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l OpenKlM Getting Started About ¥ Citing ¥ Download/Upload ¥ Browse ¥ Support ¥ Member Login

Interatomic Potenttals and Analytics for Molecular Simulation Established 2009

Welcome to the Open Knowledgebase of Interatohi'ic:Mdde'IS!e

OpenKIM is a curated repository of interatomic potentials and analytics for makihg, S
classical molecular simulations of materials reliable, reproducible, and accessible. Content
on OpenKIM is open source and freely available. Read more

@ OpenKIM is funded by the NSF.

The OpenKIM project
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https://openkim.org/

Interatomic potential

In atomistic scale simulation, the atoms
are treated as classical particles.

Interatomic potential (IP) approximates PR
interaction energy between atoms. é%%éﬂ% d;;é
IPs are developed for specific applications, J@gﬁé?éw?:s
resulting in plethora of potentials. %fzg%;’ ]

The functional forms of these potentials
have limited scope, miss some physics,

and thUS ]ntrOduce mOdel errors. (Berglund, Freezing and melting at the molecular scale: a representation with
atomic bonds 2021 https://www.youtube.com/watch?v=LdTDIpRx0XQ)
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OpenKIM repository

OpenKIM project aims to collect and
standardize the computational
implementation of IPs.

Collected IPs are archived in OpenKIM
repository (openkim.org/).

KIM API allows seamless integration of
these IPs with many simulation
programs.

Software and Projects using KIM

pap [ ooy  cup

libAtoms + QUIP 3it MDStressLab lpotfie. ﬁﬁ%‘

A&

QuasiContinuum Method ‘@9 “* virtual Fab for Nano Materials Design

COMPUTATIONAL MATERIALS REPOSITORY NIST

OpenKIM Getting Started  About ~  Citing ¥ Download/Upload ¥ Browse ~ Support ~ Member Login

Interatomic Potentials and Analytics for Molecular Simulation Established 2009

Welcome to the Open Knowledgebase of Intet;a't

OpenKIM is a curated repository of interatomic potentlals and analytlcs for makmg
classical molecular simulations of materials reliable, reproducible, and acceSSIble Conten‘t
on OpenKIM is open source and freely available. Read more

@ OpenKIM is funded by the NSF. 4
Install the OpenKIM Write simulation input script Run simulation using KIM potential ¢ i s Ut et
Library of interatomic with a potential selected by and potential-specific material PrL e Lingereber. 1985_S1__MD, 4055121
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Please cite the KIM Project and content obtained from this site if you use it in
published work.
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Models

Click on an element to find interatomic models for that species. You can narrow the selection to models that support multiple species
after you click.
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KIM-based Learning-Integrated Fitting Framework

- KLIFF is a general-purpose fitting
framework for IPs.

= KLIFF employs the force-matching
algorithm [1].

= The IPs are trained to match atomic
forces of several configurations from
first-principle simulation.

https:/ /kliff.readthedocs.io/

= The trained IPs conform to the KIM API.

[1] F. Ercolessi and J. B. Adams, “Interatomic Potentials from First-Principles
Calculations: The Force-Matching Method,” EPL, vol. 26, no. 8, p. 583, Jun.
1994, doi: 10.1209/0295-5075/26/8/005.
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Contribution

We integrate an uncertainty quantification framework into KLIFF.

Goal

We want to facilitate UQ studies for IPs.

We hope that this integration can lead to more transparent and
reproducible UQ analysis for IPs.
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Geometry of a model

-4 -2 0 2 4

log(6,)

Parameters Predictions o dota
1
Model: y(t;0) =
y(&:6) t? + 0.t + 6,
1.0 r . 5
: el Scenario 1 t1; 0
e, (v(::0))
0.8 ' — 6=(0.5, -3.0) ﬂ
: — 6=(2.0,0.0)
! — 6=(0.0,0.0)
__06 i :
= a

%0 o5 1o 15 20 25 30 35 40 = Model is a mapping from a parameter
space to a prediction space.

= The model manifold is the range of the
model map.
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Loss function
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Loss

= Loss function measures the quality of

model predictions compared to the
observed data.

= The best fit parameters minimize the

loss function.
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Uncertainty quantification
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Uncertainty quantification
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Markov Chain Monte Carlo

Parameters Predictions .
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Use MCMC algorithm to sample the posterior P(8|d).




Markov Chain Monte Carlo

Parameters Predictions .
1 .
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Model inadequacy N a—

- £(8|d) « exp(—L(8)) assumes the
model can reproduce the data within
the error bar.

0.10
0.08 ~
»*%  Adequate
0,02 model

0.25

= The high-density circle/sphere
intersects the manifold.

J’([I’I) 0.8 1.0 0.00
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Model inadequacy redictons un

In some cases, this assumption is :> ©
0.08 —

invalid. ooe
s ~ |INadequate

The data is far from the manifold; the °*2 model
high-density circle/sphere doesn’t
intersect the manifold.

@

y@z , 08
(51) 0.00

We need to fix the UQ formulation to
include model inadequacy.
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Model inadequacy redctions+
Inflated ': @ \‘ 0.10

Suggestion: Inflate the likelihood [2]:
distribution® 008
"% Inadequate
= L(H) ZLO 0.04 q
L(0|d) « ——, Ty = — 002 model
( | ) exp T, 0 N "
"~
2 J’(tzl)- 0.8, 000
d,, —y(t,,;0
2 Om

Lo, = minimum loss

N = number of parameters.

[2] P. Pernot and F. Cailliez, “A critical review of statistical calibration/prediction models
handling data inconsistency and model inadequacy,” AIChE Journal, vol. 63, no. 10, pp. 4642-

4665, 2017, doi: 10.1002/aic.15781.

BYU
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UQ ext

Potential
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Simulation — A
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Temperatures JL»L
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|

(// rhat < T~

run_mcmc ‘.F}
No
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— -
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Ensemble
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18th IEEE International eScience Conference




Implementation and workflow

Potential = We extend KLIFF to include uncertainty

Configurations

Aeterence date Model } quantification functionality.
Si““‘,‘\::::h’: - This integration can:
Loss = Facilitate UQ studies for IPs.
P"°r}{ kliff.ug.MCMC J = Lead to more transparent and
Temperatures reproducible UQ analysis for IPs.
i = KLIFF uses MCMC method.
Initial state )
Number of iterations }{ run_meme }.ﬁ ) .Other UQ methOdS will be
implemented in the future.
i No
rhat <

threshold

Yes

\

Ensemble - -
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1. Defining the model and loss function

Potential —
Configurations —

Reference data —>->[ Model }

Simulation —

Weight — l Loss
Prior .
N Kliff.uq.MCMC J
Temperatures

Initial state

run_mcmec -
Number of iterations }{ B J

L .

rhat <
threshold

Yes

\

This functionality has been

implemented previously and is not part
of this integration.

For more detail, visit
https://kliff.readthedocs.io/.

Ensemble - -
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https://kliff.readthedocs.io/

2. Instantiating the posterior sampler

Potential We use ptemcee [3, 4] to perform

Configurations

parallel-tempered MCMC:
Reference data Model } . . . . .

Simulation Simulating multiple different sampling

: temperatures, each with multiple

Weigh ’

o l Loss chains/walkers.

e Kliff.uq.MCMC
Tempe,atu,es}’[ Im.uq. } Parallel tempering improves

l convergence.

Initial state Parallel tempering also allows us to
o }{ run_mcmc }H explore how sampling results evolve
Number of iterations . .
with different scale of model error.

l No Recommendation: Set the temperature
ladder to be logarithmically spaced
from 1.0 to few times larger than T,.

rhat <
threshold

[3] W. Vousden, “Willvousden/ptemcee: A parallel-tempered version of

YeS emcee.,” GitHub. [Online]. Available:
https://github.com/willvousden/ptemcee. [Accessed: 14-Sep-2022].
+ [4] W. D. Vousden, W. M. Farr, and I. Mandel, “Dynamic temperature

selection for parallel tempering in Markov chain Monte Carlo simulations,”

BYU { Ensemble 1 Monthly Notices of the Royal Astronomical Society, vol. 455, no. 2, pp.

1919-1937, Jan. 2016, doi: 10.1093/mnras/stv2422.



https://github.com/willvousden/ptemcee
https://doi.org/10.1093/mnras/stv2422

3. Running MCMC & monitoring convergence

Potential Convergence is monitored by

s:fr:::’;':t:;: Vodel computing the Potential Scale
Simuati } Reduction Factor (PSRF) [5]:
imulation
Weight l Loss
~ K—-1 +1
Prior RP = +] Amax (W_l B/K)
}{ Kliff.uq.MCMC } K J
Temperatures
l B 1 < .
Initial state E =] —1 Z(l’b] B l/})(l,b] B 1’0)
}»{ run_mcmc }ﬁ =1
Number of iterations
| 43
No _ M — N
w _](K _ 1) Zlkzl(lljlk l/}])(lp]k l/)])
rhat < J=LR=

threshold ~
When samples have converged, RP - 1

(common threshold is 1.1).

Yes

+ [5] S. P. Brooks and A. Gelman, “General Methods for Monitoring

Convergence of Iterative Simulations,” Journal of Computational and

BYU { Ensemble 1 Graphical Statistics, vol. 7, no. 4, pp. 434-455, Dec. 1998, doi:
10.1080/10618600.1998.10474787..



https://doi.org/10.1080/10618600.1998.10474787

4, Retrieving the ensemble

Potential
Configurations
Reference data Model }
Simulation
Weight l Loss

Prior -
N Kliff.uq.MCMC J
Temperatures l
Initial state
run_mcmec -
Number of iterations }{ B J

L .

rhat <
threshold

Yes

Y

[ Ensemble ]

The distribution of the parameters is
inferred from the ensemble.

%
—
)
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8°] \
>
%
—
B
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ke)
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AY

log(A)

v 0O v &
g %
! o
A—

log(y)
% o0 v &

/‘:«Qb“b /hi)'b“b/hbb“b /b‘Db“b/b‘Qb“b
log(A) log(B) log(o) log(A) log(y)




Parallel computing

Potential Parallelization can be done in 2 places:

Configurations

Reference data Model } Loss evaluation (over configurations)
Simulation MCMC sampling (over walkers)
Weight Loss .
_ Suggestion:
Prlor}{ Kliff.uq.MCMC } Use OpenMP-style parallelization for loss
Temperatures evaluation.
Use MPI-style parallelization for MCMC
sampling.
Initial state
Number of iterations }{ run_meme }ﬁ For more detail, visit
https://kliff.readthedocs.io/.
No
rhat <
threshold

Yes

\

Ensemble - -
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Stillinger-Weber potential

Model: Stillinger-Weber potential [6]

Access to the

it (r,;)) = A|B(— AN °

¢3(7ij, Tiks Bjix) = A|cos(Bjix) — COS(BO)]Z X
14 )4

exp +
— pcut .. — pcut
Ti j r Tik r

Parameters: log(A),log(B),log(o),log(4),log(y)

Training data: energy and force of Silicon atoms in several
configurations (weights « data values).

Best fit:
A = 15.2792223 eV A = 45.47927476 eV
B = 0.6032372 y = 2.51306949 A

o = 2.09420085 A

BYU [6] A. K. Singh, F. H. Stillinger, and T. A. Weber, “Stillinger-Weber potential for Si due to Stillinger and

Weber (1985) v006,” OpenKIM, https://doi. org/10.25950/dd263fe3, 2021.

=)

: 5 4
p=4
q=20

cos(B°%) = —0.33333333
reut = 377118 A




MCMC setup

Acc:ess to the MCMC Setup

example
scripts.

= Posterior distribution: = Run MCMC for 150,000 steps
> > = Burn-in: 10,000
P(Qld) x L(9|d) x (8), = Thinning factor: 200

£(6]d) o< exp(=L(8)/T) - Convergence test: RP < 1.046

- Temperatures:
= T, = 1.324
= T€[1,107]

= Prior: log(8) ~ U(—8,8)
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Presenting the samples

- Sampling temperature T = 10?

Access to the - What’s plotted:
example T ' e
scripts. = Main diagonal: Marginal distribution for
each parameter.
‘: ] = Below diagonal: 2D projection of the
%Q | \ samples in parameter space.
SN
% - At lower temperature, the
521 - ~ I distributions are concentrated.
S, .

~

log(A)

v 0O % &
| A | |
o
~A—

log(y)
0 % &

/b‘Dbt‘b /b‘Qh‘b/b‘Dh‘b /mb&‘b/&oh‘b
log(A) log(B) log(o) log(A) log(y)
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Parameter evaporation

Sampling temperature T = 103

é\)c(;‘;j;l? the The distribution becomes wider as we
scripts. increase the temperature.
® Parameter evaporation occurs: the
g;: \ walkers tend to run to sub-optimal
. parameter values [7, 8].
>
8] e ||~ Evaporated parameters are
- unconstrained by the data.
o | S— -
=] ' '
8°] ' '
/b‘ i 1 |
o | S
=] ' e |
g°] ' '
A | ' I

K ' N [7] M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Geometry of nonlinear
A > % A& > % PRy > % & > @ Py > @ least squares with applications to sloppy models and optimization,” Phys. Rev.
log(A) log(B) log(o) log(A) log(y) .
E, vol. 83, no. 3, p. 036701, Mar. 2011, doi: 10.1103/PhysRevE.83.036701.
[8] R. Gutenkunst, “Sloppiness, Modeling, and Evolution in Biochemical

BYU Networks,” Cornell University, Ithaca, New York, 2007. Accessed: May 14, 2021.
[Online]. Available: https://ecommons.cornell.edu/handle/1813/8206
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Parameter evaporation

Sampling temperature T = 10*

Access to the

The distribution becomes wider as we

example .
scripts. increase the temperature.
% - Parameter evaporation occurs: the
%: walkers tend to run to sub-optimal
2% q parameter values [7, 8].
(b "
ol - Evaporated parameters are
o0 7 .
€51 unconstrained by the data.
>
= - Parameter evaporation becomes more
29 1 .
g, apparent at higher temperatures.
>
,;b‘
9
o
/v

P L B R I EEE [7] M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Geometry of nonlinear
L TR S ;" ® /bl‘og(/\)b‘ ® )I‘ogg(y)b‘ ® least squares with applications to sloppy models and optimization,” Phys. Rev.
E, vol. 83, no. 3, p. 036701, Mar. 2011, doi: 10.1103/PhysRevE.83.036701.
[8] R. Gutenkunst, “Sloppiness, Modeling, and Evolution in Biochemical

BYU Networks,” Cornell University, Ithaca, New York, 2007. Accessed: May 14, 2021.
[Online]. Available: https://ecommons.cornell.edu/handle/1813/8206
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Parameter evaporation

Sampling temperature T = 10°

é\f(;;s;l? the The distribution becomes wider as we
scripts. increase the temperature.
® Parameter evaporation occurs: the
50 walkers tend to run to sub-optimal
< 5 parameter values [7, 8].
>
O Evaporated parameters are
(@) .
254 unconstrained by the data.
>
=] Parameter evaporation becomes more
29 1 .
SN apparent at higher temperatures.
<b . .
SN We can use this result as a guide to
o collect more training data.
/b‘

PoL N T # B8R I S [7] M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Geometry of nonlinear
RSN XS . @ o S A % 2R = B least squares with applications to sloppy models and optimization,” Phys. Rev.
log(A) log(B) log(o) log(A) log(y) .
E, vol. 83, no. 3, p. 036701, Mar. 2011, doi: 10.1103/PhysRevE.83.036701.
[8] R. Gutenkunst, “Sloppiness, Modeling, and Evolution in Biochemical

BYU Networks,” Cornell University, Ithaca, New York, 2007. Accessed: May 14, 2021.
[Online]. Available: https://ecommons.cornell.edu/handle/1813/8206
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Access to the 1

N

density

Probability

o

example 1
| ‘ 2.5 - J‘ 2.5 1 l
- 0- 0.0 0 0.0

00

=

density
= =
<

o
N\

Probability

=
9
W

scripts.
-5 0 5 -5 0 5 -5 0 5
log(A) log(B) log(o) log(A) log(y)

- Compare the distributions at T = 10% and T = 103:

= A and y evaporate.
= The expectation value of A, B, and o are shifted away from the best fit.

- How we should treat parameter evaporation is an open question.

BYU 18th IEEE International eScience Conference
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BYU

Conclusion

* We enhance KLIFF with UQ framework.

+ This implementation can facilitate more UQ studies and lead to more
transparent and reproducible UQ analysis for IPs.

* We demonstrate it to study SW potential for silicon system.

* The result indicates parameter evaporation.
* The data cannot constrain the evaporated parameters and future predictions.
*  The sampling result is highly dependent on the sampling temperature and prior.

+ Suggestions:
* Check for robustness of the result to several choice of prior.
* Use the result to inform what other training data are needed.

Access to the
example scripts.

* Future work:
* Integrate other UQ methods.
*  Work on accelerating MCMC.
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