
 

                        
REACT: Renewable Energy for self-sustAinable island CommuniTies, has received funding from the 

European Commission H2020 Programme under Grant Agreement No. 824395 

   

 

 

 

 

 
 

 

 

 

 

 

 

  

 

WP6 - REACT 

platform integration 

and interoperability 

D6.3 Semantic data model and 

connectivity with smart-grid 

services 
 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    2 

 

 

DISCLAIMER 

 

The opinion stated in this report reflects the opinion of the authors and not the opinion 

of the European Commission. 

All intellectual property rights are owned by REACT consortium members and are 

protected by the applicable laws. Reproduction is not authorised without prior written 

agreement. 

The commercial use of any information contained in this document may require a license 

from the owner of that information. 

 

 

ACKNOWLEDGEMENT 

 

This project has received funding from the European Union’s Horizon 2020 research and 

innovation programme under grant agreement Nº 824395. 

  



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    3 

Project Data 

Project Acronym  REACT 

Project Title  Renewable Energy for self-sustAinable island CommuniTies 

Grant Agreement 

number  

824395 

Call identifier  H2020-LC-SC3-2018-2019-2020 

Topic identifier  LC-SC3-ES-4-2018 

Decarbonising energy systems of geographical Islands 

Funding Scheme  Innovation action (IA) 

Project duration  48 months (From 1st of January of 2019)  

Coordinator  VEOLIA – Ferran Abad 

Website  http://react2020.eu 

Deliverable Document Sheet 

Deliverable No. D6.3 

Deliverable title  Semantic data model and connectivity with smart-grid services 

Description  Report and software describing the semantic data model and REACT 

connection with smart-grid services 

WP No. 6 

Related task  T.6.3 – Semantic data model and smart-grid connectivity 

Lead Beneficiary  TEKNIKER (TEK) 

Author(s)  Iker Esnaola-Gonzalez (TEK) 

Contributor(s)  Ignacio Lázaro, Francisco Javier Diez (TEK), Dejan Paunovic, Dea Pujic, 

Lazar Berbakov, Nikola Tomasevic (IMP), Lluis Millet, Marco Mittelsdorf 

(FHG), James Freeman, Daniel Coakley (MERCE), Paulo Lissa (NUI 

Galway) 

Type Report, OTHER 

Dissemination L. Public 

Language English – GB 

Due Date 30/06/2021 Submission Date 25/11/2021 

 

 

VER Action Owner Date 

0.1 TOC definition Iker Esnaola-Gonzalez - TEK 21/01/2021 

0.2 TOC review Nikola Tomasevic - IMP 18/02/2021 

0.3 IMP initial contributions Dejan Paunovic - IMP 06/05/2021 

0.4 TEK initial contributions Iker Esnaola-Gonzalez - TEK 21/06/2021 

0.5 Ontology implementation and use 

contributions 

Iker Esnaola-Gonzalez, 

Ignacio Lázaro – TEK 

28/09/2021 

0.6 IMP review Dea Pujić -IMP 19/10/2021 

0.7 FHG contribution Marco Mittelsdorf - FHG 19/10/2021 

0.8 TEK integration and new contribution 

based on comments  

Iker Esnaola-Gonzalez, 

Ignacio Lázaro – TEK 

05/11/2021 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    4 

0.9 AIT review Stefan Übermasser - AIT 12/11/2021 

0.10 TEK review of suggestions from AIT’s 

official review 

Iker Esnaola-Gonzalez, 

Ignacio Lázaro – TEK 

16/11/2021 

0.11 IMP contribution to OpenADR Lazar Berbakov - IMP 19/11/2021 

0.12 TEK overall review  Iker Esnaola-Gonzalez – TEK 22/11/2021 

1.0 Final Version Ignacio Lázaro – TEK 24/11/2021 

  



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    5 

Executive Summary 

 

This deliverable defines the REACT Semantic data model in the form of an ontology for 

the integration of all data interchanged between the equipment installed in Pilot sites and 

REACT cloud components, services, and tools. This document describes the process of the 

ontology definition and exploitation, thoroughly describing the methodology used, the 

implementation paying special attention to the ontology engineering best practices, the 

publication, and the instantiation. 

This deliverable also defines the Open API to enable the exploitation of smart grid, and 

third-party services such as energy prices, weather forecasts, and data exchanging DR 

aggregators. A design of communication between REACT platform and smart grid by using  

OpenADR is provided. 

 

 

 

  



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    6 

Table of Contents 

Executive Summary ..................................................................................................... 5 

1. Introduction ........................................................................................................... 9 

1.1 Scope ....................................................................................................................... 9 

1.2 Audience.................................................................................................................. 9 

1.3 Abbreviations .......................................................................................................... 9 

1.4 Structure ............................................................................................................... 10 

2. The Semantic Web and Semantic Technologies ............................................. 12 

2.1 The data model ..................................................................................................... 12 

2.2 Linked Data ........................................................................................................... 14 

2.3 Ontologies ............................................................................................................. 15 

3. The REACT Ontology .......................................................................................... 17 

3.1 Ontology Development Methodology ................................................................ 18 

3.2 Ontology Implementation ................................................................................... 21 

3.2.1 Based on Ontology Design Patterns ................................................................... 22 

3.2.2 Reusing well-known ontologies ........................................................................... 24 

3.2.3 Following a modular approach ........................................................................... 25 

3.3 Ontology Publication ............................................................................................ 26 

3.4 Ontology Instantiation ......................................................................................... 28 

3.4.1 Represented information in a nutshell ............................................................... 30 

3.5 The Ontology in Use ............................................................................................. 34 

4. External System Connectivity ........................................................................... 37 

4.1 Smart Grid Connectivity ................................................................................................. 38 

4.2 Weather Service Integration .......................................................................................... 45 

4.3 Open API Concept ........................................................................................................... 49 

5. Conclusions ........................................................................................................ 52 

References ................................................................................................................. 54 

Appendix I – REACT ORSD ........................................................................................ 57 

Appendix II – REACT ontology in use example ....................................................... 59 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    7 

 

List of Figures 

Figure 1: An RDF graph example (source: W3.org) ............................................................... 13 

Figure 2: LOD Cloud as of May 2020. .................................................................................... 15 

Figure 3: Ontology types according to Guarino. ................................................................... 17 

Figure 4: LOT Methodology. ................................................................................................... 19 

Figure 5: Main classes and properties of the REACT ontology. ........................................... 22 

Figure 6: Main classes and properties of the reused ODPs. ............................................... 23 

Figure 7: Main classes and properties of the HPOnt ontology............................................ 26 

Figure 8: REACT ontology documentation page excerpt. .................................................... 28 

Figure 9: Data Point List Excel file excerpt. ........................................................................... 29 

Figure 10: Representation of a house, equipment and measurements using the REACT 

ontology. .................................................................................................................................. 30 

Figure 11: Virtuoso SPARQL Query Editor. ............................................................................ 35 

Figure 12: Results obtained with the Virtuoso SPARQL Query Editor. ............................... 35 

Figure 13: Overview of OpenADR actors and roles. ............................................................. 39 

Figure 14: VTN sends events to VEN in push mode (OpenADR Alliance, 2015) ................. 40 

Figure 15: Building blocks of the general oadrDistributeEvent. ......................................... 40 

Figure 16 OpenADR oadrDistributeEvent ............................................................................. 43 

Figure 17 OpenADR oadrCreateReport ................................................................................. 45 

Figure 18 Weatherbit.io data adapter ................................................................................... 46 

Figure 19 OAS general outline ............................................................................................... 50 

 

 

List of Tables 

Table 1: Information related to facility and equipment represented after the REACT 

ontology instantiation............................................................................................................. 31 

Table 2: Information related to measurements represented after the REACT ontology 

instantiation ............................................................................................................................ 33 

Table 3: List of REACT services and tools that may exploit the ontology instantiation data.

 .................................................................................................................................................. 34 

Table 4: Pricing signals (OpenADR Alliance, 2015) ............................................................... 41 

Table 5: Signal for storage resources. XXX represents real, apparent and reactive versions 

of power or energy (OpenADR Alliance, 2015) ..................................................................... 42 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    8 

Table 6 Weatherbit.io API endpoints ($KEY - API key used for authorization, $LAT and $LON 

- latitude and longitude for the selected pilot location) ...................................................... 47 

 

  



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    9 

1. Introduction 

 

1.1  Scope  

This deliverable defines the semantic data model, as an ontology, to have a common 

vocabulary for the raw signals coming from the assets installed in the pilot sites and with 

the platform system components, such as time-series database, relational database, and 

core services. 

1.2  Audience 

 

The intended audience for Deliverable 6.3 consists of members of the REACT Consortium 

and the Project Officer. This document is public, and it can be helpful for any other 

projects involved in research activities related to Renewable Energy Assets, any public 

organization, person, or entity which aims for the improvement of energy self-sufficiency 

of geographical islands, and people who might be interested in attaining a foundational 

understanding of concepts and principles behind Semantic Technologies. 

 

Therefore, partners in charge of activities related to the implementation, integration, and 

deployment of analytic services and visualization tools within the REACT project are part 

of the target audience of the deliverable. 

 

1.3  Abbreviations 

A: Ampere 

AAA: Anyone can say Anything about Any topic 

ADR: Automated Demand Respond 

API: Application Programming Interface 

CQ: Competency Questions 

ESS: Energy Storage System 

DC: Direct Current 

DR: Demand Response 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    10 

HTTP: Hypertext Transfer Protocol 

HP: Heat Pump 

Hz: Hertz 

IRI: Internationalized Resource Identifier 

kW: Kilowatt  

kWh: Kilowatt-hour  

LOD: Linked Open Data 

OAS: Open API Specification 

OSRD: Ontology Requirements Specification Document 

OWA: Open World Assumption 

PV: Photovoltaic 

REST: Representational State Transfer 

RDF: Resource Description Framework 

SPARQL: SPARQL Protocol and RDF Query Language 

TSDB: Time Series Database 

URI: Uniform Resource Identifier 

V: Voltage 

W3C: World Wide Web Consortium 

wh: Watt-hour  

 

 

1.4  Structure 

• Section 1: it contains an overview of this document, providing its Scope, Audience, 

Abbreviations and Structure. 

• Section 2: it provides a brief introduction to the Semantic Web and Semantic 

Technologies, as well as to related concepts such as Linked Data and ontologies. 

• Section 3: it describes the REACT ontology, not only from a methodological and 

implementation point of view, but also from its instantiation and usage. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    11 

• Section 4: it contains the description regarding external connectivity, such as 

connectivity with smart grid, external weather service and open ADR concept. 

• Section 5: a discussion and conclusions of the deliverable are provided. 

 

The report includes two appendices: 

• Appendix I: Contains an excerpt description of the ORSD of the Ontology. 

• Appendix II: Contains the RDF model of an instantiation example of the REACT 

ontology. 

 

 

 

 

  



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    12 

 

2. The Semantic Web and Semantic 

Technologies 

Nowadays, most Web content is suitable for human consumption, but it is not well 

supported by machines. This derived in the advent of the Semantic Web, which is not a 

separate Web but an extension in which information is given well-defined meaning, 

enabling computers and people to work in cooperation (Berners-Lee, Hendler, & Lassila, 

2001). In fact, the Semantic Web builds upon the principles and technologies of the Web. 

It reuses the Web's global indexing and naming scheme, and Semantic Web documents 

can be accessed through standard Web browsers as well as through semantically aware 

applications (Domingue, Fensel, & Hendler, 2011). The World Wide Web was derived from 

a new way of thinking about sharing information. Therefore, it has a set of features that 

can be summarized as follows (Allemang & Hendler, 2011): 

• The AAA (Anyone can say Anything about Any topic) slogan. In a web of documents, 

this slogan means that anyone can write a page saying whatever they want and 

publish it. In the case of the Semantic Web, AAA means that any individual can 

express a piece of data about some entity and this data can be combined with 

information from other sources.  

• The Open World Assumption (OWA). Because of the AAA slogan, there could always 

be something new. Therefore, statements about knowledge that are not included 

or inferred from the explicitly recorded data may be considered unknown, rather 

than wrong or false.  

• Non unique naming assumption. This feature is built upon the assumption that 

not all the contributors to the Web will coordinate with regards to the naming of 

entities. Therefore, the same entity could be referred to using more than one 

name. 

• The network effect. This is the property thanks to which the value of joining in the 

Semantic Web increases with the number of people who have already joined, 

resulting in a spiral of participation. 

• The data wilderness. The condition of the data that contains valuable information, 

but there is no guarantee that it will be readily understandable. 

 

2.1  The data model 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    13 

The Resource Description Framework (RDF) is a W3C (World Wide Web Consortium) 

recommendation for representing information on the Web1. The basic structure are 

triples, which consist of a subject, a predicate, and an object. A set of RDF triples 

constitutes an RDF graph, which can be viewed as node and directed-arc diagrams. An 

example of an RDF graph is shown in Figure 1. 

 

Figure 1: An RDF graph example (source: W3.org) 

 

These resources are described using IRIs (Internationalized Resource Identifier). The IRI 

extends the ASCII characters subset of the URIs (Uniform Resource Identifier). Since a 

property is also an IRI, it can again be used as a resource interlinked to another resource. 

Furthermore, in RDF, IRIs can refer to anything. This flexibility makes the data model 

suitable for the context of an open Web. 

It is important to note that RDF is not a data format, but a data model for describing 

resources as node-and-arc-labelled directed graphs. Therefore, although expressing RDF 

 

 

1 http://www.w3.org/TR/rdf-primer/  

http://www.w3.org/TR/rdf-primer/


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    14 

triples as a graph may be suitable to display data, this may not be the most compact or 

human-friendly way to see the relation between entities. These needs derived in different 

RDF serialization formats. RDF/XML and RDFa are standardized by the W3C, but there are 

many other more easily understandable non-standard serialization formats such as N-

Triples and Turtle. 

 

2.2  Linked Data 

The term Linked Data (LD) refers to a set of best practices for publishing and interlinking 

structured data on the Web (Heath & Bizer, 2011). These best practices are also known as 

Linked Data principles2, and they can be summarized as follows: 

• Use URIs as names for things. 

• Use HTTP URIs, so that people can look up those names. 

• When someone looks up a URI, provide useful information, using the standards. 

• Include links to other URIs so that they can discover more things. 

 

To publish data on the Web, Linked Data uses HTTP URIs to identify the real-world items 

of a domain of interest. Other URI schemes such as URNs (Uniform Resource Name) and 

DOIs (Digital Object Identifier) are avoided, as HTTP URIs enable creating globally unique 

names in a decentralized way, and they serve as a means of accessing information 

describing the identified entity.  

Any HTTP URI should be referenceable, which means that HTTP clients should be able to 

look up the URI and retrieve a description of the resource identified by such a URI. 

Furthermore, these descriptions should ideally be represented as HTML when they are 

intended to be read by humans, and as RDF data if indented consumers are machines. 

This can be achieved with an HTTP mechanism called content negotiation. This 

mechanism consists in HTTP clients sending HTTP headers with each request indicating 

which kind of documents they prefer. Afterwards, servers examine these headers and 

select the appropriate response. 

 

 

2 https://www.w3.org/DesignIssues/LinkedData.html  

https://www.w3.org/DesignIssues/LinkedData.html


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    15 

The LOD (Linked Open Data) Cloud3 presents datasets published in the Linked Data 

format. As of May 2020, the LOD cloud contained more than 1,300 datasets with 16,283 

links, as it can be seen in Figure 2. 

 

Figure 2: LOD Cloud as of May 2020. 

 

2.3  Ontologies 

The term ontology comes from the Greek ontos (being) and logos (word), and it was first 

used in philosophy in the nineteenth century to define the study of the nature of being, 

existence, or reality, as well as the basic categories of being and their relations (Breitman, 

 

 

3 https://lod-cloud.net/  

https://lod-cloud.net/


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    16 

Casanova, & Truszkowski). In computer and information science field, an ontology can be 

understood as “a formal, explicit specification of a shared conceptualisation” (Studer, 

Benjamins, & Fensel, 1998). Therefore, ontologies appear to describe and represent a 

certain phenomenon, topic, or subject area through the description of classes, properties, 

and instances (also known as individuals). 

Ontologies can be viewed as a spectrum of detail in their specification (Lassila & 

McGuinness, 2001). Catalogues, which consist of a finite list of terms used for expressing 

knowledge of information, are placed in the lowest end of the spectrum. This list of terms 

may not have descriptions at all, and their meaning can only be estimated because they 

are chosen from natural language. Likewise, there are no formal relations expressed 

between these terms. Therefore, often, such specifications are not referred to as 

ontologies. When at least one formal relation is defined and used between terms, the 

concept “ontology” can be used to refer to such a catalogue. From this point onward, there 

are languages that provide sets of constructs to describe an ontology, such as frames or 

simplified logic. As the specificity increases, the precision and the ability to use tools to 

automatically integrate systems also increases. However, the cost of building and 

maintaining a metadata registry increases accordingly. 

Furthermore, ontologies can be categorised into different types according to their level of 

generality (Guarino, 1998), as it can be viewed in Figure 3: 

• Top-level ontologies (often referred to as upper ontology or foundation ontology, 

general, or cross domain ontology) represent very general concepts which are 

independent of a specific domain or problem such as time, space, and events. 

• Domain ontologies describe fundamental concepts according to a generic domain 

and specialise terms introduced in top-level ontology. 

• Task ontologies describe fundamental concepts according to a general activity or 

task and specialise the terms introduced in top-level ontologies. 

• Application ontologies are specialised ontologies focused on a specific task and 

domain. They are often a specialisation of both task and domain ontologies, and 

they also often specify roles played by domain entities for specific activity. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    17 

 

Figure 3: Ontology types according to Guarino. 

 

Ontology-based approaches are proved to bring many advantages. Annotating raw data 

with terms coming from ontologies not only allows a better representation of the data 

itself, structuring it and setting formal types, relations, properties, and constraints that 

hold among them, but also enables representing data coming from multiple sources in a 

uniform way, thereby supporting data integration and data interoperability at a semantic 

level. Furthermore, additional background knowledge about a domain can be added to 

the set of available data with ontologies. This leads to the enrichment of the data set at 

hand, as well as enabling the application of indexing techniques to ensure the retrieval 

and navigation through related resources. Finally, after a semantic annotation process, 

data is more domain-oriented than the original source and allows more application-

independent solutions. Consequently, there is no need for the user to be aware of the 

underlying structure of the raw data. 

 

3. The REACT Ontology 

The REACT ontology is aimed at supporting the Semantic Repository to enable the 

exploitation of the collected raw data's underlying semantics to provide other REACT 

services with the knowledge required to implement their functionalities. Furthermore, the 

representation of data based on ontologies not only will contribute to the interoperability 

of the solution at a semantic level but will also enable the sharing of unambiguous data 

within the different parties involved. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    18 

Deliverable D6.1 (REACT D6.1, s.f.) defines the system reference architecture of the REACT 

project where the platform components and relationships between them are shown. The 

Semantic Repository has a direct relationship with the historical data components, 

analytic services, and visualization tools. The Semantic Repository provides the analytical 

services and visualization tools with the required data to perform their functionalities. 

The Semantic Repository stores the topology of the installations performed in pilot sites, 

defining the relevant metadata associated to the installation, the equipment installed, and 

the data gathered by them. It also defines the relationships among the equipment in a 

hierarchical structure and the specific data gathered by each equipment with the relevant 

attributes, some of them also related to the Canonical Data Model (CDM) defined in REACT 

platform as common message format for the successful syntactic interoperability of the 

data exchanged among the field and the cloud level components.  

Furthermore, the Semantic Repository stores the required link to map the installations 

with the time-series database (TSDB), in charge of storing the raw data coming for the 

equipment at the field level.  

 

3.1 Ontology Development Methodology 

In order to ensure the final quality of an ontology, this must be carefully designed and 

implemented. Therefore, the use of well-founded ontology development methodologies 

is advised. After reviewing different methodologies including OnToKnowledge and 

DILIGENT (Pinto, Staab, & Tempich), the REACT ontology developers decided to follow the 

LOT (Linked Open Terms) Methodology4. LOT is an industrial method for developing 

ontologies and vocabularies, and it has been used in other H2020 funded projects such 

as VICINITY5, DELTA6 or BIMERR7. It can be considered an evolution of the NeOn 

methodology (Suárez-Figueroa, Gómez-Pérez, Motta, & Gangemi, 2012), as it lightens it 

with sprints iterations (from the scrum software development framework) and covers the 

ontology publication following the best practices. A summary of the LOT methodology is 

shown in Figure 4. 

 

 

4 https://lot.linkeddata.es/  

5 https://www.vicinity2020.eu/  

6 https://www.delta-h2020.eu/  

7 https://bimerr.eu/  

https://lot.linkeddata.es/
https://www.vicinity2020.eu/
https://www.delta-h2020.eu/
https://bimerr.eu/


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    19 

 

Figure 4: LOT Methodology. 

 

The first stage of the LOT methodology, the requirements specification process, aims to 

state why the ontology is being built and to identify and define the requirements the 

ontology should fulfil. In the context of the REACT ontology, the ORSD (Ontology 

Requirements Specification Document) collected the ontology purpose, its intended 

users, and the set of functional requirements in the form of Competency Questions (CQ). 

It is worth mentioning that this information was retrieved from the different REACT 

stakeholders. An excerpt of the ORSD is shown in Appendix I – REACT ORSD. 

The second stage deals with the actual implementation of the ontology. In this stage, 

ontology engineers need to formalize all the requirements collected in the previous stage. 

However, these requirements are first divided and categorized according to their priority, 

so that the implementation activity can be carried out iteratively. This means that, in each 

iteration, only a number of requirements are addressed, and a new ontology version is 

generated. This iterative approach makes less costly to make modifications in case of 

change of requirements, eases the testing of the ontology in early stages of development, 

and aids to better manage the potential risks. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    20 

According to (Simperl, 2009), the reuse of ontological resources built by others and that 

have already reached some degree of consensus, is good practice in ontology 

development processes. Additionally, the W3C's Data on the Web Best practices8 states 

that reusing an existing ontology not only captures and facilitates consensus in 

communities, but it also increases interoperability and reduces redundancies. 

Furthermore, this practice brings other important benefits: 

• It increases the quality of the applications reusing ontologies, as they become 

interoperable and they are provided with a deeper, machine-processable and 

commonly agreed-upon understanding of the underlying domain of interest. 

• It reduces the costs related to ontology development because it avoids the 

reimplementation of ontological components which are already available on the 

Web and can be directly (or after some additional customisation tasks) integrated 

into the target ontology. 

• It may improve the quality of the reused ontologies, as these are continuously 

revised and evaluated by various parties through reuse. 

 

As any other task in the ontology development process, this ontology reuse should be 

approached in a methodological way. The Ontological Resource Reuse Process proposed 

by (Fernández-López, Suárez-Figueroa, & Gómez-Pérez, 2012) describes the set of 

activities to be performed for the reuse of existing ontological resources. 

• Ontology Search. This activity consists in finding appropriate ontological resources 

that meet the requirements aimed to be satisfied. According to (Gyrard, 

Zimmermann, & Sheth, 2018), the existing ontology catalogues such as LOV9 or 

LOV4IoT10 (specialised in ontologies related to IoT) can ease this task. 

• Ontology Assessment. This activity deals with assessing the usability of an ontology 

with respect to the requirements previously defined. However, this may end up 

being a laborious task due to the different criteria that may make ontologies 

suitable for a certain use case. Furthermore, the frequent scarce documentation 

of ontologies may hinder this activity as potential reusers may not understand the 

analysed ontology. 

 

 

8 https://www.w3.org/TR/dwbp  

9 http://lov.linkeddata.es  

10 https://lov4iot.appspot.com/  

https://www.w3.org/TR/dwbp
http://lov.linkeddata.es/
https://lov4iot.appspot.com/


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    21 

• Ontology Comparison. In this activity, assessed ontologies should be compared 

according to criteria that encompass the content of the ontology, the organisation 

of these contents, the language in which it is implemented, the methodology that 

has been followed to develop it, the software tools used to build and edit the 

ontology, and the costs of the ontology as suggested by (Lozano-Tello & Gómez-

Pérez, 2004).  

• Ontology Selection. After assessing and comparing ontologies, the most 

appropriate one or ones must be selected and reused by integrating them in the 

new ontology being developed.  

 

With a view to verify that each of the intermediate REACT ontology versions satisfy the 

ontology requirements identified in the ORSD, a validation process has been performed 

at the end of each iteration. This validation has been performed with Themis11, a web-

based tool which provides a set of test expressions based on lexico-syntactic patterns to 

check whether ontology requirements are satisfied. For each ontology version, a set of 

tests have been designed, implemented, and run to verify that the targeted CQs are 

adequately addressed, and the desired knowledge is modelled. These tests have been 

represented with the Verification Test Case (VTC) ontology12 and exported in RDF files, to 

run them in the future when the REACT ontology may be modified.  

Finally, The REACT ontology’s design correctness was evaluated with OOPS! (OntOlogy 

Pitfall Scanner). OOPS! is an online tool13 and detects some of the most common pitfalls 

appearing within ontology developments. Namely, it evaluates an ontology against a 

catalogue of 41 potential pitfalls classified into three levels according to their severity: 

minor, important and critical. The use of this tool contributed to an early detection of 

pitfalls and complemented the manual review of the ontology's correctness. 

 

3.2  Ontology Implementation 

As mentioned in previous sections, the REACT ontology has been developed following the 

LOT methodology to ensure its high-quality. Furthermore, additional ontology quality 

aspects suggested in (Esnaola-Gonzalez, Bermúdez, Fernandez, & Arnaiz, 2020) have been 

 

 

11 http://themis.linkeddata.es  

12 https://w3id.org/def/vtc  

13 http://oops.linkeddata.es/  

http://themis.linkeddata.es/
https://w3id.org/def/vtc
http://oops.linkeddata.es/


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    22 

considered to improve the potential reusability of the ontology. The main classes and 

relationships of the REACT ontology can be seen in Figure 5. 

 

Figure 5: Main classes and properties of the REACT ontology. 

3.2.1 Based on Ontology Design Patterns 

The use and combination of Ontology Design Patterns (ODP) is conceived as a suitable 

option when developing ontologies, due to the great flexibility provided which allows a 

proper segmentation of the intended conceptualisation (Hitzler, Gangemi, & Janowicz, 

2016). And this is the way in which the REACT ontology has been designed. However, 

instead of defining our own ODPs, following the ontology engineering best practices, a 

thorough analysis of existing ODPs have been performed searching in specialised 

catalogues such as OntologyDesignPatterns.org14, in order to reuse existing ones. 

Namely, the two ODPs reused have been: the AffectedBy ODP15 and the Execution-

Executor-Procedure (EEP) ODP16. It is worth mentioning that these ODPs have already 

been reused by different ontologies such as for supporting a data analyst assistant in 

energy efficiency and thermal comfort problems in buildings (Esnaola-Gonzalez, 

Bermúdez, Fernandez, & Arnaiz, EEPSA as a core ontology for energy efficiency and 

thermal comfort in buildings, 2021) or to cover the agri-food domain (Esnaola, y otros, 

2019). Figure 6 shows the main classes and properties of the mentioned ODPs. 

 

 

14 http://ontologydesignpatterns.org/  

15 https://w3id.org/affectedBy  

16 https://w3id.org/eep  

http://ontologydesignpatterns.org/
https://w3id.org/affectedBy
https://w3id.org/eep


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    23 

 

Figure 6: Main classes and properties of the reused ODPs. 

 

The AffectedBy ODP defines two classes representing features of interest 

(aff:FeatureOfInterest) and their qualities (aff:Quality) and three object properties: 

aff:belongsTo, aff:affectedBy and aff:influencedBy. The aff:belongsTo object property 

supports the notion that every quality belongs to the feature of interest it is intrinsic to 

(i.e. a quality cannot belong to different features of interest), thus following the 

conceptualisation defined in the DOLCE upper level ontology (Borgo & Masolo, 2009). The 

aff:affectedBy object property relates a quality with another quality that it affects, and the 

aff:influencedBy object property relates a quality with the feature of interest that it 

influences. 

The EEP ODP imports the AffectedBy ODP and its two classes, and additionally, it defines 

three more classes: eep:Execution, eep:Executor, and eep:Procedure. An individual of 

eep:Execution is an event (e.g. a forecast) upon a quality of a feature of interest, produced 

by an agent by performing a procedure. As for an individual of eep:Executor, it is an agent 

capable of performing tasks by following procedures. Lastly, an individual of eep:Procedure 

describes the workflow, protocol, plan, algorithm, or computational method to be 

executed by agents to produce an event. Furthermore, the eep:madeBy, 

eep:usedProcedure, and eep:onQuality object properties are introduced in the EEP ODP. 

The eep:madeBy object property links an execution to the agent that performs the action, 

the eep:usedProcedure object property links an execution to the procedure that describes 

the task to be performed; and the eep:onQuality object property links an execution to the 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    24 

quality concerned by the execution. These three functional object properties, combined 

with a set of property chain axioms defined in the EEP ODP, allow the inference of the 

remaining object properties eep:implements linking executors to procedures, 

eep:hasFeatureOfInterest linking executions to features of interest, eep:forQuality linking 

executors to qualities, and eep:forFeatureOfInterest linking executors to features of 

interest. 

 

3.2.2 Reusing well-known ontologies 

The ODPs mentioned are conceived as the backbone of the REACT ontology. On top of 

these ODPs, a set of classes, individuals, relationships and restrictions are constructed to 

satisfy all the requirements previously indicated. Once again, instead of directly encoding 

our own concepts, the REACT ontology’s development has been based on the best 

practices and an ontology reusing effort has been made. Following the previously defined 

steps, different ontologies have been searched, compared, evaluated, and finally selected 

according to their suitability for satisfying the collected platform and user requirements. 

Some of the selected and (partially) reused ontologies are the following ones: 

• SAREF (Smart Appliances REFerence) ontology17 facilitates the matching of existing 

assets in the smart appliances’ domain. The central concept of the ontology is the 

saref:Device class, which is modelled in terms of functions, associated commands, 

states and provided services. The REACT ontology has reused properties such as 

saref:hasManufacturer to represent the manufacturer of a given equipment. 

• BOT (Building Topology Ontology)18 is a minimal ontology developed by the W3C 

LBD (Linked Building Data) Community Group for covering core concepts of a 

building and for defining the relationships between their subcomponents. BOT 

serves as an ontology that could promote its reuse as a central ontology in the AEC 

(Architecture, Engineering and Construction) domain. In the context of the REACT 

ontology, classes such as bot:Site and bot:Space have been reused for representing 

the basic topological information, and properties such as bot:hasElement to 

represent the relationship between the equipment contained within the pilot sites. 

• The QUDT19 is an initiative sponsored by the NASA to formalize Quantities, Units 

of Measure, Dimensions and Types using ontologies. In this regard, the REACT 

 

 

17 https://w3id.org/saref  

18 https://w3id.org/bot  

19 http://www.qudt.org  

https://w3id.org/saref
https://w3id.org/bot
http://www.qudt.org/


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    25 

ontology has leveraged certain properties such as qudt:unit to associate 

observations/actuations with the units in which they are measured, and 

additionally, certain classes from the UNIT ontology (which is also part of the 

QUDT) like unit:W-HR for Wh and unit:DEG_C for Degrees Celsius have been reused 

to represent such units of measurements. 

 

3.2.3 Following a modular approach 

The ontology modularization consists in partitioning them into independent self-

contained knowledge components. Such a modular approach brings benefits, including 

the flexibility for component reuse (Grau, Horrocks, Kazakov, & Sattler, 2008), the support 

for more efficient query answering (Stuckenschmidt & Klein, 2007), and the enhancement 

of component changes and evolution (Ensan & Du, 2013). 

When an already existing ontology is large and monolithic, it needs to be split up in order 

to benefit from the mentioned advantages. There are different techniques that perform 

ontology partitioning by dividing an ontology into a set of significant modules that 

together form the original ontology. However, there is no universal way to modularize an 

ontology (d'Aquin, Schlicht, Stuckenschmidt, & Sabou, 2009), and the choice of a particular 

technique or approach should be guided by the requirements of the application or use 

case.  

The implementation of ontology modularization techniques is advised in early ontology 

development stages because, otherwise, it could end up being a complex task. This is why, 

for the development of the REACT ontology, it has been considered from the very 

beginning. During the ontology requirements collection, those pertaining the heat pump 

systems topic were grouped and separated from the rest with a view to developing the 

HPOnt (Heat Pump Ontology) to benefit from the aforementioned characteristics. The 

HPOnt aims to formalize and represent all the relevant information of Heat Pump systems 

such as their cooling capacity (hpont:hasNominalCoolingCapacity) or consumption in 

heating mode (hpont:hasNominalPowerConsumptionInHeatingMode). Figure 7 shows the 

main properties of HPOnt. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    26 

 

Figure 7: Main classes and properties of the HPOnt ontology. 

 

3.3  Ontology Publication 

A good ontology documentation increases its understandability and potential usability, 

both by experts in semantics and by people who are not necessarily experts (Peroni, 

Shotton, & Vitali, 2013). The documentation of the REACT ontology is generated with 

WIDOCO (a WIzard for DOCumenting Ontologies) developed by (Garijo, 2017) which 

creates a set of linked enriched HTML pages. These HTML pages are extended with hand-

made sections such as the alignments to other ontologies or with ontology usage 

examples.  

For URL stability and manageability purposes, the W3C Permanent Identifier Community 

Group's20 w3id.org21 redirection service is used. The purpose of this initiative is to provide 

a secure, permanent URL re-direction service for Web applications. 

 

 

20 https://www.w3.org/community/perma-id/  

21 https://w3id.org/  

https://www.w3.org/community/perma-id/
https://www.w3.org/community/perma-id/
https://w3id.org/


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    27 

Furthermore, W3C's Data on the Web Best Practices22 states that providing metadata is a 

fundamental requirement that helps human users and computer applications to 

understand the data as well as other important aspects that describe a dataset. All the 

ontological resources presented in this article are annotated following guidelines 

described by Garijo and Poveda-Villalón23 as the REACT partners involved in the task T6.3 

consider the most complete guideline among the ones reviewed. As a matter of fact, both 

the ontology itself and the classes and properties are annotated with all the 

recommended terms as well as some additional optional terms. 

Figure 8 shows an excerpt of the REACT ontology documentation available in 

https://w3id.org/react. Likewise, the HPOnt ontology imported by the REACT ontology, is 

available online in https://w3id.org/hpont. 

 

 

22 https://www.w3.org/TR/dwbp/  

23 https://w3id.org/widoco/bestPractices  

https://w3id.org/react
https://w3id.org/hpont
https://www.w3.org/TR/dwbp/
https://w3id.org/widoco/bestPractices


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    28 

 

Figure 8: REACT ontology documentation page excerpt. 

 

3.4  Ontology Instantiation 

The main aim of the ontology is to adequately represent the information of the different 

pilot sites regarding the different equipment installed, as well as the inherent features of 

the facilities involved in the pilot site. This information is collected by pilot case 

coordinators in the form of Excel files called Data Point Lists, as shown in Figure 9. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    29 

 

Figure 9: Data Point List Excel file excerpt. 

The transformation from the data collected in Data Point Lists to the ontology 

instantiation (the so-called A-Box) has been automated with a service based on Apache 

Jena framework24. Apache Jena is a free and open-source Java framework for building 

Semantic Web and Linked Data applications. The developed service enables the extraction 

of the information from the Excel sheets, its semantic annotation with appropriate 

ontology terms, and its storage to an RDF Store where it will remain accessible. 

As for selecting the RDF Store for storing this information, two criteria have been 

considered. On the one hand, the ranking of popular RDF Stores provided by specialized 

webpages such as db-engines25, and on the other, the experience of project partners. 

After making a thorough analysis, the selected RDF Store has been Openlink Virtuoso26, 

namely the OpenLink Virtuoso Universal Server Version 07.20. As a matter of fact, apart 

from being successfully used in previous projects such as RESPOND H2020, Virtuoso is 

the second most popular RDF Store as of September 2021.  

It is worth noting that the representation of measurements and actuations made by IoT 

systems and their storage in RDF Stores is not advisable, due to their poor performance. 

Instead, since this kind of data is characterized by its abundance, it is more suitable to be 

stored in a time series database, which are optimized for time-series data, thus being able 

to manage such an amount of data while ensuring a high performance. Therefore, the 

semantic representation of a given equipment in charge of performing an 

observation/actuation will have the same identifier both in the semantic repository and 

in the TSDB (e.g., https://react2020.eu/device/VIC-GXHQ2022T1Y6A-100). 

 

 

24 https://jena.apache.org/  

25 https://db-engines.com/  

26 https://virtuoso.openlinksw.com/  

https://jena.apache.org/
https://db-engines.com/
https://virtuoso.openlinksw.com/


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    30 

Figure 10 shows a representation of a given house, it’s equipment and measurements 

using the REACT ontology terms. The corresponding RDF model in Turtle notation is 

provided in Appendix II – REACT ontology in use example. 

 

Figure 10: Representation of a house, equipment and measurements using the REACT ontology. 

 

3.4.1 Represented information in a nutshell 

After performing the REACT ontology instantiation process, the target RDF Store contains, 

on the one hand, information related to the facilities and equipment installed, and on the 

other hand, the list of the energy-related measurements collected by such equipment, 

whose values will be published and stored in the TSDB.  

This data is key input for the implementation and execution at cloud level of the REACT 

platform services such as Energy Demand Forecast, PV Forecast, Optimization Service, 

Translation to Control Actions of the optimal profile, execution the automatic control of 

the batteries and heat pump (automated DR), as well to provide useful recommendations 

to the users for manual actions.  

Table 1 includes a set of relevant pieces of information related to facility and equipment 

installed and represented after the REACT ontology instantiation.  

 

Target 

concept 

Parameter Description 

Facility Max grid 

import 

Maximum power draw from grid, technical limitation due 

to circuit breaker setup or contracted power 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    31 

 

Facility Max grid 

export 

Maximum feed in power, technical limitation due to 

inverter setup or contracted power 

Storage  Technology  Technology of the storage system installed, including 

Lithium Iron Phosphate (LFP), Hydrogen (H2), Sodium 

Nickel Chloride (NaNiCl2), Lithium Titanate (LTO), Pure 

Lead Carbon (PLH+C), or Lead-Acid (Pb)  

Storage Storage total 

capacity 

Total storage capacity of the storage system (in kWh) 

 

Storage Max charge 

power 

Maximum charging power (kW) 

 

Storage Max discharge 

power 

Maximum discharging power (kW) 

 

PV Panel Technology Technology of the Photovoltaic panels 

PV Panel Production 

total capacity 

Total production capacity of the PV installation (in kWh) 

 

PV Panel Curtailable Possibility of curtailment of PV production  

Heat 

Pump 

Technology Technology of the Heat Pumps 

Heat 

Pump 

Power supply 

type 

Electric power supply type of the HP system 

 

Heat 

Pump 

Operating 

mode 

Operating mode available for the HP system 

 

Heat 

Pump 

Storage 

volume 

Buffer storage volume of the HP system 

 

Heat 

Pump 

DHW storage 

volume 

Domestic Hot Water storage volume of the HP system 

 

Heat 

Pump 

Nominal 

Cooling 

Capacity 

Nominal Cooling Capacity of the HP system 

Heat 

Pump 

Nominal 

Heating 

Capacity 

Nominal Heating Capacity of the HP system 

Heat 

Pump 

Nominal power 

consumption 

cooling 

Nominal power consumption in cooling mode 

Heat 

Pump 

Nominal power 

consumption 

heating 

Nominal power consumption in heating mode 

 Table 1: Information related to facility and equipment represented after the REACT ontology instantiation  



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    32 

 

Table 2 includes a subset of measurements represented after the REACT ontology 

instantiation. As it has been previously mentioned, the values of these measurements are 

not stored in the RDF Store but in the TSDB to ensure a high-performance. 

Equipment Measurement Description 

Facility eAcGridIn Grid Energy from net (wh) 

Facility eAcGridOut Grid Energy to net (wh) 

Facility vAcGrid Grid Voltage (V) 

Facility iAcGrid Grid Current (A) 

Facility fAcGrid Grid Frequency (Hz) 

Facility vAcHome Home Voltage (V) 

Facility iAcHome Home Current (A) 

Facility fAcHome Home Frequency (Hz) 

PV Panel emppt Accumulated Energy Produced by PV 

panels (wh) 

PV Panel yield Energy Produced by PV panels (wh) 

PV Panel yieldYesterday Energy Produced by PV panels in 

previous day (wh) 

PV Panel yieldPower Power Producing by PV panels during 

day (w) 

PV Panel maxProductionPower Maximum charge power today 

PV Panel maxProductionPower

Yesterday 

Maximum charge power yesterday 

ESS  acPowerSetPoint ESS control loop setpoint 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    33 

ESS relay1State CCGX Relay 1 state 

ESS relay2State CCGX Relay 2 state 

Storage vBat Battery voltage (V DC) 

Storage iBat Current (A DC) 

Storage tBat Battery temperature (Degrees celsius) 

Storage sOc State of charge (%) 

Storage nCycles Charge cycles 

Storage sOh State of health (%) 

Storage stateBat Battery state System 

Storage eInBat Charged Energy 

Storage eOutBat Discharged Energy 

Table 2: Information related to measurements represented after the REACT ontology instantiation 

 

Having such a fine-grained representation of the data related to the different facilities 

participating in the REACT project, the set of potential REACT services that could benefit 

from the REACT ontology’s instantiation is considerable. Some of this data might be 

directly used by these services such as the total facility production capacity by the REACT 

Energy Production Forecasting service, while other data may be complemented, for 

example, the gateway identifier to deliver request messages of automated control actions 

by the Battery Energy Control Dispatching service. Table 3 summarizes some of the 

services and tools that may exploit the REACT ontology instantiation. 

Service/Tools Relevant Data  

Energy Demand 

Forecasting Service 

Energy consumed in the building for training models 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    34 

Energy Production 

Forecasting Service  

PV Production total capacity for scalability of the PV forecast 

for each building 

Optimization Service Max grid import, Max grid export  

Battery Energy 

Control Dispatching  

Storage total capacity, Max charge power, Max discharge 

power . Gateway Id in charge of the control actions execution 

Thermal Building 

Models 

Technical characteristics of Heat Pumps. Gateway Id in 

charge of the control actions execution 

Web & mobile app Equipment of the installations, measurements monitored  

Table 3: List of REACT services and tools that may exploit the ontology instantiation data.  

 

3.5  The Ontology in Use 

SPARQL (SPARQL Protocol and RDF Query Language) is a query language which can be 

used to express queries across diverse data sources, whether the data is stored natively 

as RDF or viewed as RDF via middleware. It is a W3C recommendation as of 2008 and 

enables querying information that can be RDF graphs or results sets. The syntax of a 

SPARQL query is similar to the SQL query syntax, as both of them use keywords such as 

SELECT to determine which subset of the selected data is returned, and WHERE to define 

graph patterns to find. In the context of the project, SPARQL queries are envisioned as the 

way to retrieve the information stored in the Semantic Repository.  

The Competency Questions defined in the ORSD are the base for the definition of the 

queries required by the different services and components of the REACT platform. As 

commented earlier, Virtuoso is the base RDF Store of the Semantic Repository, which 

provides an online query tool called Virtuoso SPARQL Query Editor (shown in Figure 11) 

to execute SPARQL queries and get the results directly in an Internet Browser (shown in 

Figure 12). 

 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    35 

 

Figure 11: Virtuoso SPARQL Query Editor. 

 

 

Figure 12: Results obtained with the Virtuoso SPARQL Query Editor. 

 

The use of the Virtuoso SPARQL Query Editor is a manual procedure to perform specific 

requests to the Semantic Repository, but it is not the adequate when these requests need 

to be automated for their integration with backend services and tools. Apart from the 

default query tool provided by Virtuoso, it is possible to use a program written in a specific 

programming language and with the required libraries, to access the Semantic repository 

and execute the corresponding SPARQL queries. And this is the approach followed in the 

REACT project. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    36 

The REACT Visualization Tools that require data stored in the Semantic Repository, use 

API methods to get the required data from the Semantic repository. These API methods 

are implemented in Java and, with the support of Apache Jena libraries, execute the 

desired SPARQL queries against the Virtuoso server. These API methods can be executed 

by a HTTP request (e.g., https://react2020.eu/apiv0.1/info/semantic/pilot/LaGraciosa/es) 

and the result is a JSON payload (see Listing 1) with the information provided by the 

specific SPARQL query. 

{ 
"id": "LG11", 
"productionCapacity": "16.8 kW", 
"storageCapacity": "16.8 khW", 
"topology": "AC Coupled", 
"maxGridExport": "70 kW", 
"maxGridImport": "70 kW", 
"maxChargePower": "16.8 kW", 
"maxDischargePower": "8.4 kW", 
"curtailable": "true", 
(…) 
} 

Listing 1: SPARQL results by API HTTP request. 

 

The defined SPARQL queries are common to the three REACT pilot sites, thus they are 

parameterizable to avoid unnecessary repetitions. Each SPARQL query has its own 

parameters and setting the adequate values for each of them allows retrieving the desired 

information regarding any specific facility, device, or observed quality. The results from a 

specific SPARQL will be used, for example, by the Visualization tools to get the raw data 

stored in the time-series database and plot the data in a graph. Let us consider a specific 

use case to illustrate the ontology exploitation process. 

The Competency Question CQ02 has been defined in the ORSD as follows: “Which are the 

parameters needed to get the values of a given measurement within a given house?”. The input 

parameters this SPARQL query are location_facility_id (the identifier of the facility sought) 

and measurement_id (the identifier of the observed quality sought). The output values of 

this SPARQL query are device_id (the identifier of the device in charge of making the 

observation), and measurement_index (an index of the measurement, 1 for a scalar value, 

1,2, or 3 for 3-phase measurement). 

Considering that a given service needs to retrieve the state of charge of the battery for a 

specific house in La Graciosa, the CQ02 has been instantiated as shown in Listing 2. The 

https://react2020.eu/apiv0.1/info/semantic/pilot/LaGraciosa/es


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    37 

parameter location_facility_id has been set to “LG11” (the identifier of the facility at hand) 

and measurement_id to “sOc” (the identifier of the state of charge of the battery). 

PREFIX aff: <https://w3id.org/affectedBy#> 
PREFIX dc: <http://purl.org/dc/elements/1.1/> 
PREFIX eep: <https://w3id.org/eep#> 
PREFIX react: <https://w3id.org/react#> 
 
SELECT ?deviceID ?measurementIndex 
FROM <http://react2020.eu/LaGraciosa> 
WHERE {  
?execution eep:madeBy ?executor; 
 react:hasMeasurementIndex ?measurementIndex; 
 eep:onQuality ?quality. 
  
?executor dc:identifier ?deviceID. 
  
?quality dc:identifier "sOc"; 
 aff:belongsTo ?FoI. 
  
?FoI dc:identifier "LG_11". 
} 

Listing 2: SPARQL Query CQ02 parametrized for retrieving the state of charge of the battery of house LG11. 

 

The output values obtained after executing this SPARQL query are “VIC-

GXHQ2022UK7WV-225” (as the device identifier) and “1” (as the measurement index). With 

this information, the measurements registered in the Time-Series DB can be retrieved and 

afterwards displayed, by executing the parametrizable InfluxQL query shown in Listing 3.  

 

SELECT (value) AS value FROM sOc WHERE (deviceId = 'https://react2020.eu/device/VIC-

GXHQ2022UK7WV-225') AND measurementIndex ='1' AND time >= '2020-09-

22T08:50:37Z' AND time < '2020-09-22T10:09:37Z' 
 

Listing 3: InfluxQL Query CQ02 parametrized for retrieving the state of charge of the battery of house LG11. 

 

4. External System Connectivity  

This chapter describes the smart grid connectivity tools and services developed in REACT 

platform, in one hand, for the exploitation of data provided by third party services, such 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    38 

as Weather data, and in other hand to provide access to the REACT core services by an 

Open API, and the integration with grid operators by the well-known OpenADR standard 

interface. 

4.1 Smart Grid Connectivity 

Moving towards a grid with a large number of distributed energy resources (DER), 

challenges arise to ensure grid stability and reliability. Grid operators and utilities have 

several options to match demand and supply as well as to avoid grid congestion. For 

instance, DERs could be curtailed during critical times of high production. Same applies to 

flexible consumers, which could be limited in their consumption or could be turned off. 

Apart from direct control, dynamic price signals could also be used as incentives to 

consume less energy on higher prices or vice versa. 

All options require a communication channel from grid operator or utility to the DERs and 

flexible consumers. However, a smart grid often features a large diversity of software and 

hardware systems which need to exchange information with each other. Therefore, the 

core requirement for control and demand response actions is the interoperability 

between the systems. This can be achieved by utilizing open and widely used 

communications standards like OpenADR, IEC 61850, IEC 60870, OSCP. 

 

This section investigates how grid operators or utilities could interact with the REACT 

cloud platform. This would enable the REACT cloud platform and its services to integrate 

requirements form the current grid state into control strategies and optimisation.   

OpenADR has its origins in North America back in 2002 and was developed to enable 

automated demand response actions at customer facilities to improve grid reliability and 

economics. It supports demand response events for load shedding and shifting, as well 

as continuous dynamic price signals for hourly day-ahead or day-of real time pricing. In 

2018, OpenADR has become an international standard, which is also known as IEC 62746-

10-1:201827. Nowadays, OpenADR is used by grid operators and utilities around the globe 

for automated demand response actions (OpenADR Alliance, 2015). 

The OpenADR architecture has two primary actors called Virtual Top Nodes (VTN) and 

Virtual End Nodes (VEN). The role of the VTN is usually played by a utility that manages 

the resources, creates DR events and requests reports from the resources. The VEN is 

 

 

27 https://webstore.iec.ch/publication/26267 

https://webstore.iec.ch/publication/26267


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    39 

typically a building or facility in commercial, industrial or residential domain, which 

features controllable resources. The VEN directly controls the resources based on the 

events of the VTN and generates reports for the VTN. Apart from this clear separation of 

VTN and VEN, there also actors like aggregators, which can play both roles at the same 

time. In the context of the REACT project, the REACT cloud platform would play the role of 

a VEN as depicted in Figure 13. Connected demand side resources (DSR) could be any 

controllable loads like storage systems, heat pumps or electric vehicles and their charging 

infrastructure. 

 

 

Figure 13: Overview of OpenADR actors and roles. 

 

Likewise, OpenADR defines two different transport mechanisms for communication: 

HTTP and XMPP (XML Messaging and Presence Protocol). Nodes may communicate via 

HTTP either in push or pull mode. In push mode the VTN sends out information to the 

VEN, whereas in pull mode the VEN requests information from the VTN and initiates the 

communication. The actual information exchange is based on a set of different services 

defined by OpenADR. The most important services are the event service (EiEvent) and the 

report service (EiReport).  

Event Service 

When the VTN wants to trigger an event in push mode, it sends an oadrDistributeEvent to 

the VEN as shown in Figure 14. The major building blocks of this event are the 

eventDescriptor, eiEventPeriod and eventSignals as depicted in Figure 15.  

 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    40 

 

Figure 14: VTN sends events to VEN in push mode (OpenADR Alliance, 2015) 

 

 

 

Figure 15: Building blocks of the general oadrDistributeEvent. 

An event defines price or energy schedules for the active event period, which is indicated 

by its start and end time. For this period, several signals can be applied in the same event 

as a base price for the whole period or different price levels for individual time intervals 

within that period. Likewise, demand response actions, which are directly aiming to 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    41 

energy and power changes, can be expressed by schedules. The following signal 

categories are defined in OpenADR: 

• price electricity 

• price of energy 

• demand charge 

• customer bid levels 

• dispatch storage resources 

• dispatch load 

• control load 

With regards to the REACT cloud platform, price signals from utilities could be integrated 

via OpenADR into the optimisation services to consider demand response actions 

according to the grid state. OpenADR supports different options to design the price signal. 

Price can refer to energy (currency/kWh) or power consumption (currency/kW) and can 

be expressed as absolute value, as delta or multiple of the existing price (Table 4). 

 

Table 4: Pricing signals (OpenADR Alliance, 2015)  

Another interesting signal regarding REACT could be the signal to dispatch storage 

resources (see Table 5). Depending on the demand response strategy and level of 

integration, OpenADR signals could be converted into the CDM format and directly 

communicated via MQTT to the storage resources without any optimisation at the REACT 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    42 

cloud. On the other hand, OpenADR signals could also serve as target values, which in 

turn could be used as input parameter for optimisation services of the REACT cloud. 

 

Table 5: Signal for storage resources. XXX represents real, apparent and reactive versions of power or energy 

(OpenADR Alliance, 2015) 

Report Service 

This service is used to report the so-called data points, which can be measured or 

calculated data. Usually, the VEN is the report producer, but reports from VTN to VEN are 

also possible. The reporting capabilities are exchanged during a report registration 

process, where a special METADATA report is created. This report holds all the different 

report types and data points that can be reported. OpenADR supports historical data 

reports and telemetry data reports. The later one is used for real time monitoring of data 

points but also for reporting the status of a resource.  

REACT OpenADR interface 

In Figure 16, we present the design of OpenADR interface in REACT which is used to 

receive the DR events from the relevant stakeholders. As it is shown, the VTN (e.g. 

aggregator, DSO, Utility, etc.) sends the oadrDistributeEvent message. Once the message 

is received by the VEN node, which can be implemented by using the open-source Python 

library openLEADR28, the payload of the message is extracted and the data are saved in 

the database. The data represent the energy pricing or dispatch load information which 

can be then used by e.g. Energy optimization service to provide the optimal demand 

profiles. These profiles are then converted into control actions used to control the energy 

assets which are located in REACT pilot sites.  

 

 

28 https://www.openleadr.org/ 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    43 

 

Figure 16 OpenADR oadrDistributeEvent 

In Figure 17, we present the communication flow between VTN and VEN for the reports 

functionalities. This can be used e.g. so that Utility – VTN request the report on energy 

consumption from REACT, in order to check whether the requested DR event have been 

actually fulfilled. As can be seen, REACT energy assets continuously report different 

measurements (e.g. power, energy), which are stored in the database. REACT VEN 

provides the requested report, by first fetching the data from the database and providing 

them to VTN upon request. 

A possible implementation of VEN on the REACT platform is provided in the code in Listing 

4. 

import asyncio 

from datetime import timedelta 

from openleadr import OpenADRClient, enable_default_logging 

 

enable_default_logging() 

 

async def collect_total_energy_aran(): 

# This callback is called when there is a need to get the data from 

the database. Here the code would read the data from Influx database 

 

return get_aran_total_energy() 

 

async def handle_event(event): 

    # This callback receives an Event dict. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    44 

    # The code below should save the data into database. 

    save_data_into_database(event)    

    return 'optIn' 

 

# Create the client object 

client = OpenADRClient(ven_name=react_node, 

                       

vtn_url='http://react.imp.bg.ac.rs:8080/OpenADR2/Simple/2.0b') 

 

# Add the report capability to the client 

client.add_report(callback=collect_total_energy_aran, 

                  resource_id='pilot_aran', 

                  measurement='energy', 

                  sampling_rate=timedelta(seconds=10)) 

 

# Add event handling capability to the client 

client.add_handler('on_event', handle_event) 

 

# Run the client in the Python AsyncIO Event Loop 

loop = asyncio.get_event_loop() 

loop.create_task(client.run()) 

loop.run_forever() 

Listing 4: VEN code implementation. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    45 

 

 

Figure 17 OpenADR oadrCreateReport 

 

Summarizing, the aim of OpenADR is to connect the REACT cloud to grid side entities such 

as grid operators, service providers and utilities through a standardized communication 

protocol. This enables grid side entities to roll out demand response actions to the REACT 

resources like battery storage systems. For this, the REACT needs a new software module 

implementing the OpenADR VEN capabilities. Price signals serve as additional parameters 

for the optimisation services of the cloud. The reporting from REACT cloud to a VTN could 

be done quite straight forward since all historical and current measurements are stored 

in a database, as it has been described above.  

 

4.2 Weather Service Integration 

Different REACT services, such as energy production forecasts, require accurate weather 

forecasts for their correct functioning. After reviewing different web services that provide 

such functionality, weatherbit.io was selected since it provides all the necessary weather 

data with appropriate time resolution. In order to fetch the current weather observations 

and weather forecasts data from weatherbit.io service, a custom software component has 

been developed, as it is shown in Figure 18. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    46 

REACT weather db

REACT weather data 
adapter

Weather bit web 
service

REACT service

CALL WEATHERBIT.IO API

RETURN WEATHER DATASTORE WEATHER DATA IN DB

GET WEATHER DATA FROM DB

RETURN WEATHER DATA

 

Figure 18 Weatherbit.io data adapter 

As can be seen, REACT weather data adapter issues a call to weatherbit.io API, which then 

returns the data in a form of JSON object, with the fields described below. Next the data 

are processed in the adapter and stored in a relational MySQL database. Whenever a 

particular REACT service (e.g., production forecast service) requires weather forecast data, 

it performs a SQL query to the database. 

Weatherbit.io web service offers different end points that provide the data such as: 

current weather, severe weather alerts, current air quality, historical weather, weather 

forecasts, etc. For the purpose of REACT project, we have selected the following end 

points: 

• Current weather 

• Daily weather forecast for 16 days 

• Hourly weather forecast for 120 hours 

The aforementioned REACT weather data adapter fetches data in a period manner: 

• Current weather runs every hour 

• Daily weather forecast runs every day 

• Hourly weather forecast runs every day 

The end points used to get the data are listed in Table 6 

 

Daily 

weather 

forecast: 

url: 

"https://api.weatherbit.io/v2.0/forecast/daily?key=".$KEY."&units=M&lat=".

$LAT."&lon=".$LON; 

Hourly 

weather 

forecast: 

url: 

"https://api.weatherbit.io/v2.0/forecast/hourly?key=".$KEY."&units=M&lat=

".$LAT."&lon=".$LON; 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    47 

Current 

weather 

observati

on: 

url: 

"http://api.weatherbit.io/v2.0/current?key=".$KEY."&units=M&lat=".$LAT."

&lon=".$LON; 

Table 6 Weatherbit.io API endpoints ($KEY - API key used for authorization, $LAT and $LON - latitude and longitude 

for the selected pilot location) 

 

An example of response provided by weatherbit.io is given in Listing 5. 

{   

               "data":[   

                  {   

                     "wind_cdir":"NE", 

                     "rh":59, 

                     "pod":"d", 

                     "lon":"-78.63861", 

                     "pres":1006.6, 

                     "timezone":"America\/New_York", 

                     "ob_time":"2017-08-28 16:45", 

                     "country_code":"US", 

                     "clouds":75, 

                     "vis":10, 

                     "wind_spd":6.17, 

                     "wind_cdir_full":"northeast", 

                     "app_temp":24.25, 

                     "state_code":"NC", 

                     "ts":1503936000, 

                     "h_angle":0, 

                     "dewpt":15.65, 

                     "weather":{   

                        "icon":"c03d", 

                        "code": 803, 

                        "description":"Broken clouds" 

                     }, 

                     "uv":2, 

                     "aqi":45, 

                     "station":"CMVN7", 

                     "wind_dir":50, 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    48 

                     "elev_angle":63, 

                     "datetime":"2017-08-28:17", 

                     "precip":0, 

                     "ghi":444.4, 

                     "dni":500, 

                     "dhi":120, 

                     "solar_rad":350, 

                     "city_name":"Raleigh", 

                     "sunrise":"10:44", 

                     "sunset":"23:47", 

                     "temp":24.19, 

                     "lat":"35.7721", 

                     "slp":1022.2 

                  } 

               ], 

               "minutely":[ ... ], 

               "count":1 

            } 

Listing 5: Weatherbit payload response. 

 

 

The meaning of the fields in the JSON object above is given as follows: 

• count: Count of returned observations. 

• data:  

o lat: Latitude (Degrees). 

o lon: Longitude (Degrees). 

o sunrise: Sunrise time (HH:MM). 

o sunset: Sunset time (HH:MM). 

o timezone: Local IANA Timezone. 

o station: Source station ID. 

o ob_time: Last observation time (YYYY-MM-DD HH:MM). 

o datetime: Current cycle hour (YYYY-MM-DD:HH). 

o ts: Last observation time (Unix timestamp). 

o city_name: City name. 

o country_code: Country abbreviation. 

o state_code: State abbreviation/code. 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    49 

o pres: Pressure (mb). 

o slp: Sea level pressure (mb). 

o wind_spd: Wind speed (Default m/s). 

o wind_dir: Wind direction (degrees). 

o wind_cdir: Abbreviated wind direction. 

o wind_cdir_full: Verbal wind direction. 

o temp: Temperature (default Celsius). 

o app_temp: Apparent/"Feels Like" temperature (default Celsius). 

o rh: Relative humidity (%). 

o dewpt: Dew point (default Celsius). 

o clouds: Cloud coverage (%). 

o pod: Part of the day (d = day / n = night). 

o weather: { 

 icon: Weather icon code. 

 code: Weather code. 

 description: Text weather description. 

 } 

o vis: Visibility (default KM). 

o precip: Liquid equivalent precipitation rate (default mm/hr). 

o snow: Snowfall (default mm/hr). 

o uv: UV Index (0-11+). 

o aqi: Air Quality Index [US - EPA standard 0 - +500] 

o dhi: Diffuse horizontal solar irradiance (W/m^2) [Clear Sky] 

o dni: Direct normal solar irradiance (W/m^2) [Clear Sky] 

o ghi: Global horizontal solar irradiance (W/m^2) [Clear Sky] 

o solar_rad: Estimated Solar Radiation (W/m^2). 

o elev_angle: Solar elevation angle (degrees). 

o h_angle: Solar hour angle (degrees). 

 

4.3 Open API Concept 

The Open Application Programming Interface (Open API) is commonly defined as an API 

that uses a common or universal language or structure to promote more universal access. 

Within REACT, the Open API is used to support REACT platform connectivity, enabling 

exploitation of data provided by smart grid and external (third party) services (such as 

provision of energy prices, weather data, data exchanging with DR aggregators, etc.). In 

addition, the Open API will allow for reuse of the REACT analytical services by putting them 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    50 

at disposal to third parties. This will allow an easy uptake and replication of leveraging 

concepts and extension of third-party business processes and their further integration 

into the smart grid products and services. 

Aiming to maximize interoperability and ease of integration, specification of REACT 

analytical services follows OpenAPI, a specification and initiative for the creation of human 

and machine-readable interface files, used to describe, produce, consume, and visualize 

RESTful web services. Being both human and machine readable allows both people and 

computers to discover and understand the capabilities of a service without requiring 

access to source code, additional documentation, or inspection of network traffic. As 

described in deliverable D6.2, OpenWhisk, which is used for the deployment of analytical 

services, provides a generic REST API in OpenAPI format. 

The OpenAPI Specification (OAS) specifies the rules and syntax required to describe the 

API’s interface. It continues to introduce updates to make the specification simpler to use, 

and easier for humans and computers to understand. The general outline of an OAS 

defined API using the latest, OAS 3 is shown in the next figure. 

 

Figure 19 OAS general outline 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    51 

The above figure breaks down the various sections in an API contract designed by the 

OAS. The meaning of each section is as follows: 

• Info - Contains the meta data associated with the API’s contract. The required parts 

of this section are the title, version, and description of the API. This section can also 

have other fields like contact information, license information and terms of service 

links. 

• Servers - The API is the contract between the consumer and the server. The Server 

object can give client information on where the API’s servers are located, through 

its URL. OAS 3.0 supports definition of multiple servers, which is useful since in the 

real world, APIs exist in multiple environments, and the contract’s business logic 

may change depending on the environment. 

• Security - Every API needs some level of security. The OpenAPI description format 

supports various authentication and authorization schemes to mitigate unknown, 

unregistered users from accessing the API. The OpenAPI supports: 

o HTTP authentication schemes 

o API keys in headers, cookies, or query strings 

o OAuth2 

o OpenID 

• Paths - This section shows the various end points that the API exposes, and the 

corresponding HTTP methods. It’s also under each method that the actual request-

response cycle is detailed. The requests are described by Parameters objects, and 

the responses by the Responses objects. 

o Parameters - the variable parts of the request. There are four types of 

parameters that can be specified: path parameters (such as /users/{id}), 

query parameters (such as /users?role=admin), header parameters (such 

as X-MyHeader: Value), cookie parameters (such as Cookie: debug=0; 

csrftoken=BUSe35dohU3O1MZvDDU). 

o Responses - the objects returned on a request. Every response is defined 

by its HTTP status code (defining whether the request was successful or 

unsuccessful) and the data returned. 

• Components - The API may repeat a lot of existing parameters or response 

descriptions in many different paths and operations and rewriting them every time 

makes them prone to inconsistent descriptions and can be very time consuming. 

The component object can hold a set of reusable objects of the API’s design. The 

reusable objects can be schemas, responses, parameters, examples and more. 

• External Docs - Any additional information that can be offered to ease 

consumption and integration with the API. 

• Tags - Friendly categories to group various operations. This allows consumers of 

the API to better segment and identify what they want to use the API for. These 

https://swagger.io/docs/specification/describing-parameters/#path-parameters
https://swagger.io/docs/specification/describing-parameters/#query-parameters
https://swagger.io/docs/specification/describing-parameters/#header-parameters
https://swagger.io/docs/specification/describing-parameters/#cookie-parameters


 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    52 

tags can also be handled by other third-party tools which integrate or read the 

OAS. 

The API for REACT analytical services will be specified in detail after deployment of the 

services on the cloud platform. This will be accomplished as part of the collaboration with 

WP5 activities. 

 

5. Conclusions 

 

This deliverable document summarizes the work done in the definition of the Semantic 

data model and the connectivity with smart-grid services of the REACT project. This 

Semantic data model, in the form of an ontology, ensures the formal representation with 

unambiguous meaning of the data gathered in the different pilot sites, as well as their 

relationship with the REACT platform core services and tools.  

The ontology is developed following an ontology engineering methodology and 

considering the Semantic Web best practices. The REACT ontology is based on ontology 

design patterns, reuses well-known ontologies, and follows a modular approach. 

Additionally, the careful documentation provided, and the complete metadata related to 

the terms and concepts defined in the ontology contributes to the ontology’s 

understanding. Last but not least, it is publicly available to foster its reusability by other 

research projects and users dealing with similar problems faced in the REACT project.  

The representation of the three pilot sites with ontology terms and its storage in a 

centralized repository allows an easy integration with the core services and tools and 

provides a common view of all heterogeneous sets of data and equipment installed in the 

pilots. 

This deliverable also defines the Open API concept to be applied for the integration with 

smart-grid services, and the integration with external services to gather required data for 

the successful implementation of the REACT platform core services.  

 

 

 

 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    53 

  



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    54 

References 

Allemang, D., & Hendler, J. (2011). Semantic web for the working ontologist: effective modeling 

in RDFS and OWL. Elsevier. doi:10.1016/C2010-0-68657-3 

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific american, 

284(5), 34-43. 

Borgo, S., & Masolo, C. (2009). Foundational choices in DOLCE. In S. Borgo, & C. Masolo, 

Handbook on ontologies (pp. 361-381). Springer. 

Breitman, K. K., Casanova, M. A., & Truszkowski, W. (n.d.). Ontology in Computer Science. 

In K. K. Breitman, M. A. Casanova, & W. Truszkowski, Semantic Web: Concepts, 

Technologies and Applications (pp. 17-34). Springer London. 

d'Aquin, M., Schlicht, A., Stuckenschmidt, H., & Sabou, M. (2009). Criteria and Evaluation 

for Ontology Modularization Techniques. In H. Stuckenschmidt, C. Parent, & S. 

Spaccapietra, Modular Ontologies: Concepts, Theories and Techniques for Knowledge 

Modularization (pp. 67-89). Springer Berlin Heidelberg. 

Domingue, J., Fensel, D., & Hendler, J. A. (2011). Introduction to the Semantic Web 

Technologies. In J. D. Hendler, Handbook of Semantic Web Technologies (pp. 1-41). 

Berlin: Springer Berlin Heidelberg. 

Ensan, F., & Du, W. (2013). A Semantic Metrics Suite for Evaluating Modular Ontologies. 

Inf. Syst.  

Esnaola, I., Fernandez, I. a., Ferreiro, S., Gomez, M., Lázaro, I., & García, Á. (2019). Towards 

Animal Welfare in Poultry Farms through Semantic Technologies. IoT Connected 

World & Semantic Interoperability Workshop (IoT-CWSI) 2019. Spain. 

Esnaola-Gonzalez, I., Bermúdez, J., Fernandez, I., & Arnaiz, A. (2020). Ontologies for 

Observations and Actuations in Buildings: A Survey. Semantic Web. 

Esnaola-Gonzalez, I., Bermúdez, J., Fernandez, I., & Arnaiz, A. (2021). EEPSA as a core 

ontology for energy efficiency and thermal comfort in buildings. Applied Ontology, 

16(2), 193-228. 

Fernández-López, M., Suárez-Figueroa, M. C., & Gómez-Pérez, A. (2012). Ontology 

Development by Reuse. In M. C.-F.-P. Gangemi, Ontology Engineering in a Networked 

World (pp. 147-170). Springer Berlin Heidelberg. 

Garijo, D. (2017). WIDOCO: A Wizard for Documenting Ontologies. The Semantic Web -- 

ISWC 2017, (pp. 94-102). 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    55 

Grau, B. C., Horrocks, I., Kazakov, Y., & Sattler, U. (2008). Modular reuse of ontologies: 

Theory and practice. Journal of Artificial Intelligence Research, 273-318. 

Guarino, N. (1998). Formal Ontology and Information Systems. IOS Press. 

Gyrard, A., Zimmermann, A., & Sheth, A. (2018). Building IoT based applications for Smart 

Cities: How can ontology catalogs help? IEEE Internet of Things Journal. 

Heath, T., & Bizer, C. (2011). Linked data: Evolving the web into a global data space. Morgan 

& Claypool Publishers. 

Hitzler, P., Gangemi, A., & Janowicz, K. (2016). Ontology Engineering with Ontology Design 

Patterns: Foundations and Applications. IOS Press. 

Lassila, O., & McGuinness, D. (2001). The role of frame-based representation on the 

semantic web. Linköping Electronic Articles in Computer and Information Science. 

Lozano-Tello, A., & Gómez-Pérez, A. (2004). Ontometric: A method to choose the 

appropriate ontology. Journal of Database Management (JDM), 1-18. 

OpenADR Alliance. (2015). OpenADR 2.0 Profile Specification B Profile.  

Peroni, S., Shotton, D., & Vitali, F. (2013). Tools for the Automatic Generation of Ontology 

Documentation: A Task-Based Evaluation. Int. J. Semant. Web Inf. Syst.  

Pinto, H. S., Staab, S., & Tempich, C. (n.d.). DILIGENT: Towards a fine-grained methodology 

for DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. 16th 

European Conference on Artificial Intelligence (ECAI) (pp. 393-397). IOS Press. 

REACT D6.1, I. L. (n.d.). Retrieved from https://react2020.eu/download/d6-1-react-system-

reference-architecture/ 

Simperl, E. (2009). Reusing ontologies on the Semantic Web: A feasibility study. Data & 

Knowledge Engineering, 905-925. 

Stuckenschmidt, H., & Klein, M. (2007). Reasoning and change management in modular 

ontologies. Data & Knowledge Engineering, 200 - 223. 

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: principles and 

methods. Data and knowledge engineering, 161-198. 

Suárez-Figueroa, M. C., Gómez-Pérez, A., Motta, E., & Gangemi, A. (2012). The NeOn 

Methodology for Ontology Engineering. In Ontology Engineering in a Networked 

World (pp. 9-34). Springer Berlin Heidelberg. 

 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    56 

  



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    57 

Appendix I – REACT ORSD 

This Appendix shows an excerpt of the REACT ontology requirements specification 

document (ORSD). 

Ontology Requirements Specification Document 

1 Purpose 

 Represent all the necessary knowledge to support the achievement of island 

energy independence through renewable energy generation and storage, a 

demand response platform 

2 Scope 

 It must cover buildings used for different purposes (residential, commercial, …) 

as well as equipment of different types that may be involved in energy generation 

and storage such as batteries or PV panels.  

3 Implementation Language (optional) 

 OWL 

4 Intended End-Users (optional) 

 • REACT platform users 

• Decision-makers 

5 Intended Uses 

 • Represent relevant data in a homogeneous and unambiguous manner 

• Provide information to the Optimization service 

• Provide information to the REACT Visualization tools 

• (…) 

6 Ontology Requirements 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    58 

 a. Non-Functional Requirements 

 The Ontology must be written following the CamelCase naming convention. 

 b. Functional Requirements: Lists or tables of requirements written as 

Competency Questions and sentences  

 • Which are the qualities observed by a given equipment? 

• Which is the gateway of a given installation? 

• When did a given installation join the REACT platform?  

• When was a given equipment installed?  

• (…) 

7 Pre-Glossary of Terms (optional) 

 a. Terms from Competency Questions 

 Qualities 

Equipment 

Gateway 

(…) 

 b. Terms from Answers 

 InstallationDate 

Execution 

Space 

(…) 

 

  



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    59 

Appendix II – REACT ontology in use example 

RDF representation of the REACT ontology instantiation for a given house participating in 

the REACT project. 

@prefix aff:   <https://w3id.org/affectedBy#> . 
@prefix bot:   <https://w3id.org/bot#> . 
@prefix dbo:   <https://dbpedia.org/ontology/> . 
@prefix dc:    <http://purl.org/dc/elements/1.1/> . 
@prefix dev:   <https://react2020.eu/device/> . 
@prefix eep:   <https://w3id.org/eep#> . 
@prefix foi4eepsa: <https://w3id.org/eepsa/foi4eepsa#> . 
@prefix inst:  <https://react2020.eu/LaGraciosa/> . 
@prefix qudt:  <http://qudt.org/schema/qudt/> . 
@prefix react: <https://w3id.org/react#> . 
@prefix respond: <https://w3id.org/respond#> . 
@prefix saref: <https://w3id.org/saref#> . 
@prefix unit:  <http://qudt.org/vocab/unit/> . 
 
 
inst:LG27  a                          bot:Space , aff:FeatureOfInterest ; 
        dc:identifier                 "LG27" ; 
        dbo:membershipAsOf            "Wed Dec 02 00:00:00 CET 2020" ; 
        bot:hasElement                dev:LG27_VIC-GXHQ2022T1Y6A-100 , 
dev:LG27_VIC-GXHQ2022T1Y6A-225 , dev:LG27_LG27-PVPanels , dev:LG27_VIC-
GXHQ2022T1Y6A-227 , dev:LG27_VIC-GXHQ2022T1Y6A-223 , dev:LG27_VIC-
GXHQ2022T1Y6A-30 , dev:LG27_VIC-100000006c8efa84 ; 
        foi4eepsa:hasMarketCategory   "residential" ; 
        react:hasDemandEnergyCarrier  "electric" ; 
        react:hasGenerationEnergyCarrier 
                "electric" ; 
        react:hasMaxGridExport        "" ; 
        react:hasMaxGridImport        "" ; 
        react:hasTopology             "DC Coupled" . 

 
dev:VIC-GXHQ2022T1Y6A-100 
        a                           eep:Executor ; 
        dc:identifier               "GXHQ2022T1Y6A-100" ; 
        react:hasEquipmentCategory  "ControlUnit" ; 
        react:hasInstallationDate   "Wed Dec 02 00:00:00 CET 2020" ; 
        react:hasSerialNumber       "" ; 
        respond:connectsToInternetThrough 
                dev:LG27_VIC-100000006c8efa84 ; 
        respond:hasModel            "Cerbo GX" ; 
        saref:hasManufacturer       "Victron Energy" . 
 
inst:LG27_pAcHome_Execution 



 
 

 

 

D6.3 Semantic data model and connectivity with smart-grid services    60 

        a                          eep:Execution ; 
        qudt:unit                  unit:W ; 
        eep:madeBy                 dev:LG27_VIC-GXHQ2022T1Y6A-100 ; 
        eep:onQuality              inst:LG27_pAcHome ; 
        react:hasAccessType        "Read" ; 
        react:hasMeasurementIndex  "1" ; 
        react:hasSamplingMethod    "N/A" . 
 
inst:LG27_pAcHome  a   aff:Quality ; 
        dc:identifier  "pAcHome" ; 
        aff:belongsTo  inst:LG27 . 

 


	Executive Summary
	1. Introduction
	1.1  Scope
	1.2  Audience
	1.3  Abbreviations
	1.4  Structure

	2. The Semantic Web and Semantic Technologies
	2
	2.1  The data model
	2.2  Linked Data
	2.3  Ontologies

	3. The REACT Ontology
	3
	3.1 Ontology Development Methodology
	3.2  Ontology Implementation
	3.2.1 Based on Ontology Design Patterns
	3.2.2 Reusing well-known ontologies
	3.2.3 Following a modular approach
	3.3  Ontology Publication
	3.4  Ontology Instantiation
	3.4.1 Represented information in a nutshell
	3.5  The Ontology in Use

	4. External System Connectivity
	4.1 Smart Grid Connectivity
	4.2 Weather Service Integration
	4.3 Open API Concept

	5. Conclusions
	References
	Appendix I – REACT ORSD
	Appendix II – REACT ontology in use example

