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Below we detail the fundamental steps in the software pipeline: (1) the ICA problem

formulation (2) the hypotheses underpinning the algorithm choice for its application to 2D-

13C,1H-HSQC NMR spectra.

Independent Component Analysis for mutiplets identifica-

tion

The problem of identifying the metabolites multiplets in spectra is in this work considered

a signal unmixing problem and it is solved using independent component analysis (ICA).
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Within signal unmixing methods, ICA aims to explain y1(ω), y2(ω), ..yi(ω), .., yN(ω) observa-

tions through a smaller number of so called latent or hidden variables s1(ω),s2(ω),..si(ω),..,sN(ω),

assuming that each observation yi is a mixture of latent variables weighted by unknown co-

efficients wi as follows:

yi = wi1s1 + wi2s2 + ...+ wiNsN (1)

Using a vector-matrix notation and dropping the frequency dependence without loss of gen-

erality, the equation can be rewritten to describe all the observed signals:

y = Ws (2)

The generative model described in 2 is called the ICA model and the latent variables are

called independent components. Readers are referred to1 for more details on the algorithm,

while below we explain how the ICA is used to solve the multiplet identification problem. In

the case of a 2D-NMR spectrum of a metabolite mixture, each multiplet of each metabolite

signal is a latent variable and the 2D-HSQC spectrum is the observation space. There-

fore in our case only one observation (i.e. a 2D spectrum) is available. We address this

shortcoming by utilising the proton dimension as the observation dimension. Consider the

Cartesian reference system where the axis x, y, z, are the proton, the carbon and the in-

tensity of the peaks dimensions, respectively. Consider the surface Ω ⊂ R3 (Figure S1),

for a fixed proton shift 1H0 the projection on the y-z (13C-Intensity) plane is defined as

A1H0 = (y, z) ∈ R2 : (x, y, z) ∈ Ω and is given by the intersection of Ω with the plane x =

1H0. An example concerning glutamate carbon 2 is represented in Figure S1. In discrete

space, it can be demonstrated that the union along the 1H-dimension of all the 1D 13C-

NMR spectra gives the obtained 2D spectrum Ω. All the 13C NMR spectra at different

proton chemical shifts are considered as observations, therefore the proton dimension is the

observation dimension, and the problem can be solved using 1D-ICA. The signal unmixing

problem is therefore formulated as in Eq.2, where y ∈ RM×N are all the observations which

constitute the 2D spectrum (e.g. the carbon spectra slices at each proton resonance shift), W
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Figure S1: The spectral area of interest Ω considering the theoretical resonance of gluta-
mate carbon 2 is shown. On the plane 13C-Intensity, the 1D 13C-NMR spectra obtained by
intersection of the spectral surface Ω and the plane A1H0 are shown, where A1H0 is the
plane sliding along the proton dimension (1H0 are the different proton shifts). On the plane
1H-Intensity the projection obtained by intersection of the spectral surface Ω and the plane
x = 1H0 are shown.

is the unknown linear mapping matrix from the observation to the latent space and s are the

underlying spectral components (e.g. the mutiplets of the metabolites). The K components

are assumed to be statistically independent as required for the ICA algorithm.1 This assump-

tion is also physically/chemically plausible, as there is no interaction between metabolites at

different 1H-shifts.2 Moreover, the linearity of the model can be justified, as the metabolites

mix in an additive way in the spectrum.2 These assumptions justify the choice of using ICA

among other unmixing algorithms such as non-negative matrix decomposition (NMF), since

ICA finds a decomposition of the observed data to retrieve latent components which are as

independent as possible. ICA is performed using FastICA routine3 with non-linearity given

in the equation below 3, which, in comparison to other non-linearities commonly used, gave

the best outcome (e.g. lowest rate of mismatching) during the "matching step" explained in

the main paper.4 Given that s is a independent variable, the non linearity function g(s) can

be written as below:

g(s) = s2 (3)
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To recover the independent components, FastICA algorithm uses an optimisation approach

based on the Newton method and faster deflationary approach.3 The algorithm used here

has a cubic convergence and the independent components are found in up to 12 iterations.

ICA is run multiple times, considering different random initialisations of the weight matrix

W, in order to ensure stability of the independent components, and evaluate the stability of

the algorithm to converge to the same solution. The ICA algorithm capability to produce

independent signals was tested by computing the mutual information (MI).5 Preliminary

experiments showed that the values are < 0.1, which is in accordance to our expectations

indicating that the components are independent. These experiments were carried out during

the inital framework development to validate the choice of hyperparameters and non-lineary

function. We think that the underlying white noise as well as residual noise originating from

non-uniform sampling schedules increase the MI values. While this leads to noise regions

being identified as potentially valid independent components as demonstrated in IC 3 of

Figure 3 in the main paper, correlations will be quite small and therefore this will not have

any significant influence in practice.

Table S1: List of variables names and correspondent description.

Variable Name Description
X 2D spectrum
X̃ restricted 2D spectrum
mName Metabolite name
mSpin Metabolite Spin number
maxWidth1H Upper limit [ppm] to restrict the searching area along the proton dimension
maxWidth13C Upper limit [ppm] to restrict the searching area along the carbon dimension
nReps Number of ICA runs
K Number of independent components
Y Matrix of Independent components
xH Vector containing the proton location in the spectrum of each ICA component
xC Vector containing the carbon chemical shift of each multiplet in the ICA components
corrScore Vector containing the correlation between each independent component and the corresponding 1D-H spectrum
Γadjusted relative distance weighting: 20× γH/γC
ρ Coefficient of determination
s simulated multiplet components
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Pseudocode
input : X, mName, mSpin, maxWidth1H, maxWidth13C, nReps, K
output: Data structure
X̃ ←setSearchArea(X,mName,mSpin,maxWidth1H,maxWidth13C);
for i = 1 : nReps do

Y ←fastICA(X̃,K);
for j = 1 : K do

xHj
, corrScorej ←getHshift(X,Yj,:);

end
store all Y , xH , corrScore;

end
Ȳ ← get the set of Y which contains the component with highest correlation;
xH , corrScore ← get xHj

and corrScore for each latent component in Ȳ ;
s ←simMultiplets(mName,mSpin);
for each latent component in Ȳ do

if corrScoreK > 0.5 then
snorm ← normalize s to the range [min(Ȳk,:)max(Ȳk,:)];
saligned ← align snorm to Ȳk,: ;
YestimK ,:, ρK ←linRegress(saligned,XxH ,:);
xC ←getCShift(YestimK ,:);

∆ppm ←
√

(xH −HShiftLib)2 + (xC−CShiftLib
Γadjusted

)2;

ρadjustedK ←
ρ(k)

∆ppm2 ;
else

go back to the beginning of current section;
end

end

Yfinal, xHfinal
← choose Yestim with highest ρadjusted;

xHfinal
← hillClimbing(Yfinal,xHfinal

);
saligned ← find best alignment to Yfinal for each component of s;
Yfinal,ρfinal ←linRegress(saligned,XxHfinal

,:);

Algorithm 1: Overview of the algorithm

5



1.151.201.251.301.351.401.451.50

21.5

22.0

22.5

23.0

23.5

24.0

13
C

 [p
pm

] H
3a

H
3b

H
3c

C
3

1H [ppm] H3aH3bH3cC3

Lactate

L-Threonine

Figure S2: Region of the spectrum showing the multiplet peak for lactate C(3). The gray
area underlying the spectrum indicates the highest coefficient of determination computed for
lactate C(3) as a function of the chemical shift offset.
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Figure S3: Region of the spectrum showing the multiplet peak for glutamate C(2). The gray
area underlying the spectrum indicates the highest coefficient of determination computed for
glutamate C(2) as a function of the chemical shift offset.
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Figure S4: Region of the spectrum showing the multiplet peak for glutamate C(3). The gray
area underlying the spectrum indicates the highest coefficient of determination computed for
glutamate C(3) as a function of the chemical shift offset.
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Figure S5: Region of the spectrum showing the multiplet peak for glutamate C(4). The gray
area underlying the spectrum indicates the highest coefficient of determination computed for
glutamate C(4) as a function of the chemical shift offset.
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Figure S6: Manual vs automated analysis: (A) Multiplet percentages obtained with the
automated algorithm are plotted on the horizontal axis, whereas previously published values6

from a manual multiplet analysis are plotted on the vertical axis. (B) The difference between
the fitted red line in (A) and the experimental values are plotted on the vertical axis.
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Data Set Exp. Tracer Sampling Rate J Enhancement 1H Freq
[%] [MHz]

MTBSL182 [1,2-13C] Glucose
1-3 25 1 600

eqhn3 [1,2-13C] Glucose &
[U-13C, U-15N] Gln

1 25 1 600
2 25 2 600
3 25 4 600
4 25 8 600

qtmge [U-13C] Glucose
1 50 1 800
2 25 1 800
3 30 1 800
4 20 1 800
5 10 1 800
6 5 1 800

Table S2: Dataset characteristics
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Metabolite Carbon # 1H 13C ρfinal Contribution [%]
MTBLS241 [ppm] [ppm] [%] 1 2 3 4
alanine 2 3.821 52.965 98.8 6.4 0 93.6 0
alanine 3 1.467 18.973 89.2 17 83 - -
aspartate 2 3.923 54.908 90.3 36.6 44.4 17.6 1.5
aspartate 3 2.765 39.308 99 37.8 17.8 41.1 3.3
aspartate 3 2.765 39.308 99 37.8 17.8 41.1 3.3
glutamate 2 3.796 57.36 82 38.8 38.1 14.5 8.5
glutamate 3 2.039 29.709 98.5 61.3 0 30 8.7
glutamate 3 2.039 29.709 98.5 61.3 0 30 8.7
glutamate 4 2.332 35.653 97.2 19.3 1.7 75.1 3.9
lactate 2 4.139 71.24 97.9 4.5 1.2 94.3 0
lactate 3 1.314 22.897 84.7 13.9 86.1 - -
alanine 2 3.821 52.965 98.2 6.6 1.3 92.1 0
alanine 3 1.467 18.973 91.5 18.2 81.8 - -
aspartate 2 3.923 54.908 94.9 37.9 42.8 19.3 0
aspartate 3 2.765 39.308 92.5 38.5 18.3 41.7 1.5
aspartate 3 2.765 39.308 92.5 38.5 18.3 41.7 1.5
glutamate 2 3.796 57.36 83.9 38.7 38.8 15.6 6.9
glutamate 3 2.039 29.709 97.4 65 0 31.2 3.8
glutamate 3 2.039 29.709 97.4 65 0 31.2 3.8
glutamate 4 2.332 35.653 93.4 19.8 0 76.6 3.6
lactate 2 4.139 71.24 95.9 4.8 0.8 94.3 0
lactate 3 1.314 22.897 95.9 15.1 84.9 - -
alanine 2 3.834 52.965 98.7 4.7 0 95.3 0
alanine 3 1.467 18.973 93.3 15.9 84.1 - -
aspartate 2 3.948 54.908 93.2 37.9 44.8 16.4 0.9
aspartate 3 2.765 39.308 95.1 37.7 18.4 42.2 1.7
aspartate 3 2.765 39.308 95.1 37.7 18.4 42.2 1.7
glutamate 2 3.808 57.36 80.6 40.2 38.9 16.1 4.8
glutamate 3 2.052 29.709 97.1 67.1 0 29.5 3.4
glutamate 3 2.052 29.709 97.1 67.1 0 29.5 3.4
glutamate 4 2.332 35.653 90.5 18.7 1.4 75.7 4.2
lactate 2 4.152 71.24 97.5 4.3 3.3 92.4 0
lactate 3 1.314 22.897 97.1 13.9 86.1 - -

Table S3: Dataset MTBLS241
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Metabolite Carbon # 1H 13C ρfinal Contribution [%]
eqhn3 [ppm] [ppm] [%] 1 2 3 4
alanine 2 3.783 52.965 97.9 2.2 2.6 70.9 24.3
alanine 3 1.467 18.973 99.1 11.8 88.2 - -
aspartate 2 3.885 54.908 93.2 25.3 46.4 13.6 14.7
aspartate 3 2.778 39.308 98.3 26.6 15.1 43.5 14.8
aspartate 3 2.778 39.308 98.3 26.6 15.1 43.5 14.8
glutamate 2 3.758 57.36 88.2 25.5 42.1 15.7 16.7
glutamate 3 2.103 29.709 97.2 45.7 0 41.6 12.6
glutamate 3 2.103 29.709 97.2 45.7 0 41.6 12.6
glutamate 4 2.332 35.653 89.6 14.5 2.3 70.3 12.8
lactate 2 4.101 71.24 99.5 3.2 3 76.4 17.4
lactate 3 1.314 22.897 99 12 88 - -
alanine 2 3.783 52.965 97.3 2 2.2 73.2 22.6
alanine 3 1.467 18.973 99.1 11.8 88.2 - -
aspartate 2 3.885 54.908 96.1 27.4 44.9 12.3 15.5
aspartate 3 2.778 39.308 99.1 26.3 15.4 43.4 14.9
aspartate 3 2.778 39.308 99.1 26.3 15.4 43.4 14.9
glutamate 2 3.758 57.36 94.1 26.3 41.3 15.1 17.3
glutamate 3 2.103 29.709 98.7 44.7 41.6 0 13.7
glutamate 3 2.103 29.709 98.7 44.7 41.6 0 13.7
glutamate 4 2.332 35.653 96.8 14.3 1.5 71.4 12.8
lactate 2 4.101 71.24 98.6 2.8 2.6 77.9 16.7
lactate 3 1.314 22.897 99.5 12.1 87.9 - -
alanine 2 3.783 52.965 86.6 2.6 3.5 75.2 18.8
alanine 3 1.467 18.973 98.9 11.7 88.3 - -
aspartate 2 3.898 54.908 95.2 31.5 44.8 12.1 11.6
aspartate 3 2.778 39.308 97.6 26.6 14.9 43.7 14.7
aspartate 3 2.778 39.308 97.6 26.6 14.9 43.7 14.7
glutamate 2 3.758 57.36 94.6 26.6 40.9 15.9 16.6
glutamate 3 2.052 29.709 98.6 47.1 0 42.5 10.4
glutamate 3 2.103 29.709 98.7 48.7 0 42.1 9.1
glutamate 4 2.332 35.653 98.3 14 1.7 71.4 12.8
lactate 2 4.101 71.24 96.3 2.1 3.4 79.7 14.8
lactate 3 1.314 22.897 99.5 12 88 -
alanine 2 3.783 52.965 56.7 5.2 9.7 64.5 20.6
alanine 3 1.467 18.973 98.9 11.4 88.6 - -
aspartate 2 3.885 54.908 92.4 32.7 45.5 11.2 10.6
aspartate 3 2.778 39.308 96.3 27.9 13.8 46 12.3
aspartate 3 2.778 39.308 96.3 27.9 13.8 46 12.3
glutamate 2 3.758 57.36 88.1 29.6 43.9 13.3 13.3
glutamate 3 2.103 29.709 98.3 51.7 42.2 0 6
glutamate 3 2.103 29.709 98.3 51.7 42.2 0 6
glutamate 4 2.332 35.653 98.3 14.5 1.6 72 12
lactate 2 4.101 71.24 81.1 3 4.1 77.1 15.8
lactate 3 1.314 22.897 99.5 11.8 88.2 - -

Table S4: dataset eqhn3
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Name C# 1H 13C ρfinal Contribution [%]
qtmge [ppm] [ppm] [%] 1 2 3 4
alanine 2 3.805 52.965 96.9 2.6 0 0 97.4
alanine 3 1.482 18.973 99.3 2.2 97.8 - -
aspartate 2 3.912 54.908 55 34.1 40.9 14.1 10.9
aspartate 3 2.735 39.308 70.5 38.9 6.4 46.1 8.5
aspartate 3 2.735 39.308 70.5 38.9 6.4 46.1 8.5
glutamate 2 3.912 57.36 47.8 100 0 0 0
glutamate 3 2.155 29.709 93.2 81.4 3.6 0 15
glutamate 3 2.048 29.709 90.1 72.4 27.6 0 0
glutamate 4 2.338 35.653 94.8 13.2 7.9 70 8.9
lactate 2 4.126 71.24 99.4 1.9 1.5 2.4 94.2
lactate 3 1.314 22.897 89.8 0.7 99.3 - -
alanine 2 3.805 52.965 95.9 5.3 1.9 3.7 89.2
alanine 3 1.467 18.973 96 1.4 98.6 - -
aspartate 2 3.912 54.908 62.6 32.5 49.8 7.8 9.9
aspartate 3 2.781 39.308 59.2 46.4 8.3 28.5 16.8
aspartate 3 2.781 39.308 59.2 46.4 8.3 28.5 16.8
glutamate 2 3.79 57.36 94.2 80.7 3.5 3.8 12.1
glutamate 3 2.093 29.709 95.1 69.7 30.3 0 0
glutamate 3 2.093 29.709 95.1 69.7 30.3 0 0
glutamate 4 2.323 35.653 87.7 14.5 9.1 68.5 7.9
lactate 2 4.111 71.24 99.3 2.3 1.6 2.7 93.5
lactate 3 1.314 22.897 94.9 2.1 97.9 - -
alanine 2 3.805 52.965 90.1 4.8 0 0 95.2
alanine 3 1.467 18.973 99.4 1.4 98.6 - -
aspartate 2 3.729 54.908 22.5 75.7 5.6 0 18.7
aspartate 3 2.72 39.308 68.6 44.7 0 55.3 0
aspartate 3 2.72 39.308 68.6 44.7 0 55.3 0
glutamate 2 3.759 57.36 20.2 51 26.3 0 22.7
glutamate 3 2.155 29.709 39.5 100 0 0 0
glutamate 3 2.032 29.709 94.1 80.6 19.4 0 0
glutamate 4 2.323 35.653 86 12.9 8.7 65.6 12.8
lactate 2 4.111 71.24 98.7 2 1.3 2.1 94.6
lactate 3 1.314 22.897 98.3 2.6 97.4 - -
alanine 2 3.79 52.965 80.8 0.3 0 0 99.7
alanine 3 1.467 18.973 97.6 1.6 98.4 - -
aspartate 2 3.912 54.908 63.8 93.2 3.3 3.5 0
aspartate 3 2.781 39.308 40.6 47.8 3.3 15.4 33.5
aspartate 3 2.781 39.308 40.6 47.8 3.3 15.4 33.5
glutamate 2 3.79 57.36 90 82.6 0 0 17.4
glutamate 3 2.155 29.709 88.9 65.6 0 4.2 30.2
glutamate 3 2.032 29.709 91.8 71.9 28.1 0 0
glutamate 4 2.323 35.653 89.7 11.1 6.5 73.6 8.7
lactate 2 4.111 71.24 97.9 2 1.1 2.1 94.9
lactate 3 1.314 22.897 98.3 0.4 99.6 - -
alanine 2 3.805 52.965 0 0 0 36.6 63.4
alanine 3 1.467 18.973 98.8 1.9 98.1 - -
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aspartate 2 3.943 54.908 63.8 93.2 3.3 3.5 0
aspartate 3 2.72 39.308 60.1 42.1 17.3 29.6 10.9
aspartate 3 2.72 39.308 60.1 42.1 17.3 29.6 10.9
glutamate 2 3.79 57.36 35.5 100 0 0 0
glutamate 3 2.093 29.709 87.4 67.8 32.2 0 0
glutamate 3 2.093 29.709 87.4 67.8 32.2 0 0
glutamate 4 2.323 35.653 82.9 14.7 11.8 73.5 0
lactate 2 4.111 71.24 98.2 1.7 0.9 0 97.4
lactate 3 1.314 22.897 99.3 1.2 98.8 - -
alanine 2 3.805 52.965 59.9 88.9 3.4 3.3 4.4
alanine 3 1.467 18.973 92.9 2.4 97.6 - -
aspartate 2 3.729 54.908 63.8 93.2 3.3 3.5 0
aspartate 3 2.781 39.308 60.9 43.7 39.2 17.1 0
aspartate 3 2.781 39.308 60.9 43.7 39.2 17.1 0
glutamate 2 3.805 57.36 33.4 61.3 4.5 34.2 0
glutamate 3 2.109 29.709 83.2 69.6 4.9 0 25.5
glutamate 3 2.063 29.709 91.6 69.1 4.2 0 26.7
glutamate 4 2.338 35.653 91.6 14.1 7.6 74.4 3.9
lactate 2 4.126 71.24 99.2 2 0.4 3.3 94.3
lactate 3 1.314 22.897 84.2 1.2 98.8 - -

Table S5: Dataset qtmge

13



MetaboLab Script - MTBLS241.ml
% Processing script for MetaboLab
% Comments start with a percentage sign
% Everything between START and END MLScript is executed
% everything outside is ignored
% The script starts in the next line
START MLScript

autoHsqcMA
metabolites: alanine, aspartate, glutamate, glutamine, lactate
maxWidth1H: 0.10 % [ppm]
maxWidth13C: 1.00 % [ppm]
minCorr: 0.50 %
rangeC: 0.80 % [ppm]
maxRange: 1 % [points]
nReps: 25 %
R2: 1.5 % [Hz]
echoTime: 1.85 % [ms]
dataSets: all %
experiments: all %
report: on %
outputDir: /Volumes/Home/ludwigc/Desktop/autoHsqcMAReport
outputName: mlReport_MTBLS241

endAutoHsqcMA

% End of script
END MLScript
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MetaboLab Script - qtmge.ml
% Processing script for MetaboLab
% Comments start with a percentage sign
% Everything between START and END MLScript is executed
% everything outside is ignored
% The script starts in the next line
START MLScript

autoHsqcMA
metabolites: alanine, aspartate, glutamate, lactate
maxWidth1H: 0.10 % [ppm]
maxWidth13C: 1.00 % [ppm]
minCorr: 0.50 %
rangeC: 0.80 % [ppm]
maxRange: 1 % [points]
nReps: 25 %
R2: 1.5 % [Hz]
echoTime: 1.95 % [ms]
dataSets: all %
experiments: all %
report: on %
outputDir: /Volumes/Home/ludwigc/Desktop/autoHsqcMAReport
outputName: mlReport_qtmge

endAutoHsqcMA

% End of script
END MLScript
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MetaboLab Script - EQHN3.ml
% Processing script for MetaboLab
% Comments start with a percentage sign
% Everything between START and END MLScript is executed
% everything outside is ignored
% The script starts in the next line
START MLScript

autoHsqcMA
metabolites: alanine, aspartate, glutamate, lactate
maxWidth1H: 0.10 % [ppm]
maxWidth13C: 1.00 % [ppm]
minCorr: 0.50 %
rangeC: 0.80 % [ppm]
maxRange: 1 % [points]
nReps: 25 %
R2: 1.5 % [Hz]
echoTime: 1.85 % [ms]
dataSets: all %
experiments: all %
report: on %
outputDir: /Volumes/Home/ludwigc/Desktop/autoHsqcMAReport
outputName: mlReport_eqhn3

endAutoHsqcMA

% End of script
END MLScript
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