
Microservice Security Metrics for Secure Communication, Identity
Management, and Observability

UWE ZDUN∗, PIERRE-JEAN QUEVAL, and GEORG SIMHANDL, University of Vienna, Faculty of Com-

puter Science, Research Group Software Architecture, Austria

RICCARDO SCANDARIATO, Hamburg University of Technology (TUHH), Germany

SOMIK CHAKRAVARTY, MARJAN JELIC, and ALEKSANDAR JOVANOVIC, European Risk and Re-

silience Institute (EU-VRi), Germany

Microservice architectures are increasingly being used to develop application systems. Despite many guidelines and best practices
being published, architecting microservice systems for security is challenging. Reasons are the size and complexity of microservice
systems, their polyglot nature, and the demand for the continuous evolution of these systems. In this context, to manually validate that
security architecture tactics are employed as intended throughout the system is a time-consuming and error-prone task. In this article,
we present an approach to avoid such manual validation before each continuous evolution step in a microservice system, which we
demonstrate using three widely used categories of security tactics: secure communication, identity management, and observability.
Our approach is based on a review of existing security guidelines, the gray literature, and the scientific literature, from which we
derived Architectural Design Decisions (ADDs) with the found security tactics as decision options. In our approach, we propose novel
detectors to detect these decision options automatically and formally defined metrics to measure the conformance of a system to the
different options of the ADDs. We apply the approach to a case study data set of 10 open source microservice systems, plus another
20 variants of these systems, for which we manually inspected the source code for security tactics. We demonstrate and assess the
validity and appropriateness of our metrics by performing an assessment of their conformance to the ADDs in our systems’ dataset
through statistical methods.

CCS Concepts: • Software and its engineering→ Software architectures; Distributed systems organizing principles; • Secu-
rity and privacy → Software security engineering.

Additional Key Words and Phrases: Microservice Architecture, Microservice Security, Software Architecture Metrics, Software Ar-
chitecture Detectors

ACM Reference Format:
Uwe Zdun, Pierre-Jean Queval, Georg Simhandl, Riccardo Scandariato, Somik Chakravarty, Marjan Jelic, and Aleksandar Jovanovic.
2022. Microservice Security Metrics for Secure Communication, Identity Management, and Observability. ACM Trans. Softw. Eng.

Methodol. 1, 1, Article 1 (January 2022), 34 pages. https://doi.org/10.1145/3532183
∗Corresponding Author

Authors’ addresses: Uwe Zdun, uwe.zdun@univie.ac.at; Pierre-Jean Queval, pierre-jean.queval@univie.ac.at; Georg Simhandl, georg.simhandl@univie.
ac.at, University of Vienna, Faculty of Computer Science, Research Group Software Architecture, Währingerstraße 29, 1090, Vienna, Austria; Ric-
cardo Scandariato, riccardo.scandariato@tuhh.de, Hamburg University of Technology (TUHH), Blohmstraße 15, 21079, Hamburg, Germany; Somik
Chakravarty, schakravarty@risk-technologies.com; Marjan Jelic, mjelic@risk-technologies.com; Aleksandar Jovanovic, jovanovic@risk-technologies.
com, European Risk and Resilience Institute (EU-VRi), Filderhauptstr. 142, 70599, Stuttgart, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-6233-2591
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/0000-0002-4194-9381
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/0000-0002-2624-4586
https://doi.org/10.1145/3532183
https://orcid.org/0000-0002-6233-2591
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0002-4194-9381
https://orcid.org/0000-0002-4194-9381
https://orcid.org/
https://orcid.org/0000-0002-2624-4586

2 Zdun et al.

1 INTRODUCTION

Microservice architectures [29, 33, 48] structure an application as a collection of autonomous services.They have a set of
important tenets such as development in independent teams, polyglot technology stacks including polyglot persistence
and programming languages, cloud-native technologies and architectures, use of lightweight containers, loosely cou-
pled service dependencies, high releasability, end-to-end tracing and monitoring, and continuous delivery [29, 33, 62].
This article focuses on the security aspects of microservice architectures.

Despite numerous published guidelines and best practices [8, 34, 37], the architecture of microservice systems is
challenging with regard to security. This is due to the size and complexity of microservice systems, their polyglot
nature, and the need for continuous evolution and frequent release of these systems. In this context, manually validating
whether security features are used as intended throughout the system is a time-consuming and error-prone task. For
architecturally relevant security features, architectural abstraction can help focus only on the relevant aspects, but still
substantial effort is required e.g. to check a large-scale system’s architecture for conformance to security tactics.

In this article, we present an approach to avoid such manual validation before each continuous evolution step in
a microservice system, which we demonstrate using three widely used categories of security tactics: secure commu-
nication, identity management, and observability. Our approach is based on a review of existing security guidelines,
gray literature, and academic literature, from which we derived Architectural Design Decisions (ADDs) with security
tactics as decision options. We focus on establishing a conformance relation between a microservice system model, de-
rived from the system’s source code, and our ADDmodel on microservice security tactics. In general, the conformance
relation is defined as the consistency between models [45]. To guarantee the correctness of this consistency relation,
an assessment is needed. Conformance assessment is challenging because it concerns the relation between a software
system’s architecture and its intended architecture [9]. This article aims to study the following research questions:

• RQ1 How can we automatically assess conformance to ADDs on security tactics for secure communication,
identity management, and observability in the context of microservice systems?

• RQ2 How well do measures for assessing such security tactics as ADD options perform?
• RQ3What is a set of minimal elements needed in a microservice architecture model to compute such measures?

Our approach to addressing these challenges is to define a set of metrics for each ADD associated with the decision’s
options, i.e. at least one metric per major decision option. Based on a manual assessment of a small set of models and
model variants that is representative of the possible decision options and option combinations of the studied decisions,
we derive a ground truth. The ground truth is established from a thorough analysis of microservice security guidelines
and the literature, as well as multiple rounds of review by five industrial security experts. By combining the outcome
of all options of a decision, we can then derive an ordinal assessment of how well the decision is supported in each
model. We then use the ground truth data to assess how well the hypothesized metrics predict the ground truth data
by first performing a correlation analysis and then an ordinal regression analysis.

In this article, we propose an architectural component model based approach which uses only modeling elements
that can be derived from the system’s source code. For this reason, it is important to be able to work with a minimal set
of modeling elements, else it might be difficult to continuously parse them from the source code. We do not focus on
the extraction of models from the source code in this article, however, but use our existing static code analysis based
architecture reconstruction approach [36] (which is only summarized in this article).

Manuscript submitted to ACM

Microservice Security Metrics 3

The core contributions of this article are: (1) a novel approach for the automated, model-based, and metrics-based
assessment of conformance to ADDs on security tactics in microservice-based systems; (2) a detailed study of microser-
vice security tactics and related ADDs in three areas (communication, identity management, and observability); (3) a
multi-case study-based analysis and evaluation of our approach for these ADDs.

This article is structured as follows: First, in Section 2 we discuss the research methods used in this article in depth,
thereby also providing an overview of the research study. In Section 3 we discuss the inspection and preparation of
the 10 open source systems and 20 variant models we used as cases in a multi-case study. Then, Section 4 presents
the ADDs for microservice security tactics which are considered in this article. Section 5 summarizes the ground
truth assessment, whereas Section 6 formally specifies the metrics we propose. Next, Section 7 presents the statistical
analysis of the obtained data. Integration in industrial tools is discussed in Section 8. Section 9 discusses our findings
and potential threats to validity. After that, we compare to related work in Section 10. Finally, in Section 11 we conclude.

2 RESEARCH METHODS

Case Study-Based Analysis and Evaluation

Definition of ADDs and Metrics

Data Collection and Analysis on Security
Tactics for Microservice Systems

Case Study Preparation and Development of Model Data Set

Model Generation

Study of Microservice
Architecture Security

Guidelines

Study of Gray
Literature and Public

Repositories

Study of Scientific
Literature

Manual Inspection of
Case Study Systems

Derivation of Security
Feature ADD Catalog

Extraction and
Detection of Case

Study System Models

Derivation of System
Model Variants

Ground Truth Definition
with Expert Review

Definition of Metrics for
Quantifying Security

Tactics Support

Automatic Detection
and Metrics Calculation

Metrics Evaluation via
Regression Analysis

Codeable Models
Generator Model Visualization

Study of Microservice
Architecture Security

Guidelines

Study of Gray
Literature and Public

Repositories

Study of Scientific
Literature

Manual Inspection of
Case Study Systems

Derivation of Security
Feature ADD Catalog

Extraction and
Detection of Case

Study System Models

Definition of Metrics for
Quantifying Security

Tactics Support

Derivation of System
Model Variants

Study of Microservice
Architecture Security

Guidelines

Study of Gray
Literature and Public

Repositories

Study of Scientific
Literature

Manual Inspection of
Case Study Systems

Extraction and
Detection of Case

Study System Models

Derivation of System
Model Variants

Definition of Metrics for
Quantifying Security

Tactics Support

Derivation of Security
Feature ADD Catalog

Metrics Evaluation via
Regression Analysis

Automatic Detection
and Metrics Calculation

Ground Truth Definition
with Expert Review

Model Visualization

Study of Microservice
Architecture Security

Guidelines

Study of Gray
Literature and Public

Repositories

Study of Scientific
Literature

Manual Inspection of
Case Study Systems

Extraction and
Detection of Case

Study System Models

Derivation of System
Model Variants

Definition of Metrics for
Quantifying Security

Tactics Support

Derivation of Security
Feature ADD Catalog

Metrics Evaluation via
Regression Analysis

Automatic Detection
and Metrics Calculation

Ground Truth Definition
with Expert Review

Model VisualizationCodeable Models
GeneratorStatic Code Analysis System Component

Model

Study of Microservice
Architecture Security

Guidelines

Study of Gray
Literature and Public

Repositories

Study of Scientific
Literature

Manual Inspection of
Case Study Systems

Extraction and
Detection of Case

Study System Models

Derivation of System
Model Variants

Definition of Metrics for
Quantifying Security

Tactics Support

Derivation of Security
Feature ADD Catalog

Metrics Evaluation via
Regression Analysis

Automatic Detection
and Metrics Calculation

Ground Truth Definition
with Expert Review

Model VisualizationCodeable Models
Generator

Fig. 1. Overview diagram of the research methods followed in this study

2.1 Data Collection and Analysis of Security Tactics for Microservices

Figure 1 shows the research steps of our study. For the initial data collection and analysis of microservice security
tactics, we first consulted existing microservice-specific recommendations by industry organizations such as those
of NIST [34], OWASP [37], or the Cloud Security Alliance [8], which represent aggregations of existing industry best
practices on a broad level.Thesewere independently analyzed by a team of industrial security experts, including the last
three authors of this study before they got involved in this article. They also related the standards to their experiences
from their industry projects. We confirmed and augmented these recommendations with the results of a multi-vocal

Manuscript submitted to ACM

4 Zdun et al.

literature study [15] which the author team conducted within the context of the AssureMOSS EU project1. Among
other things, in this prior work, we reviewed the scientific literature summarized in Section 10 for microservice-related
security practices and tactics. In addition, we are currently conducting a gray literature study [16] (i.e. guidelines, public
repositories, recorded interviews, podcasts, videos, practitioner articles, presentations, and blog posts) onmicroservice-
related security practices and tactics. In it, we so far studied 30 practitioner sources in-depth. In this article, we will
not report more details of these other literature works, as this article is mainly based on the practices recommended
in the existing microservice-specific recommendations (with a focus on the NIST SP 800-204 special publication [34]).
We mention this additional work here to explain that the practices, tactics, and corresponding ADDs, studied in this
article, are derived based on substantial empirical data.

From the initially collected data, we aimed to address the security tactics with our approach that (1) are concerning
the core software architecture in the sense that they can be modeled in software architecture decomposition view (i.e.,
in the component and connector view); and (2) are discernible from the source code of existing microservice systems.
As stated in the research questions, our goal is only to detect conformance to ADD options, not interdependences
between them. This limitation of scope was necessary as the guidelines and literature contain many practices that are
only discernible at runtime (such as runtime warnings after a number of failed login attempts at a location), are not
visible in the source code (such as organization measures or human review activities), or can only be modeled in other
views such as deployment views. All those other measures are considered as out-of-scope of our article and will be
covered in our future work.

2.2 Case Study Preparation and Development of Model Data Set

We studied 10 open sourcemicroservices systems as case studies line-by-line andmanually annotated each security fea-
ture in their source code. Each is a system published by practitioners with microservice background (all are published
on GitHub, see Tables 1 and 2). Next, we used our existing static code analysis approach for architecture reconstruction
of polyglot microservice systems [36] (summarized in Section 2.6) as a foundation for the extraction of models from
the source code of the 10 studied open source system cases, and the detection of security tactics in these models. For
this approach and for the modeling of security tactics reported in this article, we began by performing an iterative
study of a variety of microservice-related knowledge sources, and we gradually refined a meta-model that contains all
the required elements to help us reconstruct existing microservice-based systems.

To increase our data set and explore the design space, we then created 20 additional models of system variants
adapted from a published example according to discussions in the relevant literature in order to explore the possible
decision space. Apart from the specific variations described in Tables 1 and 2, all other system aspects remained the
same as in the base models. This resulted in a total of 30 models summarized in Tables 1 and 2. We assume that our
evaluation systems are, or reflect, real-world practical examples of microservice architectures. As many of them are
open source systems with the purpose of demonstrating practices or technologies, they are at most of the medium
size and modest complexity, though. To ensure they represent industry practices, we have carefully compared them to
commercial projects and industry guidelines. Those comparisons served as a guide to creating our 20 variants. We can
assert that the found practices are representing industry practices, but in commercial systems, other combinations or
interdependencies than in the studied open-source systems have been observed, too. To represent those combinations

1https://assuremoss.eu/en/

Manuscript submitted to ACM

Microservice Security Metrics 5

well in our data set, we created the 20 system variants following the practices observed in commercial systems and the
literature/guidelines (see Section 2.1).

2.3 Definition of ADDs and Metrics

In parallel to and independent from the case study and model development, from our set of tactics, we selected a
subset which the industrial security experts co-authoring our article, based on the collected data, judged as widely used
security tactics for microservices. In particular, we selected the tactics on secure communication, identity management,
and observability. We confirmed that these tactics are present or important concerns in the microservice open source
systems studied. Based on both, the tactics and the open source code studies, we then defined a catalog of Architectural
Design Decisions (ADDs) which use the found tactics as Design Options.

We then hypothesized a set of metrics that have the goal to automatically decide on each single decision point in
our ADDs. These metrics are formally defined in Section 6. We developed and tested the metrics based on numerous
small examples of our tactics and formalized them using a combination of set theory and first-order logic.

2.4 Case Study-Based Analysis and Evaluation

For case study-based analysis, we performed a systematic assessment on support or violation of the collected security
tactics. Here, the three industrial security experts in the author team independently derived a recommendation based
on the results of our tactics study which provides informal guidance for security experts to manually judge systems
such as those in our models. Next, the other authors applied this recommendation as an ordinal rating scheme to each
model variant summarized in Tables 1 and 2 to create a ground truth for our study. Then the three industrial security
experts in the author team and two experts from another company reviewed the rating scheme and the ratings in the
ground truth. Please note that the academic authors all have substantial experiences in industrial software development
and software security, and all of the industrial authors have substantial experience in IT risk management and decision
analysis in numerous industry projects (consulting for many different customers). In case of inconsistency of the votes,
we performed a discussion among the involved experts to resolve the conflict. We would have applied a majority vote,
if the discussion would not have yielded consistent votes; but in all cases consensus was reached after the discussion.

Finally, in a statistical analysis, we first inspected how well the independent variables correlate with the dependent
variable using Spearman rank correlation and then assessed how well the hypothesized metrics can possibly predict
the ground truth data by performing an ordinal regression analysis. Spearman rank correlation [32] is a widely used
correlation analysis method suitable for continuous and discrete ordinal variables. We used R’s cor.test function for
this analysis. Ordinal regression is a widely used method for modeling an ordinal response’s dependence on a set of
independent predictors, which is applicable in a variety of domains. For the ordinal regression analysis we used the
lrm function from the rms package in R [13].

2.5 Model Generation

For modeling microservice architectures we followed the method reported in our previous work [60]. We used our
existing CodeableModels tool2, a Python implementation for precisely specifying meta-models, models, and model in-
stances in code. Based on CodeableModels, we realized automated code generators to generate graphical visualizations

2https://github.com/uzdun/CodeableModels

Manuscript submitted to ACM

https://github.com/uzdun/CodeableModels

6 Zdun et al.

of all meta-models and models in PlantUML, detectors for detecting all relevant aspects of the metrics in the models,
and generators for automatically calculating metrics.

2.6 Extraction of Architecture Models from Microservice Code

As explained above, this article uses an approach developed in our prior work for automatic extraction of architec-
ture models from the code [36]. In this section, we briefly explain this static code analysis approach, to make this
article self-contained. Numerous architecture reconstruction approaches have been proposed to automatically or semi-
automatically produce architecture models from the source code [10, 30, 31]. Unfortunately, these approaches usually
involve a substantial effort to either manually maintain the reconstructed architecture model or repeat the reconstruc-
tion after the system has evolved (see [21]), meaning that they are not well suited for supporting the continuous
evolution of systems. In addition, automated approaches have low accuracy (see [14]), and much additional, manual
effort is needed for correcting and augmenting their results. Finally, most reconstruction approaches focus on a very
limited number of programming languages and technologies (see [10]), meaning they are hard to use with modern sys-
tems, such as microservice-based systems, which use typically polyglot programming, persistence, and technologies,
often in their latest iterations.

Instead of aiming at developing a one-size-fits-all, generic reconstruction method as many other reconstruction
approaches do, our approach leverages the fact that system experts usually know a lot about their projects and thus a
generic, fully automated reconstruction may not be necessary. In particular, our work is an extension of the approach
taken by Haitzer et al. [21]. We designed a detector-based approach that is capable of providing support for polyglot,
continuously evolving systems, and can possibly use reusable detectors. Here, detectors are software components that
continuously parse relevant parts of the source code and create model abstractions from the code. Reusable detectors
are detectors that can be reused across different model abstraction tasks and projects.

Our approach presupposes that a system expert has identified the high-level architecture and the architectural
security features of the system—with which the expert should be familiar either way — and modeled it in an execution
script that iterates the detectors over each system element. In [36] we were able to show that this involves a modest
initial effort per project, and then no or a relatively small per-release effort (such as for removal and addition of services
and links between releases) is required.

3 CASE STUDY INSPECTION AND PREPARATION

This section explains the case studies’ preparation and inspection. Tables 1 and 2 summarizes the 10 case studies we
have manually modeled based on line-by-line inspection of their source from the linked Github sources. In addition, as
explained above, we have derived 20 variant models to explore the decision space, by modeling possible other uses of
the relevant security tactics, but keeping the rest of the system identical to the original. Each of those represents either
an architectural refactoring step or a possible deterioration during system evolution. In our point of view, it is important
to study such variations, as it is the goal to show that our approach helps to find issues that occur during refactoring
or evolution steps. That is, our approach should be applicable in the context of a continuous delivery pipeline.

As shown in Figure 1, it is our goal to derive the models such as those in Tables 1 and 2 via static code analysis
from the source code. This can be done using the approach from our previous work for architecture reconstruction
of polyglot microservice systems [36]. In our previous work, we have extracted the components and connector model
of the system RS0 in a fully automated fashion (and one other system). All other open source systems studied in this
work, rely solely on the line-by-line manual analysis, and will in our future work be extracted automatically, too. Please
Manuscript submitted to ACM

Microservice Security Metrics 7

ID Model Size Description/Sources

AC0 7 components,
10 connectors

A system managing customer accounts, with OAuth2 support and Eureka service discovery. Source: https://github.com/piomin/sample-spring-oauth2-
microservices/tree/with_database.

AC1 8 components,
11 connectors

Variant of AC0 that adds direct clients to service connections, some secure connections to OAuth server, plaintext authentication in all backend/client-service links,
plaintext authorization on all backend/client-service links (one only with some requests scope), and zipkin tracing for account service (with plaintext sensitive data).

AC2 8 components,
14 connectors

Variant of AC0 that adds direct clients to services connections and link via API gateway, +secure connections in all links, SSL authentication to all backend/client-
service links, token-based authorization on all backend/client-service links, and zipkin tracing for both services linked to clients/gateways.

BA0 11 compo-
nents, 17
connectors

A REST API for creating and viewing bank accounts and transferring money between them; uses CQRS and event-driven communication via Kafka in the backend.
Source: https://github.com/cer/event-sourcing-examples.

BA1 12 compo-
nents, 21
connectors

Variant of BA0 that adds secure connections to Event Store, API Keys for API Gateway and services communication (for one services only for some requests),
plaintext authentication for backendlinks, one view service accessed by clients directly, and Jaeger tracing for 4 services.

BA2 12 compo-
nents, 24
connectors

Variant of BA0 that adds secure connections to event store and clients, API Keys for gateway/services communication, plaintext authentication in the backend over
secure connections, encrypted authorization on all client-service paths, plaintext authorization with secure connections to event store,one service can be accessed
by clients or by gateway, and Jaeger tracing for all services.

CI0 8 components,
12 connectors

NodeJS-based cinema API using interacting microservices shielded by an API Gateway, using encrypted communication, and a replicated Mongo DB. Source:
https://github.com/Crizstian/cinema-microservice.

CI1 12 compo-
nents, 21
connectors

Variant of CI0 that adds a Web UI client with HTTP connection, service authentication with API keys for all links except one, DB authentication using tokens,
authorization with plaintext over secure connections in most links, authorization with encrypted information for database links, UI to gateway communication with
HTTPS, a frontend facade service for catalog service (with some sensitive data), and Zipkin tracing for services except notification and frontend service.

CI2 12 compo-
nents, 23
connectors

Variant of CI0 that adds a Web UI client with HTTPS connection, service/DB authentication with authentication tokens, authorization with plaintext over secure
connections for services, authorization with encrypted information for database links, a frontend facade service and API gateway link for catalog andmovies services,
some sensitive data in component and connector code, and Zipkin tracing for all services.

CO0 13 compo-
nents, 16
connectors

TheCommonComponentModelling Example (CoCoMe) realized as amicroservice application using directly connectedWebUIs. Source: https://github.com/cocome-
community-case-study/cocome-cloud-jee-microservices-rest.

CO1 12 compo-
nents, 19
connectors

Variant of CO0 that uses the services from the UI, and adds a frontend facade to the reports services, encrypted connections on all client and UI links, inter-service
authentication via API keys (for two links only with some requests scope),DBs authenticated via SSL, restful client authenticated with API keys, inter-service
plaintext authorization, no authorization for DBs, Jaeger tracing for 3 services and the facade, and 2 more services contain sensitive data in their code.

CO2 12 compo-
nents, 16
connectors

Variant of CO0 that uses the services from the UI, and adds encrypted connections everywhere, service authentication is done with plaintext credentials for all
requests,all DBs authenticated via SSL, inter-service plaintext authorization, all DB links authorized with encrypted information, Jaeger tracing for 3 services, and
3 more services contain sensitive data.

EP0 11 compo-
nents, 11
connectors

A generic enterprise planner application following a microservices architecture shielded by an API gateway, using databases per service, and messaging-based
communication. Source: https://github.com/gfawcett22/EnterprisePlanner.

EP1 16 compo-
nents, 22
connectors

Variant of EP0 that adds aWeb app & SPAWeb client,encrypted messaging, HTTP basic authentication everywhere (for 1 link only for some requests), authorization
with plaintext over secure links in the backend, authorization with encrypted information or tokens elsewhere, SPA web app to frontend communication with
HTTPS, a frontend for web apps (to which all but one service are connected), direct connection of Web UIs to shipment service, sensitive data on service code.

EP2 16 compo-
nents, 23
connectors

Variant of EP0 that adds a Web app & SPA Web client,encrypted messaging, all service client connections with HTTPs, API to services communication with HTTPs,
SSL-based authentication, authorization with tokens on all distributed links, and a frontend for web apps to which all services are connected.

Table 1. Overview of modeled systems (size, details, and sources) – Part 1

note that this automation of the first step of our work is required for the continuous delivery-like application of our
approach (which we can demonstrate so far only for RS0). All other steps of our approach, such as detectors, metrics
calculation, visualization generations, and so on, have been fully automated already. The code and model data set are
provided as an open access artifact on Zenodo to enable reproducibility of our study3.

As an illustrative example of the modeling used in this paper, please consider the relatively simple Model AC0 in
Figure 2. As can be seen, the system is accessed via an API Gateway by only one type of client, a RESTful HTTP
client. All HTTP-based communication is plain HTTP, i.e. unencrypted. The Account service is access-controlled by
plaintext4 form-based login authentication (for all requests), offers single sign-on and sessions, and uses token-based
authorization (for all requests). Communication to the Customer service happens via a Feign client which uses plaintext
authentication (with sensitive data stored in the connector code). It uses the same token-based authorization as before.
All authorization is handled via the OAuth2 service, which is also accessed using plaintext authentication, again with
sensitive data stored in the connector code. The OAuth2 server also contains sensitive data in its code and in the
code to access the AuthDB MySQL database (via unencrypted JDBC). All marked-up sensitive data in this system are

3https://doi.org/10.5281/zenodo.6424722
4Please note: Whenever ‘plaintext’ encoding is used, there is a risk of a Shared Secret. Sometimes plaintext encoding might be used and no secret is
actually shared, e.g. consider a plaintext communication over an encrypted channel.

Manuscript submitted to ACM

https://github.com/piomin/sample-spring-oauth2-microservices/tree/with_database
https://github.com/piomin/sample-spring-oauth2-microservices/tree/with_database
https://github.com/cer/event-sourcing-examples
https://github.com/Crizstian/cinema-microservice
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/gfawcett22/EnterprisePlanner
https://doi.org/10.5281/zenodo.6424722

8 Zdun et al.

ID Model Size Description/Sources

ES0 18 compo-
nents, 29
connectors

.NETMicroservices Reference Application realizing an e-shop, with multiple clients and UIs, Backends-for-Frontends gateways, event-driven communication, GRPC
and RESTful communication, and ELK monitoring. Source: https://github.com/dotnet-architecture/eShopOnContainers.

ES1 18 compo-
nents, 37
connectors

Variant of ES0 that adds encrypted browser access, HTTPS for links to identity service/ELK, authentication with API keys for ID service, SSL-/token-based authenti-
cation to DBs, ELK services and event bus links, token-based authorization on grpc links, plaintext authorization over secure links to ELK, encrypted authorization
on other links, identity service not authorized, ELK monitors for services but 1 service/1 BFF, and additional direct links to identity/catalog services.

ES2 18 compo-
nents, 35
connectors

Variant of ES0 that adds encrypted browser access, HTTPS for links to identity service/ELK, encrypted grpc service links, authentication with SSL authentication
for ID service, DBs, ELK services and event bus links, token-based authorization on all grpc links, plaintext authorization over secure links to ELK, encrypted
authorization on other links,ELK monitors for all services but 1 service/1 BFF, and direct links to identity service.

OB0 13 compo-
nents, 25
connectors

Online Boutique application that servers a sample application for the Google Could Platform using GRPC communication, stackdriver based monitoring and tracing,
a frontend service, and a cart database. Source: https://github.com/GoogleCloudPlatform/microservices-demo.

OB1 13 compo-
nents, 23
connectors

Variant of OB0 that adds encrypted database connections, connections to frontend with HTTPS, all links authenticated with plaintext, all links from gateways, to
gcp stackdriver, and databases securely authorized, all links from checkout plaintext authorized, recommendation service links not authorized, 4 services directly
accessible (rest behind frontend service), one service and the frontend not monitored, and 3 services contain sensitive data in their code.

OB2 13 compo-
nents, 30
connectors

Variant of OB0 that adds encrypted client access, encrypted database connections, secure SSL authentication on all links, all links from gateways securely authorized,
all links from checkout and recommendation services, and to gcp stackdriver and databases plaintext authorized, all services directly accessible and via frontend
service, 2 services not monitored, and cart service contains sensitive data.

PM0 16 compo-
nents, 37
connectors

Piggy Metrics, a microservice system for demonstrating collecting application metrics in a microservice architecture using a Zuul API Gateway, OAuth2, Sleuth
tracing, Histrix monitoring, a Eureka registry, and various per-service DBs. Source: https://github.com/sqshq/piggymetrics.

PM1 18 compo-
nents, 40
connectors

Variant of PM0 that adds additional an HTTPS client, oauth2 connections encrypted, no authentication used, all links not authenticated in PM0 now authenticated
with SSL authentication, all links authorized with plaintext authorization (but most not secure connections), HTTPS client communication via a frontend facade,
and service client via ZUUL gateway, additional backend HTTPS connections, and statistics service not traced or monitored.

PM2 17 compo-
nents, 34
connectors

Variant of PM0 that adds encrypted connections, authentication with secure means except for one plaintext authentication, authorization with plaintext information
(and use secure connections), the account service and oauth connected via a frontend service facade (not the Zuul gateway), andthe statistics and notification services
not traced or monitored.

RS0 19 compo-
nents, 30
connectors

Robot Shop, an application for demonstration Instana technology in highly polyglot microservice environment with services in different languages, different per-
service DBs, various communication protocols, Instana tracing, and an NGINX API Gateway. Source: https://github.com/instana/robot-shop.

RS1 19 compo-
nents, 32
connectors

Variant of RS0 that adds inter-service communication with HTTPS, authentication with API keys on gateway-service and inter-service communication, secure
communication everywhere else with secure communication tokens, Rest client can bypass gateway to access catalogue, Cart service contains sensitive data in the
code, andRatings service additional connected to Instana (traced).

RS2 19 compo-
nents, 34
connectors

Variant of RS0 that adds HTTPS communication, authentication with API keys on gateway-service, SSL-based authentication on inter-service communication,
secure communication everywhere else with secure communication tokens/SSL, ratings and catalog services directly accessed by UIs and clients, shipping and
ratings services additional connected to Instana (traced), and cart, catalogue, ratings, payment, and shipping services contain sensitive data in their code.

TE0 17 compo-
nents, 26
connectors

Tap-And-Eat application based on microservices using direct UI connection of various services, with per-service DBs, Hystrix monitoring, an Eureka discovery
service, and a configuration service. Source: https://github.com/jferrater/Tap-And-Eat-MicroServices.

TE1 17 compo-
nents, 28
connectors

Variant of TE0 that adds encrypted communication with Hystrix, some plaintext based authentication on path from client to services, some plaintext authentication
between services, secure plaintext for authentication at discovery service, authorizationwith plaintext information everywhere, and twomore services aremonitored.

TE2 17 compo-
nents, 30
connectors

Variant of TE0 that adds encrypted communication with Hystrix, HTTPS-based browser access, some plaintext-based authentication on path from client to services,
plaintext based authentication between services, secure authenticationtoken used for authentication at config service, authorization with plaintext information
everywhere except some inter-service encrypted authorization, two services are access from UIs without authorization, and all services but one monitored.

Table 2. Overview of modeled systems (size, details, and sources) – Part 2

credentials to access system services. Further, the system uses a Eureka discovery service which is accessed without
any authentication or authorization.

Please note that the components and connectors are all of the types Component or Connector, respectively. Those
types are extended by stereotypes for microservices architectures such as API Gateway or Service for components, or
RESTful HTTP or JDBC for connectors. In addition, we offer such types for security annotations to mark up security
features, such as Authentication with Plaintext Credenditals or Token-based Authorization. The metrics definitions in
Section 6 define those types (modeled here as stereotypes in the model) that they need to detect the relevant metrics.
Please note that our models also contain other security-related types than just those used in the metrics below; e.g. the
Single Sign-On type in Figure 2 is not yet used in our metrics.

In a likewise manner we have modeled all 30 system models enlisted in Tables 1 and 2. Please note that some of
the models contain a substantially higher number of components and connectors than the model in Figure 2 which is
among the simplest models in our model data set. All models can be found in our replication data set.
Manuscript submitted to ACM

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/sqshq/piggymetrics
https://github.com/instana/robot-shop
https://github.com/jferrater/Tap-And-Eat-MicroServices

Microservice Security Metrics 9

«Client»
Client : Component

«API Gateway»
Zuul API Gateway : Component

«OAuth2 Server»
«Component Code Contains Encrypted Sensitive Data»

OAuth2 Server : Component

«MySQL DB»
AuthDB : Component

«Service»
Account Service : Component

«Service»
Customer Service : Component

«Discovery Service»
Eureka Discovery Service : Component

«RESTful HTTP»
«HTTP»

«Auth Provider»
«RESTful HTTP»

«HTTP»
«Authentication with Plaintext Credentials»

«Authentication Scope / All Requests»
«Connector Code Contains Sensitive Data as Plaintext»

«RESTful HTTP»
«HTTP»

«Token-based Authorization»
«Authorization Scope / All Requests»
«Form-based Login Authentication»

«Single Sign-On»
«Session-Based»

«Authentication Scope / All Requests»

«RESTful HTTP»
«HTTP»

«No Authentication»
«Authentication Scope / All Requests»

Discovery Client

«JDBC»
«Authentication with Plaintext Credentials»

«Authentication Scope / All Requests»
«Connector Code Contains Sensitive Data as Plaintext»

«Unencrypted»

«RESTful HTTP»
«HTTP»

«No Authentication»
«Authentication Scope / All Requests»

Discovery Client

«Auth Provider»
«RESTful HTTP»

«HTTP»
«Authentication with Plaintext Credentials»

«Authentication Scope / All Requests»
«Connector Code Contains Sensitive Data as Plaintext»

«RESTful HTTP»
«HTTP»

«No Authentication»
«Authentication Scope / All Requests»

Discovery Client

«Auth Provider»
«RESTful HTTP»

«HTTP»
«Authentication with Plaintext Credentials»

«Authentication Scope / All Requests»
«Connector Code Contains Sensitive Data as Plaintext»

«RESTful HTTP»
«HTTP»

«Authentication with Plaintext Credentials»
«Authentication Scope / All Requests»

«Token-based Authorization»
«Authorization Scope / All Requests»

«Connector Code Contains Sensitive Data as Plaintext»
Feign client

Fig. 2. Illustrative Example: Overview of the AC0 Model

4 ADDS FOR MICROSERVICE SECURITY TACTICS

In this section, we present the ADDs we have derived from the selected security tactics. As mentioned in Section 2,
our collected catalog of security tactics is much broader than the ones used here. For example, just the security strate-
gies in the NIST SP 800-204 special publication [34] cover the categories identity management, access management,
service registry configuration, secure communication, security monitoring/observability, availability and resilience
improvement, induction of new versions of microservices, preventing credential abuse and stuffing attacks, and API
gateway implementation, and service mesh implementation. Thus, we have selected three representative and widely
used categories of microservice security tactics, namely secure communication, identity management, and observabil-
ity for development, demonstration, and evaluation of our approach. Those were selected based on an assessment by
the industrial experts in the author team, who confirmed that those are among the most widely used security tactics
for microservices at the moment.

Manuscript submitted to ACM

10 Zdun et al.

4.1 Tactics and ADD on Secure Communication

When considering the Secure Communication category and our scope of architecture decompositionmodels, wemainly
found various tactics related to the use of encrypted protocols. We need to consider if a connector is a backend con-
nector or a connector on the paths from clients or UIs to system services. Here, the backend refers to those connectors
inside of the system that are not linked to clients or UIs. As the connectors on the paths from clients or UIs to system
services can be seen as more vulnerable, we treat them as a special case in our ADD on Secure Communication. Both
cases are treated in one ADD, as the ideal option in this category is that all communication is encrypted. The resulting
ADD is:

ADD: Secure Communication (SC)

Decision Scope: Each connector between two components in the system (backend connectors) and each con-
nector on paths from clients or UIs to system services, but not connectors to external services. To be decided for
each connector.
Decision Options (Security Tactics):

• Encrypted Communication: Encrypted protocols such as SSL/TLS or HTTPS are used for communica-
tion on a connector. We can further distinguish:
– Encrypted Backend Communication
– Encrypted Communication on Paths from Client/UIs to System Services

• Unencrypted Communication: Unencrypted protocols such as HTTP are used for communication on
a connector. We can further distinguish:
– Unencrypted Backend Communication
– Unencrypted Communication on Paths from Client/UIs to System Services

4.2 Tactics and ADDs on Identity Management

When considering the Identity Management category and our scope of architecture decomposition models, we mainly
found various authentication-related tactics. In this context, it is important to note that authentication is crucial for
all parts of the microservice architecture, but especially for services reachable directly or indirectly from the clients.
As it makes in some case sense to only authenticate at the entry points of a system, we model the two resulting cases,
backend authentication and authentication on paths from clients/UIs to services, using two separate ADDswith similar
tactics, but a different decision scope:

ADD: Backend Authentication (BE_AE)

Decision Scope: Each connector between two components in the system (such as system services, databases,
infrastructure components, discovery services, or access management servers), but not connections to clients
and UIs (or between them) and/or external services. To be decided for each connector.
Decision Options (Security Tactics):

• Token-based Authentication: Authentication is performed using cryptographic identity tokens such as
SAML, OpenID, JWT tokens.

• Protocol-based Authentication: Authentication is performed based on the features of an encrypted
communication protocol, such as SSL- or SASL-based authentication.

Manuscript submitted to ACM

Microservice Security Metrics 11

• API Keys: Authentication is performed based on API Keys [64], i.e. authentication with a unique token
per client that the client can present to the API endpoint for identification purposes.

• Plaintext-based Authentication: Authentication information is transferred as plaintext, such as in
HTTP Basic Authentication, form-based authentication, or home-grown implementations.

• Plaintext-based Authentication over an Encrypted Protocol: Authentication information is trans-
ferred as plaintext over a secure (i.e. encrypted) communication protocol such as TLS/SSL.

• No Authentication: No authentication method is used.
• Authentication Not Required: The connector does not need any form of authentication. This is for

instance the case, if a public API is offered that can be accessed by any client without restrictions.

ADD: Authentication on Paths from Clients or UIs to System Services (CP_AE)

Decision Scope: Each direct or transitive connector between a client or UI to a system service. In this context,
transitive means that the connector can cross API Gateways and similar frontend components first, and then
other system services, but no other kinds of components (such as infrastructure services, databases, and so on).
To be decided for each connector.
Decision Options (Security Tactics): Exactly the same options are used as in the Backend Authentication ADD,
but instead of the scope of distributed backend connectors, in the scope of paths from clients or UIs to system
services.

4.3 Tactics and ADD on Observability

Observability in microservices means ensuring that access to the data required to identify problems and detect de-
fects is provided. This is critical to “detect attacks and identify factors for degradation of services (which may impact
availability)” [34]. Please note that service-level degradation or availability issues may be caused by an attack, e.g.
a denial-of-service attack. Monitoring for security should be performed at both the system level (e.g. gateways) and
service level to detect, report, and respond to inappropriate behavior [34]. Whereas the previous tactics provide “pro-
tective” security controls, observability measures provide “detective” controls in the sense that they are used “to ensure
that the system is operating as designed and the data is secure” [8]. It is usually performed through infrastructure ser-
vices for performing monitoring, logging, and/or tracing [37]. Thus, when considering component-level observability,
we can distinguish between ordinary components of the system and components facing clients or UIs, such as API
Gateways [48], Backends for Frontends [48], or frontend services. The latter can be summarized as Facade components.

ADD: Microservice Observability (OBS)

Decision Scope: (1) Each component that is a system service; that is, it is a service, but not an external one or
an infrastructure component and not a Facade component. (2) Each component that is a Facade component, i.e.
either an API Gateway, a Backend for Frontends, or a frontend service.
Decision Options (Security Tactics):

• Observing Facade Components: Facade components are observed (i.e., logged, monitored, or traced) by
one or more dedicated components.

• Observing System Services: System services are observed (i.e., logged, monitored, or traced) by one or
more dedicated components.

Manuscript submitted to ACM

12 Zdun et al.

• No Observation: No observation is used.

Depending on which aspects require observation in a microservice system, three types of observability support
can be distinguished, which are often combined in existing tools:

• Logging: Logs are records of events related to the system’s state. Logging refers to themanagement of logs.
It is used e.g. to help in diagnosing defects or providing auditing capabilities per component (microservice).

• Monitoring: Monitoring describes the use of metrics to observe how a service is handling its requests.
The goal is to achieve a global view of the system that is being monitored.

• Tracing: Tracing (or distributed tracing or distributed request tracing) aims to observe the different con-
versations in a service-based system separately. A trace describes the complete processing of a request
through different parts of the distributed system. Each trace is comprised of a number of spans. A span de-
scribes the operations happening in a single service of the distributed system. Tracing is typically focusing
on performance or other optimizations across services.

5 GROUND TRUTH

To create a ground truth for the assessment of conformance to theADDs described in the previous section, first the three
industrial security experts in the author team together with other experts in their company created recommendations
based on the results of our tactics study (i.e., from security guidelines, gray literature, and scientific literature studies).
These recommendations provide informal guidance for security experts to manually judge systems such as those in our
models.The other authors then analyzed these recommendations, compared them to the actual implementations found
in the case study systems, and selected the recommendations in focus of our ADDs.The results are the recommendation
per ADD in Table 3 in which more or less preferred ADD options (tactics) are mapped to a 5-point ordinal scale:

• ++: very well supported;
• +: well supported, but aspects of the solution could be improved;
• ∼: serious flaws in the security design, but substantial support can already be found in the system;
• −: serious flaws in the security design, but initial support can already be found in the system;
• −−: no support for the security tactic can be found in the system.

This assessment scheme we then discussed again with the three industrial security experts until consensus was
reached. The other authors then assessed the 10 case study systems and the 20 case study variants for conformance
to each of the ADDs. The assessments are again reviewed by the three security assessment experts on the author
team, as explained in Section 2. In addition, two industrial security experts from another company have reviewed our
models, metrics, and code, and assessed their feasibility and applicability in the context of a continuous certification
scheme (see Section 8.2 for details). Please note that some parts of the recommendation in Table 3 lead to a crisp
assessment, especially the extreme cases (++, −−) are often referring to clear cut sets such as all connectors or no
connectors. However, some of the other values contain fuzzy statements such as the large majority of the connectors,
where human judgement per system model is required, to decide how big the set must be in order to be acceptable in
this particular model. For example, system context, system size, and domain of the system are factors that can lead to
individually different judgement on different models.

For each ground truth assessment, first, the architectural abstraction from source code to models had to be made,
which requires locating architectural security concerns which are often scattered across multiple source code artifacts.
In the next step, it is required to judge the UML models (annotated with the additional types explained in Section 6
Manuscript submitted to ACM

Microservice Security Metrics 13

ADD Assessment Conditions/Explanation

Secure
Communication
(SC)

++ All distributed connectors use Encrypted Communication.
+ Encrypted Communication is supported for all connectors on paths from clients or UIs to system services (i.e., the most vulnerable connectors).
∼ Either the large majority of connectors on paths from clients or UIs to system services (i.e., the most vulnerable connectors) uses Encrypted Commu-

nication; or the majority of all distributed connectors plus the majority of connectors on paths from clients or UIs to system services use Encrypted
Communication.

− At least some distributed connectors use Encrypted Communication, but less than the large majority of connectors on paths from clients or UIs to
system services; or less than the majority of all distributed connectors plus less than the majority of connectors on paths from clients or UIs to system
services use Encrypted Communication.

−− No distributed connectors are use Encrypted Communication.

Backend
Authentication
(BE_AE)

++ All distributed backend connectors are authenticated either with Token-based Authentication or Protocol-based Authentication.
+ All distributed backend connectors are authenticated either with Token-based Authentication, Protocol-based Authentication, or Plaintext-

based Authentication over an Encrypted Protocol.
∼ Either the large majority of distributed backend connectors is authenticated with Token-based Authentication, Protocol-based Authentication,

or Plaintext-based Authentication over an Encrypted Protocol; or all distributed backend connectors are authenticated, but some or all of those
are authenticated with Plaintext-based Authentication or API Keys.

− At least some distributed backend connectors are authenticated, but either Plaintext-based Authentication orAPI Keys are used and not all connec-
tors are authenticated; or, if no Plaintext-based Authentication or API Keys is used, less then the large majority of distributed backend connectors
is authenticated with Token-based Authentication, Protocol-based Authentication, or Plaintext-based Authentication over an Encrypted
Protocol.

−− No distributed backend connectors are authenticated.
Notes If the Authentication Not Required option is selected, the connector should not be further analyzed with regard to identity management aspects.

Authentication
on Paths from
Clients/UIs
to Services
(CP_AE)

++ All connectors on paths from clients or UIs to system services are authenticated either with Token-based Authentication or Protocol-based Au-
thentication.

+ All connectors on paths from clients or UIs to system services are authenticated either with Token-based Authentication, Protocol-based Authen-
tication, API Keys, or Plaintext-based Authentication over an Encrypted Protocol.

∼ Either the large majority of connectors on paths from clients or UIs to system services is authenticated with Token-based Authentication, Protocol-
based Authentication, API Keys, or Plaintext-based Authentication over an Encrypted Protocol; or all these connectors are authenticated, but
some or all of those are authenticated with Plaintext-based Authentication.

− At least some connectors on paths from clients or UIs to system services are authenticated, but either Plaintext-based Authentication is used and
not all connectors are authenticated; or, if no Plaintext-based Authentication is used, less then the large majority of these connectors are authen-
ticated with Token-based Authentication, Protocol-based Authentication, API Keys, or Plaintext-based Authentication over an Encrypted
Protocol.

−− No connectors on paths from clients or UIs to system services are authenticated.
Notes This scheme is almost identical to the one for BE_AE with the exception that the API Keys option is viewed on paths from clients or UIs to system

services as an inferior, but still acceptable option, whereas its use in the backend is not recommended (see [34, 64]).

Observability
(OBS)

++ All System Services and all Facade Components are Observed (logged, monitored, or traced) by a dedicated component.
+ All System Services or all Facade Components are Observed (logged, monitored, or traced) by a dedicated component.
∼ The large majority of System Services and Facade Components are Observed (logged, monitored, or traced) by a dedicated component.
− At least some System Services and Facade Components are Observed (logged, monitored, or traced) by a dedicated component.
−− No System Services or Facades are Observed (logged, monitored, or traced) by a dedicated component.

Table 3. Summary of the Recommendations for the ADDs

Decision AC0 AC1 AC2 BA0 BA1 BA2 CI0 CI1 CI2 CO0 CO1 CO2 EP0 EP1 EP2 ES0 ES1 ES2 OB0 OB1 OB2 PM0 PM1 PM2 RS0 RS1 RS2 TE0 TE1 TE2

SC -- - ++ -- - + + ∼ + -- + ++ -- ∼ ++ -- ∼ ++ -- - ++ - ∼ ++ -- - ∼ -- - -
BE_AE - ∼ ++ - ∼ ∼ - ∼ ++ - ∼ + - - ++ - ∼ ++ -- ∼ ++ - -- + -- ∼ ∼ -- - -
CP_AE ∼ ∼ ++ ∼ ∼ + -- + ++ -- ∼ + -- - ++ ∼ + ++ -- ∼ ++ ∼ -- ++ -- + + -- - -
OBS -- - ++ -- - ++ -- ∼ + -- + - -- - ++ + ∼ ++ + ∼ + ++ - - - ∼ + - - ∼

Table 4. Ground Truth Assessment for the Case Study Systems

as stereotypes, such as those in the example in Figure 2). In this judgment, there is always a subjective element of
human judgment. Please note that some of the example systems are way more complex than the example in Figure 2
and real-life commercial systems are often even substantially larger and more complex. Thus, without knowledge of
systematic assessment such as our metrics and their automated assessment outcomes, explained below, an objective
decision is in many cases hard to reach and non-obvious.

Table 4 enlists the ground truth assessments for each decision and for each the case study systems from Tables 1
and 2.

Manuscript submitted to ACM

14 Zdun et al.

6 METRICS

In this section, we describe the metrics we have hypothesized for each of the decisions described in Section 4. All
metrics, unless otherwise noted, are continuous values ranging from 0 to 1, with 1 representing the optimal case where
the respective option is fully supported, and 0 the worst-case scenario where it is completely absent. Our metrics are
based on a microservices-based architecture decomposition model. We use formal definitions adapted from our prior
work [60] to define the metrics below. We understand the microservices-based architecture model as a decomposition
into a directed components and connectors graph with a set of component types for each component and a set of
connector types for each connector, formally:

ff f f
An architecture decomposition model𝑀 is a tuple (𝐶𝑃𝑀 , 𝐶𝑁𝑀 , 𝐶𝑃𝑇𝑀 , 𝐶𝑁𝑇𝑀 , 𝑐𝑛_𝑠𝑜𝑢𝑟𝑐𝑒, 𝑐𝑛_𝑡𝑎𝑟𝑔𝑒𝑡, 𝑐𝑝_𝑑𝑖𝑟𝑒𝑐𝑡𝑡𝑦𝑝𝑒,

𝑐𝑛_𝑑𝑖𝑟𝑒𝑐𝑡𝑡𝑦𝑝𝑒, 𝑐𝑝_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒, 𝑐𝑛_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒, 𝑐𝑝_𝑡𝑦𝑝𝑒, 𝑐𝑛_𝑡𝑦𝑝𝑒) where:

• 𝐶𝑃𝑀 is a finite set of component nodes in Model𝑀 .
• 𝐶𝑁𝑀 ⊆ 𝐶𝑃𝑀 ×𝐶𝑃𝑀 is an ordered finite set of connector edges.
• 𝐶𝑃𝑇𝑀 is a set of component types.
• 𝐶𝑁𝑇𝑀 is a set of connector types.
• 𝑐𝑛_𝑠𝑜𝑢𝑟𝑐𝑒 : 𝐶𝑁𝑀 → 𝐶𝑃𝑀 is a function returning the component that is the source of a link between two

components.
• 𝑐𝑛_𝑡𝑎𝑟𝑔𝑒𝑡 : 𝐶𝑁𝑀 → 𝐶𝑃𝑀 is a function returning the component that is the target of a link between two

components.
• 𝑐𝑝_𝑐𝑜𝑛𝑛 : 𝐶𝑃𝑀 → P(𝐶𝑁𝑀) is a function returning the connectors that are connected to a particular component,

i.e. ∀𝑐𝑝 ∈ 𝐶𝑃𝑀 , 𝑐𝑛 ∈ 𝑐𝑝_𝑐𝑜𝑛𝑛(𝑐𝑝) : 𝑐𝑛_𝑠𝑜𝑢𝑟𝑐𝑒 (𝑐𝑛) = 𝑐𝑝 ∨ 𝑐𝑛_𝑡𝑎𝑟𝑔𝑒𝑡 (𝑐𝑛) = 𝑐𝑝 .
• 𝑐𝑝_𝑑𝑖𝑟𝑒𝑐𝑡𝑡𝑦𝑝𝑒 : 𝐶𝑃𝑀 → P(𝐶𝑃𝑇𝑀) is a function that maps each component node 𝑐𝑝 to its set of direct compo-
nent types,

• 𝑐𝑝_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒 : 𝐶𝑃𝑇𝑀 → P(𝐶𝑃𝑇𝑀) is a function called component type hierarchy. 𝑐𝑝_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑀 (𝑐𝑝𝑡)
is the set of direct supertypes of 𝑐𝑝𝑡 ; 𝑐𝑝𝑡 is called the subtype of those supertypes. The transitive closure5

𝑐𝑝_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒∗ defines the inheritance in the hierarchy such that 𝑐𝑝_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒∗ (𝑐𝑝𝑡) contains the direct and
indirect (aka transitive) supertypes of 𝑐𝑝𝑡 . The inheritance hierarchy is cycle free, i.e. ∀𝑐𝑝𝑡 ∈ 𝐶𝑃𝑇𝑀 :

𝑐𝑝_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒∗ (𝑐𝑝𝑡) ∩ {𝑐𝑝𝑡} = ∅.
• 𝑐𝑝_𝑡𝑦𝑝𝑒 : 𝐶𝑃𝑀 → P(𝐶𝑃𝑇𝑀) is a function that maps each component to its set of direct and transitive compo-
nent types, i.e., ∀𝑐𝑝 ∈ 𝐶𝑃𝑀 , 𝑑𝑡 ∈ 𝐶𝑃𝑇𝑀 : 𝑑𝑡 = 𝑐𝑝_𝑑𝑖𝑟𝑒𝑐𝑡𝑡𝑦𝑝𝑒 (𝑐𝑝) ⇒ 𝑐𝑝_𝑡𝑦𝑝𝑒 (𝑐𝑝) = 𝑑𝑡 ∪ 𝑐𝑝_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒∗ (𝑑𝑡).

• 𝑐𝑛_𝑑𝑖𝑟𝑒𝑐𝑡𝑡𝑦𝑝𝑒 : 𝐶𝑁𝑀 → P(𝐶𝑁𝑇𝑀) is a function that maps each connector 𝑐𝑛 to its set of direct connector
types.

• 𝑐𝑛_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒 : 𝐶𝑁𝑇𝑀 → P(𝐶𝑁𝑇𝑀) is a function called connector type hierarchy. 𝑐𝑛_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒 (𝑐𝑛𝑡) is the
set of direct supertypes of 𝑐𝑛𝑡 ; 𝑐𝑛𝑡 is called the subtype of those supertypes.The transitive closure 𝑐𝑛_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒∗

defines the inheritance in the hierarchy such that 𝑐𝑛_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒∗ (𝑐𝑛𝑡) contains the direct and indirect (aka
transitive) supertypes of 𝑐𝑛𝑡 . The inheritance hierarchy is cycle free, i.e. ∀𝑐𝑛𝑡 ∈ 𝐶𝑁𝑇 : 𝑐𝑛_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒∗ (𝑐𝑛𝑡) ∩
{𝑐𝑛𝑡} = ∅.

• 𝑐𝑛_𝑡𝑦𝑝𝑒 : 𝐶𝑁𝑀 → P(𝐶𝑁𝑇𝑀) is a function that maps each connector to its set of direct and transitive con-
nector types, i.e., ∀𝑐𝑛 ∈ 𝐶𝑁𝑀 , 𝑑𝑡 ∈ 𝐶𝑁𝑇𝑀 : 𝑑𝑡 = 𝑐𝑛_𝑑𝑖𝑟𝑒𝑐𝑡𝑡𝑦𝑝𝑒 (𝑐𝑛) ⇒ 𝑐𝑛_𝑡𝑦𝑝𝑒 (𝑐𝑛) = 𝑑𝑡 ∪ 𝑐𝑛_𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒∗ (𝑑𝑡).

5All transitive closures in this article are assumed to be calculated with a standard algorithm for transitive closures like Warshall’s algorithm.

Manuscript submitted to ACM

Microservice Security Metrics 15

Please note that below, to simplify the metrics definition texts, when we simply say Component 𝑐𝑝 or Connector
𝑐𝑛 is of type 𝑡 , we refer to the use of the function call 𝑐𝑝.𝑐𝑝_𝑡𝑦𝑝𝑒 (𝑡) or 𝑐𝑛.𝑐𝑛_𝑡𝑦𝑝𝑒 (𝑡), respectively. We introduce
the component and connector types used in this article in the text below when they are first needed. The full type
hierarchies are modeled in the CodeableModels distribution6.

Detectors are functions that calculate a Detector Result 𝐷𝑅, such as 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 : P(𝑀𝐸𝑀) → 𝐷𝑅, where 𝑀𝐸𝑀
are model elements of a model 𝑀 , with: ∀𝐶𝑁𝑀 ,𝐶𝑃𝑀 ∈ 𝑀 : 𝑀𝐸𝑀 ⊃ 𝐶𝑃𝑀 ∧ 𝑀𝐸𝑀 ⊃ 𝐶𝑁𝑀 . 𝐷𝑅 is a tuple <

successful, undefined, failed >. 𝑑𝑟 .𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 returns the successful detection results (with ∀𝑑𝑟 ∈ 𝐷𝑅 : 𝑑𝑟 .𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 ∈
P(𝑀𝐸𝑀)), 𝑑𝑟 .𝑓 𝑎𝑖𝑙𝑒𝑑 returns the failed detection results (with ∀𝑑𝑟 ∈ 𝐷𝑅 : 𝑑𝑟 .𝑓 𝑎𝑖𝑙𝑒𝑑 ∈ P(𝑀𝐸𝑀)), and 𝑑𝑟 .𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑
returns the detection results for which success or failure cannot be decided (with∀𝑑𝑟 ∈ 𝐷𝑅 : 𝑑𝑟 .𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 ∈ P(𝑀𝐸𝑀)).

6.1 Metrics for Secure Communication (SC) Decision

The metrics for the 𝑆𝐶 decision are shown in Figure 3. The first metric Secure Distributed Connectors 𝑆𝐶𝑂 :

P(𝐶𝑁𝑀) → [0, 1] sets the secure distributed connectors in relation to all distributed connectors. Both numerator
and denominator of the ratio rely on the 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 : P(𝐶𝑁𝑀) → P(𝐶𝑁𝑀) function. A connector is a
distributed connector if it is not of type 𝐼𝑛𝑀𝑒𝑚𝑜𝑟𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 . The detector 𝑠𝑒𝑐𝑢𝑟𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 is 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 , if a con-
nector is of type 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑡𝑖𝑜𝑛 (or𝐻𝑇𝑇𝑃𝑆). The next metric Secure Client Connectors 𝑆𝐶𝐶 : P(𝐶𝑁𝑀) →
[0, 1] is similar, but it uses the 𝑐𝑙𝑖𝑒𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 : P(𝐶𝑁𝑀) → P(𝐶𝑁𝑀) function as its basis. This function selects the
connectors with a 𝑐𝑛_𝑠𝑜𝑢𝑟𝑐𝑒 of type𝐶𝑙𝑖𝑒𝑛𝑡 , or a 𝑐𝑛_𝑠𝑜𝑢𝑟𝑐𝑒 of type𝑈 𝐼 but only if this𝑈 𝐼 does not connect to another𝑈 𝐼
as target (i.e. it selects also system clients in UIs such as AJAX calls). Secure UI Connectors 𝑆𝑈𝐶 : P(𝐶𝑁𝑀) → [0, 1],
in turn, uses 𝑢𝑖_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 : P(𝐶𝑁𝑀) → P(𝐶𝑁𝑀) as its and selects only those connectors that have a 𝑐𝑛_𝑠𝑜𝑢𝑟𝑐𝑒 of
type 𝑈 𝐼 .

In addition to these atomic metrics, we defined two metrics aggregating features from the others. Both again have
the same form of metric definition as the previous ones (i.e. using 𝑠𝑒𝑐𝑢𝑟𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 with varying basis sets). Secure
External Client/UI Connectors (SEC) 𝑆𝐸𝐶 : P(𝐶𝑁𝑀) → [0, 1] calculates the external connectors to clients/UIs
simply as the set union of the client and UI connectors, and uses this set as the basis for its definition. Finally, Secure
Internal Distributed Connectors (SIC) is based on the internal distributed connectors.We call these in the following
backend connectors: A connector is a backend connector if it is not connected to a component of type𝐶𝑙𝑖𝑒𝑛𝑡 or𝑈 𝐼 .We
are interested in the distributed backend connectors which the function 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑_𝑏𝑎𝑐𝑘𝑒𝑛𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 : 𝐶𝑁𝑀 →
P(𝐶𝑁𝑀) selects by calculating the complement of the distributed connector set and the union of the client and UI
connector sets.

6.2 Metrics for Backend Authentication (BE_AE) Decision

The metrics for the 𝐵𝐸_𝐴𝐸 decision are shown in Figure 4. They are all addressing distributed backend con-
nectors that require authentication. To define this set of connectors formally, we first define a function
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑_𝑏𝑎𝑐𝑘𝑒𝑛𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 : P(𝐶𝑁𝑀) → P(𝐶𝑁𝑀) for constructing this con-
nector set. The basis for this definition is the function 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑_𝑏𝑎𝑐𝑘𝑒𝑛𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 defined in Section 6.1.
By placing the type 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 onto a connector, an architect can indicate that a connec-
tor does not require to be authenticated (e.g. consider a connector to a Public API); we use the function

6The component type hierarchy can be found at: https://github.com/uzdun/CodeableModels/blob/master/docs/_images/Component_Stereotypes.png,
and the connector type hierarchy is at: https://github.com/uzdun/CodeableModels/blob/master/docs/_images/Connector_Stereotypes.png. Both models
are explained in the documentation of CodeableModels: https://uzdun.github.io/CodeableModels/07_meta_model_with_stereotypes.html.

Manuscript submitted to ACM

https://github.com/uzdun/CodeableModels/blob/master/docs/_images/Component_Stereotypes.png
https://github.com/uzdun/CodeableModels/blob/master/docs/_images/Connector_Stereotypes.png
https://uzdun.github.io/CodeableModels/07_meta_model_with_stereotypes.html

16 Zdun et al.

Secure Distributed Connector (SCO)

𝑆𝐶𝑂 (𝑐𝑛) = | secure_connectors(distributed_connectors(cn)).successful |
| distributed_connectors(cn)) |

Secure Client Connectors (SCC)

𝑆𝐶𝐶 (𝑐𝑛) = | secure_connectors(client_connectors(cn)).successful |
| client_connectors(cn)) |

Secure UI Connectors (SUC)

𝑆𝐶𝐶 (𝑐𝑛) = | secure_connectors(ui_connectors(cn)).successful |
| ui_connectors(cn)) |

Secure External Client/UI Connectors (SEC)

𝑆𝐸𝐶 (𝑐𝑛) = | secure_connectors(client_connectors(cn) ∪ ui_connectors(cn)).successful |
| client_connectors(cn) ∪ ui_connectors(cn)) |

Common Function For Distributed Backend Connectors
distributed_backend_connectors = distributed_connectors(cn) \ (client_connectors(cn) ∪ ui_connectors(cn))

Secure Internal Distributed Connectors (SIC)

𝑆𝐼𝐶 (𝑐𝑛) = | secure_connectors(distributed_backend_connectors(cn)).successful |
| distributed_backend_connectors(cn) |

Fig. 3. Metrics Definitions for Secure Communication

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑡ℎ𝑎𝑡_𝑟𝑒𝑞𝑢𝑖𝑟𝑒_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 : P(𝐶𝑁𝑀) → P(𝐶𝑁𝑀) to selects the connectors from of a model 𝑀’s
connectors which are not of type 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 .

Based on the 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑_𝑏𝑎𝑐𝑘𝑒𝑛𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 function, we define the metrics in the re-
mainder of Figure 4. We first define the Authenticated Backend Connectors 𝐴𝐸𝐼 : P(𝐶𝑁𝑀) → [0, 1] metric which
returns the number of authenticated distributed backend connectors requiring authentication in relation to the total
number of distributed backend connectors requiring authentication.This way, we canmeasure the total level of authen-
tication in a system without considering the specific authentication method used. Here, 𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 :

P(𝐶𝑁𝑀) → 𝐷𝑅 is a detector that detects the authenticated distributed backend connectors.
Next, we define the Securely Authenticated Backend Connectors 𝐴𝐸𝐼_𝑆 : P(𝐶𝑁𝑀) → [0, 1] which selects

only the securely authenticated distributed backend connectors requiring authentication in relation to the total
number of distributed backend connectors requiring authentication. Here, “securely” is measured through the
detector 𝑠𝑒𝑐𝑢𝑟𝑒𝑙𝑦_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 : P(𝐶𝑁𝑀) → 𝐷𝑅 which detects the authenticated connectors which
are either of type 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝐵𝑎𝑠𝑒𝑑𝑆𝑒𝑐𝑢𝑟𝑒𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 or 𝑆𝑒𝑐𝑢𝑟𝑒𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑇𝑜𝑘𝑒𝑛. The Backend Connectors
Authenticated with API Keys 𝐴𝐸𝐼_𝐾 : P(𝐶𝑁𝑀) → [0, 1] metric selects only the distributed backend connectors
authenticated with API Keys, in relation to the total number of distributed backend connectors. This is done using
the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒𝑑_𝑤𝑖𝑡ℎ_𝑎𝑝𝑖_𝑘𝑒𝑦𝑠 : P(𝐶𝑁𝑀) → 𝐷𝑅 detector, which detects the distributed backend
connectors of type 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒𝑑𝑊 𝑖𝑡ℎ𝐴𝑃𝐼𝐾𝑒𝑦𝑠 . The Backend Connectors Authenticated with Plaintext Cre-
dentials 𝐴𝐸𝐼_𝑃 : P(𝐶𝑁𝑀) → [0, 1] metric selects only the distributed backend connectors authenticated with
plaintext credentials, in relation to the total number of distributed backend connectors. This is done using the
Manuscript submitted to ACM

Microservice Security Metrics 17

Common Function For Distributed Backend Connectors Requiring Authentication
distributed_backend_connectors_requiring_authentication(cn) = connectors_that_require_authentication(distributed_backend_connectors(cn))

Authenticated Backend Connectors (AEI)

𝐴𝐸𝐼 (𝑐𝑛) = | authenticated_connectors(distributed_backend_connectors_requiring_authentication(cn)).successful |
| distributed_backend_connectors_requiring_authentication(cn)) |

Securely Authenticated Backend Connectors (AEI_S)

𝐴𝐸𝐼_𝑆 (𝑐𝑛) = | securely_authenticated_connectors(distributed_backend_connectors_requiring_authentication(cn)).successful |
| distributed_backend_connectors_requiring_authentication(cn) |

Backend Connectors Authenticated with API Keys (AEI_K)

𝐴𝐸𝐼_𝐾 (𝑐𝑛) = | connectors_authenticated_with_api_keys(distributed_backend_connectors_requiring_authentication(cn)).successful |
| distributed_backend_connectors_requiring_authentication(cn) |

Backend Connectors Authenticated with Plaintext Credentials (AEI_P)

𝐴𝐸𝐼_𝑃 (𝑐𝑛) = | connectors_authenticated_with_plaintext_credentials(distributed_backend_connectors_requiring_authentication(cn)).successful |
| distributed_backend_connectors_requiring_authentication(cn) |

Authenticated Backend Connectors Over a Secure Connection (AEI_C)

𝐴𝐸𝐼_𝐶 (𝑐𝑛) = | authenticated_connectors(secure_connectors(distributed_backend_connectors_requiring_authentication(cn).successful)).successful |
| distributed_backend_connectors_requiring_authentication(cn) |

Authenticated Backend Connectors Using a Secure Method or Transferred Over a Secure Connection (AEI_A)
authenticated_backend_connectors_using_secure_method_or_secure_communication(cn) = {𝑎𝑐𝑛 ∈ 𝑐𝑛 :

securely_authenticated_connectors(distributed_backend_connectors_requiring_authentication(cn)).successful∨
authenticated_connectors(secure_connectors(distributed_backend_connectors_requiring_authentication(cn)).successful).successful}

𝐴𝐸𝐼_𝐴(𝑐𝑛) = | authenticated_backend_connectors_using_secure_method_or_secure_communication(cn).successful |
| distributed_backend_connectors_requiring_authentication(cn) |

Fig. 4. Metrics Definitions for Backend Authentication

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒𝑑_𝑤𝑖𝑡ℎ_𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡_𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠 : 𝐶𝑁𝑀 → 𝐷𝑅 detector, which detects the distributed backend
connectors of type 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒𝑑𝑊 𝑖𝑡ℎ𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝐶𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠 .

Authenticated Backend Connectors Over a Secure Connection 𝐴𝐸𝐼_𝐶 : P(𝐶𝑁𝑀) → [0, 1] selects only the
authenticated distributed backend connectors which are sent over a secure connection, in relation to the total number
of distributed backend connectors. It uses the 𝑠𝑒𝑐𝑢𝑟𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 : P(𝐶𝑁𝑀) → 𝐷𝑅 detector defined above, and uses the
successful results of this detector as input for the 𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 : P(𝐶𝑁𝑀) → 𝐷𝑅 detector, defined at the
beginning of this section. Finally, theAuthenticated BackendConnectorsUsing a SecureMethod or Transferred
Over a Secure Connection 𝐴𝐸𝐼_𝐴 : P(𝐶𝑁𝑀) → [0, 1] metric selects only the distributed backend connectors which
either use a secure authentication method, as defined above via the 𝑠𝑒𝑐𝑢𝑟𝑒𝑙𝑦_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 : P(𝐶𝑁𝑀) →
𝐷𝑅 detector or are authenticated and use a secure connection.

6.3 Metrics for Authentication on Paths from Clients or UIs to System Services (CP_AE) Decision

The metrics for the 𝐶𝑃_𝐴𝐸 decision are all addressing detectors on the path from clients or UIs to system services.
They are defined in Figure 5. In them, we focus on the connectors between clients/UIs and system services that re-
quire authentication. This is calculated by the function 𝑐𝑙𝑖𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑝𝑎𝑡ℎ_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 :

P(𝐶𝑃_𝑀) → P(𝐶𝑁_𝑀), which has the following ingredients:
Manuscript submitted to ACM

18 Zdun et al.

• A basic notion in this function is a path: A path 𝑝 is a sequence of components 𝑝 = (𝑐1, . . . , 𝑐𝑛) with 𝑐1 . . . 𝑐𝑛 ∈
𝐶𝑃_𝑀 which are all connected via connectors such that ∀𝑐𝑛, 𝑐𝑛+1 ∈ 𝑃 ∃ 𝑐𝑛 ∈ 𝐶𝑁_𝑀 : 𝑐𝑛_𝑠𝑜𝑢𝑟𝑐𝑒 (𝑐𝑛) = 𝑐𝑛 ∧
𝑐𝑛_𝑡𝑎𝑟𝑔𝑒𝑡 (𝑐𝑛) = 𝑐𝑛+1. Let 𝑃𝑀 denote the set of all paths in model𝑀 .

• The function 𝑎𝑙𝑙_𝑝𝑎𝑡ℎ𝑠_𝑓 𝑟𝑜𝑚_𝑐𝑙𝑖𝑒𝑛𝑡𝑠_𝑜𝑟_𝑢𝑖𝑠_𝑡𝑜_𝑠𝑦𝑠𝑡𝑒𝑚_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 : P(𝐶𝑃_𝑀) → P(𝑃𝑀) selects all paths from
clients or UIs to system services. For this, the function first selects all components of type𝐶𝑙𝑖𝑒𝑛𝑡 or𝑈 𝐼 as clients,
and all components of type 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 as system services. A service is a system service, if it is not of the type
𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 (i.e., no external services are system services), 𝑀𝑖𝑑𝑑𝑙𝑒𝑤𝑎𝑟𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (i.e., no middleware
infrastructure services such as a Discovery Service), or 𝐹𝑎𝑐𝑎𝑑𝑒 (i.e., no frontend services or gateways with the
sole purpose of shielding the system from clients). Then the function uses a simple Depth-First Search algorithm
to calculate all paths from clients to services. From those paths, we select only the ones that are well-formed
in the sense that first 𝐶𝑙𝑖𝑒𝑛𝑡𝑠 or 𝑈 𝐼𝑠 are on the paths, then zero, one, or more 𝐹𝑎𝑐𝑎𝑑𝑒𝑠 (e.g. 𝐴𝑃𝐼𝐺𝑎𝑡𝑒𝑤𝑎𝑦𝑠 or
frontend services are of type 𝐹𝑎𝑐𝑎𝑑𝑒), and finally one or more system services (in the sense defined above). That
is, paths going across other components such as 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑠 or 𝑀𝑖𝑑𝑑𝑙𝑒𝑤𝑎𝑟𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 are excluded; paths going
into the system, then out of the system, and back into the system are excluded, too.

• Let the function 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑜𝑛_𝑐𝑙𝑖𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑝𝑎𝑡ℎ𝑠 : P(𝑃𝑀) → P(𝐶𝑁_𝑀) return the set of all connectors
on a set of paths (without connectors having 𝐹𝑎𝑐𝑎𝑑𝑒𝑠 or 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 as targets or that are of type
𝐼𝑛𝑀𝑒𝑚𝑜𝑟𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟).

• Finally, it selects the connectors that require authentication using the function 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑡ℎ𝑎𝑡_𝑟𝑒𝑞𝑢𝑖𝑟𝑒_𝑎𝑢𝑡ℎ𝑒𝑛-
𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 : P(𝐶𝑁_𝑀) → P(𝐶𝑁_𝑀), defined above.

Based on the 𝑐𝑙𝑖𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑝𝑎𝑡ℎ_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 function all metrics for measuring authen-
tication on the paths from clients or UIs to system services are defined in much the same way as the metrics on backend
authentication, defined in Section 6.2. The differences are that the components𝐶𝑃𝑀 are used as inputs (i.e. they are all
of the form𝐴𝐸𝐶 : P(𝐶𝑃_𝑀) → [0, 1]), the 𝑐𝑙𝑖𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑝𝑎𝑡ℎ_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 function is used
instead of the 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑_𝑏𝑎𝑐𝑘𝑒𝑛𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠_𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔_𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 function, and the AEC_A metric considers
API Keys as well, as API Keys coming from clients are deemed an acceptable practice (see explanation in Table 3). To
avoid repetition, we do not explain each metric in Figure 5 in detail again.

6.4 Metrics for Observability (OBS) Decision

Themetrics for the𝑂𝐵𝑆 decision are shown in Figure 6. The first metricObserved System Services𝑂𝑆𝑆 : P(𝐶𝑃𝑀) →
[0, 1] sets the observed system services in relation to all system services. Both numerator and denominator of the
ratio rely on the 𝑠𝑦𝑠𝑡𝑒𝑚_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 : P(𝐶𝑃𝑀) → P(𝐶𝑃𝑀) function. A component is a system service, if it is not of
the type 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 (i.e., no external services are system services), 𝑀𝑖𝑑𝑑𝑙𝑒𝑤𝑎𝑟𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (i.e., no middleware
infrastructure services such as a Discovery Service), or 𝐹𝑎𝑐𝑎𝑑𝑒 (i.e., no frontend services or gateways with the sole
purpose of shielding the system from clients).

The detector 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑏𝑦_𝑑𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑑_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 is 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 for a component 𝑐 , if a dedicated observer component
is connected to 𝑐 , or formally: 𝑐 ∈ {𝑡 ∈ 𝐶𝑃𝑀 : (∃𝑜 ∈ 𝐶𝑃𝑀 , 𝑙 ∈ 𝑐𝑝_𝑐𝑜𝑛𝑛(𝑡) : 𝑜 ∈ observer(CP_M) ∨(𝑐𝑛_𝑠𝑜𝑢𝑟𝑐𝑒 (𝑙) =

𝑡 ∧ 𝑐𝑛_𝑡𝑎𝑟𝑔𝑒𝑡 (𝑙) = 𝑜)∨ (𝑐𝑛_𝑠𝑜𝑢𝑟𝑐𝑒 (𝑙) = 𝑜 ∧ 𝑐𝑛_𝑡𝑎𝑟𝑔𝑒𝑡 (𝑙) = 𝑡)) }. In this formula, the function 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 : P(𝐶𝑃𝑀) →
P(𝐶𝑃𝑀) determines the dedicated observer components in a model, i.e. components of the types 𝐿𝑜𝑔𝑔𝑖𝑛𝑔,𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔,
or 𝑇𝑟𝑎𝑐𝑖𝑛𝑔.

Manuscript submitted to ACM

Microservice Security Metrics 19

Common Function for Calculating the Connectors on Client/UI To Service Path Requiring Authentication
client_service_path_connectors_requiring_authentication(cp) =

connectors_that_require_authentication(connectors_on_client_service_paths(all_paths_from_clients_or_uis_to_system_services(cp)))

Authenticated Connectors on Client/UI to Service Path (AEC)

𝐴𝐸𝐶 (𝑐𝑝) = | authenticated_connectors(client_service_path_connectors_requiring_authentication(cp)).successful |
| client_service_path_connectors_requiring_authentication(cp)) |

Securely Authenticated Connectors on Client/UI to Service Path (AEC_S)

𝐴𝐸𝐶_𝑆 (𝑐𝑝) = | securely_authenticated_connectors(client_service_path_connectors_requiring_authentication(cp)).successful |
| client_service_path_connectors_requiring_authentication(cp)) |

Connectors on Client/UI to Service Path Authenticated with API Keys (AEC_K)

𝐴𝐸𝐶_𝐾 (𝑐𝑝) = | connectors_authenticated_with_api_keys(client_service_path_connectors_requiring_authentication(cp)).successful |
| client_service_path_connectors_requiring_authentication(cp) |

Connectors on Client/UI to Service Path Authenticated with Plaintext Credentials (AEC_P)

𝐴𝐸𝐶_𝑃 (𝑐𝑝) = | connectors_authenticated_with_plaintext_credentials(client_service_path_connectors_requiring_authentication(cp)).successful |
| client_service_path_connectors_requiring_authentication(cp) |

Connectors on Client/UI to Service Path Authenticated Over a Secure Connection (AEC_C)

𝐴𝐸𝐶_𝐶 (𝑐𝑝) = | authenticated_connectors(secure_connectors(client_service_path_connectors_requiring_authentication(cp)).successful).successful |
| client_service_path_connectors_requiring_authentication(cp) |

Connectors on Client/UI to Service Path Authenticated Using a Secure Method, API Keys, or Transferred Over a Secure
Connection (AEC_A)

authenticated_connectors_on_client_service_path_using_secure_method_api_keys_or_secure_communication = {𝑎𝑐𝑝 ∈ 𝑐𝑝 :

securely_authenticated_connectors(client_service_path_connectors_requiring_authentication(cp)).successful∨
connectors_authenticated_with_api_keys(client_service_path_connectors_requiring_authentication(cp)).successful∨
authenticated_connectors(secure_connectors(client_service_path_connectors_requiring_authentication(cp)).successful).successful}

𝐴𝐸𝐶_𝐴(𝑐𝑝) = | authenticated_connectors_on_client_service_path_using_secure_method_api_keys_or_secure_communication(cp).successful |
| client_service_path_connectors_requiring_authentication(cp) |

Fig. 5. Metrics Definitions for Authentication on Client/UI to Service Paths

The next metric Observed Facade Components 𝑂𝐹𝐴 : P(𝐶𝑃𝑀) → [0, 1] is similar, but it uses the 𝑓 𝑎𝑐𝑎𝑑𝑒𝑠 :

P(𝐶𝑃𝑀) → P(𝐶𝑃𝑀) function as its basis. A component is a facade, if it is of the type 𝐹𝑎𝑐𝑎𝑑𝑒 , which is used directly
for simple frontend services, or one of its subclasses such as 𝐴𝑃𝐼𝐺𝑎𝑡𝑒𝑤𝑎𝑦 or 𝐵𝑎𝑐𝑘𝑒𝑛𝑑𝑠 𝑓 𝑜𝑟𝐹𝑟𝑜𝑛𝑡𝑒𝑛𝑑𝑠𝐺𝑎𝑡𝑒𝑤𝑎𝑦

Finally, Observed System Services and Facades 𝑂𝑆𝐹 : P(𝐶𝑃𝑀) → [0, 1] is a simple integration of the two prior
metrics by just using the union of the component sets returned by 𝑠𝑦𝑠𝑡𝑒𝑚_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 and 𝑓 𝑎𝑐𝑎𝑑𝑒𝑠 as its basis.

7 ANALYSIS

In this section, we first report the results of our correlation analysis and then our ordinal logistic regression analysis.
Table 5 shows an overview of the metric calculation results for all metrics defined in the previous section, computed
with our detectors from the models automatically.

Manuscript submitted to ACM

20 Zdun et al.

Observed System Services (OSS)

𝑂𝑆𝑆 (𝑐𝑝) = | observed_by_dedicated_component(system_services(cp)).successful |
| system_services(cp) |

Observed Facade Components (OFA)

𝑂𝐹𝐴(𝑐𝑝) = | observed_by_dedicated_component(facades(cp)).successful |
| facades(cp) |

Observed System Services and Facades (OSF)

𝑂𝑆𝐹 (𝑐𝑝) = | observed_by_dedicated_component(system_services(cp) ∪ facades(cp)).successful |
| system_services(cp) ∪ facades(cp) |

Fig. 6. Metrics Definitions for Observability

Metric AC0 AC1 AC2 BA0 BA1 BA2 CI0 CI1 CI2 CO0 CO1 CO2 EP0 EP1 EP2 ES0 ES1 ES2 OB0 OB1 OB2 PM0 PM1 PM2 RS0 RS1 RS2 TE0 TE1 TE2

SCO 0.27 1.0 0.62 0.92 0.67 0.76 0.83 0.47 1.0 0.5 1.0 0.54 1.0 0.04 1.0 0.03 0.6 1.0 0.2 0.5 0.14 0.23
SCC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.25 1.0 0.73 1.0 1.0 0.5 1.0 1.0
SUC NA NA NA NA NA NA NA 1.0 1.0 1.0 NA 1.0 1.0 1.0 1.0 NA NA NA NA NA NA 1.0
SEC 1.0 1.0 1.0 0.8 1.0 1.0 1.0 0.5 1.0 0.79 1.0 1.0 0.5 1.0 0.86 0.2
SIC 0.33 1.0 0.68 0.91 0.64 0.75 0.78 1.0 0.5 1.0 0.39 1.0 0.06 1.0 0.03 0.61 1.0 0.23 0.4 0.17 0.24

AEI 0.67 1.0 1.0 0.88 0.95 1.0 0.36 1.0 1.0 0.67 0.9 1.0 0.5 0.83 1.0 0.74 1.0 1.0 1.0 1.0 0.53 1.0 1.0 1.0 0.35 0.32
AEI_S 1.0 0.09 0.62 1.0 0.7 0.55 1.0 0.26 0.83 1.0 1.0 0.06 0.97 0.54 0.84 0.24
AEI_K 0.16 0.38 0.2 0.17 0.46 0.16
AEI_P 0.67 1.0 0.88 0.79 0.91 0.36 0.67 0.45 0.5 0.83 0.48 1.0 0.47 0.03 0.35 0.08
AEI_C 0.33 1.0 0.68 0.91 0.75 0.78 1.0 0.5 1.0 0.39 1.0 0.06 1.0 1.0 0.23 0.4
AEI_A 0.33 1.0 0.68 1.0 1.0 1.0 0.7 1.0 0.5 1.0 0.26 1.0 1.0 0.06 1.0 0.06 1.0 0.77 1.0 0.24

AEC 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 0.8 1.0 0.67 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.83 0.67
AEC_S 1.0 0.14 1.0 1.0 0.6 0.78 1.0 1.0 0.4 1.0 0.38
AEC_K 0.8 0.86 0.8 0.22 1.0 0.62
AEC_P 1.0 1.0 1.0 1.0 1.0 0.67 0.4 1.0 0.6 0.83 0.67
AEC_C 1.0 1.0 1.0 1.0 0.6 1.0 1.0 0.67 1.0 1.0 1.0 0.42 1.0
AEC_A 1.0 0.8 1.0 1.0 1.0 0.8 1.0 1.0 0.6 1.0 1.0 1.0 0.4 1.0 1.0 1.0

OSS 0.5 1.0 0.8 1.0 0.8 1.0 0.75 0.75 0.67 1.0 1.0 0.8 1.0 0.89 0.78 0.67 1.0 0.67 0.33 0.71 0.86 1.0 0.17 0.5 0.83
OFA 1.0 1.0 0.5 NA 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 0.5 0.5 NA NA NA
OSF 0.33 1.0 0.67 1.0 0.71 0.71 0.8 0.6 0.6 1.0 0.71 0.71 1.0 0.9 0.7 0.7 1.0 0.6 0.4 0.62 0.75 0.88 0.17 0.5 0.83

Table 5. Metric Calculation Results for the Case Study Systems (empty cells indicate a value of 0.0)

In the regression analysis, the dependent outcome variables are the ground truth assessments for each decision, as
described in Section 5 and summarized in Table 4. The metrics defined in Section 6 and summarized in Table 5 are used
as the independent variables. The ground truth assessments are ordinal variables. All the independent variables are
measured on a scale from 0.0 to 1.0.

7.1 Correlation Analysis

To compare the independent variables in their association to their dependent variables, we first computed the Spearman
rank correlations [32] in Table 6. In the context of this analysis, we first inspected the plots of each independent vs.
its dependent variable for inspecting their monotonic relationship. As can be seen in Table 6, most of the independent
variables alone have already a very strong correlation (𝜌 > 0.8) or strong correlation (𝜌 > 0.6) with the dependent
Manuscript submitted to ACM

Microservice Security Metrics 21

Decision Metric Spearman’s 𝜌 p-value

Secure Communication
(SC)

SCO 0.9618466 2.2e-16
SCC 0.9098859 3.264e-12
SUC 0.7482699 0.000856
SIC 0.898277 1.654e-11
SEC 0.9345801 4.305e-14

Backend Authentication
(BE_AE)

AEI 0.9143827 1.64e-12
AEI_S 0.8130569 4.774e-08
AEI_K 0.2080114 0.27
AEI_P -0.1830621 0.3329
AEI_C 0.880331 1.435e-10
AEI_A 0.8848047 8.66e-11

Authentication on Paths
from Clients or UIs to
System Services (CP_AE)

AEC 0.8624187 9.012e-10
AEC_S 0.7665777 7.836e-07
AEC_K 0.215354 0.2531
AEC_P -0.07136348 0.7079
AEC_C 0.8735141 2.983e-10
AEC_A 0.8981329 1.686e-11

Observability
(OBS)

OSS 0.9057307 5.976e-12
OFA 0.6852825 0.000112
OSF 0.952798 4.997e-16

Table 6. Spearman Rank Correlation Analysis Results

variable, with very low p-values (< 0.05), signaling high statistical significance. This indicates that those independent
variables are well chosen, in the sense that they are highly associated with the dependent variable.

There are some notable discussion points in the correlation analysis. Firstly, the variables on API Keys-based authen-
tication (AEI_K and AEC_K) and Plaintext-based Authentication (AEI_P and AEC_P) are neither highly correlated nor
are the results statistically significant. Please note that this is not surprising: All other hypothesized variables in their
ADDs have a plausible relation to the dependent variable that implies a high association with the dependent variable;
this is not the case for these variables only measuring the fraction of one specific authentication method (API Keys or
plaintext). But as the disambiguation of API Key or plaintext based methods is plausibly important to detect all ADD
options fully and those aspects are not covered well in any of the other variables, we decided to include these variables
nonetheless in our regression analysis, in the hope that they could introduce aspects in the models not covered well
by the other variables. Indeed, in the regression analysis below, all the best models found for the two respective ADDs
(BE_AE, CP_AE) use at least one of these variables. However, we also decided to never use them alone in regression
models, but only with at least one other variable with a strong correlation.

Secondly, as many of our variables have a strong or very strong correlation with high significance, there was no clear
indication of which variables to use in the regression analysis below.We thus decided to try all reasonable combinations
of our dependent variables to find the models that best predict the dependent variable.

7.2 Ordinal Logistic Regression Analysis

The objective of the ordinal logistic regression analysis is to predict the likelihood of the dependent outcome variable
for each of the decisions by using the relevant metrics for each decision. Ordinal logistic regression is the recommended
regressionmodel in the case of ordinal response variables [13]. To enable comparison of the resulting regressionmodels,
we calculated many possible models for each ADD, and report the three best-performing models for each (see Columns
3-5 of Table 7).

Each resulting regression model consists of a baseline intercept and the independent variables multiplied by coef-

ficients. There are different intercepts for each of the value transitions of the dependent variable (≥ [−]: Insufficient
Manuscript submitted to ACM

22 Zdun et al.

support in a few places; ≥ [∼]: Insufficient support in many places, ≥ [+]: Acceptable support, ≥ [++]: Very good sup-

port), while the coefficients reflect the impact of each independent variable on the outcome. For example, a positive
coefficient, such as +5, indicates a corresponding five-fold increase in the dependent variable for each unit of increase
in the independent variable; conversely, a coefficient of -30 would indicate a thirty-fold decrease.

The statistical significance of each regression model is assessed by the p-value; the smaller the p-value, the stronger
the model is. A p-value smaller than 0.05 is generally considered statistically significant. In Table 7, we report the
p-values for the resulting models, which in all cases are very low, indicating that the sets of metrics we have defined
are able to predict the ground truth assessment with high statistical significance.

Frequently, the C-index (which is also called concordance index and is equivalent to the area under the Receiver
Operating Characteristic (ROC) curve) is reported in the statistical literature as a measure of the predictive power of
ordinal regression models [1]. A C-index of 0.5 indicates random splitting, whereas a C-index of 1 indicates perfect
prediction. Harrel [13] suggests bootstrapping as a method for obtaining nearly unbiased estimates of a model’s future
performance based on re-sampling. It is a powerful model validation technique that supports estimating predictive
accuracy without holding back data from the model development process [13]. This feature is important for our study,
as our data set contains only 30 models. We used lrm’s validate function to perform bootstrapping and calculated the
bias-corrected C-index in addition to the original C-index. The C-indexes, reported in Table 7, are all larger than 0.9,
which indicates that the models are good enough for predicting the outcomes of individuals.

The Brier score is another commonly reported accuracymeasure [17]. Even though somewhat less interpretable than
the C-index, the Brier score overcomes some issues of the C-index, as it reflects both calibration and discrimination
of a model [26]. In this sense, it can be better suited to assess overall model performance and compare models [52].
The value of the Brier score is always between 0.0 and 1.0. A score of 0 represents perfect accuracy, and a score of 1
represents perfect inaccuracy. Again, we do not only present the original Brier scores but also the bias-corrected scores
after bootstrapping. Except for one model of CP_AE, all bias-corrected scores are below 0.1 (and the one model above
0.1 has also a very low Brier score of 0.1177); thus for each ADD, we were able to find models that are comparatively
good with a very low Brier score.

We used lrm’s function pentrace to assist in the selection of penalty factors for fitting regression models using
penalizedmaximum likelihood estimation (see [13]). In the reportedmodels, we generally used a simple penalty of 1 and
a non-linear penalty of 5. Please note that the penalized regression models are offering slightly improved performance
compared to non-penalized models.

The reported models in Table 7 do not always use the full set of our hypothesized metrics. We tried many com-
binations of independent variables and penalties. In the table, for each decision, we show the three models with the
highest bias-corrected C-index values, which we found. It can be observed that we were able to reach for both original
and bootstrapped C-indexes values above or very close to 0.9, and at the same time very low Brier scores. We can
also observe that all our hypothesized independent variables are used in at least one of the models that are reported.
That is, all hypothesized variables are relevant in our predictions, but in no decision all of them are needed to make a
prediction with a high C-index, low Brier score, and low p-value.

8 INTEGRATION IN INDUSTRIAL TOOLS

The work presented in this article has so far found adoption in two industrial tools. In this section, we illustrate these
early industry adoptions, which we plan to extend in our future work.

Manuscript submitted to ACM

Microservice Security Metrics 23

Decision Model Parameter/Measure Regression Model
1

Regression Model
2

Regression Model
3

Secure Communication
(SC)

Intercept: ≥ [−] -0.7157 -0.7437 -0.7590
Intercept: ≥ [∼] -3.4324 -4.8399 -4.6476
Intercept: ≥ [+] -6.5069 -8.7636 -7.9085
Intercept: ≥ [++] -8.2981 -11.1942 -10.2721
Metric Coefficient: SCO — 4.1212 4.3808
Metric Coefficient: SCC 3.3725 2.0746 —
Metric Coefficient: SUC 2.3068 — —
Metric Coefficient: SIC 3.3617 2.4653 2.4620
Metric Coefficient: SEC — 3.5020 4.4002
Model p-value: 1.196800e-07 7.549517e-15 7.438494e-15
C-Index (original): 0.9801980 0.9943662 0.9915493
C-Index (bootstrapped, bias-corrected): 0.8757673 0.9239085 0.9270775
Brier-Score (original): 0.0184 0.0089 0.0116
Brier-Score (bootstrapped, bias-corrected): 0.0258 0.0132 0.0172

Backend Authentication
(BE_AE)

Intercept: ≥ [−] -0.3781 -0.8102 -0.1915
Intercept: ≥ [∼] -5.4616 -5.5538 -3.8680
Intercept: ≥ [+] -8.1466 -9.4906 -8.0389
Intercept: ≥ [++] -9.1059 -10.5578 -9.2688
Metric Coefficient: AEI — 7.5049 —
Metric Coefficient: AEI_S 5.7363 — 6.1902
Metric Coefficient: AEI_K -1.8124 -3.3980 1.3726
Metric Coefficient: AEI_P 3.4443 -2.2369 3.0572
Metric Coefficient: AEI_C — 3.5866 3.8202
Metric Coefficient: AEI_A 3.6733 — —
Model p-value: 6.091905e-12 5.488943e-13 2.343792e-12
C-Index (original): 0.9910979 0.9910979 0.9910979
C-Index (bootstrapped, bias-corrected): 0.9175964 0.9231602 0.9375445
Brier-Score (original): 0.0507 0.0392 0.0479
Brier-Score (bootstrapped, bias-corrected): 0.0618 0.0475 0.0596

Authentication on Paths
from Clients or UIs to
System Services (CP_AE)

Intercept: ≥ [−] -0.4692 0.1161 -0.4065
Intercept: ≥ [∼] -1.4394 -0.6236 -1.4118
Intercept: ≥ [+] -4.3053 -3.0822 -4.8040
Intercept: ≥ [++] -8.0709 -5.4270 -7.7217
Metric Coefficient: AEC — — —
Metric Coefficient: AEC_S 4.6584 — —
Metric Coefficient: AEC_K — 0.2793 -1.1230
Metric Coefficient: AEC_P 1.9127 0.8766 1.3876
Metric Coefficient: AEC_C 4.9044 5.2875 3.3351
Metric Coefficient: AEC_A — — 4.4675
Model p-value: 1.052047e-12 1.740458e-08 9.255219e-11
C-Index (original): 0.9730878 0.9036827 0.9660057
C-Index (bootstrapped, bias-corrected): 0.930085 0.9053824 0.9435552
Brier-Score (original): 0.0804 0.1118 0.0632
Brier-Score (bootstrapped, bias-corrected): 0.0862 0.1177 0.0679

Observability
(OBS)

Intercept: ≥ [−] -1.9703 -2.2049 -1.8885
Intercept: ≥ [∼] -8.4478 -6.6498 -6.0532
Intercept: ≥ [+] -10.0269 -8.0875 -7.4003
Intercept: ≥ [++] -12.1232 -10.5628 -9.9765
Metric Coefficient: OSS 4.9827 8.2015 —
Metric Coefficient: OFA — 3.1110 1.8509
Metric Coefficient: OSF 7.5947 — 8.9371
Model p-value: 1.709743e-14 1.870948e-12 5.463852e-12
C-Index (original): 0.9717514 0.9887640 0.9700375
C-Index (bootstrapped, bias-corrected): 0.9449153 0.9514326 0.9451966
Brier-Score (original): 0.0568 0.0713 0.0749
Brier-Score (bootstrapped, bias-corrected): 0.0610 0.0800 0.0822

Table 7. Regression Analysis Results (“—” means: not used in the model)

Manuscript submitted to ACM

24 Zdun et al.

8.1 Integration into a Cyber-Threat Resilience Assessment Tool

The company EU-VRi, represented by three co-authors of this article, is currently developing an extension of its ex-
isting cyber-threat resilience assessment tool. The tool aims to enable developers, architects, or assessors to assess
and optimize the security threat resilience (risk analysis, preparedness, absorption, recovery, adaption to adverse con-
ditions, stresses, attacks, or compromises) of a system. To reach this goal the tool calculates a cyber-threat resilience
level index for a system, as a composite, multi-level indicator. It is supposed to be based on existing industry guidelines,
such as the ones summarized in Section 2.1. The analysis of these guidelines performed by the last three co-authors
of this article, explained in Section 2.1, was performed initially with the purpose to create manually verifiable metrics
and indicators for this tool.

Our approach can be used as a building block for the cyber-threat resilience assessment tool to automatically cal-
culate metrics for the software architectural parts of the composite resilience level index. The tool provides an API
to integrate building blocks such as the metrics provided by our approach and use the composite indicator-based ap-
proach to calculate an aggregated score for resilience assessments. Further, the tool supports before/after analysis,
multi-assessment monitoring over time, and decision support based on sensitivity analysis. As the tool is expected to
perform automated assessments, we have designed our metrics and models to be integrated within this commercial
tool as an automated component.

8.2 Integration into an Incremental and Continuous Security Certification Tool

The company SEARCH-LAB7 is currently working on a new industrial tool for incremental and continuous security
certification. This tool addresses the following problem: The rapid development in today’s microservice systems, with
continuous integration and delivery being the expected norm rather than the exception, poses a substantial challenge to
the certification of software security. Existing security certification schemes focus on certifying that software projects
are following certain security best practices, and they largely focus on the software development process. Security
concerns, such as the ADDs covered in this article, are usually checked manually, just as in our ground truth analysis,
typically even without the support of (generated) architectural models, but instead directly in the source code.

In microservice projects that require certification before a release, this is highly problematic. In such projects, de-
velopment processes are continuously adapted by developers, and thus process-based schemes are hard to apply. Ar-
chitectural concerns are scattered throughout the source code and hard to find just by inspecting the source code.
Changes and releases are expected to be happening with a high frequency, meaning that organizations might not have
the necessary resources to perform certifications for each release or it would result in significant costs to maintain the
certified status by paying independent evaluators due to the rapid release cycles.

The incremental and continuous security certification tool (called DeltAICert), being developed at SEARCH-LAB,
takes a different view by focusing on artifacts rather than processes. It aims to certify only the required delta, by
comparing evidence (source, code, logs, models, test results) and indicators (metrics from other analysis tools) from
previous evaluations. For changed artifacts and their dependencies, lightweight and largely automated techniques
for the continuous and incremental security evaluation shall be applied to enable the continuous re-certification of
the developed software. The DeltAICert tool is able to make automated evaluations for the AssureMOSS certification
scheme, which was also developed in the AssureMOSS project8. In the context of this tool development, our approach
is used as a building block to automate the (re)certification of the practices embodied in our ADDs based on the
7https://www.search-lab.hu/
8https://assuremoss.eu/
Manuscript submitted to ACM

https://www.search-lab.hu/
https://assuremoss.eu/

Microservice Security Metrics 25

architectural models and the derived metrics. For this purpose, two industrial security experts from SEARCH-LAB
have reviewed our models, metrics, and code, and designed an integration into SEARCH-LAB’s novel continuous
certification scheme.

9 DISCUSSION

In this section, we first discuss our lessons learned with regard to the posed research questions and then discuss
potential threats to validity.

9.1 Discussion of ResearchQuestions

We initially performed a number of data collection and analysis steps, including a study of microservice architecture
security guidelines, the gray literature, and the scientific literature, plus a manual inspection of the code of 10 open
source system and in-depth reviews by five industrial security experts in order to find four industrial ADDs, each cov-
ering multiple security tactics. This enabled us to design our ADDmodel, reported in Section 4, which is a prerequisite
to study our research questions. To answer RQ1 and RQ2, we proposed a set of generic, technology-independent met-
rics for each of the ADDs. Each of the decision options (aka security tactics) corresponds at least one metric, but some
aspects were covered by multiple metrics which we hypothesized could provide good predictions later on. We aimed
to objectively assess for each model how well the security tactics are supported for establishing the ground truth. For
this, the three industrial security experts on the author team and the team in their company created (independently of
the work reported in this article, before they got involved in this article) a recommendation which serves as informal
guidance for security experts to manually judge systems such as those in our models. The academic authors used this
recommendation to asses each model manually, and then another independent review by the five industrial security
experts was performed. We believe that these steps make it highly likely that our ADDs represent well-established
practices in the industry, and that our ground truth assessment is very likely within the range of manual assessments
to be expected from industrial security experts.

We formulated the metrics to numerically assess a security tactic’s implementation in each model, as well as auto-
mated detectors enabling the automatic computation of the models. In our previous work [36], we have developed an
approach for automatically extracting the needed models from a system’s source code with modest manual specifica-
tion effort. As this approach was applied to one of the larger models in our model data set which contained a highly
polyglot microservice architecture (the Case RS0), we can assess that it is highly likely possible to extract all our models
automatically from the source code with a small to medium specification effort in the same way. As a consequence, all
stages in our work can be fully automated, once such an extraction specification has been realized. This means, one
can apply our approach e.g. in the context of a continuous delivery pipeline on each single code commit, which was
one of the original motivations for our work (see Section 1). That is, our approach reported in Sections 4-6, together
with the source code extraction technique reported in our earlier work [36] if manual modeling should be avoided,
provide our answer to RQ1.

We performed an ordinal regression analysis using our metrics as independent variables to predict the ground truth
assessment. Our results show that every set of decision-related metrics can predict with high statistical significance
and high accuracy our objectively evaluated assessment, using a number of regression models (three regression models
per ADD were reported). We also assessed the correlation of the individual independent variables to the dependent
variable, and selected on models in which at least one variable with a strong or very strong correlation was present.
This suggests that automatic metrics-based assessment of a system’s conformance to security tactics used as options in

Manuscript submitted to ACM

26 Zdun et al.

ADDs is possible with a high degree of confidence.The p-values, C-index values, and Brier scores provided in Section 7
provide concrete measurements showing that the metrics are accurate measures for assessing ADD conformance in
our model data set, which answers RQ2.

RegardingRQ3, we consider that existing modeling practices can be easily mapped to our microservice meta-model
(derived from [61]). Rather lightweight extensions for security tacticsmarkup have beenmade. Both have been formally
specified in Section 6. More specifically, for completing the modeling of our model data set, we needed to introduce 16
component types and 28 connector types, such as the OAuth2 Server component stereotype or Token-based Authoriza-
tion connector stereotype (both shown as examples in Figure 2). In addition, we needed to introduce types for basic
microservice modeling. In particular 25 component types and 38 connector types are offered, ranging from general
notions such as the Service component type, to very technology-specific classes such as the RESTful HTTP connector,
which is a subclass of Service Connector. Our study shows that in each ADD context and the proposed metrics, only a
small subset of the meta-model is required. We confirmed for each of the stereotypes that they can be extracted from
the source code with the methods reported in our earlier work (i.e. [36]).

9.2 Threats to Validity

We deliberately relied on third-party systems as the basis for our study to increase internal validity, thus avoiding bias
in system composition and structure. It is possible that our search procedures introduced some kind of unconscious
exclusion of certain sources; we mitigated this by assembling an author team with many years of experience in the
field (including the substantial industry experiences of three industrial experts as co-authors), and performing very
general and broad searches. Given that our search was not exhaustive, and that most of the systems we found were
made for demonstration purposes, i.e. relatively modestly sized, this means that some potential architecture elements
were not included in our meta-model. In addition, this raises a possible threat to external validity of generalization
to other, more complex, systems. We nevertheless feel confident that the systems documented are a representative
cross-cut of current practices in the field, as the points of variance between them were limited and well attested in the
literature.

It might however be the case that for substantially different kinds of systems, e.g. systems from other domains or
substantially larger systems, the expert judgement for the ground truth would differ. Then it would be necessary to
re-run our regression analysis with data from a few such systems in order to calibrate the prediction models to the
changed circumstances.

To avoid threats with regard to the generalizability of our approach, we limited our scope to microservice-based
systems, even though some aspects of our approach are likely applicable to other kinds of distributed systems than
microservice-based systems as well. For instance, the security tactics and ADDs, as well as some of the related metrics,
are likely applicable for many other kinds of systems as well. Reasons for the limitation to microservices are: Firstly,
many aspects of the practices we investigated are specific to microservices and security recommendations for them
(such as [34]). For instance, our investigation of observability practices is based on the concrete technologies currently
being employed in the microservice field. Secondly, our evaluation is purely based on microservice-based systems.
Thirdly, our meta-model and reconstruction approach focuses on microservice-specific abstractions, as explained in
Section 2.6.

Another potential threat is the fact that the variant systems were derived by the author team. This is mitigated by
the independent review of the variants by the industrial reviewers. Also, this was done according to existing practices
documented in literature. We carefully made sure only to change specific aspects in a variant and keep all other aspects
Manuscript submitted to ACM

Microservice Security Metrics 27

stable.That is, while the variants do not represent actual systems, they are reasonable evolutions of the original designs
(e.g., representing possible architectural refactoring steps or deteriorations during system evolution). As a major goal
of our approach was to be able to find issues during system evolution (e.g. in the context of continuous delivery), such
as a mistake made in a refactoring step or deteriorations during system evolution, the modeling of variants actually
introduces this aspect into our approach and our statistical analysis.

An aspect that might limit the validity of the reviews by our industrial co-authors is the shared context they have,
as they work in the same company. We mitigated this threat firstly by involving two other industrial reviewers from
another company. Secondly, we mitigated it by extensive reviews by the academic authors of this article, which all
have substantial experiences in industrial software development and software security. Fourthly, please note that the
company of the industrial co-authors consults other companies; that is, each of those industrial co-authors has ex-
perience from many different industry projects (across sizes, domains, software development methods). Yet another
mitigation of the threat is that all practices and ADDs are directly derived fromwidely-used industry guidelines, which
substantially limits the chance that only practices relevant for a particular company have been considered.

The modeling process is also considered as a source of an internal validity threat. The models of the systems were
repeatedly and independently cross-checked by the author team that has considerable experience in similar methods,
but the possibility of some interpretative bias remains: other researchers might have coded or modeled differently,
leading to different models. As a mitigation, we also offer the whole models and the code as open access artifacts for
review and reproducibility. Since we aimed only to find one model that is able to specify all observed phenomena, and
this was achieved, we consider this threat not to be a major issue for our study. As mentioned, it is easily possible
to change the modeling slightly and re-run our regression analysis to calibrate the prediction models to a different
modeling approach.

The ground truth assessment might also be subject to different interpretations by different practitioners. For this
purpose, we deliberately chose only a five-step ordinal scale, and given that the ground truth evaluation for each
decision is fairly straightforward and based on industrial best practices and recommendations, we do not consider our
interpretation controversial. Likewise, the individual metrics used to evaluate the presence of each security tactic were
deliberately kept as simple as possible, so as to avoid false positives and enable a technology-independent assessment.
As stated previously, generalization to more complex systems might not be possible without modification. But we
consider that the basic approach taken when defining the metrics is validated by the success of the regression models.

Please note that we do not claim completeness of the metrics we present in this article. They are only complete in
the sense that they cover all options of the ADDs they address. As discussed in Section 8, they are meant to be used as
automatable building blocks in tools that cover a broader range of metrics (including e.g. organizational metrics that
cannot be automatically extracted and calculated in the same way).

10 RELATEDWORK

In this section, we compare our approach to related works. First, we analyzed other works on best practices and
patterns in related areas, as our approach is based on them – as options in the ADDs. Our approach is a microservice
architecturemodeling and reconstruction-based approach, and thuswe compare to existingworks in this field secondly.
Thirdly, we focus on security features in this field, for which we discuss related reconstruction and analysis approaches
next. Finally, our analysis is based on metrics and indicators, and thus we also compare to other approaches providing
security metrics and indicators.

Manuscript submitted to ACM

28 Zdun et al.

10.1 Related Works on Best Practices and Patterns

Much research has been conducted in collecting and systematizingmicroservice patterns. For instance, Richardson [48]
collected microservice patterns related to major design and architectural practices. Zimmermann et al. [65] introduced
microservice API related patterns. Skowronski [50] collected best practices for event-drivenmicroservice architectures.
Microservice fundamentals and best practices are also discussed by Fowler and Lewis [29], and are summarized in a
mapping study by Pahl and Jamshidi [38]. Taibi and Lenarduzzi [53] studied microservice bad smells, i.e. practices that
should be avoided, which would correspond to metrics violations in our work. In this article, we use such guidance as
the foundation for microservice architecture modeling.

Likewise, attempts to define security patterns have been made [20, 49]. In the security field, recommendations by
industry or standards organizations (such as the OWASP Top 109 or the ISO 27002 standard10) are widely used. For mi-
croservices, microservice-specific recommendations by industry organizations such as those of NIST [34], OWASP [37],
or the Cloud Security Alliance [8] are proposed, which represent aggregations of existing industry best practices on a
broad level. In our work, we used such guidance for selecting the security practices we investigate.

10.2 Related Works on Microservice Architecture Modeling and Reconstruction

Microservices [29, 33, 48] are, among many other things, a way to decompose an architecture based on services [62].
This is an area which has been studied intensively in recent years (see e.g. [38, 40, 63]). An important part of our ap-
proach is to model architecture component models and reconstruct such models via static code analysis, and analyze
the resulting models later on. This part of our approach is related to architecture reconstruction and related model-
ing approaches. Architecture reconstruction focuses on automatically or semi-automatically producing architecture
abstractions from the source code [10, 30, 31]. While such generic approaches fall short in being able to address the
specific characteristics of microservice systems, a number of more specific modeling and reconstruction approaches
have been proposed to address this gap.

Granchelli et al. [18] provide one of the few existing microservice-specific architecture reconstruction approaches. It
statically analyses Docker and Docker Compose files for names and ports, and then the Docker containers and network
bridges dynamically, to reconstruct the deployed microservices from the system’s communication logs. Alshuqayran et
al. [2] present an approach that is intended as a groundwork for architecture reconstruction of microservices. From the
analysis of 8 open source projects, the approach derived a meta-model and possible mapping rules for microservices.

Vianden et al. [57] report on a study of a microservice-based reference architecture as a starting point for enterprise
measurement infrastructures. This can be seen as an alternative to reconstruction, but it requires manual maintenance
of the architecture in relation to the reference architecture. Rademacher et al. [46] suggest addressing the polyglot
nature of microservices using an aspect-oriented modeling approach.

Our own prior work [36], used for reconstruction purposes in this article, aims to address issues of reconstructingmi-
croservice systems when facing polyglot programming, persistence, and technologies. As a consequence, our microser-
vice architecture model explained in Section 6 is richer in this regard than the models used in the other related works.
In this article, we use this approach as a foundation for extracting security tactics related models from the source code
and perform automated metrics-based analysis of the resulting models. To the best of our knowledge, our approach is
the first to consider microservice system architectures and their security aspects in a modeling-/reconstruction-based
approach.
9https://owasp.org/Top10/
10https://www.iso27001security.com/html/27002.html
Manuscript submitted to ACM

https://owasp.org/Top10/
https://www.iso27001security.com/html/27002.html

Microservice Security Metrics 29

10.3 Related Works on Reconstruction and Analysis of Security Features

In addition tomicroservice architecture reconstruction, a second direction inwhich this article is related to architecture
reconstruction approaches is the reconstruction and analysis of security features. This has been addressed before in a
number of existing approaches. Sohr and Berger [51] use the Bauhaus tool to build security views. In particular, they
extract a resource flow graph from Java code (J2EE or Android). The authors build security views that represent the
RBAC permissions in the application. In a later work, Bunke and Sohr [6] extend the previous approach based on RFGs
to extract security patterns from the code and check their correct implementation.

Concerning Android Java applications, Hamad et al. [22] proposed an approach to automatically extract the archi-
tectural design of an application starting from the APK (bytecode). The DelDroid tool is able to extract the application
components (activities, services, broadcast receivers, content providers), the explicit and implicit communication flows
(via intents), as well the granted permissions to each component. The tool also analyzes the code and computes the
permissions that are actually used.

Vanciu and Abi-Antoun [56] proposed the Scoria approach. The approach is based on the extraction from Java code
of an Ownership Object Graph (OOG). Objects are hierarchically organized in a tree according to ownership domains.
Dataflow edges are automatically added on top of the hierarchy and represent information flows (i.e., read and write),
as well as point-to and inheritance relationships among the objects. The resulting graph is called a Sec Graph and can
be further enriched by software architects with security-related properties. The architect can run queries on the graph
to identify security issues, such as insecure communication.

Peldszus et al. [42] defines an approach for the model-based security analysis of Java applications. The analysis is
performed on a SecPL model, which is an extension of UMLsec. The SecPL model can be reverse engineered from the
code, provided that the developers have enriched the code with SecPL annotations, which carry security information
and properties.

Jasser [25] categorizes a number of ADDs for security. These security constraints are formalized as LTL formulas,
which predicate over architectural concepts (e.g., components). The approach entails that the architect provides a
manual mapping between the architectural concepts and the code (a DSL is provided to this aim). Finally, the tool
checks the compliance between the security rules and the code.

Bauer et al. [4] focus on formally validating the security specification (as UMLsec diagrams) and then monitoring
the system at run-time in order to check the compliance of the implementation with the security specification. To
enable the latter step, the architect has to manually provide a mapping between code elements and model elements.

Peldszus et al. [43] present a semi-automated approach to map model elements from a SecDFD diagram to code
elements (Java methods and types). The tool provides some suggestions that the architect can approve or discard. The
architect can also suggest their own mappings. In an iterative way, the tool suggests new mappings by prioritizing the
heuristics that have been ‘approved’ by the human. The heuristics work on an intermediate representation of the code
called Program Model, which fuses concepts from the class diagram, the call graph, and the dependency graph.

The approaches discussed above have in common with our approach that they build a security-specific model from
the source code as a foundation for later analysis. In contrast to our approach, they do not support typical microservice
architecture characteristics in their models, such as various possible distributed systems invocations used throughout
microservice systems, the link to continuous delivery approaches, or the use of polyglot programming, persistence,

Manuscript submitted to ACM

30 Zdun et al.

and technologies. This adds a considerable layer of complexity to the system models under investigation in this arti-
cle, compared to those earlier works. In consequence, our proposed metrics and detectors need to consider the extra
elements in the software architecture, too.

10.4 Related Works on Security Metrics and Indicators

As microservice architectures rely on a level of assurance between the actors involved for engaging in interactions,
the prospect of quantifying that level of assurance using security-relevant indicators is attractive. These indicators can
enable organizations to assess architecture security [27]. Security metrics are then needed to understand the current
state of security, and possibly improve that state [41].While several organizations includingMicrosoft [23] and OWASP
[59] propose processes and checklists for building secure architectures, there are very few tools that can automate these
processes for tailor-made solutions due to the dynamics in and heterogeneity of the systems [39]. Our approach is to
the best of our knowledge the first that supports automated security assessment based on an empirical investigation
of existing (best) practices in the field of microservice architectures.

Ramos et al. [47] conducted a detailed review of the main existing model-based quantitative security metrics with
a focus on network security metrics, analyzing their advantages and disadvantages in their use. Model-based security
metrics use techniques to describe a system in terms of an abstract model that captures the necessary attributes of
interest, based on the assumptions of the attacker and the system behavior. For example, Attack Graphs (AG) are a
model commonly used to quantify network security. It uses the causal relationships between vulnerabilities which
allows quantification of the likelihood of potential multi-step attacks that combine multiple vulnerabilities [58]. Noel
et al. [35] describe a set of metrics for measuring network-wide cybersecurity risk based on a model of multi-step
attack vulnerability with AGs. Their system for computing security metrics from vulnerability-based network AGs
used the data imported from sources that are commonly deployed within enterprise networks, such as vulnerability
scanners and firewall configuration files. They used a Topological Vulnerability Analysis (TVA) tool [24], Cauldron,
which analyses network attack vulnerability from scanning tools and other data sources. The tool correlates cyber-
vulnerabilities and environmental metadata and applies network access policy (firewall) rules.

Such general security metrics and indicators are a foundation for our work. But as none of them considers the
specifics of microservice architectures yet, they cannot at all or without substantial adaptation be applied to our re-
search problems. For this reason, we decided to design metrics based on existing recommendations (such as NIST [34],
OWASP [37], or the Cloud Security Alliance [8]) specifically for microservice-based systems.

10.5 Related Works on Microservice Metrics and Indicators

Many of the works on service metrics today are focused on runtime properties (see e.g. [44]). A number of studies
have used metrics to assess microservice-based software architectures, e.g. [5, 40, 60], but each is focused on narrow
sets of architecture-relevant tenets (e.g. loose coupling), and no general approach for an assessment across different
microservice tenets exists. Pautasso andWilde [40] propose a composite, facet-based metric for the assessment of loose
coupling in service-oriented systems. Zdun et al. [60] study the independent deployment of microservices by defining
metrics to assess architecture conformance to microservice patterns, focused on two aspects: independent deployment
and shared dependencies of services. Bogner et al. [5] propose a maintainability quality model which combines eleven
easily extracted code metrics into a broader quality assessment. Engel et al. [11] also propose a method of using real-
time system communication traces to extract metrics on conformance to recommended microservice design principles
Manuscript submitted to ACM

Microservice Security Metrics 31

such as loose coupling and small service size. Our work broadly follows the same approach, but does not focus on
specific tenets only and adds notions for measuring the use of security tactics in security-related ADDs.

Once metrics can be checked automatically, our approach can be classified as a metrics-based, microservice-specific
approach for software architecture conformance checking. In general, approaches for architecture conformance check-
ing are often based on automated extraction techniques [19, 55]. Conformance to architecture patterns [19, 21] or other
kinds of architectural rules [55] can often be checked by such approaches. Techniques that are based on a broad set of
microservice-related metrics to cover multiple microservice tenets and security do not yet exist.

While a couple of works specifically focus on microservice security metrics, again many of those focus on runtime-
related or non-architectural aspects [3, 12, 28, 54]. Chondamrongkul et al.[7] present an early approach for automat-
ically investigating certain security flaws in a component and connector architecture, such as man-in-the-middle or
denial-of-service attacks. As it is unclear why, if this information is modeled, the flaw is not fixed instead, in this ar-
ticle, we do rather not model potential flaws, but security tactics, which seem better suited for modeling and analysis
at the architectural level. Also, our work is based on empirical data, whereas Chondamrongkul et al.’s work only uses
modeling examples.

11 CONCLUSION

In this article we have presented a novel approach for measuring conformance to ADDs on microservice security via
metrics. Our approach (to answer RQ1) was to first to systematically examine the ADDs and security tactics in the
areas of interest, here: secure communication, identity management, and observability. Next, we proposed relatively
simple metrics evaluating at least each major decision option. These can automatically be calculated using model-
based detectors used as functions in the formally defined metrics. To answer RQ2, our statistical analysis in Section 7
shows that for each ADD multiple regression models can be found with high statistical significance and accuracy.
For each dependent variable, we found a number of metrics that have a strong or very strong correlation to it. These
metrics are used in each of the selected the regression models. Within the scope of the case study system models (i.e.,
similar modeling abstractions, size, complexity, etc.), the regression models should provide good indicators for the
conformance to the investigated ADDs on microservice security. Please note that in other scopes (e.g., more complex
or much larger system), likely a recalibration of the models is necessary. Regarding RQ3, we consider that existing
modeling practices can be easily mapped to our microservice meta-model (derived from [61]). Rather lightweight
extensions for security tactics markup have been made. Both have been formally specified in Section 6. We confirmed
for each of the stereotypes that they can be extracted from the source code with the methods from our earlier work
(i.e. [36]).

As future work, we plan to apply the research approach followed in this article to other views such as deployment or
behavioral views. Further, we plan to analyze systems at runtime to augment the static analysis techniques developed in
this article. We plan to extend and improve the integration of our approach into the two commercial tools, summarized
in Section 8.

12 ACKNOWLEDGMENTS

Our work has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 952647 (AssureMOSS project). This work was supported by: FWF (Austrian Science Fund) project
API-ACE: I 4268; FWF (Austrian Science Fund) project IAC2: I 4731-N.

Manuscript submitted to ACM

32 Zdun et al.

We thank the two experts Gergely Eberhardt and ÁkosMilánkovich from SEARCH-LAB for their review of our mod-
els, metrics, and code, and work on the integration with the continuous certification scheme explained in Section 8.2.

REFERENCES
[1] Antti Airola, Tapio Pahikkala, Willem Waegeman, Bernard De Baets, and Tapio Salakoski. 2011. An experimental comparison of cross-validation

techniques for estimating the area under the ROC curve. Computational Statistics & Data Analysis 55, 4 (2011), 1828–1844.
[2] N. Alshuqayran, N. Ali, and R. Evans. 2018. TowardsMicro Service Architecture Recovery: An Empirical Study. In 2018 IEEE International Conference

on Software Architecture (ICSA). IEEE, Washington, DC, USA, 47–4709. https://doi.org/10.1109/ICSA.2018.00014
[3] Alberto Avritzer. 2020. Challenges and Approaches for the Assessment of Micro-Service Architecture Deployment Alternatives in DevOps: A

tutorial presented at ICSA 2020. In 2020 IEEE International Conference on Software Architecture Companion (ICSA-C). IEEE, Washington, DC, USA,
1–2.

[4] Andreas Bauer, Jan Jürjens, and Yijun Yu. 2011. Run-Time Security Traceability for Evolving Systems. Comput. J. 54 (2011), 58–87. Issue 1.
[5] Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2017. Towards a Practical Maintainability Quality Model for Service-and Microservice-

Based Systems. In Proceedings of the 11th European Conference on Software Architecture: Companion Proceedings (Canterbury, United Kingdom)
(ECSA ’17). Association for Computing Machinery, New York, NY, USA, 195–198. https://doi.org/10.1145/3129790.3129816

[6] Michaela Bunke and Karsten Sohr. 2011. An Architecture-Centric Approach to Detecting Security Patterns in Software. In Engineering Secure
Software and Systems, Úlfar Erlingsson, Roel Wieringa, and Nicola Zannone (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 156–166.

[7] Nacha Chondamrongkul, Jing Sun, and Ian Warren. 2020. Automated security analysis for microservice architecture. In 2020 IEEE International
Conference on Software Architecture Companion (ICSA-C). IEEE, Washington, DC, USA, 79–82.

[8] Cloud Security Alliance. 2020. Best Practices in Implementing a Secure Microservices Architecture. https://cloudsecurityalliance.org/artifacts/best-
practices-in-implementing-a-secure-microservices-architecture/.

[9] F. Deissenboeck, L. Heinemann, B. Hummel, and E. Juergens. 2010. Flexible architecture conformance assessment with ConQAT. In 2010 ACM/IEEE
32nd International Conference on Software Engineering, Vol. 2. IEEE, Washington, DC, USA, 247–250. https://doi.org/10.1145/1810295.1810343

[10] S. Ducasse and D. Pollet. 2009. Software Architecture Reconstruction: A Process-Oriented Taxonomy. IEEE Transactions on Software Engineering
35, 4 (Jul-Aug 2009), 573–591.

[11] Thomas Engel, Melanie Langermeier, Bernhard Bauer, and Alexander Hofmann. 2018. Evaluation of Microservice Architectures: A Metric and Tool-
Based Approach. In Information Systems in the Big Data Era, Jan Mendling and Haralambos Mouratidis (Eds.). Springer International Publishing,
Cham, 74–89.

[12] José Flora. 2020. Improving the Security of Microservice Systems by Detecting and Tolerating Intrusions. In 2020 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE, Washington, DC, USA, 131–134.

[13] Jr. Frank E. Harrell. 2015. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis
(2nd ed.). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-319-19425-7

[14] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. 2013. A Comparative Analysis of Software Architecture Recovery Techniques. In Proceedings
of the 28th IEEE/ACM International Conference on Automated Software Engineering (Silicon Valley, CA, USA) (ASE’13). IEEE Press, Piscataway, NJ,
USA, 486–496.

[15] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. 2019. Guidelines for including grey literature and conducting multivocal literature reviews
in software engineering. Inf. Softw. Technol. 106 (2019), 101–121. https://doi.org/10.1016/j.infsof.2018.09.006

[16] Vahid Garousi, Michael Felderer, Mika V. Mäntylä, and Austen Rainer. 2020. Benefitting from the Grey Literature in Software Engineering Research.
Springer International Publishing, Cham, 385–413.

[17] Thomas A Gerds and Martin Schumacher. 2006. Consistent estimation of the expected Brier score in general survival models with right-censored
event times. Biometrical Journal 48, 6 (2006), 1029–1040.

[18] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino, and A. D. Salle. 2017. Towards Recovering the Software Architecture of
Microservice-Based Systems. In 2017 IEEE International Conference on Software Architecture Workshops (ICSAW). IEEE, Washington, DC, USA, 46–
53.

[19] George Yanbing Guo, Joanne M Atlee, and Rick Kazman. 1999. A software architecture reconstruction method. In Software Architecture. Springer,
Berlin, Heidelberg, 15–33.

[20] Munawar Hafiz, Paul Adamczyk, and Ralph E Johnson. 2012. Growing a pattern language (for security). In Proceedings of the ACM international
symposium on New ideas, new paradigms, and reflections on programming and software. Association for Computing Machinery, New York, NY, USA,
139–158.

[21] Thomas Haitzer and Uwe Zdun. 2014. Semi-automated architectural abstraction specifications for supporting software evolution. Science of
Computer Programming 90 (2014), 135–160.

[22] Mahmoud Hammad, Hamid Bagheri, and SamMalek. 2019. DelDroid: an automated approach for determination and enforcement of least-privilege
architecture in android. Journal of Systems and Software 149 (2019), 286–295.

Manuscript submitted to ACM

https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1145/3129790.3129816
https://cloudsecurityalliance.org/artifacts/best-practices-in-implementing-a-secure-microservices-architecture/
https://cloudsecurityalliance.org/artifacts/best-practices-in-implementing-a-secure-microservices-architecture/
https://doi.org/10.1145/1810295.1810343
https://doi.org/10.1007/978-3-319-19425-7
https://doi.org/10.1016/j.infsof.2018.09.006

Microservice Security Metrics 33

[23] Joseph Ingeno. 2018. Software Architect’s Handbook: Become a successful software architect by implementing effective architecture concepts. Packt
Publishing Ltd, Birmingham.

[24] Sushil Jajodia, Steven Noel, Pramod Kalapa, Massimiliano Albanese, and JohnWilliams. 2011. Cauldronmission-centric cyber situational awareness
with defense in depth. In 2011-MILCOM 2011 Military Communications Conference. IEEE, IEEE, Washington, DC, USA, 1339–1344.

[25] Stefanie Jasser. 2020. Enforcing Architectural Security Decisions. In International Conference on Software Architecture (ICSA). IEEE, Washington,
DC, USA, 35–45. https://doi.org/10.1109/ICSA47634.2020.00012

[26] Michael W Kattan and Thomas A Gerds. 2018. The index of prediction accuracy: an intuitive measure useful for evaluating risk prediction models.
Diagnostic and prognostic research 2, 1 (2018), 1–7.

[27] Ken Laskey, Jeff A Estefan, Francis G McCabe, and Danny Thornton. 2009. Reference architecture foundation for service oriented architecture
version 1.0. Oasis, Committee Draft 2 (2009), 26.

[28] Joshua Levin and Theophilus A Benson. 2020. ViperProbe: Rethinking Microservice Observability with eBPF. In 2020 IEEE 9th International Con-
ference on Cloud Networking (CloudNet). IEEE, Washington, DC, USA, 1–8.

[29] James Lewis and Martin Fowler. 2004. Microservices: a definition of this new architectural term. http://martinfowler.com/articles/microservices.
html.

[30] Kim Mens, Tom Mens, and Michel Wermelinger. 2002. Maintaining software through intentional source-code views. In Proceedings of the 14th
international conference on Software engineering and knowledge engineering (Ischia, Italy) (SEKE ’02). ACM, New York, NY, USA, 289–296.

[31] Gail C. Murphy, David Notkin, and Kevin Sullivan. 1995. Software reflexion models: bridging the gap between source and high-level models. In
Proceedings of the 3rd ACM SIGSOFT symposium on Foundations of software engineering (Washington, D.C., United States) (SIGSOFT ’95). ACM, New
York, NY, USA, 18–28.

[32] Jerome L Myers, Arnold D Well, and Robert F Lorch Jr. 2013. Research design and statistical analysis. Routledge, Abingdon, UK.
[33] Sam Newman. 2015. Building Microservices: Designing Fine-Grained Systems. O’Reilly, Sebastopol, CA.
[34] NIST. 2019. NIST Special Publication (SP) 800-204, Security Strategies for Microservices-based Application Systems. https://www.nist.gov/news-

events/news/2019/08/security-strategies-microservices-based-application-systems-nist-publishes.
[35] Steven Noel and Sushil Jajodia. 2017. A suite of metrics for network attack graph analytics. In Network security metrics. Springer, Berlin, Heidelberg,

141–176.
[36] Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Patric Genfer, Sebastian Geiger, SebastianMeixner, andWilhelmHasselbring. 2021. Detector-

based component model abstraction for microservice-based systems. Computing 103 (2021), 2521–2551.
[37] OWASP. 2021. Microservices based Security ArchDoc Cheat Sheet. https://cheatsheetseries.owasp.org/cheatsheets/Microservices_based_Security_

Arch_Doc_Cheat_Sheet.html.
[38] Claus Pahl and Pooyan Jamshidi. 2016. Microservices: A systematic mapping study. In 6th International Conference on Cloud Computing and Services

Science. SCITEPRESS, Setubal, PRT, 137–146. https://doi.org/10.5220/0005785501370146
[39] Pierre Parrend, Timothé Mazzucotelli, and Florent Colin. 2017. Using design structure matrices (dsm) as security controls for software architectures.

Technical Report. Tech. Rep. 1, Complex System Digital Campus, cS-DC Research Report, ARK ….
[40] Cesare Pautasso and Erik Wilde. 2009. Why is the web loosely coupled?: a multi-faceted metric for service design. In 18th Int. Conf. on World wide

web. Association for Computing Machinery, New York, NY, USA, 911–920.
[41] Shirley C Payne. 2006. A guide to security metrics. SANS Institute Information Security Reading Room.
[42] Sven Peldszus, Daniel Strüber, and Jan Jürjens. 2018. Model-Based Security Analysis of Feature-Oriented Software Product Lines. SIGPLAN Not.

53, 9 (Nov. 2018), 93–106. https://doi.org/10.1145/3393934.3278126
[43] Sven Peldszus, Katja Tuma, Daniel Strüber, Jan Jürjens, and Riccardo Scandariato. 2019. Secure Data-Flow Compliance Checks between Models

and Code based on Automated Mappings. In International Conference on Model Driven Engineering Languages and Systems (MODELS). Springer,
Berlin, Heidelberg, 23–33.

[44] R. Pietrantuono, S. Russo, and A. Guerriero. 2018. Run-Time Reliability Estimation of Microservice Architectures. In 2018 IEEE 29th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, Washington, DC, USA, 25–35. https://doi.org/10.1109/ISSRE.2018.00014

[45] D. Quartel and M. van Sinderen. 2007. On Interoperability and Conformance Assessment in Service Composition. In 11th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2007). IEEE, Washington, DC, USA, 229–229. https://doi.org/10.1109/EDOC.2007.11

[46] F. Rademacher, S. Sachweh, and A. Zündorf. 2019. Aspect-Oriented Modeling of Technology Heterogeneity in Microservice Architecture. In 2019
IEEE International Conference on Software Architecture (ICSA). IEEE, Washington, DC, USA, 21–30. https://doi.org/10.1109/ICSA.2019.00011

[47] Alex Ramos, Marcella Lazar, Raimir Holanda Filho, and Joel JPC Rodrigues. 2017. Model-based quantitative network security metrics: A survey.
IEEE Communications Surveys & Tutorials 19, 4 (2017), 2704–2734.

[48] Chris Richardson. 2017. A pattern language for microservices. http://microservices.io/patterns/index.html.
[49] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank Buschmann, and Peter Sommerlad. 2013. Security Patterns: Integrating

security and systems engineering. John Wiley & Sons, New York, NY, USA.
[50] Jason Skowronski. 2019. Best Practices for Event-Driven Microservice Architecture. https://hackernoon.com/best-practices-for-event-driven-

microservice-architecture-e034p21lk.
[51] Karsten Sohr and Bernhard Berger. 2010. Idea: Towards Architecture-Centric Security Analysis of Software. In Engineering Secure Software and

Systems, Fabio Massacci, Dan Wallach, and Nicola Zannone (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 70–78.
Manuscript submitted to ACM

https://doi.org/10.1109/ICSA47634.2020.00012
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://www.nist.gov/news-events/news/2019/08/security-strategies-microservices-based-application-systems-nist-publishes
https://www.nist.gov/news-events/news/2019/08/security-strategies-microservices-based-application-systems-nist-publishes
https://cheatsheetseries.owasp.org/cheatsheets/Microservices_based_Security_Arch_Doc_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Microservices_based_Security_Arch_Doc_Cheat_Sheet.html
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1145/3393934.3278126
https://doi.org/10.1109/ISSRE.2018.00014
https://doi.org/10.1109/EDOC.2007.11
https://doi.org/10.1109/ICSA.2019.00011
http://microservices.io/patterns/index.html
https://hackernoon.com/best- practices-for-event-driven-microservice-architecture-e034p21lk
https://hackernoon.com/best- practices-for-event-driven-microservice-architecture-e034p21lk

34 Zdun et al.

[52] Ewout W Steyerberg, Andrew J Vickers, Nancy R Cook, Thomas Gerds, Mithat Gonen, Nancy Obuchowski, Michael J Pencina, and Michael W
Kattan. 2010. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology (Cambridge,
Mass.) 21, 1 (2010), 128.

[53] D. Taibi and V. Lenarduzzi. 2018. On the Definition of Microservice Bad Smells. IEEE Software 35, 3 (May 2018), 56–62. https://doi.org/10.1109/MS.
2018.2141031

[54] Kennedy A Torkura, Muhammad IH Sukmana, Anne VDM Kayem, Feng Cheng, and Christoph Meinel. 2018. A cyber risk based moving target de-
fense mechanism for microservice architectures. In 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing
& Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/-
SocialCom/SustainCom). IEEE, Washington, DC, USA, 932–939.

[55] Arie Van Deursen, Christine Hofmeister, Rainer Koschke, Leon Moonen, and Claudio Riva. 2004. Symphony: View-driven software architecture
reconstruction. In 4th Working IEEE/IFIP Conf. on Software Architecturen(WICSA 2004). IEEE, IEEE, Washington, DC, USA, 122–132.

[56] Radu Vanciu and Marwan Abi-Antoun. 2013. Finding architectural flaws using constraints. In 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, Washington, DC, USA, 334–344. https://doi.org/10.1109/ASE.2013.6693092

[57] M. Vianden, H. Lichter, and A. Steffens. 2014. Experience on a Microservice-Based Reference Architecture for Measurement Systems. In 2014 21st
Asia-Pacific Software Engineering Conference, Vol. 1. IEEE, Washington, DC, USA, 183–190. https://doi.org/10.1109/APSEC.2014.37

[58] Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajodia. 2008. An Attack Graph-Based Probabilistic Security Metric. In Data and
Applications Security XXII, Vijay Atluri (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 283–296.

[59] Martin Woschek. 2015. Owasp cheat sheets. pp 315 (2015), 4.
[60] Uwe Zdun, Elena Navarro, and Frank Leymann. 2017. Ensuring and Assessing Architecture Conformance to Microservice Decomposition Patterns.

In Service-Oriented Computing, Michael Maximilien, Antonio Vallecillo, Jianmin Wang, and Marc Oriol (Eds.). Springer International Publishing,
Cham, 411–429.

[61] Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke. 2018. Guiding Architectural DecisionMaking onQuality Aspects
in Microservice APIs. In Service-Oriented Computing - 16th International Conference, ICSOC 2018, Hangzhou, China, November 12-15, 2018 (LNCS,
Vol. 11236). Springer, Berlin, Heidelberg, 73–89.

[62] Olaf Zimmermann. 2017. Microservices Tenets. Computer Science-Research and Development 32, 3-4 (July 2017), 301–310. https://doi.org/10.1007/
s00450-016-0337-0

[63] Olaf Zimmermann, Thomas Gschwind, Jochen Küster, Frank Leymann, and Nelly Schuster. 2007. Reusable architectural decision models for
enterprise application development. In Int. Conf. on the Quality of Software Architectures. Springer, Berlin, Heidelberg, 15–32.

[64] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun. 2021. Microservice API Patterns. https://microservice-api-
patterns.org/.

[65] Olaf Zimmermann, Mirko Stocker, Uwe Zdun, Daniel Luebke, and Cesare Pautasso. 2019. Microservice API Patterns. https://microservice-api-
patterns.org.

Manuscript submitted to ACM

https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/ASE.2013.6693092
https://doi.org/10.1109/APSEC.2014.37
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://microservice-api-patterns.org/
https://microservice-api-patterns.org/
https://microservice-api-patterns.org
https://microservice-api-patterns.org

	Abstract
	1 Introduction
	2 Research Methods
	2.1 Data Collection and Analysis of Security Tactics for Microservices
	2.2 Case Study Preparation and Development of Model Data Set
	2.3 Definition of ADDs and Metrics
	2.4 Case Study-Based Analysis and Evaluation
	2.5 Model Generation
	2.6 Extraction of Architecture Models from Microservice Code

	3 Case Study Inspection and Preparation
	4 ADDs for Microservice Security Tactics
	4.1 Tactics and ADD on Secure Communication
	4.2 Tactics and ADDs on Identity Management
	4.3 Tactics and ADD on Observability

	5 Ground Truth
	6 Metrics
	6.1 Metrics for Secure Communication (SC) Decision
	6.2 Metrics for Backend Authentication (BE_AE) Decision
	6.3 Metrics for Authentication on Paths from Clients or UIs to System Services (CP_AE) Decision
	6.4 Metrics for Observability (OBS) Decision

	7 Analysis
	7.1 Correlation Analysis
	7.2 Ordinal Logistic Regression Analysis

	8 Integration in Industrial Tools
	8.1 Integration into a Cyber-Threat Resilience Assessment Tool
	8.2 Integration into an Incremental and Continuous Security Certification Tool

	9 Discussion
	9.1 Discussion of Research Questions
	9.2 Threats to Validity

	10 Related Work
	10.1 Related Works on Best Practices and Patterns
	10.2 Related Works on Microservice Architecture Modeling and Reconstruction
	10.3 Related Works on Reconstruction and Analysis of Security Features
	10.4 Related Works on Security Metrics and Indicators
	10.5 Related Works on Microservice Metrics and Indicators

	11 Conclusion
	12 Acknowledgments
	References

