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The OpenKIM project
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https://openkim.org/

https://openkim.org/


Interatomic potential

▪ In atomistic scale simulation, the atoms 
are treated as classical particles.

▪ Interatomic potential (IP) approximates 
interaction energy between atoms.

▪ IPs are developed for specific applications, 
resulting in plethora of potentials.

▪ The functional forms of these potentials 
have limited scope, miss some physics, 
and thus introduce model errors.
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(Berglund, Freezing and melting at the molecular scale: a representation with 

atomic bonds 2021 https://www.youtube.com/watch?v=LdTDIpRx0XQ)



OpenKIM repository

▪ OpenKIM project aims to collect and 
standardize the computational 
implementation of IPs.

▪ Collected IPs are archived in OpenKIM 
repository (openkim.org/).

▪ KIM API allows seamless integration of 
these IPs with many simulation 
programs.
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KIM-based Learning-Integrated Fitting Framework

▪ KLIFF is a general-purpose fitting 
framework for IPs.

▪ KLIFF employs the force-matching 
algorithm [1].

▪ The IPs are trained to match atomic 
forces of several configurations from 
first-principle simulation.

▪ The trained IPs conform to the KIM API.
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https://kliff.readthedocs.io/

[1] F. Ercolessi and J. B. Adams, “Interatomic Potentials from First-Principles 

Calculations: The Force-Matching Method,” EPL, vol. 26, no. 8, p. 583, Jun. 

1994, doi: 10.1209/0295-5075/26/8/005.

https://kliff.readthedocs.io/
https://doi.org/10.1209/0295-5075/26/8/005


Contribution

▪ We integrate an uncertainty quantification framework into KLIFF.
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Goal

▪ We want to facilitate UQ studies for IPs.

▪ We hope that this integration can lead to more transparent and 
reproducible UQ analysis for IPs.



Introduction to
uncertainty quantification
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Geometry of a model
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Model: 𝑦 𝑡; 𝜃 =
1

𝑡2 + 𝜃1𝑡 + 𝜃2

▪ Model is a mapping from a parameter 
space to a prediction space.

▪ The model manifold is the range of the 
model map.



Loss function
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Loss function:
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Model: 𝑦 𝑡; 𝜃 =
1
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Assumptions:

𝑑𝑚 = 𝑦 𝑡𝑚; 𝜃 + 𝜉𝑚
𝜉𝑚 ∼ 𝒩 0, 𝜎𝑚

▪ Loss function measures the quality of 
model predictions compared to the 
observed data.

▪ The best fit parameters minimize the 
loss function.

Loss



Uncertainty quantification
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Uncertainty quantification
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Markov Chain Monte Carlo
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Loss function:
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Model: 𝑦 𝑡; 𝜃 =
1

𝑡2 + 𝜃1𝑡 + 𝜃2

Assumptions:

𝑑𝑚 = 𝑦 𝑡𝑚; 𝜃 + 𝜉𝑚
𝜉𝑚 ∼ 𝒩 0, 𝜎𝑚

▪ Bayes’ rule:

𝑃 𝜃 Ԧ𝑑 ∝ ℒ 𝜃 Ԧ𝑑 × 𝜋 𝜃 ,

ℒ 𝜃 Ԧ𝑑 ∝ exp −𝐿 𝜃

▪ Use MCMC algorithm to sample the posterior 𝑃 𝜃 Ԧ𝑑 .



Markov Chain Monte Carlo
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Loss function:
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Model: 𝑦 𝑡; 𝜃 =
1

𝑡2 + 𝜃1𝑡 + 𝜃2

Assumptions:

𝑑𝑚 = 𝑦 𝑡𝑚; 𝜃 + 𝜉𝑚
𝜉𝑚 ∼ 𝒩 0, 𝜎𝑚

▪ Distribution of the parameters is inferred from the 
resulting samples.



Model inadequacy

▪ ℒ 𝜃 Ԧ𝑑 ∝ exp −𝐿 𝜃 assumes the 

model can reproduce the data within 
the error bar.

▪ The high-density circle/sphere 
intersects the manifold.
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Adequate 

model



Inadequate 

model

Model inadequacy

▪ In some cases, this assumption is 
invalid.

▪ The data is far from the manifold; the 
high-density circle/sphere doesn’t 
intersect the manifold.

▪ We need to fix the UQ formulation to 
include model inadequacy.
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Inadequate 

model

Model inadequacy

▪ Suggestion: Inflate the likelihood [2]:

ℒ 𝜃 Ԧ𝑑 ∝ exp −
𝐿 𝜃

𝑇0
, 𝑇0 =

2𝐿0
𝑁
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𝐿0 ≡ minimum loss

𝑁 ≡ number of parameters.
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Inflated 

distribution

[2] P. Pernot and F. Cailliez, “A critical review of statistical calibration/prediction models 

handling data inconsistency and model inadequacy,” AIChE Journal, vol. 63, no. 10, pp. 4642–

4665, 2017, doi: 10.1002/aic.15781.

https://doi.org/10.1002/aic.15781


UQ extension to KLIFF
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Implementation and workflow

▪ We extend KLIFF to include uncertainty 
quantification functionality.

▪ This integration can:

▪ Facilitate UQ studies for IPs.

▪ Lead to more transparent and 
reproducible UQ analysis for IPs.

▪ KLIFF uses MCMC method.

▪ Other UQ methods will be 
implemented in the future.
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1. Defining the model and loss function

▪ This functionality has been 
implemented previously and is not part 
of this integration.

▪ For more detail, visit 
https://kliff.readthedocs.io/.
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2. Instantiating the posterior sampler

▪ We use ptemcee [3, 4] to perform 
parallel-tempered MCMC:

▪ Simulating multiple different sampling 
temperatures, each with multiple 
chains/walkers.

▪ Parallel tempering improves 
convergence.

▪ Parallel tempering also allows us to 
explore how sampling results evolve 
with different scale of model error.

▪ Recommendation: Set the temperature 
ladder to be logarithmically spaced 
from 1.0 to few times larger than 𝑇0.

21

[3] W. Vousden, “Willvousden/ptemcee: A parallel-tempered version of 

emcee.,” GitHub. [Online]. Available: 

https://github.com/willvousden/ptemcee. [Accessed: 14-Sep-2022].

[4] W. D. Vousden, W. M. Farr, and I. Mandel, “Dynamic temperature 

selection for parallel tempering in Markov chain Monte Carlo simulations,” 

Monthly Notices of the Royal Astronomical Society, vol. 455, no. 2, pp. 

1919–1937, Jan. 2016, doi: 10.1093/mnras/stv2422.

https://github.com/willvousden/ptemcee
https://doi.org/10.1093/mnras/stv2422


3. Running MCMC & monitoring convergence

▪ Convergence is monitored by 
computing the Potential Scale 
Reduction Factor (PSRF) [5]:
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▪ When samples have converged, ෠𝑅𝑝 → 1
(common threshold is 1.1).

22
[5] S. P. Brooks and A. Gelman, “General Methods for Monitoring 

Convergence of Iterative Simulations,” Journal of Computational and 

Graphical Statistics, vol. 7, no. 4, pp. 434–455, Dec. 1998, doi: 

10.1080/10618600.1998.10474787.

https://doi.org/10.1080/10618600.1998.10474787


4. Retrieving the ensemble

▪ The distribution of the parameters is 
inferred from the ensemble.

23



Parallel computing
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▪ Parallelization can be done in 2 places:

▪ Loss evaluation (over configurations)

▪ MCMC sampling (over walkers)

▪ Suggestion:

▪ Use OpenMP-style parallelization for loss 
evaluation.

▪ Use MPI-style parallelization for MCMC 
sampling.

▪ For more detail, visit 
https://kliff.readthedocs.io/.

https://kliff.readthedocs.io/


Demonstration: Study of Stillinger-
Weber potential
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Stillinger-Weber potential

▪ Model: Stillinger-Weber potential [6]

𝜙2 𝑟𝑖𝑗 = 𝐴 𝐵
𝜎

𝑟𝑖𝑗

𝑝

−
σ

𝑟𝑖𝑗

𝑞

exp
𝜎

𝑟𝑖𝑗 − 𝑟𝑐𝑢𝑡

𝜙3 𝑟𝑖𝑗 , 𝑟𝑖𝑘 , β𝑗𝑖𝑘 = 𝜆 cos β𝑗𝑖𝑘 − cos β0
2
×

exp
𝛾

𝑟𝑖𝑗 − 𝑟𝑐𝑢𝑡
+

𝛾

𝑟𝑖𝑘 − 𝑟𝑐𝑢𝑡

▪ Parameters: log 𝐴 , log 𝐵 , log 𝜎 , log 𝜆 , log 𝛾

▪ Training data: energy and force of Silicon atoms in several 
configurations (weights ∝ data values).

▪ Best fit:

26

Access to the 

example 

scripts.

𝐴 = 15.2792223 eV
𝐵 = 0.6032372

𝜎 = 2.09420085 Å

𝜆 = 45.47927476 eV

𝛾 = 2.51306949 Å

𝑝 = 4
𝑞 = 0
cos 𝛽0 = −0.33333333

𝑟𝑐𝑢𝑡 = 3.77118 Å
[6] A. K. Singh, F. H. Stillinger, and T. A. Weber, “Stillinger-Weber potential for Si due to Stillinger and 

Weber (1985) v006,” OpenKIM, https://doi. org/10.25950/dd263fe3, 2021.



MCMC setup

MCMC Setup

▪ Posterior distribution:

𝑃 𝜃 Ԧ𝑑 ∝ ℒ 𝜃 Ԧ𝑑 × 𝜋 𝜃 ,

ℒ 𝜃 Ԧ𝑑 ∝ exp −𝐿 𝜃 /𝑇

▪ Temperatures:

▪ 𝑇0 = 1.324

▪ 𝑇 ∈ 1, 107

▪ Prior: log 𝜃 ∼ 𝒰 −8, 8

▪ Run MCMC for 150,000 steps

▪ Burn-in: 10,000

▪ Thinning factor: 200

▪ Convergence test: ෠𝑅𝑝 ≤ 1.046
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Access to the 

example 

scripts.



Presenting the samples

▪ Sampling temperature 𝑇 = 102

▪ What’s plotted:

▪ Main diagonal: Marginal distribution for 
each parameter.

▪ Below diagonal: 2D projection of the 
samples in parameter space.

▪ At lower temperature, the 
distributions are concentrated.
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Access to the 

example 

scripts.



Parameter evaporation

▪ Sampling temperature 𝑇 = 103

▪ The distribution becomes wider as we 
increase the temperature.

▪ Parameter evaporation occurs: the 

walkers tend to run to sub-optimal 

parameter values [7, 8].

▪ Evaporated parameters are 
unconstrained by the data.

29

[7] M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Geometry of nonlinear 

least squares with applications to sloppy models and optimization,” Phys. Rev. 

E, vol. 83, no. 3, p. 036701, Mar. 2011, doi: 10.1103/PhysRevE.83.036701.

[8] R. Gutenkunst, “Sloppiness, Modeling, and Evolution in Biochemical 

Networks,” Cornell University, Ithaca, New York, 2007. Accessed: May 14, 2021. 

[Online]. Available: https://ecommons.cornell.edu/handle/1813/8206
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Parameter evaporation

▪ Sampling temperature 𝑇 = 105

▪ The distribution becomes wider as we 
increase the temperature.

▪ Parameter evaporation occurs: the 

walkers tend to run to sub-optimal 

parameter values [7, 8].

▪ Evaporated parameters are 
unconstrained by the data.

▪ Parameter evaporation becomes more 
apparent at higher temperatures.

▪ We can use this result as a guide to 
collect more training data.
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Networks,” Cornell University, Ithaca, New York, 2007. Accessed: May 14, 2021. 
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Comparison of the marginal distributions

▪ Compare the distributions at 𝑇 = 102 and 𝑇 = 103:

▪ 𝜆 and 𝛾 evaporate.

▪ The expectation value of 𝐴, 𝐵, and 𝜎 are shifted away from the best fit.

▪ How we should treat parameter evaporation is an open question.
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Marginal distribution of the parameters at several sampling temperatures

Access to the 

example 

scripts.



Conclusion

• We enhance KLIFF with UQ framework.
• This implementation can facilitate more UQ studies and lead to more 

transparent and reproducible UQ analysis for IPs.
• We demonstrate it to study SW potential for silicon system.
• The result indicates parameter evaporation.

• The data cannot constrain the evaporated parameters and future predictions.
• The sampling result is highly dependent on the sampling temperature and prior.

• Suggestions:
• Check for robustness of the result to several choice of prior.
• Use the result to inform what other training data are needed.

• Future work:
• Integrate other UQ methods.
• Work on accelerating MCMC.
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