
A Framework for the Faithful
Simulation of in situ Processing

Sim-Situ

Valentin Honoré, Tu Mai Anh Do, Loïc Pottier, Rafael Ferreira da Silva, Ewa Deelman, Frédéric Suter

▷ Post-hoc

In situ Processing – Historical meaning

2

Numerical
Simulation

Analysis /
Visualization

Files

▷ Post-hoc

In situ Processing – Historical meaning

2

Numerical
Simulation

Analysis /
Visualization

Files

Files becoming too big + Gap increase between CPU and I/O

In situ Processing – Historical meaning

▷ Post-hoc

▷ In situ

2

Numerical
Simulation

Analysis /
Visualization

Files

Numerical Simulation

Analysis / Visualization

Files Files FilesFilesFiles

Files becoming too big + Gap increase between CPU and I/O

In situ Processing – Modern meaning

3

Numerical
Simulation

Analysis / Visualization

Shared memory space

In situ Processing – Modern meaning

3

Numerical
Simulation

Ana / Viz

Analysis / Visualization Ana / Viz

Site A

Shared memory space

In situ Processing – Modern meaning

3

Numerical
Simulation

Ana / Viz

Analysis / Visualization

Ana / Viz

Ana / Viz

Site A Site B

Shared memory space

In situ Processing – Modern meaning

3

Numerical
Simulation

Ana / Viz

Analysis / Visualization

Ana / Viz

Ana / Viz

Data Transport Layer

Site A Site B

put

get

Shared memory space

put

get

In situ Processing – Modern meaning

3

Numerical
Simulation

Ana / Viz

Analysis / Visualization

Ana / Viz

Ana / Viz

Data Transport Layer

Site A Site B

put

put

get

get

subset

transform

Shared memory space

In situ Processing – Modern meaning

3

Numerical
Simulation

Ana / Viz

Analysis / Visualization

Ana / Viz

Ana / Viz

Data Transport Layer

Site A Site B

put

put

get

get

subset

transform

Shared memory space

All these variations
are also called

in situ processing!

In situ Processing – Terminology

4

H. Childs, et al. (2020)
IJHPCA 34:6, 676—691

• Application Aware
• Multi-purpose API
• Bespoke

Integration

• Subset (↘)
• Derived (=)
• Transform (↗)Data Access

• Space division
• Time division

In Situ
Processing

Systems

Proximity

In situ Processing – Terminology

4

H. Childs, et al. (2020)
IJHPCA 34:6, 676—691

• Application Aware
• Multi-purpose API
• Bespoke

Integration

• Subset (↘)
• Derived (=)
• Transform (↗)Data Access

• Space division
• Time division

In Situ
Processing

Systems

Proximity

In situ Processing – Research Questions

Allocation
How much resources give to simulation, analysis, viz?

Mapping
Where and when run the analysis/visualization?

Data Transport
Are files out of question? In-memory or over network?

Scalability
Will choices remain the best one at scale?

Optimization
Multiple options, not always completion time

5

RQ1

RQ2

RQ3

RQ4

RQ5

Why Sim-Situ?

▷ Answer RQs → Performance evaluation
○ Take good decisions → Objective performance indicators

▷ Go beyond the traditional empiric guess → Speed and Flexibility
○ Explore many unconventional scenarios
○ Consider unconventional performance metrics

6

→ Time- and resource-consuming
→ Complex to set up
→ Limited in scope
→ Sensitive to exogenous factors

→ Run on a laptop
→ Highly flexible
→ What-if scenarios
→ Reproducibility and control

Experiments Simulation

Sim-Situ Architecture

7

▷ Open Project since 1998

▷ Key strengths
○ Usability: Fast, Reliable, User-oriented APIs
○ Validated performance models: Open Science → Predictive Power
○ Versatility: HPC, Cloud, Fog, Grid, P2P, …

Fundation – SimGrid

8

A scientific instrument on your laptop
https://simgrid.org

https://simgrid.org/

▷ Open Project since 1998

▷ Key strengths
○ Usability: Fast, Reliable, User-oriented APIs
○ Validated performance models: Open Science → Predictive Power
○ Versatility: HPC, Cloud, Fog, Grid, P2P, …

▷ SimGrid’s fundamental concepts (the S4U API)

Fundation – SimGrid

8

A scientific instrument on your laptop
https://simgrid.org

Actors
Execute user-provided functions
Program anything you want/need

https://simgrid.org/

▷ Open Project since 1998

▷ Key strengths
○ Usability: Fast, Reliable, User-oriented APIs
○ Validated performance models: Open Science → Predictive Power
○ Versatility: HPC, Cloud, Fog, Grid, P2P, …

▷ SimGrid’s fundamental concepts (the S4U API)

Fundation – SimGrid

8

A scientific instrument on your laptop
https://simgrid.org

Actors
Execute user-provided functions
Program anything you want/need

Activities
Computation, communication, I/O
Synchro mechanisms

https://simgrid.org/

▷ Open Project since 1998

▷ Key strengths
○ Usability: Fast, Reliable, User-oriented APIs
○ Validated performance models: Open Science → Predictive Power
○ Versatility: HPC, Cloud, Fog, Grid, P2P, …

▷ SimGrid’s fundamental concepts (the S4U API)

Fundation – SimGrid

8

A scientific instrument on your laptop
https://simgrid.org

Resources
CPUs, Links, Disks
Hosts, VMs, Netzones, …

Actors
Execute user-provided functions
Program anything you want/need

Activities
Computation, communication, I/O
Synchro mechanisms

https://simgrid.org/

▷ Open Project since 1998

▷ Key strengths
○ Usability: Fast, Reliable, User-oriented APIs
○ Validated performance models: Open Science → Predictive Power
○ Versatility: HPC, Cloud, Fog, Grid, P2P, …

▷ SimGrid’s fundamental concepts (the S4U API)

Fundation – SimGrid

8

A scientific instrument on your laptop
https://simgrid.org

Resources
CPUs, Links, Disks
Hosts, VMs, Netzones, …

Actors
Execute user-provided functions
Program anything you want/need

Activities
Computation, communication, I/O
Synchro mechanisms

Mailboxes Rendez-vous points between actors

https://simgrid.org/

Faithful Simulation – SMPI

9

▷ Have faith: do not modify anything, run your application!

▷ (Sim/em)ulation of (unmodified) MPI applications
○ Support of (the essential of) MPI-3.1
○ Collective operations: Borrowed selection logic of popular runtimes
○ Coupling: With S4U codes or multiple MPI codes

▷ Integration testing
○ Compile and run 100+ proxy-apps every night
○ C, C++, F77, F90, kokkos, and some OpenMP

Numerical
Simulation

https://framagit.org/simgrid/SMPI-proxy-apps/

https://framagit.org/simgrid/SMPI-proxy-apps/

Faster to run or simulate?

▷ Running the application
Acquire cores /nodes
Run in parallel 🐇
Less predictable

▷ Simulating the application
Use your laptop
Fold execution on one core 🐢
Reproducible

Use sampling to speed up the simulation (x5)
■ By just adding a SMPI macro to one function call

10

Numerical
Simulation

Flexible data management

11

Data Transport
Layer

▷ Inspired by popular data management frameworks (ADIOS, DataSpaces)
○ Client/Server library
○ Put/Get mechanism
○ Self-descriptive variables
○ Configurable data transport method

Flexible data management

▷ Inspired by popular data management frameworks (ADIOS, DataSpaces)
○ Client/Server library
○ Put/Get mechanism
○ Self-descriptive variables
○ Configurable data transport method

▷ Current implementation status (v0.1)
○ Dynamic client connection/deconnection
○ Multiple data channels
○ Multi-dimensional arrays
○ Synchronous/asynchronous transfers
○ Two transport methods (memcpy and network)

11

Data Transport
Layer

▷ Be flexible: use simple abstractions for analysis
○ Simple amount of work, complex cost models, small program, …
○ Connect them at will in an analysis workflow

▷ Basic structure of an analysis actor
1. Connect to the DTL on a specific channel
2. Get some variables
3. Perform the analysis
4. Put some new variable in the DTL (optional)

▷ Sim-Situ provides stock implementations
○ Distributed analysis
○ Parallel analysis
○ Data aggregator

Analysis
VisualizationCustomizable Analysis Actors

12

Sim-Situ in Practice

13

▷ Add customizable in-situ processing to an MPI application
○ Slightly modify the application

■ Handling extra configuration parameters ~10 lines

■ Interacting with the DTL ~20 lines
■ Compile against SMPI and Sim-Situ ~5 lines

~5 lines

○ Define your analysis workflow(s) Configurable
■ Define actor behaviors and use data channels to compose them

○ Add 3 extra files Configurable
■ XML: Target simulated infrastructure
■ Text: Analysis actors mapping and MPI hostfile

▷ Define your experimental scenarios

▷ Run them!

Check our experimental artifact https://doi.org/10.6084/m9.figshare.20416008.v1

https://doi.org/10.6084/m9.figshare.20416008.v1

Use Cases

14

Time or Space Division of Execution?

▷ Hypothesis: Existing balanced scenario with space division
▷ What-if analysis cost changes?

▷ Space Division
No impact on duration of
numerical simulation
No idle time
Analysis results may be delayed

▷ Time Division
More resource for numerical simulation
… but has to wait for the analysis to proceed
Completion of numerical simulation may be delayed

15

On-node or Off-node?

▷ Hypothesis: analysis time increases when distributed across more nodes
▷ On-node

○ Simulation and analyses share nodes (30/2 ratio on 16 nodes)
Direct access (memcopy)
Distributed analysis

▷ Off-node
○ 15 nodes for simulation +

1 node for analysis
No distribution of analysis
Indirect access (network)

▷ Measure the impact of size of staged data on execution time
With only 2 host files and a variable configuration parameter

16

▷ Sim-Situ: a simulation-based framework to study in-situ processing

A configurable tool to go beyond the traditional empiric guesses!

▷ Future work

Numerical Simulation
Faithful (Sim/Em)ulation of the
unmodified application
Keep the exact execution pattern

More applications
From proxy-apps to full scale

Data Transport Layer
Flexible data management
with a simple API (Put/Get)
and a Pub/Sub model

17

Analysis/Visualization
Customizable and composable
abstracted actors to enable
complex workflows

More transport methods
Capture behavior of
advanced algorithms

More stock implementations
Models of visualization routines
Complex analysis workflows

Conclusion and Future work

Thanks!
Any questions?

A Framework for the Faithful

Simulation of in situ Processing

Sim-Situ

Valentin Honoré, Tu Mai Anh Do, Loïc Pottier, Rafael Ferreira da Silva, Ewa Deelman,
Frédéric Suter

This work was partially sponsored by the Laboratory Directed Research and Development Program of the Oak Ridge National Laboratory,

managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

