing error for λ = 106. In
this work we applied the weights randomly without any prior
knowledge of all loading conditions. In future studies, it will be
interesting to compare how the EWC method performs relative
to a batch training where all loading conditions are trained by
considering them to be known apriori.

IV. CONCLUSION

In this paper we have explored the application of continual
learning methods to soft robot control. The advantages of such
methods are in that a continuously re-updatable controller can
adapt itself to changes in the soft robot dynamics, which can be
due to material degradation or to the external disturbances of
unstructured environments. We show that EWC can be used to
successfully re-tune the parameters of a neural network-based
controller to adapt it to changing robot dynamics without for-
getting the previously learnt dynamics. In our experiments with
successive trials with different weights we show that our method
is able to track the same circular task outperforming plain SGD,
which incurs in interference. Additionally it is also capable of
improving its performance when exposed to loading conditions
already experienced.

This method is also scalable meaning that it could be applied
to different soft manipulators of different sizes due to the gen-
eralization capabilities of neural networks. Our results put the
basis for the study of more advanced continual learning methods
on this type of platforms.
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