

Copyright () 2020 Yves Bertot and Georges Gonthier and Assia Mahboubi and Enrico Tassi
HTTPS://MATH-COMP.GITHUB.I0/MCB/

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License
(the “License”). You may not use this file except in compliance with the License. You
may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0.
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “As 18” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Draft version Wed, 28 Sep 2022 09:06:53 +0000 ,

https://math-comp.github.io/mcb/
http://creativecommons.org/licenses/by-nc/3.0

Introduction

Mathematical Components is the name of a library of formalized mathematics for the CoqQ
system. It covers a variety of topics, from the theory of basic data structures (e.g., numbers,
lists, finite sets) to advanced results in various flavors of algebra. This library constitutes
the infrastructure for the machine-checked proofs of the Four Color Theorem [Gon08] and
of the Odd Order Theorem [Gon+13a].

The reason of existence of this book is to break down the barriers to entry. While there
are several books around covering the usage of the CoQ system [BC04; Chll4; Pie+15]
and the theory it is based on [Coq][Paulb; Unil3], the Mathematical Components library
is built in an unconventional way. As a consequence, this book provides a non-standard
presentation of CoOQ, putting upfront the formalization choices and the proof style that
are the pillars of the library.

This book targets two classes of public. On the one hand, newcomers, even the more
mathematically inclined ones, find a soft introduction to the programming language of
CoqQ, Gallina, and the SSReflect proof language. On the other hand accustomed CoQ
users find a substantial account of the formalization style that made the Mathematical
Components library possible.

By no means does this book pretend to be a complete description of CoQ or SSReflect:
both tools already come with a comprehensive user manual [Coq; GMT15]. In the course
of the book, the reader is nevertheless invited to experiment with a large library of
formalized concepts and she is given as soon as possible sufficient tools to prove non-trivial
mathematical results by reusing parts of the library. By the end of the first part, the reader
has learned how to prove formally the infinitude of prime numbers, or the correctness of
the Euclidean’s division algorithm, in a few lines of proof text.

Acknowledgments.

We thank Yves Bertot and Georges Gonthier, for contributing the first and the last chapter
of this book. We wish to thank Reynald Affeldt, Guillaume Allais, Sophie Bernard, Simon
Boulier, Cyril Cohen, Arthur Charguéraud, Alain Giorgetti, Darij Grinberg, Florent Hivert,
Pierre Jouvelot, Marisa Kirisame, Andrey Klaus, Guillaume Melquiond, Sebastian Miele,

Yamamoto Mitsuharu, Prashanth Mundkur, Michael Nahas, Julien Narboux, Siraphob
(Ben) Phipathananunth, Laurence Rideau, Lionel Rieg, Damien Rouhling, Michael Soegtrop,
Laurent Théry, and Anton Trunov for their careful proofreading and for their suggestions.
Many thanks to Hanna for the illustrations.

Structure of the book

The book has two parts which are meant to be read in order.

Part 1: Languages for writing formal mathematics

This part introduces two languages and incidentally a formalization approach.

The first language is used to represent mathematics in the CoqQ proof assistant. It is
called Gallina and, as the expert reader may know, it is based on a variant of type theory
named the Calculus of Inductive Constructions. As this part of the book explains, the very
same language is used to define mathematical objects, to describe their properties and to
spell out the proofs of these properties. Another distinguishing feature of this foundational
framework is the status it awards to computation, and the prominent role computations
shall play in proofs.

The second language is used to write proofs and is called SSRefiect, a shorthand for
Small Scale Reflection. SSReflect is a language designed to ease the activity of writing and
maintaining formal proofs. In particular the maintenance of large formal libraries requires
a solid writing discipline and a language that supports it. SSReflect provides linguistic
constructs well adapted to writing scripts that can be easily fixed in response to changes
to the contents of the formal libraries.

Actually, Small Scale Reflection is firstly the name of a formalization methodology,
sometimes also called Boolean Reflection. Initially conceived for the formal proof of the
Four Colors Theorem, it became a pillar of the Mathematical Components library and of
the formal proof of the Odd Order Theorem. The SSReflect proof language was named
after this methodology because of the support it provides for its implementation.

Part 2: Crafting a formal library

This part provides the tools to build a large library of formalized mathematics. In particular
it presents a powerful form of automation and a formalization technique that makes it
possible to organize concepts in a rational way and easily define new ones by linking them
to the already existing ones.

Automation is provided by programming type inference. The C0OQ system provides a
user-extensible type inference algorithm. It can be extended with declarative programs
giving canonical solutions to otherwise unsolvable problems. Such solutions typically
involve notions and theorems that are part of the Mathematical Components library. By
programming type inference one can hence teach CoQ the contents of the library. The
system is then able to reconstruct non-trivial missing pieces of information, as the informed
reader typically does when reading a mathematical text.

Formalized knowledge is organized by means of interfaces (in the spirit of algebraic
structures) and relations between them. Type inference is programmed to play the role
of a librarian and recognize when an abstract theory has the right to apply to a specific
example.

Finally the rich language of CoQ lets one define new concepts by refining existing
ones, typically by gluing an object with a proof of some extra property. Type inference is
programmed to transport all the theory available on the original concept to the derived
one.

How to use the book

Conventions

Advice one should keep in mind are signaled as follows:

) Remember this advice.

Tricky details typically overlooked by beginners are signaled as follows:

I Mind this detail.

CoQ code is in typewriter font and (surrounded by parentheses) when it occurs in the
middle of the text. Longer snippets are in boxes with line numbers like the following one:

Example Gauss n : \sum_(0 <= i < n.+1) i = (n * n.+1) %/ 2.
Proof.

elim: n =>[|n IHn]; first by apply: big_natl.

rewrite big_nat_recr //= IHn addnC -divnMD1l //.

by rewrite mulnS mulnl -addnA -mulSn -mulnS.

Qed.

[S

Code snippets are often accompanied by the goal status printed by CoQ.

n : nat
IHn : \sum_(0 <= i < n.+1) i = (n * n.+1) %/ 2

\sum_(0 <= i < n.+2) i = (n.+1 * n.+2) %/ 2

Names of library components one can Require in COQ are written like ssreflect or fintype.

Running examples in the Coq system

The contents of this book is mostly about interacting with a computer program consisting
of the CoqQ system and the Mathematical Components library. Many examples are given,
and we advise readers to experiment with this program, after having installed the CoqQ
system and the Mathematical Components library on a computer. Documentation on
how to install CoqQ is available at http://coq.inria.fr, while documentation on how to
install the Mathematical Components library is available at https://math-comp.github.
io/math-comp/.

There are a variety of ways to run the CoQ system: a command line is provided
under the name coqtop, while a windowed interface is provided under the name cogide.
The CoQ community also develops alternative approaches to integrate CoQ in their
preferred programming environment. For instance, there exist special extensions of CoQ
for the popular Emacs programming editor (known as Proof General) and for the Visual
Studio Code programming environment (known as vscoq). These extensions and similar
projects can easily be found by a search on the Internet. Last, but not least, you can
run CoOQ inside a web browser: the code snippets presented in this book can be found at
https://math-comp.github.io/mcb/snippets/.

When starting a CoQ session, a few commands must be sent to the CoQ system to
tell it to load the Mathematical Components library and to configure its behavior so it
matches the usual programming style of the Mathematical Components developers:

http://coq.inria.fr
https://math-comp.github.io/math-comp/
https://math-comp.github.io/math-comp/
https://math-comp.github.io/mcb/snippets/

From mathcomp Require Import all_ssreflect.
Set Implicit Arguments.

Unset Strict Implicit.

Unset Printing Implicit Defensive.

s oW oo e

The first line actually instructs the CoQ system to load the first level of the Mathematical
Components library. More advanced levels are available under names all_fingroup, all_algebra,
all_solvable, all_field, and all_character. While the first chapters of this book rely mainly on
the first level, later chapters will rely on the other levels. This will be clearly stated as the
topics evolve.

Contents

1 Functions and computationc.cccoiiiiiieeeooo... 13
1.1 Functions 13
1.2 Data types, first examples 20
1.3 Containers 27
1.4 The Section mechanism 33
1.5 Symbolic computation 34
1.6 Iterators and mathematical notations 36
1.7 Notations, abbreviations 37
2 First steps in formal proofs 41
2.1 Formal statements 41
2.2 Formal proofs 45
2.3 Quantifiers 53
2.4 Rewrite, a Swiss army knife 62
2.5 Searching the library 66
3 Dependent type theory 69
31 Propositions as types, proofs as programs 69
3.2 Terms, types, sorts 71
3.3 Propositions, implication, universal quantification 74

3.4 Conversion 75

3.5 Inductive types 75

3.6 More connectives 77
3.7 Inductive reasoning 80
4 A proof language for formal proofs 83
4.1 Bookkeeping: goals as stacks 84
4.2 Structuring proofs, by examples 89
4.3 Proof maintenance: a matter of style 94
5 Inductive specifications 99
5.1 Reflection views 100
5.2 Advanced, practical, statements 106
5.3 Strong induction via inductive specs 108
5.4 Showcase: Euclidean division, simple and correct 110
5.5 Notational aspects of specifications 111
1| Crafting a formal library
6 Implicit parameters 115
6.1 Type inference and higher-order unification 116
6.2 Type inference by example 117
6.3 Records as relations 119
6.4 Records as (first-class) interfaces 123
6.5 Using a generic theory 125
6.6 The generic theory of sequences 126
6.7 The generic theory of “big” operators 128
6.8 Stable notations for big operators 134
6.9 Working with overloaded notations 135
6.10 Ad-hoc polymorphism 136
7 SUb-types ... 137
7.1 n-tuples, lists with an invariant on the length 138
7.2 n-tuples, a sub-type of sequences 141
7.3 Finite types and their theory 144
7.4 The ordinal subtype 145
7.5 Finite functions 146
7.6 Finite sets 148
1.7 Permutations 149

7.8 Matrix 150

8.1
8.2
8.3
8.4
8.5

Organizing Theories 155
Structure interface 155
Telescopes 158
Packed classes 160
Parameters and constructors 165
Linking a custom data type to the library 167

CoNCEPLS ... o 177
Ssreflect Tactics i 179
Definitions and Notations 181
Cog Commands it 183

Bibliography 185

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
2.4
25

31
3.2
3.3
3.4
35
3.6
3.7

4.1
4.2
4.3

51
52
53
5.4
55

Functions and computation 13
Functions

Data types, first examples

Containers

The Section mechanism

Symbolic computation

Iterators and mathematical notations

Notations, abbreviations

First steps in formal proofs 41
Formal statements

Formal proofs

Quantifiers

Rewrite, a Swiss army knife

Searching the library

Dependent type theory 69
Propositions as types, proofs as programs

Terms, types, sorts

Propositions, implication, universal quantification
Conversion

Inductive types

More connectives

Inductive reasoning

A proof language for formal proofs 83
Bookkeeping: goals as stacks

Structuring proofs, by examples

Proof maintenance: a matter of style

Inductive specifications 99
Reflection views

Advanced, practical, statements

Strong induction via inductive specs

Showcase: Euclidean division, simple and correct
Notational aspects of specifications

1.1

1.1.1

1. Functions and computation

In the formalism underlying the CoQ system, functions play a central role akin to the
one of sets in set theory. However, those functions are rather different in nature from the
functions encountered in the mathematical tradition of set theory.

This chapter provides code snippets that can be loaded in a Coq session, after the
header described at the end of the introduction chapter. These snippets should be loaded
in order and without omission to avoid mistakes that would take too long to explain at
this introductory level.

Functions

Before being more precise about the logical foundations of the CoQ system in chapter 3,
we review in this section some vocabulary and notations associated with functions. We
will use the words function and operation interchangeably. Sometimes, we will also use the
word program to talk about functions described in an effective way, i.e. by a code that can
be executed. As a consequence we borrow from computer science some jargon, like input
or return. For example we say that an operation takes as input a number and returns its
double to mean that the corresponding program computes or outputs the double of its
input, or that the function maps a number to its double. We start with a collection of
examples involving natural numbers. For this purpose, we casually use the COQ term nat
to refer to the collection of natural numbers, and the infix symbol + (resp. *) to denote
the addition (resp. product) operation on natural numbers, before providing their actual
formal definition in section 1.2.2. We also assume implicitly that the CoqQ symbols o, 1, 2
represent natural numbers which represent the corresponding numerals 0,1,2,....

Defining functions, performing computation

Mathematical formulas are expressions composed of operation symbols, of a certain arity,
applied to some arguments which are either variables or themselves (sub)-expressions. In
many cases these expressions are written using notations for the operations, like the infix

14 Chapter 1. Functions and computation

+ in the expression:
2+1.

This expression represents a natural number, obtained as the result of an operation applied
to its arguments. More precisely, it is the result of the binary operation of addition, applied
to two natural numbers 2 and 1. The same expression can also represent the result of
the unary operation of adding one on the right to a natural number, applied to a natural
number 2.

In CoQ, the operation of adding one on the right to a natural number is written in the
following manner:

I 1 fun n =>n + 1

The textual transformation of expression (2 + 1) into an explicit application of this function
to one argument can be described as follows: select the sub-expression that is considered
as the argument of the function, here 2, and replace it with a symbolic name, here n. Then
encapsulate the resulting expression (n + 1) with the prefix “fun n =>”. We commonly say
that the prefix “fun n =>” binds the variable n in the expression n + 1. The keyword “fun”
stands for function.

Now we still need to apply this function to the argument 2, and this is written as:

I 1 (funn=>n+1) 2

Note that applying a function to an argument is represented simply by writing the function
on the left of the argument, with a separating space but not necessarily with parentheses
around the argument; we will come back to this later in the present section. As a first
approximation, we can see that expressions in the language of Co0Q, also called terms,
are either variables, constants, functions of the form (fun x => e), where e is itself an
expression, or the application (e1 e2) of an expression e1 to another expression e2. However,
just like with pen and paper, the addition operation is denoted in the CoQ language
using an infix notation +. The transformation we just detailed, from expression (2 + 1) to
expression (fun n => n + 1) 2, is called abstracting 2 in (2 + 1). As a contrast to traditional
set-theoretic approaches, abstraction is essentially the only way to define a function in this
language. A function is never described by providing extensively the graph as a subset of
the cartesian product of the input and the output.

While the expression (fun n => n + 1) describes an operation without giving it a name,
the usual mathematical practice would be to rely on a sentence like consider the function
f from N to N which maps n to n+1, or on a written definition like:

N —- N
n — n+l

/e (1.1)

In CoqQ, the user can also associate a name with the operation (fun n => n + 1), in the
following manner:

I 1 Definition f := fun n =>n + 1.

An alternative syntax for exactly the same definition is as follows and this alternative is
actually preferred.

1.1 Functions 15

I 1 Definition f n :=n + 1.

In this syntax, the name of the argument n is provided on the left of the separating
:=, to be then referenced on the right of the separating :=, in the actual definition of the
function. The code of the actual definition is hence enclosed between the := symbol and
the terminating dot.

The information on the domain and codomain of £, as in f : N — N, is provided using
the nat label to annotate the argument and the output in the CoQ definition:

I 1 Definition f (n : nat) : nat :=n + 1.

The label nat is in fact called a type. We refer once again to chapter 3 for a more accurate
description of types: in the present chapter we rely on the loose intuition that a type refers
to a collection of objects that can be treated in a uniform way. A type annotation has the
shape (t+ : T), where a colon : surrounded by two spaces separates an expression t on its
left from the type T itself on the right. For instance in (a : nat), the argument n of the
function £ is annotated with type nat.

The other occurrence of nat, visible in ... : nat := ..., annotates the output of the
function and indicates that this output is of type nat. In other words, the type of any
expression made of £ applied to an argument is nat.

CoQ provides a command to retrieve relevant information about the definitions done
so far. Here is the response to a query about £:

I 1 About f. I f : nat -> nat

which confirms the type information about the domain and codomain of f: the arrow->
separates the type of the input of £ from the type of its output.

We can be more inquisitive in our requests for information about £, and ask also for
the value behind this name f:

1 Print f. f =funn : nat =>n + 1
2 : nat -> nat

The output of this Print query has some similarities with the mathematical notation
in (1.1) and provides both the actual definition of £ and its type information. Note that
the way the definition is printed also features a type annotation of the arguments of the
function, in the fragment “fun n : nat =>".

Types are used in particular to avoid confusion and rule out ill-formed expressions. For
example the function £ we just defined can only be applied to a natural number, i.e., a term
of type nat. COQ provides a command to check whether an expression is well typed: as 3 is
a natural number, the following query succeeds:

I 1 Check f 3. I f 3 : nat

But £ cannot be applied to an argument that is not a natural number, like for example a
function:

1.1.2

16 Chapter 1. Functions and computation

Error:

The term "(fun x : nat => x + 1)"
has type "nat -> nat" while it is
expected to be "nat".

1 Check f (fun x : nat => x + 1).
2
3

As expected, it makes little sense to compute the sum of a function and 1.

Expressions that are well typed can be computed by COQ, meaning that they are
reduced to a “simpler” form, also called a normal form. For example computing (f 3)
returns value 4:

I 1 Compute f 3. I =4 : nat

We can observe that in the course of the computation, argument 3 has been substituted
for the argument variable in the definition of function £, and that the addition has been
evaluated. This capability of CoqQ plays a crucial role in the Mathematical Components
library, as we shall see in chapter 2. It is however too early to be more precise about this
normalization strategy. This would indeed require describing in more details the formalism
underlying the CoQ system, which we do only in chapter 3. The interested reader can
consult [Coq, section 5.3.7, “Performing computations”] for the official documentation of
the underlying vm_compute tactic. For now, we suggest to keep only the intuition that this
normalization procedure provides the “explicit result” of a computation.

Functions with several arguments

The command we used to define a function with a single argument generalizes to the case
of functions with several arguments, which are then separated by a space. Here is an
example of a function with two arguments:

I 1 Definition g (n : nat) (m : nat) : nat :=n + m * 2.

In fact, for the sake of compactness, consecutive arguments of one and the same type can
be grouped and share the same type annotation, so that the above definition is better
written:

I 1 Definition g (n m : nat) : nat :=n + m * 2.

This asserts firstly (by the (n m : nat) type annotation) that both arguments n and m have
type nat, and secondly that the output of the function also has type nat, as prescribed by
the ... : nat := ... type annotation. Again, the About command provides information on
the type of the arguments and values of g:

I 1 About g. I g : nat -> nat -> nat

The first two occurrences of nat in the response (nat -> nat -> nat) assert that function
g has two arguments, both of type nat; the last occurrence refers to the type of the output.
This response actually reads (nat -> (nat -> nat)), as the -> symbol associates to the right.
Otherwise said, a multiple argument function is a single argument function that returns
a function. This idea that multiple argument functions can be represented using single
argument functions (rather than, for instance, tuples of arguments) is called currying and

1.1 Functions 17

will play a special role in chapter 3. For now, let us just insist on the fact that in CoqQ,
functions with several arguments are not usually represented with a tuple of arguments.

Back to our example, here is an alternative definition h which has a single argument n
of type nat and returns a function of one argument as a result:

I 1 Definition h (n : nat) : nat -> nat := funm =>n + m * 2.

Queries on the respective types of g and n provide identical answers:

I 1 About h. I h : nat -> nat -> nat

If we go further in our scrutiny and ask the CoOQ system to print the definitions
associated to names g and h, we see that these definitions are exactly the same: The CoQ
system does not make any difference between these two ways of describing a two-argument
function.

1 fun nm : nat => n +m * 2
2 : nat -> nat -> nat
3 Print h. h=funnm: nat =>n +m % 2
4 : nat -> nat -> nat

Print g. g

Since g is also a one-argument function, it is sensible to apply this function to a single
argument. We can call this partial application because g is also meant to be applied to
two arguments. As expected, the value we obtain this way is itself a function, of a single
argument, as illustrated by the following query:

I 1 Check g 3. I g 3 : nat -> nat

Now, the function g can be applied to the numbers 2 and 3, as in g 2 3. This results in
a term of type nat, the type of the outputs of g, and we can even compute this value:

I 1 Compute g 2 3. I = 8 : nat

Term (g 2 3) actually reads ((g 2) 3) and features three nested sub-expressions. The
symbol g is the deepest sub-expression and is applied to 2 in (g 2). The value of this
sub-expression (g 2) is a function, which can be written:

I 1 funm=>2+m *x 2

Finally, (g 2 3) is in turn the application of the latter function to 3, which results in:

I 1 2+ 3 %2

by substituting the value 3 for the bound variable m in fun m => 2 + m * 2.

1.1.3

18 Chapter 1. Functions and computation

Higher-order functions

Earlier in this section we defined functions like £, g and h which operate on natural numbers.
Functions whose arguments are themselves functions are called higher-order functions. For
instance, the following definition introduces a function that takes a function from nat to
nat and produces a new function from nat to nat, by iterating its argument.

1 Definition repeat_twice (g : mat -> nat) : nat -> nat :=
2 fun x => g (g x).

Once again, let us scrutinize this CoQ statement. The first line asserts that the name of
the function to be defined is repeat_twice. We also see that it has one argument, a function
of type nat -> nat. For later reference in the definition of repeat_twice, the argument is
given the name g. Finally we see that the value produced by the function repeat_twice is
itself a function from nat to nat.

Reading the second line of this statement, we see that the value of repeat_twice when
applied to one argument is a new function, described using the “fun .. => ..” construct.
The argument of that function is called x. After the => sign, we find the ultimate value of
this function. This fragment of text, g (g x), also deserves some explanation. It describes
the application of function g to an expression (g x). In turn, the fragment (g x) describes
the application of function g to x. Remember that the application of a function to an
argument is denoted by juxtaposing the function (on the left) and the argument (on the
right), separated by a space. Moreover, application associates to the left: expressions made
with several sub-expressions side by side should be read as if there were parentheses around
the subgroups on the left. Parentheses are only added when they are needed to resolve
ambiguities. For instance, the inner (g x) in (g (g x)) needs surrounding parentheses
because expression (g g x) reads ((g g) x). The latter expression would be ill-formed
because it contains the sub-expression (g g) where g receives a function as argument, while
it is expected to receive an argument of type nat.

We can play a similar game as in section 1.1.2, and scrutinize the expression obtained
by applying the function repeat_twice to the function £ and the number 2. Let us compute
the resulting value of this application:

I 1 Compute repeat_twice f 2. I = 4 : nat

The expression (repeat_twice £ 2) actually reads ((repeat_twice £f) 2) and features three
nested sub-expressions separated by spaces. The symbol repeat_twice is the deepest sub-
expression and is applied to f in (repeat_twice £). According to the definition of the
repeat_twice function, the value of this sub-expression is a function, which is then applied
to 2. The resulting expression is (£ (£ 2)), and given the definition of £, this expression
can also be read as ((2 + 1) + 1). Thus, after computation, the result is 4.

The function repeat_twice is an instance of a function with several arguments: as
illustrated in section 1.1.2, its partial application to a single argument provides a well-
formed function, from nat to nat:

I 1 Check (repeat_twice f). I repeat_twice f : nat -> nat

Now, looking at the type of repeat_twice itself (and adding redundant parentheses
for clarity), we obtain ((nat -> nat) -> (nat -> nat)): Thus, once the first argument

1.1.4

1.1 Functions 19

(f : nat -> nat) is passed, we obtain a term the type of which is the right hand side
of the main arrow, that is (nat -> nat). By passing another argument, like (2 : nat), we
obtain an expression the type of which is, again, the right hand side of the main arrow,
here nat. Remark that each function has an arrow type and that the type of its argument
matches the left hand side of this arrow (as depicted with different underline styles). When
this is not the case, COQ issues a type error.

Error: The term "f" has type "nat -> nat"

Check t_twi f £).
I ! eck (repeat_twice) while it is expected to have type "nat".

Local definitions

The process of abstraction described at the beginning of this section can be seen as the intro-
duction of a name — the one used for the bound variable — in place of a sub-expression that
may appear at several occurrences. For instance, in the expression (fun x => x + x + x) B,
we use the variable x as an abbreviation for B. It is specially useful when B happens to
be a very large expression: readability is improved by avoiding the repetition of B, which
may otherwise obfuscate the triplication pattern. An alternative way of declaring such an
abbreviation in CoqQ uses the following syntax (which is more readable, as it defines the
meaning of the abbreviation x before it is used):

1 let x := B in
2 X+ X +x

In this expression, the variable x is bound and can be used in the text that comes after
the in keyword. Variants of this syntax make it possible to state the type ascribed to the
variable x, which may come handy when the code has to be very explicit about the nature
of the values being abbreviated. Here is an example of usage of this syntax:

1 Compute
2 let n := 33 : nat in
. = 297 : nat
3 let e :=n+n +n in
4 et+te+e.

When it comes to comparing the values of computations, a local definition has the same
result as the expression where all occurrences of the bound variable are replaced by the
corresponding expression. Thus, the example expression above has exactly the same value
as:

|1 (33 + 33 + 33) + (33 + 33 + 33) + (33 + 33 + 33)

However, in practice the evaluation strategy used in a normalization command like
Compute takes advantage of the 1et .. in .. notation to avoid duplicating computation
efforts. In our example, the value of the partial sum (33 + 33 + 33) is computed only once
and shared at every occurrence of the bound variable. This abbreviation facility can thus
also be used to organize intermediate computations.

1.2

1.2.1

20 Chapter 1. Functions and computation

Data types, first examples

A well-formed mathematical expression is a combination of variables and symbols of a
given language that respects the prescribed arities of the operations. For instance, the
expression:

(TVL)ADL

is a well-formed expression in the language {T,L,V,A} of boolean arithmetic, while the
expression:

0+xx(S0)

is a well-formed expression in the language {0, 5,4, x } of Peano arithmetic. These languages
are usually equipped with behavior rules, expressed in the form of equality axioms, like

TVb=T or O+x=x

In practice, these axioms confer a distinctive status upon the symbols T and L for booleans,
and upon the symbols 0 and S for natural numbers. More precisely, any variable-free
boolean expression is equal to either T or | modulo these axioms, and any variable-free
expression in Peano arithmetic is equal either to 0 or to an iterated application of the
symbol S to 0. In both cases, the other symbols in the signature represent functions, whose
computational content is prescribed by the axioms. In what follows, we shall call the
distinctive symbols constructors. So the constructors of boolean arithmetic are T and L
and the constructors of Peano arithmetic are 0 and S.

In CoQ, such languages are represented using a data type, whose definition provides in
a first single declaration the name of the type and the constructors, plus some rules on
how to define maps on these data types or prove theorems about their elements. The other
operations are then derived from these rules. The first single declarations of data types
are introduced by the means of inductive type definitions. One can then explicitly define
more operations on the elements of the type by describing how they compute on a given
argument in the type using a case analysis or a recursive definition on the shape of this
argument. This approach is used in a systematic way to define a variety of basic types,
among which boolean values, natural numbers, pairs or sequences of values are among the
most prominent examples.

In the following sections, we introduce basic types bool for boolean values and nat
for natural numbers, taking the opportunity to describe various constructs of the CoqQ
language as they become relevant. These sections serve simultaneously as an introduction
to the data types bool and nat and to the CoQ language constructs that are used to define
new data types and describe operations on these data types.

Boolean values

The collection B := {T, L} of boolean values is formalized by a type called boo1, with two
inhabitants true and false, representing T and L respectively. The declaration of this type
happens in one of the first files to be automatically loaded when CoQ starts, so booleans
look like a built-in notion. Nevertheless, the type of boolean values is actually defined in
the following manner:

I 1 Inductive bool := true | false.

1.2 Data types, first examples 21

This is one of the simplest possible inductive definitions, with only base cases, and no
inductive cases. This declaration states explicitly that there are exactly two elements in
type bool: the distinct constants true and false, called the constructors of type bool.

In practice, this means that we can build a well-formed expression of type bool by using
either true or false.

I 1 Check true. I true : bool

In order to use a boolean value in a computation, we need a syntax to represent the
two-branch case analysis that can be performed on an expression of type bool. The CoQ
syntax for this case analysis is “if .. then .. else ..” as in:

I 1 if true then 3 else 2

More generally, we can define a function that takes a boolean value as input and returns
one of two possible natural numbers in the following manner:

I 1 Definition twoVthree (b : bool) := if b then 2 else 3.

As one expects, when b is true, the expression (twoVthree b) evaluates to 2, while it
evaluates to 3 otherwise:

|
N

: nat
: nat

|
w

1 Compute twoVthree true.
2 Compute twoVthree false.

As illustrated on this example, the Compute command rewrites any term of the shape
if true then t1 else t2 into t1 and rewrites any term of the shape if false then t1 else t2
into t2.

We can then use this basic operation to describe the simplest binary operations that we
usually consider as parts of the boolean language: conjunction, written &&, and disjunction,
written ||. We first define these as functions, as follows:

1 Definition andb (bl b2 : bool) :
2 Definition orb (bl b2 : bool) :

if bl then b2 else false.
if bl then true else b2.

and then the notations && and || are attached to these two functions, respectively.

For any choice of values b1, b2, and b3, the expressions b1 && (b2 && b3) and (b1 && b2) && b3
always compute to the same result. In this sense, the conjunction operation is associative.
We shall see in chapter 2 that this known property can be stated explicitly. To a practiced
pair of eyes, this associativity property is implicitly used in the reading process, so that
the two forms of three-argument conjunctions are identified. However, when manipulating
boolean expressions of the CoQ language, there is a clear distinction between these two
forms of conjunctions of three values, and the notation conventions make sure that the two
forms appear differently on the screen. We will come back to this question in section 1.7.

The Mathematical Components library provides a collection of boolean operations that
model reasoning steps on truth values. The functions are called negb, orb, andb, and implyb,
with notations ~~, |1, &&, and ==>, respectively (the last three operators are infix, i.e., they
appear between the arguments, as in b1 && b2). Note that the symbol -~ uses two characters
~: it should not be confused with two consecutive occurrences of the one-character symbol

1.2.2

22 Chapter 1. Functions and computation

~, which would normally be written with a separating space. The latter has a meaning in
CoQ, but is almost never used in the Mathematical Components library.

Natural numbers

The collection of natural numbers is formalized by a type called nat. An inhabitant of this
type is either the constant 0 (capital “o” letter) representing zero, or an application to an
existing natural number of the function symbol s representing the successor:

I 1 Inductive nat := 0 | S (n : nat).

This inductive definition of the expressions of type nat has one base case, the constant
0, and one inductive case, for the natural numbers obtained using the successor function at
least once: therefore 0 has type nat, (S 0) has type nat, so does (s (s 0)), and so on, and
any natural number has this shape. The constant 0 and the function s are the constructors
of type nat.

The decimal notations we have used so far are only a parsing and display facility
provided to the user for readability: o is displayed 0, (s 0) is displayed 1, etc. Users can
also type decimal numbers to describe values in type nat: these are automatically translated
into terms built (only) with 0 and s. In the rest of this chapter, we call such a term a
numeral.

The Mathematical Components library provides a few notations to make the use of the
constructor S more intuitive to read. In particular, if x is a value of type nat, then x.+1 is
another way to write (s x). The “.+1” notation binds stronger than function application,
rendering some parentheses unnecessary: assuming that f is a function of type nat -> nat,
the expression (£ n.+1) reads (£ (S n)). Notations are also provided for s (s n), written
n.+2, and so on until n.+4.

I 1 Check fun n => f n.+1. I fun n : nat => f n.+1 : nat -> nat

When defining functions that operate on natural numbers, we can proceed by case
analysis, as was done in the previous section for boolean values. Here again, there are
two cases: either the natural number used in the computation is 0 or it is p.+1 for some p,
and the value of p may be used to describe the computations to be performed. This case
analysis can be seen as matching against patterns: if the data fits one of the patterns, then
the computation proceeds with the expression in the corresponding branch. Such a case
analysis is therefore also called pattern matching. Here is a toy example:

I 1 Definition non_zero n := if n is p.+1 then true else false.

The function non_zero returns the boolean value false if its argument is 0, and true
otherwise. In this definition p.+1 is a pattern: The value bound to the name p mentioned
in this pattern is not known in advance. This value is actually computed at the moment
the argument n provided to the function is matched against the pattern. For instance:

I 1 Compute non_zero 5. I = true : bool

The Compute command rewrites any term of the shape if 0 is p.+1 then t1 else t2 into
t2 and any term of the shape if k.+1 is p.+1 then t1 else t2 into t1 where all occurrences

1.2 Data types, first examples 23

of p have been replaced by k. In our example, the value of k.+1 is 5, thus the value of k is 4
and t1 is true.

The symbols that are allowed in a pattern are essentially restricted to the constructors,
here 0 and s, and to variable names. Thanks to notations however, a pattern can also
contain occurrences of the notation “.+1” which represents s, and decimal numbers, which
represent the corresponding terms built with s and 0. When a variable name occurs, this
variable can be reused in the result part, as in:

I 1 Definition pred n := if n is p.+1 then p else 0.

Observe that in the definitions of functions predn and non_zero, we did omit the type
of the input n: matching n against the p.+1 pattern imposes that n has type nat, as the s
constructor belongs to exactly one inductive definition, namely the one of nat.

The pattern used in the if statement can be composed of several nested levels of the
.+1 pattern. For instance, if we want to write a function that returns true for every input n
larger than 4 and false otherwise, we can write the following definition:

1 Definition larger_than_4 n :=
2 if n is u.+1.+41.+1.+1.+1 then true else false.
On the other hand, if we want to describe a different computation for three different cases
and use variables in more than one case, we need the more general “match .. with .. end”
syntax. Here is an example:

1 Definition three_patterns n :=
2 match n with

3 u.+1.+1.+1.+41.41 => u

4 | v.+1 => v

5 | 0 =>n

6 end.

This function maps any number n larger than or equal to 5 to n—5, any number
ne{l,...,4} ton—1, and 0 to 0.

The pattern matching construct “match .. with .. end” may contain an arbitrarily large
number of pattern matching rules of the form “pattern=>result” separated by the | symbol.
Optionally one can prefix the first pattern matching rule with |, in order to make each line
begin with |. Each pattern matching rule results in a new rewrite rule available to the
compute command. All the pattern matching rules are tried successively against the input.
The patterns may overlap, but the result is given by the first pattern that matches. For
instance with the function three_patterns, if the input is 2, in other words 0.+1.+1, the first
rule cannot match, because this would require that 0 matches u.+1.+1.+1 and we know that
0 is not the successor of any natural number; when it comes to the second rule 0.+1.+1
matches v.+1, because the rightmost .+1 in the value of 2 matches the rightmost .+1 part
in the pattern and 0.+1 matches the v part in the pattern.

A fundamental principle is enforced by COQ on case analysis: exhaustiveness. The
patterns must cover all constructors of the inductive type. For example, the following
definition is rejected by CoQ.

1 Definition wrong (n : nat) := Error: Non exhaustive pattern-matching:
2 match n with O => true end. no clause found for
3 pattern S _

24 Chapter 1. Functions and computation

We finish the section by showing a syntactic facility to scrutinize multiple values at
the same time. However, this part is not specific to natural numbers, and we use boolean
values to illustrate the facility.

1 Definition same_bool bl b2 :=
2 match bl, b2 with

3 | true, true => true

4 | false, false => true

5 | _, _ => false

6 end.

Here, the reserved word _ stands for a “throwaway variable”, i.e., a variable that we
choose to give no name because we are not going to reference it (for example, the constant
function fun (n : nat) => 2 can also be written fun (_ : nat) => 2).

The above code defining same_bool is parsed as follows:

1 Definition same_bool bl b2 :=

2 match bl with

3 | true => match b2 with true => true | _ => false end
4 | false => match b2 with true => false | _ => true end
5 end.

1.2.3 Recursion on natural numbers

Using constructors and pattern matching, it is possible to add or subtract one, but not to
describe the addition or subtraction of arbitrary numbers. For this purpose, we resort to
recursive definitions. The addition operation is defined in the following manner:

1 Fixpoint addn n m :=
2 if n is p.+1 then (addn p m).+1 else m.

As this example illustrates, the keyword for defining a recursive function in COQ is Fixpoint:
the function being defined, here called addn, is used in the definition of the function addn
itself. This text expresses that the value of (addn p.+1 m) is (addn p m).+1 and that the value
(addn 0 m) is m. This first equality may seem redundant, but there is progress when reading
this equality from left to right: an addition with p.+1 as the first argument is explained
with the help of addition with p as the first argument, and p is a smaller number than
p.+1. When considering the expression (addn 2 3), we can know the value by performing
the following computation:

(addn 2 3) use the “then” branch, p = 1
(addn 1 3).+1 use the “then” branch, p = 0
(addn 0 3).+1.+1 use the “else” branch
3.+1.+1 remember that 5 = 3.+1.+1

When the computation finishes, the symbol addn disappears. In this sense, the recursive
definition is really a definition. Remark that the (addn n m) program simply stacks n times
the successor symbol on top of m.

If we reflect again on the discussion of Peano arithmetic, as in Section 1.2, we see that
addition is provided by the definition of addn, and the usual axioms of Peano arithmetic,
namely:

Sx+y=Sx+y) O+x=x

1.2 Data types, first examples 25

are actually provided by the computation behavior of the function, namely by the “then”
branch and the “else” branch respectively. Therefore, Peano arithmetic is really provided
by C0Q in two steps, first by providing the type of natural numbers and its constructors
thanks to an inductive type definition, and then by providing the operations as defined
functions (usually recursive functions as in the case of addition). The axioms are not
constructed explicitly, but they appear as part of the behavior of the addition function. In
practice, it will be possible to create theorems whose statements are exactly the axioms of
Peano arithmetic, using the tools provided in Chapter 2. The fact that the computation of
addn 2 3 ends in an expression where the addn symbol does not appear is consistent with the
fact that o (also noted 0) and s (also noted .+1) are the constructors of natural numbers.
An alternative way of writing addn is to provide explicitly the rules of the pattern-
matching at stake instead of relying on an if statement. This can be written as follows:

1 Fixpoint addn n m :=

2 match n with

3 | 0=>m

4 | p.+1 => (addn p m).+1
5 end.

With this way of writing the recursive function, it becomes obvious that pattern-matching
rules describe equalities between two symbolic expressions, but these equalities are always
used from left to right during computations.

When writing recursive functions, the CoOQ system imposes the constraint that the
described computation must be guaranteed to terminate. The reason for this requirement
is sketched in section 3.7. This guarantee is obtained by analyzing the description of
the function, making sure that recursive calls always happen on a given argument that
decreases. Termination is obvious when the recursive calls happen only on “syntactically
smaller arguments”. For instance, in our example addn, the function is defined by matching
its first argument n against the patterns p.+1 and 0; in the branch corresponding to the
pattern p.+1, the recursive call happens on p, a strict subterm of p.+1. Had we matched the
argument n against the pattern p.+1.+1, then the recursive call would have been allowed on
arguments p or p.+1, but not p.+1.+1. The way CoQ verifies that recursive functions will
terminate is explained in more detail in the reference manual [Coq] or in the Coq’Art book
[BCO4].

An erroneous, in the sense of non-terminating, definition is rejected by CoQ:

1 Fixpoint loop n := Error: Recursive call to loop has
2 if n is O then loop n else O. principal argument equal to "n"
3 instead of a subterm of "n".

We have seen that addition is implemented by repeating the operation of applying .+1
to one of the arguments. Conversely, comparing two natural numbers is implemented by
repeating the operation of fetching a subterm. Consider two terms m and n representing
the natural numbers m and n respectively. Then m is larger than n if and only if m has k
more constructors than n for some k > 0, which measures the distance between m and n.
Comparison is thus implemented in terms of an auxiliary truncated subtraction, which is
again easily expressed using pattern matching constructs:

26 Chapter 1. Functions and computation

1 Fixpoint subn m n : nat :=
2 match m, n with

3 | p.+1, q.+1 => subn p q
4 | _, _=>m

5 end.

Number m is less or equal to number n if and only if (subn m n) is zero. Here as well, this
subtraction is already defined in the libraries, but we play the game of re-defining our
own version. The second pattern matching rule indicates that when any argument of the
subtraction is 0, then the result is the first argument. This rule thus also covers the case
where the second argument is non-zero while the first argument is 0: in that case, the result
of the function is zero. Another possible view on subn it to see it as a subtraction operation
on natural numbers, made total by providing a default value in the “exceptional” cases.

We can also write a recursive function with two arguments of type nat, that returns
true exactly when the two arguments are equal:

1 Fixpoint eqn m n :=

2 match m, n with

3 | 0, 0 => true

4 | p.+1, gq.+1 => eqn p q
5 | _, _ => false

6 end.

The last rule in the code of this function actually covers two cases : 0, _.+1 and _.+1, 0.
For equality test functions, it is useful to add a more intuitive notation. For instance
we can attach a notation to eqn in the following manner:

I 1 Notation "x == y" := (eqn x y).

Now that we have programmed this equality test function, we can verify that the CoqQ
system really identifies various ways to write the same natural number.

1 Compute 0 == 0. = true : bool
2 Compute 1 == S 0. = true : bool
3 Compute 1 == 0.+1. = true : bool
4 Compute 2 == § 0. = false : bool
5 Compute 2 == 1.+1. = true : bool
6 Compute 2 == addn 1 0.+1. = true : bool

In this section, we introduced a variety of functions and notations for operations on
natural numbers. In practice, these functions and notations are already provided by the
Mathematical Components library. In particular it provides addition (named addn, infix
notation +), multiplication (muln, *), subtraction (subn,-), division (divn, %/), modulo (modn,
%%), exponentiation (expn, "), equality comparison (egn, ==), order comparison (leq, <=)
on natural numbers. All these operations (apart from the comparisons) output natural
numbers: as explained above, subtraction is made to return 0 when the subtrahend exceeds
the minuend; similarly, division is integer division. The trailing n in the names is chosen to
signal that these operations are on the nat data type. Postfix notations such as .-1 and .*2
are provided for the predecessor (predn) and double (double) functions.

We detail here the definition of 1eq since it will be often used in examples.

1.3

1.3 Containers 27

1 Definition leqmn :=m - n ==
2 Notation "m <= n" := (leq m n).

Note that this definition crucially relies on the fact that subtraction computes to o
whenever the first argument is less than or equal to the second argument.

The Mathematical Components library also provides concepts that make sense only for
the nat data type, like the test functions identifying prime and odd numbers. In that case,
the trailing n is omitted in their name.

We strongly advise the reader wanting to explore the Mathematical Components library
to browse the source files' and not to limit herself to interactive queries to the system. The
information provided by the print and About commands is useful to understand how to use
the objects defined in the libraries once they are known by their name. By contrast, the
source files describe what is formalized, under which name and notation.

p) Each file in the Mathematical Components library starts with a banner describing all
the concepts and associated notations introduced by the file. There is no better way
to browse the library than reading these banners.

Containers

A container is a data type which describes a collection of objects grouped together so that
they can be manipulated as a single object. For instance, we might want to compute the
sequence of all predecessors or all divisors of a number. We could define the following data
type for this purpose:

I 1 Inductive listn := niln | consn (hd : nat) (tl : listn).

The elements of this data type constitute a possible description of lists of zero or
more natural numbers; the first constructor niln builds the empty list, whereas the second
constructor consn builds a nonempty list by combining a natural number hd with an already
existing list t1. For example:

Check consn 1 (consn 2 niln). consn 1 (consn 2 niln) : listn

Check consn true (consn false niln). Error: The term "true" has
type "bool" while it is
expected to have type "nat".

s W o e

As expected, 1istn cannot hold boolean values. So if we need to manipulate a list of
booleans we have to define a similar data type: listb.

I 1 Inductive listb := nilb | consb (hd : bool) (tl : listb).

This approach is problematic for two reasons. First, every time we write a function
that manipulates a list, we have to decide a priori if the list holds numbers or booleans,
even if the program does not really use the objects held in the list. A concrete example
is the function that computes the size of the list; in the current setting such a function
has to be written twice. Worse, starting from the next chapter we will prove properties of

Ihttps://math-comp.github.io/htmldoc/libgraph.html

https://math-comp.github.io/htmldoc/libgraph.html

1.3.1

28 Chapter 1. Functions and computation

programs, and given that the two size functions are “different”, we would have to prove
such properties twice.

However it is clear that the two data types we just defined follow a similar schema, and
so do the two functions for computing the size of a list or the theorems we may prove about
these functions. Hence, one would want to be able to write something like the following,
where ¢ is a schematic variable:

I 1 Inductive list := nil | cons (hd : o) (t1 : list).

This may look familiar jargon to some readers. In the present context however, we would
rather like to avoid appealing to any notion of schema, that would somehow be added on
top of the CoQ language. This way, we will make possible the writing of formal sentences
with arbitrary quantifications on this parameter o.

The (polymorphic) sequence data type

The Mathematical Components library provides a generic data type to hold several objects
of any given type A. This is the data type seq, defined as follows:

I 1 Inductive seq (A : Type) := nil | cons (hd : A) (t1l : seq A).

The name seq refers to (finite) “sequences”, also called “lists”. This definition actually
describes the type of lists as a polymorphic type. This means that there is a different type
(seq A) for each possible choice of type A. For example (seq nat) is the type of sequences of
natural numbers, while (seq bool) is the type of sequences of booleans. The type (seq A)
has two constructors, named nil and cons. Constructor nil represents the empty sequence.
The type of the constructor cons is devised specifically to describe how to produce a new
list of type (seq &) by combining an element of 4, the head of the sequence, and an existing
list of type (seq A), the tail of the sequence. This also means that this data-type does not
allow users to construct lists where the first element would be a boolean value and the
second element would be a natural number.

In the declaration of seq, the keyword Type denotes the type of all data types. For
example nat and bool are of type Type, and can be used in place of A. In other words seq
is a function of type (Type -> Type), sometimes called a type constructor. The symbol seq
alone does not denote a data type, but if one passes to it a data type, then it builds one.
Remark that this also means that (seq (seq nat)) is a valid data type (namely, the type of
lists of lists of natural numbers), and that the construction can be iterated. Types again
avoid confusion: it is not licit to form the type (seq 3), since the argument 3 has type nat,
while the function seq expects an argument of type Type.”

In principle, the constructors of such a polymorphic data type feature a type argument:
nil is a function that takes a type A as argument and returns an empty list of type (seq A).
The type of the output of this function hence depends on the value of this input. The type
of ni1 is thus not displayed with the arrow notation “.. -> ..” that we have used so far for
the type of functions. It is rather written as follows:

I 1 V A : Type, seq A

2For historical reasons CoQ may display the type of nat or bool as Set and not Type. We beg the reader
to ignore this detail, which plays no role in the Mathematical Components library.

1.3 Containers 29

so as to bind the value A of the argument in the type of the output. Even if the V symbol
is actually written and displayed as forall in Coq, in this book we typeset it following
the standard mathematical notation for that quantifier. The same goes for the other
constructor of seq, named cons. This function actually takes three arguments: a type A,
a value in this type, and a value in the type (seq 4). The type of cons is thus written as
follows:

I1 VA : Type, A -> seq A -> seq A

Since the type of the output does not depend on the second and third arguments of
cons, respectively of type A and (seq A), the type of cons features two arrow separators for
these. Altogether, we conclude that the sequence holding a single element 2 : nat can be
constructed as (cons nat 2 (nil nat)). Actually, the two occurrences of type nat in this
term are redundant: the tail of a sequence is a sequence with elements of the same type.
Better yet, this type can be inferred from the type of the given element 2. One can thus
write the sequence as (cons _ 2 (nil _)), using the placeholder _ to denote a subterm, here
a type to be inferred by CoqQ. In the case of cons, however, one can be even more concise.
Let us ask for information about cons using the command About:

8 : -> ->
1 About conms. cons : VA : Type, A seq A seq A

2

5 Argument A is implicit and maximally

inserted

The CoQ system provides a mechanism to avoid that users need to give the type
argument to the cons function when it can be inferred. This is the information meant
by the message “Argument A is implicit and ..”. Every time users write cons, the system
automatically inserts an argument in place of A, so that this argument does not need to be
written: The argument is said to be implicit. It is then the job of the C0OQ system to guess
what this argument is when looking at the first explicit argument given to the function.
The same happens to the type argument of nil in the built-in version of seq provided by
the Mathematical Components library. In the end, this ensures that users can write the
following expression.

I 1 Check cons 2 nil. I [:: 2] : seq nat

This example shows that the function cons is only applied explicitly to two arguments (the
two arguments effectively declared for cons in the inductive type declaration). The first
argument, which is implicit, has been guessed so that it matches the actual type of 2. Also
for nil the argument has been guessed to match the constraints that it is used in a place
where a list of type (seq nat) is expected.

To locally disable the status of implicit arguments, one can prefix the name of a constant
with e and pass all arguments explicitly, as in (econs nat 2 nil) or (@cons nat 2 (@nil nat))
or even (@cons _ 2 (@nil _)).

The reader should refer to the documentation of the Arguments command [Coq] to know
how to modify the implicit status of an argument).

The previous example, and the following ones, also show that C0oQ and the Mathematical
Components library provide a collection of notations for lists.

1.3.2

30 Chapter 1. Functions and computation

1 Check 1 :: 2 :: 3 :: nil. [:: 1; 2; 3] : seq nat
2 Check fun 1 =>1 :: 2 :: 3 :: 1. fun 1 : seq nat => [:: 1, 2, 3 & 1]
3 : seq nat -> seq nat

In particular CoQ provides the infix notation :: for cons. The Mathematical Components

library follows a general pattern for n-ary operations obtained by the (right-associative)
iteration of a single binary one. In particular [:: begins the repetition of :: and] ends it.
Elements are separated by , (comma) but for the last one separated by & For example,
the above [:: 1, 2, 3 & 1] stands for 1 :: (2 :: (3 :: 1)). For sequences that are nil-
terminated, a very frequent case, the Mathematical Components library provides an
additional notation where all elements are separated by ; (semi-colon) and the last element,
nil, is omitted.
The Mathematical Components library provides similar notations to iterate contants
other than cons. For example, one can write the boolean conjunction of three terms
as [&& true, false & truel, the boolean disjunction as [I| b1, b2 | b3] and the boolean
implication as [==> b1, b2 => b3].

Pattern matching can be used to define functions on sequences, like the following
example which computes the first element of a non-empty sequence, with a default value
for the empty case:

I 1 Definition head T (x0 : T) (s : seq T) := if s is x :: _ then x else xO0.

Recursion for sequences

Terms of type (seq A), for a type A, are finite stacks of cons constructors, terminated with
a nil. They are similar to the terms of type nat, except that each cons constructor carries
a datum of type A. Here again, recursion provides a way to process sequences of arbitrary
size.

The CoQ system provides support for the recursive definition of functions over any
inductive type (not just nat). The recursive definition of the value of a function at a given
constructor can use the value of the function at the arguments of the constructor. This
defines the function over the entire type since all values of an inductive type are finite
stacks of constructors.

The size function counts the number of elements in a sequence:

1 Fixpoint size A (s : seq A) :=
2 if s is _ :: tl then (size tl).+1 else O.

During computation on a given sequence, this function traverses the whole sequence,
incrementing the result for every cons that is encountered. Note that in this definition,
the function size is described as a two argument function, but the recursive call (size t1)
is done by providing explicitly only one argument, t1. Remember that the CoQ system
makes arguments of functions that can be guessed from the type of the following arguments
automatically implicit, and & is implicit here. This feature is already active in the expression
defining size.

Another example of recursive function on sequences is a function that constructs a new
sequence whose entries are values of a given function applied to the elements of an input
sequence. This function can be defined as:

1.3.3

1.3 Containers 31

1 Fixpoint map A B (f : A -> B) s :=
2 if s is e :: tl then f e :: map f tl else nil.

This function provides an interesting case study for the definition of appropriate notations.
For instance, we will add a notation that makes it more apparent that the result is the
sequence of all expressions f(i) for i taken from another sequence.

I 1 Notation "[’seq’ E | i <- s]" := (map (fun i => E) s).

For instance, with this notation we write the computation of successors for a given sequence
of natural numbers as follows:

1 Compute = [:: 3; 4] : seq nat
2 [seq i.+1 | i <= [:: 2; 31].

In addition to the function map and the associated notation we describe here, the Mathe-
matical Components library provides a large collection of useful functions and notations to
work on sequences, as described in the header of the file seq. For instance [seq i <- s | p]
filters the sequence s keeping only the values selected by the boolean test p. Another
useful function for sequences is cat (with infix notation ++) that is used to concatenate two
sequences together.

Option and pair data types

Here is another example of polymorphic data type, which represents a box that can either
be empty, or contain a single value:

I 1 Inductive option A := None | Some (a : A).

Type (option A) contains a copy of all the elements of 4, built using the Some constructor,
plus an extra element given by the constructor None. It may be used to represent the output
of a partial function or of a filtering operation, using None as a default element.

For example, function only_odd “filters” natural numbers, keeping the odd ones and
replacing the even ones by the None default value:

1 Definition only_odd (n : nat) : option nat :=
2 if odd n then Some n else None.

Similarly, one can use the option type to define a partial function which computes the
head of a non-empty list:

1 Definition ohead (A : Type) (s : seq A) :=
2 if s is x :: _ then Some x else None.

See also the sub-type kit presented in chapter 7, which makes use of the option type to
describe a partial injection.

Another typical polymorphic data type is the one of pairs, that lets one put together
any two values:

1.34

32 Chapter 1. Functions and computation

1 Inductive pair (A B : Type) : Type := mk_pair (a : A) (b : B).
2 Notation "(a , b)" := (mk_pair a b).
3 Notation "A * B" := (pair A B).

The type pair has two type parameters, A and B, so that it can be used to form any
instance of pairs: (pair nat bool) is the type of pairs with an element of type nat in its
first component and one of type bool in its second, but we can also form (pair bool nat),
(pair bool bool), etc. The type pair is denoted by an infix * symbol, as in (nat * bool).
This inductive type has a single constructor mk_pair. It takes over the two polymorphic
parameters, that become its two first, implicit arguments. The constructor mk_pair has
two more explicit arguments which are the data stored in the pair. This constructor
is associated with a notation so that (a, v) builds the pair of a and b, and (a, b) has
type (pair A B). For a given pair, we can extract its first element, and we can provide a
polymorphic definition of this projection:

1 Definition fst A B (p : pair A B) :=
2 match p with mk_pair x _ => x end.
We leave as an exercise the definition of the projection on the second component of a
pair. The Mathematical Components library has a notation for these projections: c.1 is
the first component of the pair ¢ and c.2 is its second.

1 Check (3, false). (3, false) : nat * bool
2 Compute (true, false).l. = true : bool

As one expects, pairs can be nested. COQ provides a slightly more complex notation
for pairs, which makes it possible to write (3,true,4) for ((3,true),4). In this example, the
value true is the second component of this tuple, or more precisely the second component
of its first component: it can thus be obtained as (3,true,4).1.2. This is a consequence of
representing tuples as nested pairs. If tuples of a certain fixed length are pervasive to a
development, one may consider defining another specific container type for this purpose.

We conclude this example with a remark on notations. After declaring such a notation
for the type of pairs, the expression (a * b) becomes “ambiguous”, in the sense that the same
infix * symbol can be used to multiply two natural numbers as in (1 * 2) but also to write
the type of pairs (nat * bool). Such an ambiguity is somewhat justified by the fact that the
pair data type can be seen as the (Cartesian) product of the arguments.” The ambiguity
can be resolved by annotating the expression with a specific label: (a * b)%N interprets the
infix * as multiplication of natural numbers, while (a * b)%type would interpret * as the
pair data type constructor. The %N and %type labels are said to be notation scope delimiters
(for more details see [Coq|, “Interpretation scopes”)).

Aggregating data in record types

Inductive types with a single constructor, like the type pair in section 1.3.3, provide a
general pattern to define a type which aggregates existing objects into a single packaged
one. This need is so frequent that CoQ provides a specialized command to declare this
class of data type, called Record.

For example here is an instance of a type representing triples of natural numbers, which
can be used to represent a grid point in a 3-dimensional cone:

3In reality the data type of pairs, as it comes with C0Q, is called prod and its constructor pair.

1.4

1.4 The Section mechanism 33

I 1 Record point : Type := Point { x : nat; y : nat; z : nat }.

This line of code defines an inductive type point, with no parameter and with a single
constructor Point, which has three arguments each of type nat. Otherwise said, this type is:

I 1 Inductive point : Type := Point (x : nat) (y : nat) (z : nat).

Using the Record version of this definition instead of its equivalent Inductive allows us
to declare names for the projections at the time of the definition. In our example, the
record point defines three projections, named x, y and z respectively. In the case where
they come from a record definition, these projections are also called fields of the record.
One can thus write:

1 Compute x (Point 3 0 2). = 3 : nat
2 Compute y (Point 3 0 2). = 0 : nat
As expected, the code for the x projection is:
I 1 Definition x (p : point) := match p with Point a _ _ => a end.

When an inductive type has a single constructor, like in the case of pair or for records,
the name of this constructor is not relevant in pattern matching, as the “case analysis” has
a single, irrefutable, branch. There is a specific syntax for irrefutable patterns, letting one
rewrite the definition above as follows:

I 1 Definition x (p : point) := let: Point a _ _ := p in a.

Record types are as expressive as inductive types with one constructor: they can be
polymorphic, they can package data with specifications, etc. In particular, they will be
central to the formalization techniques presented in Part I1.

The Section mechanism

When several functions are designed to work on similar data, it is useful to set a working
environment where the common data is declared only once. Such a working environment
is called a Section, and the data that is local to this section is declared using variable
commands. A typical example happens when describing functions that are polymorphic.
In that case, definitions rely in a uniform way on a given type parameter plus possibly on
existing functions in this type.

Section iterators.

Variables (T : Type) (A : Type).
Variables (f : T -> A -> A).

Implicit Type x : T.

Fixpoint iter n op x :=
if n is p.+1 then op (iter p op x) else x.

© 00 g9 O U W N =

1.5

34 Chapter 1. Functions and computation

11 Fixpoint foldr a s :=
12 if s is y :: ys then f y (foldr a ys) else a.

14 End iterators.

The section and End keywords delimit a scope in which the types T and A and the function
f are given as parameters: T, A and £ are called section variables. These variables are used
in the definition of iter and foldr.

The Implicit Type annotation tells CoQ that, whenever we name an input x (or x’,
or xi, ...), its type is supposed to be T. Concretely, it lets us omit an explicit type
annotation in the definition of programs using x, such as iter. The Implicit Type command
is used frequently in the Mathematical Components library; the reader can refer to [Coq,
“Extensions of Gallina”] for a more detailed documentation of it.

When the section is closed (using the End command), these variables are abstracted:
i.e., from then on, they start appearing as arguments to the various functions that use
them in the very same order in which they are declared. Variables that are not actually
used in a given definition are omitted. For example, £ plays no role in the definition of
iter, and thus does not become an argument of iter outside the section. This process is
called an abstraction mechanism.

Concretely, the definitions written inside the section are elaborated to the following
ones.

1 Fixpoint iter (T : Type) n op (x : T) :=

2 if n is p.+1 then op (iter p op x) else x.

3 Fixpoint foldr (T A : Type) (f : T -> A -> A) a s :=
4 if s is x :: xs then f x (foldr f a xs) else a.

Finally, remark that T and A are implicit arguments; hence they are not explicitly passed
to iter and fold in the recursive calls.

1 About foldr. foldr : VT A : Type,
2 (T->A->A) >A->seqT ->A
3 Arguments T, A are implicit ...

We can now use iter to compute, for example, the subtraction of 5 from 7, or foldr to
compute the sum of all numbers in [:: 1; 2]:

1 Compute iter 5 predn 7. = 2 : nat
2 Compute foldr addn O [:: 1; 2].

|
w

. nat

Symbolic computation

As we mentioned in section 1.1, the Compute command of COQ can be used to normalize
expressions, which eventually leads to simpler terms, like numerals. This flavour of
computation can however accommodate to the presence of parameters in the expression to
be computed.

1 Section iterators.
2
3 Variables (T : Type) (A : Type).

1.5 Symbolic computation 35

Variables (f : T -> A —> A).

Fixpoint foldr a s :=
if s is x :: xs then f x (foldr a xs) else a.

If we ask for the type of foldr in the middle of the section, we see that it is not a
polymorphic function (yet).

I 1 About foldr. I foldr : A -> seq T -> A

We hence postulate a term of type A and two of type T in order to apply foldr to a
two-element list, and we ask C0OQ to compute this expression.

1 Variable init : A.
2 Variables x1 x2 : T.
3 Compute foldr init [:: x1; x2]. = f x1 (f x2 init) : A

The symbols £, x1, x2 and init are inert: They represent unknown values, hence compu-
tation cannot proceed any further. Still CoQ has developed the expression symbolically.
To convince ourselves that such an expression is meaningful we can try to substitute f,
x1, x2 and init with the values we used at the end of the last section to play with foldr,
namely addn, 1, 2 and 0:

I 1 Compute addn 1 (addn 2 0). I = 3 : nat

The expression, which now contains no inert symbols, computes to the numeral 3, the
very same result we obtained by computing (foldr addn 0 [:: 1; 2]) directly.

The way functions are described as programs has an impact on the way symbolic
computations unfold. For example, recall from section 1.2.3 the way we defined an addition
operation on elements of type nat. It was defined using the if .. is .. then .. else ..
syntax:

I 1 Fixpoint addn n m := if n is p.+1 then (addn p m).+1 else m.

Now let us consider the following alternative definition:

I 1 Fixpoint add nm := if n is p.+1 then add p m.+1 else m.

Both are sensible definitions, and we can show that the two addition functions compute
the same results when applied to numerals. Still, their computational behavior may differ
when computing on arbitrary symbolic values. In order to highlight this, we will use
another normalization strategy to perform computation, the simpl evaluation strategy.
One difference between the Eval simpl and Compute strategies is that the simpl one usually
leaves expressions in nicer forms whenever they contain variables. Here again we point the
interested reader to [Coq, section 5.3.7, “Performing computations”] for

more details.

1.6

36 Chapter 1. Functions and computation

1 Variable n : nat.
2 Eval simpl in predn (add n.+1 7).
3 Eval simpl in predn (addn n.+1 7).

= predn (add n 8) : nat
addn n 7 : nat

Here we see the impact of the difference in the definitions of addn and add: the add
variant transfers the number of successor symbols s given as first argument to its second
argument before resorting to its base case, whereas in the addn variant, the resulting stack of
successor symbols is constructed top down. An intermediate expression in the computation
of (addn n m) exposes as many successors as recursive calls have been performed so far.
Since bits of the final result are exposed early, the predn function can eventually compute,
and it cancels the .+1 coming out of the sum. On the other hand, add does not expose a
successor when a recursive call is performed; hence symbolic computation in predn is stuck.

As chapter 2 illustrates, symbolic computation plays an important role in formal proofs,
and this kind of difference matters. For instance the addn variant helps showing that
(addn n.+1 7) is different from o because by computation CoQ would automatically expose
a s symbol and no natural number of the form (s ..) is equal to 0. For a worked out
example, see also the proof of muln_eqo0 in section 2.2.2.

Iterators and mathematical notations

Numbers and sequences of objects are so pervasive in the mathematical discourse that we

could hardly omit to present them in such an introductory chapter. On the other hand,

the reader may wonder what role programs like foldr may play in mathematical sentences.
Actually, in order to formalize the left hand side of the two following formulas:

nx(n+1)

| = ——

(
2

(ix2—1)=n?
‘ ‘

M=

n

1

and, more generally, in order to make explicit the meaning of the capital notations like
Nimi Ai, TT2 wi, - .., we need to describe an iteration procedure akin to the foldr program.
We illustrate this on the example of the summation symbol (for a finite sum):

1 Fixpoint iotamn := if n is u.+1 then m :: iota m.+1 u else [::].
2 Notation "\sum_ (m <= i <n) F" :=
3 (foldr (fun i a => F + a) 0 (dota m (n-m))).
The iota function generates the list [:: m; m+1; ...; m+n-1] of natural numbers corre-

sponding to the range of the summation. On the second line, we re-use a notation that
is already present in the library with shape \sum_ (m <= i < n) F, with F a sub-expression
featuring variable i, the one used for the index. We attach this notation to a specific
expression combining foldr and iota. For instance, once the above notation is granted and

for any natural number (n : nat), one may write the CoQ expression (\sum_(1 <= i < n) i)
n—1

to represent the sum Y i. The name i is really used as a binder name here and we may
i=1

substitute i with any other name we may find more convenient, as in (\sum_(1 <= j < n) j),

without actually changing the expression’.

The notation represents an instance of the foldr program, iterating a function of type

nat -> nat -> nat: the two type parameters of foldr are set to nat in this case. The first

4Although this change results in two syntactically different expressions, they have the same meaning for
Coq

1.7

1.7 Notations, abbreviations 37

explicit argument given to foldr is hence a function of type nat -> nat -> nat, which is
created by abstracting the variable i in the expression F, as mentioned in section 1.1.1. The
name of the second argument of the function, called a here, should not appear in expression
F in order for the notation to be meaningful. Crucially, the foldr iterator takes as input
a functional argument that is able to represent faithfully any general term. As a second
explicit argument to foldr, we also provide the neutral element 0 for the addition: this is
the initial value of the iteration, corresponding to an empty index range.
Let us perform a few examples of computations with these iterated sums.

1 Compute
2 \sum_(1 <=i<5) (1 *2-1). = 16 : nat
3 Compute
4 \sum_(1 <=1i <5) i. = 10 : nat

Behind the scenes, iteration happens following the order of the list, as we observed
in section 1.5. In the present case the operation we iterate, addition, is commutative, so
this order does not impact the final result. But it may not be the case, for example if the
iterated operation is the product of matrices.

Defining the meaning of this family of notations using a generic program foldr, which
manipulates functions, is not only useful for providing notations, but it also facilitates
the design of the corpus of properties of these expressions. This corpus comprises lemmas
derived from the generic properties of foldr, which do not depend on the function iterated.
By assuming further properties linking the iterated operation to the initial value, like
forming a monoid, we will be able to provide a generic theory of iterated operations in
section 6.7.

Notations, abbreviations

Throughout this chapter, we have used notations to display formal terms in a more readable
form, closer to the usual conventions adopted on paper. Without notations, formal terms
soon get unreadable for humans for they often expose too low level details in mathematical
expressions. For this purpose, the COQ system provides a Notation command, and we have
mentioned it several times already, relying on the reader’s intuition to understand roughly
how it works. Its actual behavior is quite complex. With this command, it is possible to
declare various kinds of notations and to specify their associativity and their precedence to
the parsing engine of CoqQ. It is also possible to provide some hints for printing, like good
breaking points. Scopes are groups of notation that go together well, and can be activated
or deactivated simultaneously. They are usually associated with a scope delimiter, which
allows the activation of a scope locally in a sub-expression.

For instance the infix notation that we have used so far for the constant addn can be
declared as follows:

I 1 Notation "m + n" := (addn m n) (at level 50, left associativity).

For infix notations, which are meant to be printed between two arguments of the
operator (like addition in 2 + 3), we advise to always include space around the infix
operator, so that notations don’t get mixed up with potential notations occurring in the
arguments.

Similarly, the comparison relation 1eq on type nat comes with an infix notation <= which
can be defined as:

38 Chapter 1. Functions and computation

I 1 Notation "m <= n" := (leq m n) (at level 70, no associativity).

where the rightmost annotations, between parentheses, indicate a precedence level and
an associativity rule so as to avoid parsing ambiguities. A lower level binds more than a
higher level. A comprehensive description of the Notation command goes beyond the scope
of this book; the interested reader can refer to [Coq, “Syntax extensions and interpretation
scopes”].

A notation can denote an arbitrary expression, not just a single constant. Here is for
instance the definition of the infix notation <, for the strict comparison of two natural
numbers: it denotes the composition of the comparison _ <= _ (which refers to the constant
leq) with the successor _.+1 (which refers to the constructor s) on its first argument:

I 1 Notation "m < n" := (m.+1 <= n).

i) There is no function testing if a natural number is strictly smaller than another one.
(a < b) is just an alternative syntax for (a.+1 <= b)

The converse relation (n > m) is defined as a notation for (m < n). However, it is only
accepted in input, and is always printed as (m < n), thanks to the following declaration:

I 1 Notation "m > m" := (m.+1 <= n) (only parsing).

Another frequently used form of notation is called syntactic abbreviation. It simply
lets one specify a different name for the same object. For example the s constructor of
natural numbers can also be accessed by writing succn. This is useful if s is used in the
current context to, say, denote a ring.

I 1 Notation succn := S.

The notation _.+1 we have been using so far is defined on top of this abbreviation, as:

I 1 Notation "n .+1" := (succn n) (at level 2, left associativity): nat_scope.

The Locate command can be used to reveal the actual term represented by a notation.
In order to understand the meaning of an unknown notation like for instance (a <= b <= ¢),
one can use the Locate command to uncover the symbols it involves.

I 1 Locate "<=".

Notation Scope

"m <= n <= p" := andb (leq m n) (leq n p) : nat_scope
"m <= n < p" := andb (leq m n) (leq (S n) p) : nat_scope
"m <= n" :=leqmn : nat_scope

The only difficulty in using Locate comes from the fact that one has to provide a
complete symbol. A symbol is composed of one or more non-blank characters and its first

1.7 Notations, abbreviations 39

character is necessarily a non-alphanumerical one. The converse is not true: a sequence of
characters is recognized as a symbol only if it is used in a previously declared notation.
For example 3.+1.+1 is parsed as a number followed by two occurrences of the .+1 symbol,
even if .+1.+1 could, in principle, be a single symbol.

Moreover substrings of a symbol are not necessarily symbols. As a consequence
Locate "=" does not find notations like the ones above, since <= is a different symbol even
if it contains = as a substring. For the same reason Locate ".+" returns an empty answer
since .+ is not a (complete) symbol.

We mention here some notational conventions adopted throughout the Mathematical
Components library.

e Concepts that are typically denoted with a letter, like N(G) for the normalizer of
the group G, are represented by symbols beginning with > as in *N(G) , where *N is a
symbol.

e At the time of writing, notations for numerical constants are specially handled by
the system. The algebraic part of the library overrides specific cases, like binding 1
and o to ring elements.

e Postfix notations begin with ., as in .+1 and .-group to let one write (p.-group G).
There is one exception for the postfix notation of the factorial, which starts with -,
asinm!.

e Taking inspiration from IATEX some symbols begin with \, like \in, \matrix, \sum, ...

e Arguments typically written as subscripts appear after a symbol which ends with an
underscore like *N_ in *N_G(H) .

e N-ary notations begin with [followed by the symbol of the operation being repeated,
as in [&& true, false & false].

e Bracket notations are also used for operations building data, as in [seq .. | ..].

e Curly braces notations like {poly R} are used for data types with parameters.

e Curly braces are also used to write localized statements such as{in A, injective f},
which means that the restriction of £ to A is injective.

Each file in the Mathematical Components library comes with a header documenting

all concepts and associated notations it provides.

2.1

2.1.1

2. First steps in formal proofs

In this chapter, we explain how to use the CoqQ system to state and prove theorems,
focusing on simple statements and basic proof commands. In the course of this book,
we will see that choosing the right way to state a proposition formally can be a rather
delicate matter. For equivalent wordings of one and the same proposition, some can be
much simpler to prove, and some can be more convenient to invoke inside the proof of
another theorem. This chapter emphasizes the use of computable definitions and equational
reasoning whenever possible, an approach that will be developed fully in chapter 5.

Formal statements

In this section, we illustrate how to state elementary candidate theorems, starting with
identities.

Ground equalities

CoqQ provides a binary predicate named eq and equipped with the infix notation =. This
predicate is used to write sentences expressing that two objects are equal, like in 2+2 =4.
Let us start with examples of CoQ ground equality statements: ground means that these
statements do not feature parameter variables. For instance 2+2 =4 is a ground statement,
but (a+b)? = a*> +2ab +b* has two parameters a and b: it is not ground.

The check command can be used not only to verify the type of some expression, but
also to check whether a formal statement is well formed or not:

1 Check 3 = 3. 3 =3 : Prop
2 Check false && true = false. false && true = false : Prop

Let’s anatomize the two above examples. Indeed, just like COQ’s type system prevents
us from applying functions to arguments of a wrong nature, it also enforces a certain
nature of well-formedness at the time we enunciate sentences that are candidate theorems.

42 Chapter 2. First steps in formal proofs

Indeed, formal statements in CoQ are themselves terms and as such they have a type and
their subterms obey type constraints. An equality statement in particular is obtained by
applying the constant eq to two arguments of the same type. This application results in a
well-formed term of type Prop, for proposition.

Throughout this book, we will use the word proposition for a term of type Prop, typically
something one wants to prove.

The About vernacular command provides information on a constant: its type, the list of
arguments of the constant that are implicit, For instance we can learn more about the
constant eq:

1 Locate "=". "x =y" i=eqxy

2

3 About eq. eq : VA : Type, A -> A -> Prop
4 Argument A is implicit ...

The constant eq is a predicate, i.e., a function that outputs a proposition. The equality
predicate is polymorphic: exactly like we have seen in the previous chapter, the V quantifier
is used to make the (implicit) parameter A range over types. Both examples 3 = 3 and
false && true = false thus use the same equality constant, but with different values (respec-
tively, nat and bool) for the type parameter A. Since the first argument of eq is implicit, it is
not part of the infix notation and its value is not provided by the user. This value can indeed
be inferred from the type of the two sides of the identity: (3 = 3) unfolds to (eq _ 3 3), and
the missing value must be nat, the type of 3. Similarly, (false && true = false) unfolds to
(eq _ (false && true) false) and the missing value is bool, the common type of false and
(false && true).

As the CoQ system checks the well-typedness of statements, the two sides of a well-
formed equality should have the same type:

1 Check 3 = [:: 3]. Error: The term [:: 3] has type seq nat
2 while it is expected to have type nat.

Yet it does not check the provability of the statement!
I 1 Check 3 = 4. I 3 =4 : Prop

In order to establish that a certain equality holds, the user should first announce that
she is going to prove a sentence, using a special command like Lemma. This command has
several variants Theorem, Remark, Corollary,...which are all synonyms for what matters here.
A Lemma keyword is followed by the name chosen for the lemma and then by the statement
itself. Command Lemna and its siblings are in fact a variant of the Definition syntax we
used in chapter 1: everything we mentioned about it also applies here. The Proof command
marks the beginning of the proof text, which ends either with Qed or Admitted. After the
command Proof is executed, the system displays the current state of the formal proof in a
dedicated window.

Lemma my_first_lemma : 3 = 3. 1 subgoal
Proof.
(* your proof text *)

e oW N =

2.1.2

2.1 Formal statements 43

Indeed, COQ is now in its so-called proof mode: we can execute new commands to
construct a proof and inspect the current state of a proof in progress, but some other
commands, like opening sections, are no longer available. At any stage of the proof
construction, CoQ displays the current state of the (sub)proof currently pending: a list of
named hypotheses forms the current context and is printed on top of the horizontal bar
(empty here), whereas the statement of the current goal (the conjecture to be proved) is
below the bar.

We will explain how to proceed with such a proof in section 2.2.1. For now, let us just
admit this result, using the Admitted command.

1 Lemma my_first_lemma : 3 = 3.
2 Proof.
3 Admitted.

Although we have not (yet) provided a proof for this lemma, a new definition has been
added to our environment:

I 1 About my_first_lemma. I my_first_lemma : 3 = 3

In the rest of the chapter, we will often omit the Admitted proof terminator, and simply
reproduce the statement of some lemmas in order to discuss their formulation.

Identities

Ground equalities are a very special case of mathematical statements called identities.
An identity is an equality relation A = B that holds regardless of the values that are
substituted for the variables in A and B. Let us state for instance the identity expressing
the associativity of the addition operation on natural numbers:

I 1 Lemma addnA (m n k : nat) : m+ (n + k) =m + n + k.

Note that in the statement of addna, the right hand side does not feature any parentheses
but should be read ((m + n) + k): This is due to the left-associativity of the infix + notation,
which was prescribed back when this notation was defined (see section 1.7). Command
Lemma, just like Definition, allows for dropping the type annotations of parameters if these
types can be inferred from the statement itself:

I 1 Lemma addnAnmk : m+ (n+k) =m+n + k.

Boolean identities play a central role in the Mathematical Components library. They
state equalities between boolean expressions (possibly with parameters). For instance,
the orbT statement expresses that true is right absorbing for the boolean disjunction
operation orb. Recall from section 1.2.1 that orb is equipped with the || infix notation:

I 1 Lemma orbT b : b || true = true.

More precisely, lemma orbT expresses that the truth table of the boolean formula
(b ||l true) coincides with the (constant) one of true: otherwise said, that the two proposi-
tional formulas are equivalent, or that (b || true) is a propositional tautology. Below, we
provide some other examples of such propositional equivalences stated as boolean identities.

2.1.3

2.1.4

44 Chapter 2. First steps in formal proofs

1 Lemma orbA bl b2 b3 : bl || (b2 || 3) = bl || b2 || b3.
2 Lemma implybE a b : (a ==>b) = "~ a || b.
3 Lemma negb_and (a b : bool) : °~ (a & b) = "~ a || “~ b.

From boolean predicates to formal statements

A boolean predicate means a function to bool. A boolean predicate can indeed be seen as
an effective truth table, which can be used to form a proposition in a systematic way by
equating its result to true. More generally, boolean identities are equality statements in
type bool, which may involve arbitrary boolean predicates and boolean connectives. They
can feature variables of an arbitrary type, not only of type bool.

For instance, the boolean comparison function (leq : nat -> nat -> bool) is a boolean
binary predicate on natural numbers. Lemma leqon is a proposition asserting that a certain
comparison always holds, by stating that the truth value of the boolean (0 <= n) is true,
whatever term of type nat is substituted for the parameter n.

I 1 Lemma leqOn (n : nat) : 0 <= n = true.

The Mathematical Components library makes an extensive use of boolean predicates,
and of the associated propositions. For the sake of readability, the default behavior of the
Mathematical Components library is to omit the “.. = true” part in these boolean identities.
CoQ is actually able to insert automatically and silently this missing piece whenever it fits
and is non-ambiguous, thanks to its coercion mechanism. We postpone further explanation
of this mechanism to section 5.5, but from now on, we stop displaying the .. = true parts
of the statement that are silently inserted this way. For instance, lemma 1eqon is displayed
as:

I 1 Lemma leqOn (n : nat) : O <= n.

As a general fact, boolean identities express that two boolean statements are equivalent.
We already encountered special cases of such equivalence with propositional tautologies
in section 2.1.2. Here are a few more examples involving boolean predicates on natural
numbers that we have defined in chapter 1: the equality test == and its negation '=, the
order relation < and its large version <=, and the divisibility predicate %!, with (a %I b)
meaning a divides b. Note that we omit the type of the parameters; they are all of type
nat, as enforced by the type of the operators involved in the statements:

1 Lemma eqn_legmn : (m == n) = (m <= n) & (n <=m).
2 Lemma neq_ ltnmn : (m !'=n) = (m<n) || (n<m.

3 Lemma leqnO n : (n <= 0) = (n == 0).

4 Lemma dvdnl d : (d %l 1) = (d == 1).

Lemma odd_mul mn : odd (m * n) = odd m && odd n.

o

Conditional statements

In the previous sections, we have seen statements of unconditional identities: either
equalities between ground terms, or identities that hold for any value of their parameters.
A property that holds only when its parameters satisfy some condition is stated using an
implication, and the COQ syntax for this connective is “>”. For instance:

2.2

2.2.1

2.2 Formal proofs 45

1 Lemma leq_pmull mn : n >0 ->m <=n * m.
2 Lemma odd_gtO n : odd n -> n > O.

This arrow-> is the same as the one we used in chapter 1 in order to represent function
types. This is no accident, but we postpone further comments on the meaning of this
arrow to section 3.2. For now let us only stress that-> is right-associative, and therefore a
succession of arrows expresses a conjunction of conditions:

I 1 Lemma dvdn_mul dl1 d2 m1 m2 : d1 %| m1 -> d2 %] m2 -> d1 * d2 %| ml * m2.

Replacing conjunctions of hypotheses by a succession of implications is akin to replacing a
function taking a tuple of arguments by a function with a functional type (“currying”), as
described in section 1.1.2.

Formal proofs

We shall now explain how to turn a well-formed statement into a machine-checked theorem.
Let us come back to our first example, that we left unproved:

1 Lemma my_first_lemma : 3 = 3.
2 Proof.
3 Admitted.

In the CoQ system, the user builds a formal proof by providing, interactively, instructions
to the COQ system that describe the gradual construction of the proof she has in mind.
This list of instructions is called a proof script, and the instructions it is made of are called
proof commands, or more traditionally tactics. The language of tactic we use is called
SSReflect.

1 Lemma my_first_lemma : 3 = 3.

2 Proof.

3 (% your finished proof script comes here *)
4 Qed.

Once the proof is complete, we can replace the Admitted command by the Qed one. This
command calls the proof checker part of the CoQ system, which validates a posteriori that
the formal proof that has been built so far is actually a complete and correct proof of the
statement, here 3 = 3.

In this section, we will review different kinds of proof steps and the corresponding
tactics.

Proofs by computation

Here is now a proof script that validates the statement 3 = 3.

1 Lemma my_first_lemma : 3 = 3.
2 Proof. by []. No more subgoals.

Indeed, this statement holds trivially, because the two sides of the equality are syntacti-
cally the same. The tactic “by [1” is the command that implements this nature of trivial

2.2.2

46 Chapter 2. First steps in formal proofs

proof step. The proof command by typically prefixes another tactic (or a list thereof): it is
a tactical. The vy prefix checks that the following tactic trivializes the goal. But in our
case, no extra work is needed to solve the goal, so we pass an empty list of tactics to the
tactical by, represented by the empty bracket [1.

The system then informs the user that the proof looks complete. We can hence
confidently conclude our first proof by the ged command:

1 Lemma my_first_lemma : 3 = 3. No more subgoals.
2 Proof. by []. Qed. my_first_lemma is defined
3 About my_first_lemma. my_first_lemma : 3 = 3

Just like when it was Admitted, this script results in a new definition being added in our
context, which can then be reused in future proofs under the name my_first_lemma. Except
that this time we have a machine checked proof of the statement of my_first_lemma. By
contrast Admitted happily accepts false statements. ..

What makes the by [1 tactic interesting is that it can be used not only when both sides
of an equality coincide syntactically, but also when they are equal modulo the evaluation of
programs used in the formal sentence to be proved. For instance, let us prove that 2+ 1= 3.

1 Lemma my_second_lemma : 2 + 1 = 3.
2 Proof. by []. Qed.

Indeed, this statement holds because the two sides of the equality are the same, once
the definition of the addn function, hidden behind the infix + notation, is unfolded, and
once the calculation is performed. In a similar way, we can prove the statement (0 <= 1),
or (odd 5), because both expressions compute to true.

As we have seen in chapter |, computation is not limited to ground terms; it is really
about using the rules of the pattern matching describing the code of the function. For
instance the proof of the addsn identity:

I 1 Lemma addSn mn : m.+1 + n = (m + n).+1. Proof. by []. Qed.

is trivial as well because it is a direct consequence of the definition of the addn function:
This function is defined by pattern matching, with one of the branches stating exactly this
identity. Statements like (0 + n = n) or (0 < n.+1) can be proved in a similar way, but also
(2 + n = n.+2), which requires several steps of computation.

Lastly, the by tactical turns its argument into a terminating tactic — and thus by [J is
such a terminating tactic. A tactic is said to be terminating if, whenever it does not solve
the goal completely, it fails and stops CoQ from processing the proof script. A terminating
tactic is colored in red so that the eye can immediately spot that a proof, or more commonly
a subproof, ends there.

Case analysis

Let us now consider the tautology =~ (=~ b) = b. The “proof by computation” technique of
section 2.2.1 fails in this case:

L : R G = b.
! emna negbk (b : bool) "7 b) b I Error: No applicable tactic.

2 Proof. by [].

2.2 Formal proofs 47

Indeed, proving this identity requires more than a simple unfolding of the definition of
negb:

I 1 Definition negb (b : bool) : bool := if b then false else true.

One also needs to perform a case analysis on the boolean value of the parameter b and
notice that the two sides coincide in both cases. The tactic case implements this action:

Lemma negbK b : "~ (7 b) = b. 2 subgoals
Proof.
case: b.

true = true
subgoal 2 is:
~7 77 false = false

[S

More precisely, the tactic “case: b” indicates that we want to perform a case analysis
on term b, whose name follows the separator :. The C0Q system displays the state of
the proof after this command: The proof now has two subcases, treated in two parallel
branches, one in which the parameter b takes the value true and one in which the parameter
b takes the value false. More generally, the case: t tactic only works when t belongs to an
inductive type. This tactic then performs a case analysis on (the shape of) a term t. As
any inhabitant of an inductive type is necessarily built from one of its constructors, this
tactic creates as many branches in the proof as the type has constructors, in the order in
which they appear in the definition of the type. In our example, the branch for true comes
first, because this constructor comes first in the definition of type bool.

We shall thus provide two distinct pieces of script, one for each subproof to be con-
structed, starting with the branch associated with the true value. In order to help the
reader identify the two parts of the proof script, we indent the first one.

Once the case analysis has substituted a concrete value for the parameter b, the proof
becomes trivial, in both cases: We are in a similar situation as in the proofs of section 2.2.1
and the tactic by [1 applies successfully:

Lemma negbK b : "~ (°~ b) = b. 1 subgoal

Proof.

case: b.
by [1. ~~ ~~ false = false

e W o e

Once the first goal is solved, we only have one subgoal left, and we solve it using the
same tactic.

1 Lemma negbK b : ™~ ("7 b) = b.

2 Proof.

3 case: b.

4 by [J.

5 by [1. No more subgoals.
6 Qed. negbK is defined

However, as we mentioned earlier, we can also use the by tactical as a prefix for any
tactic (not just an empty list of tactics), and have the system check that after the case
tactic, the proof actually becomes trivial, in both branches of the case analysis. This way,

48 Chapter 2. First steps in formal proofs

the proof script becomes a one-liner:

1 Lemma negbK b : ™~ ("~ b) = b.
2 Proof. by case: b. Qed.

Case analysis with naming

The boolean equivalence 1eqno is another example of statement that cannot be proved by
computation only:

: nat

1 Lemma legnO n : (n <= 0) = (n == 0). n
2 Proof.

(n <= 0) = (n == 0)

Both comparison operations <= and == are defined by case analysis on their first argument,
independently of the shape of the second. The proof of 1eqno thus goes by case analysis
on term (n : nat), as it appears as a first argument to both these comparison operators.
Remember that the inductive type nat is defined as:

I 1 Inductive nat := 0 | S (n : nat).

with two constructors, 0 which has no argument and s which has one (recursive) argument.
A case analysis on term (n : nat) thus has two branches: one in which n is 0 and one in
which n is (s k), denoted k.+1, for some (kx : nat). We hence need a variant of the case
tactic, in order to name the parameter x that appears in the second branch as the argument
of the s constructor of type nat:

1 Lemma legnO n : (n <= 0) = (n == 0).
2 Proof. (0 <= 0) = (0 ==0)
3 case: n => [| k].

4 subgoal 2 is:

5 (k < 0) = (k.+1 == 0)

The tactic “case: n => [1x]” can be decomposed into two components, separated by the
arrow =>. The left block “case: n” indicates that we perform a case analysis action, on term
(n : nat), while the right block “[Ix]1” is an introduction pattern. The brackets surround
slots separated by vertical pipes, and each slot allows us to name the parameters to be
introduced in each subgoal created by the case analysis in order.

As type nat has two constructors, the introduction pattern [Ix] of our case analysis
command uses two slots: the last one introduces the name k in the second subgoal and
the first one is empty. Indeed, in the first subgoal (first branch of the case analysis), n is
substituted with 0. In the second one, we can observe that n has been substituted with
k.+1. As hinted in the first chapter, the term (x.+1 <= 0) is displayed as (x < 0).

The first goal can easily be solved by computation, as both sides of the equality evaluate
to true.

1 Lemma legqnO n : (n <= 0) = (n == 0). k : nat

2 Proof.

3 case: n => [| k]. (k < 0) = (k.+1 == 0)
4 by [1.

2.2 Formal proofs 49

The second and now only remaining goal corresponds to the case when n is the successor
of x. Note that (x < 0) is a superseding notation for (x.+1 <= 0), as mentioned in section
1.7. This goal can also be solved by computation, as both sides of the equality evaluate to
false. The final proof script is hence:

1 Lemma legnO n : (n <= 0) = (n == 0).
2 Proof. by case: n => [| k]. Qed.

We will use a last example of boolean equivalence to introduce more advanced proof
techniques, leading to less verbose proof scripts. Remember from chapter 1 that the
product of two natural numbers is defined as a function (muln : nat -> nat -> nat). From
this definition, we prove that the product of two (natural) numbers is zero if and only if
one of the numbers is zero:

Fixpoint muln (m n : nat) : nat :=
if m is p.+1 then n + muln p n else 0.

Lemma muln_.eq0 mn : (m * n ==0) = (m == 0) || (n == 0).

In the case when u is zero (whatever value n takes), both sides of the equality evaluate to
true: the left hand side is equal modulo computation to (0 == 0), which itself computes
to true, and the right hand side is equal modulo computation to ((0 == 0) || (a == 0)),
hence to (true || (n == 0)) and finally to true because the boolean disjunction (_ || _) is
defined by case analysis on its first argument.

1 Lemma muln_eq0 m n : o, m : nat
2 (m*n==0)=(@@m==0) || (n==0). S
s cane: m = [lal i
') (m.+1 == 0) || (n == 0)
5 by [J.

In this script, we used the name n for the argument of the constructor in the second
branch of the case analysis. There is no ambiguity here and this proof step reads: either m
is zero, or it is of the form m.+1 (for a new m).

By default, the successor case is treated in the second subgoal, according to the order
of constructors in the definition of type nat. If we want to treat it first, we can use the
“; last first” tactic suffix:

1 Lemma muln_eq0 m n : m, k : nat

2 (m*n==0)=(@==0) || (n==0).

3 Proof. (m.+1 * k.+1 == 0) =

4 case: m => [|m]. (m.+1 == 0) || (k.+1 == 0)
5 by [J.

6 case: n => [|k]; last first. subgoal 2 is:

7 (m.+1 *x 0 == 0) =

8 (m.+1 == 0) || (0 == 0)

It is a good practice to get rid of the easy subgoal first: since we are going to indent
the text of its subproof, it better be the shortest one. In this way the reader can easily
skip over the simple case, that is likely to be less interesting than the hard one.

Here the successor case is such an easy subgoal: when n is of the form k.+1, it is easy to
see that the right hand side of the equality evaluates to false, as both arguments of the

2.2.3

50 Chapter 2. First steps in formal proofs

boolean disjunction do. Now the left hand side evaluates to false too: by the definition
of muln, the term (m.+1 * k.+1) evaluates to (kx.+1 + (m * k.+1)), and by definition of the
addition addn, this in turn reduces to (x + (m * k.+1)).+1. The left hand side term hence
is of the form t.+1 == 0, where t stands for (x + (m * k.+1)), and this reduces to false. In
consequence, the successor branch of the second case analysis is trivial by computation.

Lemma muln_eq0 m n :

1
> (@*n==0)=(@==0) || (a==0). [> ubecal
3 Proof.
m : nat

4 case: m => [|m].
Z caZZ'[i‘=> [Ix]; last first (moed = 0 == @) =

’ ’) (m.+1 == 0) || (0 == 0)
7 by [1.

This proof script can actually be made more compact and, more importantly, more
linear by using extra features of the introduction patterns. It is indeed possible, although
optional, to inspect the subgoals created by a case analysis and to solve the trivial ones on
the fly, as the by [1 tactic would do, except that in this case no failure happens in the case
some, or even all, subgoals remain. For instance in our case, we can add the optional //
simplify switch to the introduction pattern of the first case analysis:

1 Lemma muln_eq0 m n : n, m : nat

2 (m*xn==0)=(@-==0) || (n==0).

3 Proof. (m.+1 * n == 0) =

4 case: m => [Im] //. (m.+1 == 0) || (o == 0)

Only the first generated subgoal is trivial: Thus, it has been closed and we are left with
the second one. Similarly, we can get rid of the second goal produced by the case analysis
on n:

Lemma muln_eq0 m n :
m*n==0)=(@==0) || (n==0).

Proof.

case: m => [Im] //.

case: n => [|k] //.

m : nat

(m.+1 * 0 == 0) =
(m.+1 == 0) || (0 == 0)

ok W N e

This // switch can be used in more general contexts than just this special case of
introduction patterns: It can actually punctuate more complex combinations of tactics,
avoiding spurious branching in proofs in a similar manner [GMT15, section 5.4].

The last remaining goal cannot be solved by computation. The right hand side evaluates
to true, as the left argument of the disjunction is false (modulo computation) and the
right one is true. However, we need more than symbolic computation to show that the left
hand side is true as well: the fact that o is a right absorbing element for multiplication
indeed requires reasoning by induction (see section 2.3.4).

To conclude the proof we need one more proof command, the rewrite tactic, that lets
us appeal to an already existing lemma.

Rewriting

This section explains how to locally replace certain subterms of a goal with other terms
during the course of a formal proof. In other words, we explain how to perform a rewrite

2.2 Formal proofs 51

proof step, thanks to the eponymous rewrite tactic. Such a replacement is licit when the
original subterm is equal to the final one, up to computation or because of a proved identity.
The rewrite tactic comes with several options for an accurate specification of the operation
to be performed.

Let us start with a simple example and come back to the proof that we left unfinished
at the end of the previous section:

Lemma muln_eq0 m n :
(m*n==0)=@@==0) || (n==0).

Proof.

case: m => [Im] //.

case: n => [lk] //.

m : nat

(m.+1 * 0 == 0) =
(m.+1 == 0) [| (0 == 0)

otk W N =

At this stage, if we replace subterm (m.+1 * 0) by 0, the subgoal becomes:

I1 (0==0) = (m.+1 ==0) || (0==0)

which is equal modulo computation to (true = true), hence trivial. But since the definition
of muln proceeded by pattern matching on its first argument, (m.+1 * 0) does not evaluate
symbolically to 0: This equality holds but requires a proof by induction, as explained in
section 2.3.4. For now, let us instead derive (m.+1 * 0 = 0) from a lemma. Indeed, the
Mathematical Components library provides a systematic review of the properties of the
operations it defines. The lemma we need is available in the library as:

I 1 Lemma mulnOn : n * 0 = 0.

As a side remark, being able to find the “right” lemma is of paramount importance for
writing modular libraries of formal proofs. See section 2.5 which is dedicated to this topic.

Back to our example, we use the rewrite tactic with lemma mulno, in order to perform
the desired replacement.

1 Lemma muln_eq0 m n :

2 (m*n==0)=(@==0) || (n==0). m : nat

3 Proof.

4 case: m => [|m] //. (0 == 0) =

5 case: n => [|k] //. (m.+1 == 0) || (0 == 0)
6 rewrite mulnO.

The rewrite tactic uses the muln0 lemma in the following way: It replaces an instance of
the left hand side of this identity with the corresponding instance of the right hand side.
The left hand side of mulno can be read as a pattern (_ * 0), where _ denotes a wildcard:
The identity is valid for any value of its parameter n. The tactic automatically finds where
in the goal the replacement should take place, by searching for a subterm matching the
pattern (_ = 0). In the present case, there is only one such subterm, (m.+1 * 0), for which
the parameter (or the wild-card) takes the value m.+1. This subterm is hence replaced by o,
the right hand side of muino, which does not depend on the value of the pattern. We can
now conclude the proof script, using the prenex by tactical':

IPassing a single tactic to by requires no brackets; i.e., we can write by rewrite mulnO instead of
by [rewrite mulnO].

52 Chapter 2. First steps in formal proofs

Lemma muln_.eq0 mn : (m * n ==0) = (m == 0) || (n == 0).
Proof.

case: m => [Im] //.

case: n => [|k] //.

by rewrite mulnO.

Qed.

g s W N =

Arguments to the rewrite tactic are typically called rewrite rules and can be prefixed
by flags tuning the behavior of the tactic.

Rewriting many identities in one go

The boolean identity muln_eqo that we just established expresses a logical equivalence that
can in turn be used in proofs via the rewrite tactic. For instance, let us consider the case
of lemma leq_mu121, which provides a necessary and sufficient condition for the comparison
(m * n1 <= m * n2) to hold:

I 1 Lemma leq mul2l mnl n2 : (m * nl <=m * n2) = (m == 0) || (nl <= n2).

The proof goes as follows: The left hand side can equivalently be written as (m * n1 - m * n2 == 0),
which factors into (m * (nt - n2) == 0). But this is equivalent to one of the arguments of
the product being zero. And (at - n2 == 0) means (nl <= n2).

The first step is performed using the following equation:

1 Lemma legEmn : (m <=n) = (m - n == 0).
2 Proof. by []. Qed.

The proof of this identity is trivial, as the right hand side is the definition of the 1eq
relation, denoted by the <= infix notation. Rewriting with this equation turns the left hand
side of our goal into a subtraction:

1 Lemma leq_mul2l m nl n2 : m, nl, n2 : nat

2 (m *nl <=m *n2) = (m==20) || ...

3 Proof. (m * nl - m * n2 == 0) =
4 rewrite legE. (m == 0) || (nl1 <= n2)

The command rewrite leqE only affects the first occurrence of <=, but we would like to
substitute both. In order to rewrite all the possible instances of the rule in the goal, we
may use a repetition flag, which is !:

1 Lemma leq_mul2l m nl n2 : m, nl, n2 : nat

2 (m *nl <=m *n2) = (m==20) || ...

3 Proof. (m * n1 - m * n2 == 0) =

4 rewrite !legE. (m ==10) || (n1 - n2 == 0)

Now the definition of <= has been exposed everywhere in the goal, i.e., at both its
occurrences in the initial goal. We can now factor out m on the left, according to the
appropriate distributivity property:

I 1 Lemma mulnBr nmp : n* (m-p) =n*m-n *p.

2.3
2.3.1

2.3 Quantifiers 53

This time we need to perform a right-to-left rewriting of the mulnBr lemma (instead of
the default left-to-right). The rewriting step first finds in the goal an instance of pattern
(_* _ - _ % _), where the terms matched by the first and the third wildcards coincide.
The syntax for right-to-left rewriting consists in prefixing the name of the rewrite rule with
a minus- :

1 Lemma leq_mul2l m nl n2 : m, nl, n2 : nat

2 (m *nl1 <=m *n2) = (m==0) || ...

3 Proof. (m * (n1 - n2) == 0) =

4 rewrite !leqE. rewrite -mulnBr. (m ==0) || (n1 - n2 == 0)

Consecutive rewrite steps can be chained as follows:

1 Lemma leq_mul2l m nl n2 : m, nl, n2 : nat

2 (m *nl <=m *n2) = (m==0) || ...

3 Proof. (m * (n1 - n2) == 0) =

4 rewrite !leqE -mulnBr. (m ==0) || (n1 - n2 == 0)

The last step of the proof uses lemma muln_eqo to align the left and the right hand sides of
the identity.

1 Lemma leq_mul2l m nl n2 : m, nl, n2 : nat

2 (m *nl <=m*xn2) = (m==0) || ...

3 Proof. (m==0) || (n1 - n2 ==0) =
4 rewrite !leqE -mulnBr muln_eqO. (m==10) |l (n1 - n2 == 0)

The proof can now be completed by prefixing the tactic with the by tactical.

We only provided here some hints on the basic features of the rewrite tactic. Section 2.4.1
gives more details on the matching algorithm and on the flags supported by rewrite. The
complete description of the features of this tactic is found in the manual [GMT15].

Quantifiers

Universal quantification, first examples

Let us compare an example of a function we defined in chapter 1:

I 1 Definition leqnm :=m - n ==

with an example of a parametric statement we have used in the present chapter:

I 1 Lemma legqnO n : (n <= 0) = (n == 0).

We recall, as seen in chapter 1, that this concise syntax for defining 1eq stands for:

I 1 Definition leq := fun (n m : nat) =>m - n == 0.
and that the type of the constant 1eq is:

I 1 About leq. I leq : nat -> nat -> bool

54 Chapter 2. First steps in formal proofs

The curious reader might already have tested the answer of the About command on
some parametric lemmas:

I 1 About legnO. I legnO : Vn : nat, (n <= 0) = (n == 0)

She has thus observed that CoQ’s output features a prenex forall quantifier. This
universal quantifier binds a natural number, and expresses — as expected — that the
equation holds for any natural number. In fact, the types of the lemmas and theorems
with parameters all feature prenex universal quantifiers:

1 About muln_eqO. muln_eqO : Vmn : nat,
2 (m*n==0)=(m==0) || (n==0)

Quantifiers may also occur elsewhere in a statement, and not only in prenex position.
In the following example, we use the function nth, extracting the element of a sequence
at a given position. This statement expresses that two sequences with the same size and
whose n-th elements coincide for any n are the same. The second hypothesis, about the
elements, is itself a quantified formula:

1 Lemma seq_eq_ext (sl s2 : seq nat) :

2 size sl = size s2 ->

3 (Vi : nat, nth 0 s1 i = nth 0 s2 i) ->
4 sl = s2.

Quantifiers are also allowed to range over functions:

1 Lemma size_map (T1 T2 : Type) :
2 V(£ : Tl ->T2) (s : seq T1), size (map f s) = size s.

Observe that in the above statement of size_map, we have used a compact notation for
successive universal quantifications: “v (£ : T1 -> T2) (s : seq T1), ...” is syntactic sugar
for v £ : T1 -> T2, Vs : seq T1, ...”. However, in this case of prenex quantification, we
could just as well write:

1 Lemma size_map (T1 T2 : Type) (f : T1 -> T2) (s : seq T1) :
2 size (map f s) = size s.

as all quantifiers are in prenex positions.

Quantifiers may also occur in the body of definitions, which is useful to define predicates
expressing standard properties on objects. For instance, the commutativity property of a
binary operator is defined as:

1 Definition commutative (S T : Type) (op : S -> S8 -> T) :=
2 Vxy, opxy=opy X.

and the lemma stating the commutativity of the addn operation is in fact:

I 1 Lemma addnC : commutative addn.

2.3.2

2.3 Quantifiers 55

The Mathematical Components library defines several such predicates, which are used
as templates in order to state standard properties in a consistent and compact way. We
provide below a few examples:

Section StandardPredicates.
Variable T : Type.
Implicit Types (op add : T -> T -> T).
Definition associative op :=Vx y z, op x (opy 2z) =op (op x y) z.
Definition left_distributive op add :=
Vxyz, op(add x y) z = add (op x z) (op y 2).
Definition left_id e op := V x, op e x = X.
End StandardPredicates.

0w N O g W N =

Beside the standardization of the statements through these predicates, the Mathematical
Components library uses a systematic naming policy for the lemmas that are instances of
these predicates. A common suffix ¢ is used for commutativity properties like addnC or mulnc.
Such naming conventions are also useful to search the library, as detailed in section 2.5.

Another class of predicates typically describes usual properties of functions; these
usually feature quantifiers in their definitions:

Definition pcancel f g := V x, g (f x) = Some x.
End MoreStandardPredicates.

1 Section MoreStandardPredicates.

2 Variables rT aT : Type.

3 Implicit Types (f : aT -> rT).

4 Definition injective f :=V x1 x2, f x1 = f x2 -> x1 = x2.
5 Definition cancel f g := Vx, g (f x) = x.

6

7

The types of these predicates deserve a few comments:

1 About commutative. commutative :
2 VST: Type, (S ->8 -> T) -> Prop

The constant commutative has polymorphic parameters s and T, takes a binary operation
as argument and builds a proposition. It is hence a polymorphic unary predicate on a
certain class of functions, the binary functions with both their arguments having the same
type. Just like the polymorphic binary predicate eq, the predicate commutative can be used
to form propositions:

1 Check 3 = 3. 3 =3 : Prop
2 Check (commutative addn). commutative addn : Prop

Organizing proofs with sections

The Section mechanism presented in Section 1.4 can be used to factor not only the
parameters but also the hypotheses of a corpus of definitions and properties. For instance,
the proof of the Chinese Remainder Theorem is stated within such a section. It uses a
self-explanatory notation for congruences:

2.3.3

1
(@)}

Chapter 2. First steps in formal proofs

Section Chinese.

Variables ml m2 : nat.
Hypothesis co_ml12 : coprime ml m2.

Lemma chinese_remainder x y :
(x ==y %lmod m1 * m2]) = (x ==y %[mod m1]) && (x ==y %[mod m2]).
Proof.

© 0 N O U R W N =

10 End.
12 End Chinese.

The part of this excerpt up to the beginning of the lemma corresponds to a mathematical
sentence of the form: In this section, m; and my are two coprime natural numbers. . ..
Within the scope of this section, the parameters m1 and m2 are fixed and the hypothesis
co_m12 is assumed to hold. Outside the scope of the section (i.e., after the End Chinese
command), these variables and the hypotheses are generalized, so that the statement of
chinese_remainder becomes:

1 Lemma chinese_remainder ml m2 (co_ml2 : coprime ml m2) x y :
2 (x == y %[mod m1 * m2]) = (x == y %[mod m1]) && (x ==y %[mod m2]).

Note that the syntax to start a Lemma lets one name not only parameters such as m1 and m2,
but also assumptions such as co_mi12.

In general, when a section ends, the types of the constants and the statements of the
lemmas change to include those section variables and hypotheses that are actually used in
their definitions or proofs.

Using lemmas in proofs

In order to use a known lemma, one should provide the values of its parameters that
specify the instance relevant to the current proof. Fortunately, COQ can assist its user in
describing these values, and the apply: tactic, like the rewrite one in section 2.4, finds the
appropriate instance by comparing the lemma to the current goal:

Lemma legqnn n : n <= n. Proof. Admitted.

Lemma example a b : a + b <= a + b.

s W oo e

Proof. by apply: legnn. Qed.

The comparison performed by the apply tactic is up to computation:

1 Lemma example a b : a.+1 + b <= (a + b).+1.
2 Proof. by apply: legnn. Qed.

In order to save the effort of explicitly mentioning trivial steps in the proof script, we can
extend the power of the by terminator to make it aware of some lemmas available in the
library. The Hint Resolve command is used to tag these lemmas, as in:

1 (* This line belongs to the file where leqnn is stated and proved.*)
2 Hint Resolve legnn.
3 Lemma example a b : a + b <=a + b.

2.3 Quantifiers 57

I 4 Proof. by [1. Qed.

Observe that the goal is now closed without a mention of 1eqnn, although it has been used
by the system to conclude the proof.

In order to illustrate more proof techniques related to the use of lemmas inside proofs,
let us scrutinize a formal proof that a prime number which divides m!+1 for a certain
integer m has to be greater than m. This lemma is a key step in a proof that there are
infinitely many primes, which will be studied in section 4.2.1. The proof of the lemma goes
by contraposition: If p is a prime number smaller than m, then it divides m! and thus it
cannot divide m!+1 as it does not divide 1. We first state this lemma as follows:

I 1 Lemma example m p : prime p -> p %l m “! + 1 -> m < p.

where p %! m ! stands for “p divides the factorial of m”.

The first step of our formal proof will be to give a name to the hypothesis (prime p),
which means that we add it to the current context of the goal. The dedicated tactic for this
naming step is move=> followed by the name given to the hypothesis, because the hypothesis
moves from under the bar to above the bar:

1 Lemma example m p : prime p -> m, p : nat

2 phlm ! +1->m< p. prime_p : prime p

3 Proof.

4 move=> prime_p. pilm! +1->m<p

The second step of the proof is to transform the current goal into its contrapositive.
This means that we use the lemma

I 1 Lemma contralR (c b : bool) : (" c -> """ b) -> (b -> c).

which describes (one direction of) the contraposition law (namely, that an implication
between booleans can be derived from its contraposition). The apply: contralr tactic finds
the appropriate values of the premise and conclusion and instantiates the law, leaving us
with the task of proving that p is not a divisor of (m ~! + 1) under the assumption that p is
not greater than m:

Lemma example m p : prime p —>
p%hl m ! +1->m<p.
Proof.

m, p : nat
prime_p : prime p

move=> prime_p.

T m<p) > 7T (p Ul mTt o+
apply: contralR. (m < p) (p %l m 1)

[N I

More precisely, the values chosen by the tactic for the two parameters ¢, b of lemma
contralR are (m < p) and (p %l m ~! + 1). They have been found by comparing the statement
to be proved with the conclusion (b -> ¢) of the statement of the lemma contralk. The new
statement of the goal is the corresponding instance of the premise (-~ ¢ -> ~~ b) of lemma
contralR.

The next steps in our formal proof are to improve the shape of the hypothesis ~~ (m < p)
(using rewrite -legqNgt) and to give it a name (using move=> leq_p_m):

58 Chapter 2. First steps in formal proofs

1 Lemma example m p : prime p ->

2 phlm ! +1->m<p. m, p : nat

3 Proof. prime_p : prime p
4 move=> prime_p. legpm: p<=nm
5 apply: contralR.

6 rewrite -legNgt. T (p bl mT + 1)
7 move=> leq_p_m.

And the next step uses the following lemma:

I 1 Lemma dvdn_addr mdn : d %l m -> (d %l m + n) = (d %| n).

This is a conditional equivalence, expressed as a conditional identity. We can replace
our current goal with =~ (p %I 1) by rewriting it using (the appropriate instance of) this
identity. This operation will open an extra goal requiring a proof of (the corresponding
instance of) the side condition p %I m"!.

1 Lemma example m p : prime p —> m, p : nat

2 phlm !t +1->m<p. prime_p : prime p
3 Proof. leg_pm: p<=m
4 move=> prime_p.

5 apply: contralR. (el D

6 rewrite -legNgt.

7 move=> leq_p_m. subgoal 2 is:

8 rewrite dvdn_addr. p %l m!

Observe the second goal at the bottom of the buffer, which displays the statement of
the side condition to be proved later. The context of this subgoal is omitted but we do not
really need to see it: We know that statement p %I n ! holds because p <= m and because
we can combine the following lemmas:

1 Lemma dvdn_fact mn : 0 < m<=n ->m %| n~!.
2 Lemma prime_gtO p : prime p -> 0 < p.

Notice that the expression 0 < m <= nin dvdn_fact is really an abbreviation for (0 < m) & (m <= n).
The first goal is also easy to solve, using the following basic facts:

1 Lemma gtnNdvd nd : 0 <n ->n <d -> (d %l n) = false.
2 Lemma prime_gtl p : prime p -> 1 < p.

Finally, the resulting script would be:

Lemma example m p : prime p => p %l m ! + 1 -> m < p.
Proof.
move=> prime_p.
apply: contraLR.
rewrite -leqNgt.
move=> leq_p_m.
rewrite dvdn_addr.

rewrite gtnNdvd.

by [1. (x 7 false *)

10 by [J. (x 0 <1 %)

© 00 9 O U W N =

2.3 Quantifiers 59

11 by apply: prime_gtl. (* 1 < p *)
12 apply: dvdn_fact.

13 rewrite prime_gtO. (¥ 0 < p <= n *)
14 by [0. (* true && p <= m *)

15 by [J. (* prime p *)

16 Qed.

For brevity, we record the goal solved by a tactic in a comment after this tactic. Before
improving this script a comment is due: the goal after line 12, 0 < p <= m, is really an
abbreviation for (0 < p) & (p <= m). The subsequent rewrite command replaces (0 < p)
with true: after all the conclusion of prime_gto is an equation. We explain such tricks in
detail later on.

We shall improve this script in two steps. First, we take advantage of rewrite sim-
plification flags. It is quite common for an equation to be conditional, hence for rewrite
to generate side conditions. We have already suggested that a good practice consists in
proving the easy side conditions as soon as possible. Here, the first two side conditions are
indeed trivial, and, just as with the introduction patterns of the case tactic, we can use a
simplification switch // to prove them. We also combine on the same line the first three
steps, using the semicolon.” The proof script (up to the end of the proof of the first goal)
then looks like this:

Lemma example m p : prime p => p %l m ! + 1 -> m < p.
Proof.
move=> prime_p; apply: contralR; rewrite -legNgt; move=> leq_p_m.
rewrite dvdn_addr.
rewrite gtnNdvd //.
by apply: prime_gtl. (* 1 < p *)

D Gt W N

A careful comparison of the conclusions of gtnNdvd and prime_gt1 reveals that they are both
rewriting rules. While the former features an explicit “.. = false”, in the latter one the
“.. = true” part is hidden, but is there. This means both lemmas can be used as identities.

p) All boolean statements can be rewritten as if they were regular identities. The result
is that the matched term is replaced with true.

Rewriting with prime_gt1 leaves open the trivial goal true (i.e., (true = true)), and the
side condition (prime p). Both are trivial, hence solved by prefixing the line with by.

Lemma example m p : prime p -> p %l m ! + 1 -> m < p.
Proof.
move=> prime_p; apply: contralR; rewrite -leqNgt; move=> leq_p_m.
rewrite dvdn_addr.
by rewrite gtnNdvd // prime_gtl.

g W NN =

The same considerations hold for the last goal.

Lemma example m p : prime p -> p %l m ! + 1 -> m < p.

Proof.

move=> prime_p; apply: contralR; rewrite -leqNgt; move=> leq_p_m.
rewrite dvdn_addr.

B oW N e

2From this example, one might take away the wrong impression that a semicolon is synonymous to a dot.
In general, it is not, since the tactic following it is applied to each goal resulting from the tactic preceding
it. More details can be found in [Coq, “The tactic language”)].

2.3.4

60 Chapter 2. First steps in formal proofs

5 by rewrite gtnNdvd // prime_gtl.
6 by rewrite dvdn_fact // prime_gtO.
7 Qed.

To sum up, both apply: and rewrite are able to find the right instance of a quantified
lemma and to generate subgoals for its eventual premises. Hypotheses can be named using
move=>.

The proof script given above for example m p can be further reduced in size. One
simple improvement is to replace the chained tactic rewrite -leqNgt; move=> leq_p_m by the
equivalent rewrite -leqNgt => leq_p_m. Indeed, as we will see later (in subsection 4.1), the
move tactic does nothing; it is the => that is responsible for naming the hypothesis.

In section 2.4.1, we shall describe some further ways to shrink the proof script.

Proofs by induction

Let us take the well known induction principle for Peano’s natural numbers and let us
formalize it in the language of CoQ. It reads: let & be a property of natural numbers; if
Z holds for 0 and if, for each natural number n, the property &2 holds for n+ 1 as soon as
it holds for n, then & holds for any n. Induction is typically regarded as a schema, where
the variable &2 stands for any property we could think about.

In the language of CoQ, it is possible to use a quantification to bind the parameter
& in the schema, akin to the universal quantification of polymorphic parameters in data
types like seq. Induction principles, instead of being “schemas”, are regular lemmas with a
prenex quantification on predicates:

1 About nat_ind. nat_ind : VP : nat —> Prop,
PO->((mn: nat, Pn -> P n.+1) ->
3 Vn: nat, Pn

Here P is quantified exactly as n is, but its type is a bit more complex and deserves an
explanation. As we have seen in the first chapter, the -> denotes the type of functions;
hence P is a function from nat to Prop. Recall that prop is the type of propositions, i.e.,
something we may want to prove. In the light of that, p is a function producing a proposition
out of a natural number. For example, the property of being an odd prime can be written
as follows:

I 1 (fun n : nat => (odd n &% prime n) = true)

Indeed, if we take such function as the value for p, the first premise of nat_ind becomes

I 1 (fun n => (odd n &% prime n) = true) O

I 1 odd O && prime O = true

Remark the similarity between the function argument to foldr that is used to describe the
general term of an iterated sum in section 1.6 and the predicate P here used to describe a
general property.

For example, here is the induction principle for sequences (although denoted by 1ist_ind
rather than seq_ind, as seq is defined merely as a synonym for 1ist), which has some
similarities with the one for natural numbers:

2.3 Quantifiers 61

I 1 About list_ind.

list_ind : V (A : Type) (P : seq A -> Prop),
P[::]>((M(@:A4 (Q:seqh),PLlL->P (a:: 1)) —>
V1:seqA, P1

To sum up: reasoning by induction on a term t means finding the induction lemma
associated to the type of t and synthesizing the right predicate p. The elim: tactic has
these two functionalities, while apply: does not. Thus, while both elim: and apply: can be
used to formalize a proof by induction, the user would have to explicitly specify both t
and P in order to make use of the apply: tactic, whereas the elim: tactic does the job of
determining these parameters itself. The induction principle to be used is guessed from
the type of the argument of the tactic. Let us illustrate on an example how the value of
the parameter P is guessed by the elim: tactic and let us prove by induction on m that o is
neutral on the right of addn.

m : nat

L ddn : + = m.
1 emma a Om m 0 m THm : m + 0 = m

2 Proof.
3 elim: m => [// |m IHm].

m.+1 + 0 = m.+1

The elim: tactic is used here with an introduction pattern similar to the one we used
for case:. It has two slots, because of the two constructors of type nat (corresponding
naturally to what is commonly called the “induction base” and the “induction step”), and
in the second branch we give a name not only to the argument m of the successor, but also
to the induction hypothesis. We also used the // switch to deal with the base case because
if m is 0, both sides evaluate to zero. The value of the parameter p synthesized by elim: for
us is (fun n : nat => n + 0 = n). It has been obtained by abstracting the term m in the goal
(see section 1.1.1). This proof can be concluded by using lemma addsn to pull the .+1 out
of the sum, so that the induction hypothesis 1n can be used for rewriting.

Unfortunately proofs by induction do not always run so smooth. To our aid the elim:
tactic provides two additional services.

The first one is to let one generalize the goal. It is typically needed when the goal
mentions a recursive function that uses an accumulator: a variable whose value changes
during recursive calls; hence the induction hypothesis must be general. We show this
feature later on a concrete example (lemma foldl_rev).

Another service provided by elim: is specifying an alternative induction principle. For
example, one may reason by induction on a list starting from its end, using the following
induction principle:

1 Lemma last_ind A (P : list A -> Prop) :
2 PI[::] >(szx, Ps->P (rcons s x)) >Vs, Ps.

where rcons is the operation of concatenating a sequence with an element, as in (s ++ [::x]).
For example 1ast_ind can be used to relate the foldr and foldl iterators as follows:

1 Fixpoint foldl TR (f : R->T ->R) z s :=
2 if s is x :: s’ then foldl f (f z x) s’ else z.

2.4

62 Chapter 2. First steps in formal proofs

3
4 Lemma foldl_rev TR f (z : R) (s : seq T) :
5 foldl f z (rev s) = foldr (fun x z => f z X) z s .

The proof uses the following lemmas:

1 Lemma catsl T s (z : T) : s ++ [:: 2] = rcons s z.

2 Lemma foldr_cat TR f (z0 : R) (sl s2 : seq T) :

3 foldr f z0 (sl ++ s2) = foldr f (foldr f z0 s2) si.

4 Lemma rev_rcons T s (x : T) : rev (rcons s X) = X :: rev s.

The complete proof script follows:

1 Lemma foldl rev T A f (z : A) (s : seq T) :

2 foldl f z (rev s) = foldr (fun x z => f z x) z s .
3 Proof.

4 elim/last_ind: s z => [|s x IHs] z //.

5 by rewrite -catsl foldr_cat -IHs catsl rev_rcons.

6 Qed.

Here “elim/1ast_ind: s z” performs the induction using the 1ast_ind lemma on s after
having generalized the initial value of the accumulator z. The resulting value for P hence
features a quantification on z:

I 1 (fun s => V z, foldl f z (rev s) = foldr (fun x z => f z x) z s)

Thanks to the generalization, the induction hypothesis 1Hs states:

I 1 IHs : Vz : A, foldl f z (rev s) = foldr (fun x z => f z x) z s

which is more general than what we would have obtained if we had not generalized z
beforehand. The quantification on z is crucial since the goal in the induction step, just
before we use IHs, is the following one:

1 foldl f z (rev (s ++ [:: x])) =
2 foldr (fun y w => f w y) (foldr (fun y w => f wy) z [:: x]) s

The instance of the induction hypothesis that we need is one where z takes the
value (foldr (fun y w => £ w y) z [:: x]). The generalization of z gave us the freedom to
substitute a different value for z.

Rewrite, a Swiss army knife

Approximately one third of the proof scripts in the Mathematical Components library is
made of invocations of the rewrite tactic. This proof command provides many features we
cannot extensively cover here. We just sketch a very common idiom involving conditional
rewrite rules and we mention the rRHS pattern. The interested reader can find more about
the pattern language in section 2.4.1 or in the dedicated chapter of the SSReflect language
user manual [GMT15].

We have seen before that applying the rewrite tactic can create side conditions which
themselves need to be proven (i.e., they are sub-goals).

For example, recall our proof of example m p:

2.4 Rewrite, a Swiss army knife 63

1 Lemma example m p : prime p -> p %l m ! + 1 -> m < p.

2 Proof.

3 move=> prime_p; apply: contralR; rewrite -leqNgt => leq_p_m.
4 rewrite dvdn_addr.

5 by rewrite gtnNdvd // prime_gtl. (* ~~ (p %l 1) %)

6 by rewrite dvdn_fact // prime_gtO. (*x p %| m™! *)

7 Qed.

Here, our use of the rewrite dvdn_addr tactic forced us to prove the side condition
p %l m . Side conditions (by default) become the second, third (and potentially higher)
sub-goals in a proof script, so their proofs are usually postponed to after the first sub-goal
(the main one) is proven. This is not always desirable; therefore, it is helpful to have a
way to prove side conditions right away, on the same line where they arise. One way to do
this (which we have already seen in action) is using the simplification item //. When this
does not suffice, one can invoke another rewrite rule using the optional iterator 7. A rule
prefixed by 7 is applied to all goals zero-or-more times.

The side condition p %l m*! spawned by rewrite dvdn_addr was proven in the last
line of the script. Instead, we could have solved it right away by rewriting using
?dvdn_fact ?prime_gt0. In fact, optionally rewriting with dvdn_fact on all goals affects
only the side condition, since the main goal does not mention the factorial operator. The
same holds for prime_gt0. The resulting proof script is:

Lemma example m p : prime p > p %l m ! + 1 -> m < p.
Proof.

move=> prime_p; apply: contralR; rewrite -legNgt => leq_p_m.
rewrite dvdn_addr ?dvdn_fact ?prime_gtO //.

by rewrite gtnNdvd // prime_gtl.

Qed.

[L V"I R

Another functionality offered by rewrite is the possibility to focus the search for the
term to be replaced by providing a context. For example, the most frequent context is RHS
(for Right Hand Side) and is used to force rewrite to operate only on the right hand side of
an equational goal.

1 Lemma silly_example n : n + O = (n + 0) + O.
2 Proof. by rewrite [in RHS]addnO. Qed.

The last rewrite flag worth mentioning is the /= simplification flag. It performs
computations in the goal to obtain a “simpler” form.

1 Lemma simplify_me : size [:: true] = 1.
2 Proof.
3 rewrite /=.

The /= flag simply invokes the C0oQ standard simpl tactic. Whilst being handy, simpl
tends to oversimplify expressions, hence we advise using it with care. In section 5.4 we
propose a less risky alternative. The sequence “// /=" can be collapsed into //=.

Another form of simplification that is often needed is the unfolding of a definition. For
example, the lemma 1leqE that we used in the proof of 1eq_mu121 back in page 52 does not
exist in the library, and there is no name associated to this equation. It is simply the
definition of 1eq, and we actually do not need to state a lemma in order to relate the name

24.1

64 Chapter 2. First steps in formal proofs

of a definition, like 1eq, to its body fun n m => n - m == 0. Such operation can be performed
by prefixing the name of the object with /, as in rewrite /leq. Unfolding a definition is not
a deductive operation but an instance of computation, as made more precise in chapter 3.

Rewrite contextual patterns

The example 1leq_mu121 illustrates how the rewrite tactic, provided a rewrite rule like mulnBr
or muln_eqo0, is able to identify a subterm in the goal to be substituted. The usability of
the tactic crucially relies on an appropriate combination of automation and control. The
user should be able to predict which subterm will be substituted and to drive the tactic if
needed, with enough control options, but not too much verbosity. A key ingredient of the
rewrite tactic is hence the matching algorithm that elects this subterm from the arguments
provided to the tactic. Let us provide some insights on the power and on the limitations of
this algorithm, as well as on the control primitives that can drive it.

First, remember that our first attempt, using the simple rewrite leqE command, only
affected the left hand side of the initial goal because of the behavior of this matching
algorithm. Indeed, the matching algorithm traverses the entire goal left-to-right, looking for
the first subterm matching pattern (_ <= _), and hence picks the subterm (m * n1 <= m * n2).
Now suppose we want to pick the other instance of a subterm matching this pattern in
the goal. We can use the command rewrite [n1 <= _JleqE: the pattern given by the user
overrides the one inferred from the rewrite rule and is used to select the subterm to be
rewritten. In this case, term (m * n1 <= m * n2) is ruled out because the first argument
of <=, namely (m * n1), does not match the first argument n1 required in the user-given
pattern. Therefore, rewrite picks the term (n1 <= n2), in the right hand side.

1 Lemma leq_mul2l m nl n2 :

2 (m * nl <=m * n2) = m, nl, n2 : nat

3 (m == 0) || (n1 <= n2).

4 Proof. (m * n1 <= m * n2) =

5 rewrite [nl <= _JleqE. (m==0) || (1 - n2 == 0)

Another way of driving the matching algorithm is by providing a context, restricting
the part of the goal to be explored. For instance, in this case, the instance we want to pick
is on the right hand side of the identity to be proved. We can implement this specification
using the pattern [in RHSI:

1 Lemma leq_mul2l m nl n2 :

2 (m * nl <= m * n2) = m, nl, n2 : nat

3 (m ==0) || (n1 <= n2).

4 Proof. (m * n1 <= m * n2) =

5 rewrite [in RHS]leqE. (m==0) || (n1 - n2 == 0)

More generally, one can provide context patterns like [in X in T] where X is a variable
name, bound in T. For instance pattern [in RHS] is just syntactic sugar for the context pat-
tern [in X in _ = X]. We invite the interested reader to check the reference manual [GMT15,
section 8] for more variants of patterns and for a more precise description of the different
phases in the matching algorithm used by this tactic.

As we have said, the lemma 1eqE does not in fact exist in the library, and instead is
just the definition of 1eq. However if we try to omit the first rewrite !'leqE command, then
the next one, namely rewrite -mulnBr, fails:

2.4 Rewrite, a Swiss army knife 65

1 Lemma leq_mul2l m nl n2 :

2 (m*nl <=m * n2) = Error: The RHS of mulnBr

3 (m ==0) || (n1 <= n2). C*_-_ %)

4 Proof. does not match any subterm
5 rewrite -mulnBr. of the goal

This indicates in particular that, although the term (m * n1 <= m * n2) is equal up to
computation to the term (m * n1 - m * n2 == 0), the matching algorithm is not able to
see it. This is due to the compromise that has been chosen, between predictability and
cleverness. Indeed the algorithm looks for a verbatim occurrence of the head symbol’ of the
pattern: in this case it hence looks for an occurrence of (_ - _), which is not found. As a
consequence, we need an explicit step in the proof script in order to expose the subtraction
before being able to rewrite right to left with muinBr. However if we tackle the proof in
reverse, starting from the right hand side, the first -muln_eq0 step will succeed:

1 Lemma leq_mul2l m nl n2 :
2 (m * nl <=m * n2) = m, nl, n2 : nat
3 (m ==0) || (n1 <= n2).
4 Proof. (m * nl <=m * n2) =
5 rewrite -[_ || _Imuln_eqO. (m * (n1 - n2) == 0)
Indeed, the [_ |1 _] pattern identifies term (m == 0) || (a1 <= n2), as their head symbols

coincide. Now that we have selected a subterm, the rewrite tactic is able to identify it with
the term (m == 0) || (a1 - n2 == 0), itself an instance of the right hand side of muln_eqo.
Indeed, while matching only sees syntactic occurrences of the head symbols of patterns, it
is able to compare the other parts of the pattern up to symbolic computation. Note that
the [_ || _] pattern is redundant here; there is no other location in the goal where the
right hand side of muln_eq0 could appear.

Patterns can not only be used in combination with a rewriting rule, but also with a
simplification step /= or an unfolding step like /1eq. For example:

1 Lemma leq_mul2l m nl n2 :

2 (m *nl <=m * n2) = m, nl, n2 : nat

3 (m == 0) || (n1 <= n2).

4 Proof. (m * nl - m * n2 == 0) =
5 rewrite [in LHS]/leq. (m == 0) || (n1l <= n2)

One can also re-fold a definition, but in such a case one has to specify, at least partially,
its folded form.

1 Lemma leq_mul2l_rewritten m nl n2 :

2 (m * nl1 - m *x n2 == 0) = m, nl, n2 : nat

3 (m==0) || (n1 <= n2).

4 Proof. (m * n1 <= m * n2) =

5 rewrite -/(leq _ _). (m ==0) || (n1 <= n2)

Here, we have used the-/ prefix for the rewrite tactic; it allows folding a definition, i.e.,
the reverse of unfolding.
More generally, the rewrite tactic can be used to replace a certain subterm of the goal

3The head symbol is the root of the syntax tree of an expression.

2.5

2.5.1

2.5.2

66 Chapter 2. First steps in formal proofs

by another one, which is equal to the former modulo computation:

1 Lemma leq_mul2l m nl n2 :

2 (m*nl <=m=*n2) = (m-==0) || (n1 <= m, nl, n2 : nat
n2).
3 Proof. (m * (0O + n1) <=m * n2) =
4 rewrite -[n1]/(0 + nl). (m ==0) || (0 + nl <= n2)

Lastly, an equation local to the proof context, like an induction hypothesis, can be
disposed of after using it by prefixing its name with{} . For example rewrite -{}IHn rewrites
with IHn right to left and drops IHn from the context.

Searching the library

Finding the name of the “right” lemma in a library that contains thousands of them may
be quite a challenge. In spite of their digital nature, formal libraries are not so easy to
browse and the state of the art of search tools for formal libraries is far from being as
advanced as what exists for instance for the world wide web.

In order to help the users find their needle in the haystack, the Mathematical Compo-
nents library follows uniform naming policies, and the SSReflect proof language provides
a Search command which displays lists of items filtered using patterns, like (_ x _ + _) or
(addn

), and substrings of the names, like "rev" "cons".

Search by pattern

The search command takes a list of filters and prints the lemmas that do match all the
criteria.

The first pattern provided is special, since it is required to match the conclusion of a
lemma, while all other patterns can match anywhere.

For example “search (odd _)” only prints one lemma:

I 1 dvdn_odd Vmn : nat, m %l n -> odd n -> odd m

Indeed the conclusion matches the pattern. Note that one is not forced to use wildcards; odd
alone is a perfectly valid pattern. Many more lemmas are found by leaving the conclusion
unspecified, as in “Search _ odd”.

If we require the lemma to be an equation, as in “Search eq odd”, we find the following
two lemmas (among many other things):

1 dvdn2 Vn : nat, (2 %l n) = "~ odd n
2 coprime2n V n : nat, coprime 2 n = odd n

If we want to rule out all lemmas about coprimality we can refine the search by writing

“Search eq odd —coprime?

Search by name

Being acquainted to the naming policy followed by the Mathematical Components library
provides one of the more effective ways of finding lemmas in the loaded libraries. The name
my_first_lemma we chose in section 2.1.1 is a very bad name, as it gives no insight about
what the lemma says. Most of the time, we refrain from naming lemmas with numbers,

2.5 Searching the library 67

as is typically done in standard mathematical texts. Finding an appropriate name for a
lemma can be a delicate task. It should convey as much information as possible, while
striving to remain short and handy. In particular, bureaucratic lemmas that are frequently
used but represent no deep mathematical step should have a short name: this way they
are both easy to type and easy to disregard when skimming through a proof script.

Partial names can be used as filters by the search command. For example Search "cC"
prints, among other things, addnC and mulnC, the commutativity properties of addition
and multiplication. Multiple strings can be specified, for example Search "1" "muln". This
time we find mulni but also muln_eq1, the equation saying that the product of two natural
numbers is 1 if and only if they are both 1.

Here are the general principles governing the names of lemmas in the Mathematical
Components library:

e Generalities

— Most of the time the name of a lemma can be read off its statement: a lemma
named fee_fie_foe will say something about (fee .. (fie ..(foe ..) ..) ..),e.g.
lemma size_cat in seq.v.

— We often use a one-letter suffix to resolve overloaded notation, e.g., addn, addb,
and addr denote nat, boolean, and ring addition, respectively.

— Finally, a handful of theorems have historical names, e.g, Cayley_Hamilton Or
factor_theorem.

e Structures and Records

— Each structure type starts with a lower case letter, and its constructor has the
same name but with a capital first letter.

— Each instance of a structure type has a name formed with the name of the
carrier type, followed by an underscore and the one of the structure type like
in seq_sub_subType, the structure of subType defined on seq_sub (see fintype.v).
Notable exceptions to this rule are canonical constructions taking benefits of
modular name spaces, like in ssralg.v.

o Suffixes

— If the conclusion of a lemma is a predicate or an equality for a predicate, then
that predicate is a suffix of the lemma name, like in addn_eq0 or rev_unigq.

— If the conclusion of a lemma is a standard property such as \char, <|, etc.”’:
the property should be indicated by a suffix (like _char, _normal, etc), so the
lemma name should start with a description of the argument of the property,
such as its key property, or its head constant. Thus we have quotient_normal,
not normal_quotient, etc. This convention does not apply to monotony rules, for
which we either use the name of the property with the suffix for the operator
(e.g., groupM), or the name of the operator with the S suffix for subset monotony
(e.g., mulgS).

— We try to use and maintain the following set of lemma suffixes:

x 0 : zero, or the empty set
1 : unit, or the singleton set (use _set1 for the latter to disambiguate)
2 : two, doubling, doubletons
3 etc, similarly
A : associativity
C : commutativity, or set complement (use cr for trailing complement)
D : set difference, addition
E : definition elimination (often conversion lemmas)

* X K X KX X *x

4These examples are taken from libraries in the Mathematical Components distribution.

68

Chapter 2. First steps in formal proofs

* X K X K X X XK X K X K X X K X ¥ X

N~<X=Z<cHWnWoxvdvT==2C"NuHGOMT

: boolean false, finite type variant (as in canF_eq), or group functor
: group argument

: set intersection, injectivity for binary operators

: group conjugation

: cancellation lemmas

: left hand side (as in canLR)

: group multiplication

: boolean negation, additive opposite

: characteristic properties (often reflection lemmas)
: group commutator, or right hand side (as in canRL)
: subset argument, or integer successor

: boolean truth and Type-wide sets

: set union

: group or ring multiplicative inverse

: weakening

: exponentiation, or set Cartesian product

: group join

: module/vector space scaling

3.1

3. Dependent type theory

The formal language we use to write mathematical statements and proofs in the CoqQ
proof assistant is called Gallina. This language is an evolution of the Calculus of Inductive
Constructions (CIC) [CH&8; CP90] implemented in the early versions of CoQ in the 80’s.
In turn, CIC is one of the many descendants of the intuitionistic type theory [Mar80]
Martin-Lof developed in the 70’s. In order to avoid ambiguities with other type theories
we refer to this family of formal systems using the term dependent type theory.

In this chapter, we provide some hints on the main features of this formalism. The interested
reader shall refer to the reference manual of CoQ [Coq] for a formal definition of Gallina.

Propositions as types, proofs as programs

Set theory is commonly invoked as the foundational language for mathematics [Bou04].
Informally speaking, a set-theoretic framework has two stages. First order logic provides
the former layer: it describes the language of logical sentences and how these statements
can be combined and proved. This language is then used in the second layer to formulate
the axioms of the particular theory of interest, for example the ones of Zermelo-Fraenkel set
theory. By contrast, proof assistants based on a flavor of dependent type theory, like C0Q,
embrace an approach coined propositions-as-types [How80], and use the same language of
types in a uniform way to describe mathematical objects, mathematical assertions, and
their proofs. As we shall see the rules dictating which sentences and proofs are well-formed
are phrased quite differently in the two formal languages.

In set theory the rules which govern the construction of well-formed, grammatically
correct, statements are rather loose. For example x € x is a valid sentence, where x plays
the role of both an element and as set. Still, the goal of the game is to construct a proof
for a given well-formed proposition, using first-order logic to combine the axioms of the
theory, and nonsensical sentences supposedly have no proof.

The first two chapters of the present book illustrate how types can be used to help
classify, and clarify expressions passed to the checker. In fact, the language of types
available in the Calculus of Inductive Constructions, and thus in C0OQ, is so expressive that

70 Chapter 3. Dependent type theory

logical statements are identified with some types and their proofs with terms, or programs,
having this type. This way, proving a statement consists in fact in constructing a term of
the corresponding type. Objects of the formalism are programs, and proofs are themselves
objects of the formalism.

In this setting the analogue of “a proposition has a proof” is that “a term has a given
type”. Such a statement, called a typing judgment, is a ternary relation written as follows:

I'te: T

and reads: in the context I, the term t has the type T. A type is just a term, which is called
a type when it occurs on the right hand-side of a column in a well-formed typing judgment,
like T in our case. A context is a list of variables, each paired with a type, that can occur
in t and T. This typing judgment expresses that under the typing assumptions listed in
the context I', t and T are well-formed, and moreover that term ¢ has type T. Example:

x:NFx+x:N

A typing judgment is valid if it is justified by combining the typing rules of the type
theory, up to atomic ones like this one:

x:Tkx:T

which asserts that a context assigns a type to each variable it contains. A call to the
Check command introduced in Chapter 1 verifies that a certain typing judgment holds in
the current context. For instance, term 3 has type nat in an empty context:

I 1 Check 3 : nat. I 3 : nat

The context of a typing judgment includes all the variables and hypothesis currently
assumed. For instance, in a context containing a variable n with type nat, the term n + n
has type nat:

1 Variable n : nat.
2 Check n + n : nat. n + n : nat

CoQ complains if we try to verify the typing judgment asserting the same term has
type bool. In this case, it even computes and displays the correct type:

1 Fail Check n + n : bool. The term "n + n" has type "nat" while it
2 is expected to have type "bool".

Our last example is a typing judgment I' 7 : T where the term 7 is a proof. Indeed, in
a context containing a variable n of type nat, the term (muln0 n) has typen * 0 = 0 and is
thus a proof of the corresponding equational assertion:

1 Variable n : nat.
2 Check mulnOn : n *x O =0. mulnOn : n *x 0 =0

3.2

3.2 Terms, types, sorts 71

Terms, types, sorts

This section makes more precise what contexts, terms and types are. Note that, for the
sake of the exposition, the description is restricted to a subset of Gallina. We refer again
the reader looking for an exhaustive description to the corresponding chapter of CoQ’s
reference manual [Coq].

As alluded to in the introduction, type theory avoids the distinction set theory makes
between sets and propositions: type theory is based on a same and single collection of
inductively defined terms. A judgment I'F7: T relates two terms, t and T (in the context
I'), and T is called a type because it appears on the right hand side of the column symbol in
a typing judgment. Term T can be thought of as a label for a collection of terms, and the
judgment I't-7: T, as the statement that (in context I') “term # belongs to the collection T,
or even, to some extent, r € T. For instance, we have used in previous examples assumptions
of the form n : nat to model the sentence “let n be a natural number”.

This set-theoretic analogy should be taken with a pinch of salt though. First, there is no
way in type theory to introduce a term, even a variable, without simultaneously introducing
its type. Things are different in set theory, where an object a can be constructed without
necessarily being cast as being the element of a super-set A. Second, a judgment is not a
proposition in the same sense as the set-theoretic sentence t € T would be. In particular,
one cannot reason (internally) by case analysis on the proof that ¢ has type T, nor can we
disprove (internally) that ¢ has type T for some particular 7. Finally, as we shall see later
in this section, substitution of equals does not behave the same for terms at the left of a
column, and for those on the right — types.

We assume a collection of distinct names, used to denote atomic terms and called sorts.
One of this sorts is called Prop, and it is the type of statements:

I 1 Check 7 =7 : Prop. I 7 =7 : Prop
As noted already in Chapter 2, a well formed statement is not necessary a provable one:
I 1 Check 7 =9 : Prop. I 7 =9 : Prop

Types used as data-structures, to represent mathematical objects (as opposed to
mathematical assertions), live in a distinct sort named set:

I 1 Check nat : Set. I nat : Set

Gallina moreover features a countable, cumulative hierarchy of sorts, displayed as Type
and indexed by an integer variable which is by default hidden to the user. In the following
typing judgment we tell Coq to print the index of Type:

1 Set Printing Universes.
2 Check Type : Type. Type@{U1} : Type@{U2} (* Ul < U2 %)

the instance of Type on the right side of the column has a greater index (named v2 here)
than the instance of Type on the left.

In an empty context, the term Prop has type Type (for any value of the index) :

72 Chapter 3. Dependent type theory

I 1 Check Prop : Type. I Prop : Type@{U3} (* Prop < U3 x)
Set happens to be a name for the smallest element of the hierarchy of Type:
I 1 Check Set : Type. I Set : Type@{U4} (* Set < U3 x*)

Terms nat, bool, Prop are simple, atomic types, which can be used to build non-atomic
ones. For instance, in Chapter 2, we met the type of functions from natural numbers
to boolean, which is nat -> bool. Similarly the type of addition over natural numbers is
nat -> nat -> nat, and the type of boolean negation is bool -> bool.

In Chapter 1, we used a polymorphic type to represent sequences of elements:

I 1 Inductive seq (A : Type) := nil | cons (hd : A) (tl : seq A).

Since seq builds a new type for each given instance of its parameter, it has the type of
a function:

I 1 Check seq : Type -> Type.

Non-atomic terms are defined from a countable infinite set of symbols, called variables.
It is thus always possible to exhibit a new variable distinct from a given arbitrary finite
collection of variables. In CoQ syntax, we can use letters, or more generally sequences
of alpha-numeric characters, to represent variables. For instance, the following command
declares two variables of type nat, i.e. two natural numbers and one of type seq nat, i.e. a
list of numbers:

I 1 Variables (n m : nat) (1 : seq nat).

Hypotheses are themselves variables, whose type represent the assumed statement. The
following line assumes a hypothesis:

I 1 Hypothesis neq0 : n = 0.
But it is just a synonym, with a more suggestive name, of:

I 1 Variable neq0 : n = 0.

Of course, it is only possible to extend the current context with variables, or hy-
potheses, or definitions, with a well-formed type. As we have seen so far, well-formed
types include atomic types, like nat or Prop, and function types like nat -> bool. In Gal-
lina, it is also possible to define functions which build a type for any wvalue of a given
datatype:

I 1 Variable t : mnat -> Type.

Term t is called a dependent type, as it constructs a family of types which depend on
a parameter in a data type. For instance, t could be the type of lists of booleans with a
prescribed length, t n being the type of lists of length n. Now such a dependent type can
itself be used as the return type of a function, like in:

3.2 Terms, types, sorts 73

I 1 Variable g : Vn : nat, t n.

For instance, g n could build the list of length n containing only true elements. Thus
in Gallina, the return type of a function may depend on the wvalue of its argument: the
prefix V n, part of the type of g is a binder, which allows one to describe the dependency in
the return type. A type of the form Vv x, T is called a product type, or sometimes a Il-type.
Note that a product type V¥ x, T is well-formed for any T of type Type, Set or Prop, even when
T does not depend on x. In this case, when the return type is constant in the argument,
the product type is displayed with an arrow, as in:

I 1 Check V x : nat, bool : Type. I nat -> bool : Type

A term with a product (or arrow) type is a function, in the sense that it can be applied
to an argument, provided that the type of this argument agrees with the source of the
function type:

Variable f : nat -> bool.
Check f 3 : bool.
Fail Check f true : bool.

Variable g : Vn, t n.
Check g 3 : t 3.

D U s W N =

The typing rule governing the application of functions to arguments is a emblematic
example of the strict well-formedness conditions enforced by types on mathematical
statements. This rule will rule out nonsensical assertions, like “m is equilateral” or “2
is a Banach space”. But the same rule shall also play a nastier role, for instance if the
user wants to casually embed natural numbers into integers, or and integer into rational
numbers: working with these obvious inclusions might require an explicit cast in a typed
setting, if N, Z, Q are represented by distinct types.

New functions are defined by abstracting a variable in a term, as discussed in Chapter 1.
The resulting term has a product (or an arrow) type:

1 Definition bar (n : mnat) : bool :=
9 n ==
3 Check bar : nat -> bool.

Term bar has type nat -> bool because in the current context, augmented with a variable
declaration n : nat, corresponding to the name and type of the argument, the body n ==
of the definition has type bool.

As we have seen in Chapter 1, a function is defined by binding its argument in the
body of its definition: in bar, the variable n, on the left of the := delimiter, is bound in the
body of the definition, the n on the right of the := delimiter. When a defined function is
applied to its argument, the resulting term is computed by substituting the bound variable
for the value of the argument.

1 Definition bar (n : nat) : nat := n.
2 Print bar. bar = fun n => n : nat -> nat
3 Compute bar 4. = 4 : nat

3.3

74 Chapter 3. Dependent type theory

Propositions, implication, universal quantification

The sort Prop is the type of propositions. If A and B are two types in sort Prop, then A -> B is
also a type, living as well in sort Prop. A term of type A -> B is a function, that transforms
any term of type A into a term of type B, and that can be applied to any term of type A.
This is the central typing rule of our formal system. It is a deep remark that the typing
rules for function formation and function application can be read as the introduction rule
and elimination rule of logical implication, respectively. For instance, let us analyse a proof
that modus ponens holds:

Lemma modus_ponens (A B : Prop) : (A -> B) -> A -> B.
Proof.

move=> hAB hA.

apply: hAB.

exact: hA.

Qed.

D U s W N =

This proof starts by introducing the two hypotheses, akin to the two arguments of a
function. Then it builds a proof of B which is the result of the function naB applied to the
argument hA. A variant is:

Lemma modus_ponens (A B : Prop) : (A -> B) -> A -> B.
Proof.

move=> hAB hA.

exact: (hAB hA).

Qed.

gtk W N =

A last variant, providing directly the proof, without interactive commands:

1 Lemma modus_ponens (A B : Prop) : (A -> B) -> A -> B.
2 Proof.

3 exact: (fun hAB hA => hAB hA).

4 Qed.

The remark extends to universal quantification, whose introduction and elimination
rules also coincide with the formation and application rules of a product type. Just like
the constructive proof of an implication is a function transforming an arbitrary proof of
the premise into a proof of the conclusion, a constructive proof of a universal statement is
a family of proofs, indexed by the inhabitants of the type over which quantification takes
place. In this view, a proof of the Pythagorean theorem is a family of proofs indexed by
the collection of rectangular triangles.

The proofs-as-programs correspondence has a visible impact in the proofs part of the
Mathematical Components library. In particular, quantified lemmas, being programs, can
be instantiated by simply passing arguments to them. Exactly as one can pass 3 to addn
and obtain (addn 3), the function adding three, one can “pass” 3 to the lemma addnC and
obtain a proof of the statement (v y, 3 + y = y + 3). Remark that the argument passed to
addnC shows up in the type of the resulting term (addnC 3): The type of the addnC program
depends on the value the program is applied to. Functions whose codomain type depend
on the value of their input have a type of the form Vx: A, B, where x can occur in B. When
B does not depend on x this type is written A — B, avoiding the useless introduction of a
name x. The former is sometimes called the dependent function space (V) and the latter,
the standard function space (—).

3.4

3.5

3.4 Conversion 75

p) Lemma names can be used as functions, and you can pass arguments to them. For
example, (addnC 3) is a proof that (Vy, 3 + y = y + 3), and (prime_gt0 p_pr) is a
proof that (0 < p) whenever (p_pr : prime p).

Yet providing all the arguments of a given lemma, so as to describe the precise instance
useful in a proof, can be tedious. It is one of the duties of the language used in the
interactive construction of proofs to leverage this bureaucracy. For instance, the tactics
apply and rewrite introduced in Chapter 2 are designed to guess some of these arguments.
This guess is based on matching and unification with the current goal, or with a pattern
provided in argument.

We refer the reader to the reference manual of CoQ [Coq] for the other rules of the
system, which are variants of the ones we presented or which express subtleties of the type
system that are out of the scope of the present book, like the difference between the sorts
Prop and Type.

Conversion

The conversion (typing) rule in Gallina describes the status of computation in this dependent
type theory, and plays a fundamental role in the formalization choices adopted in the
Mathematical Component libraries. Computation is modeled by rewrite rules explaining
how to apply functions to their argument. For instance, the so-called B-reduction rule
rewrites the application of a function to an argument (fun x => t) u into #[u/x]: the formal
argument x is substituted by the actual argument u in the body ¢ of the function. A similar
rule models the computation of a term of the shape (let x := u in t) into t{u/x]. Two
terms #; and f, that are equal modulo computation rules are said to be convertible, written
11 =1, and these terms are indistinguishable to the type system.

This is the feature of the formalism that we have used in section 2.2.1: The proofs of
the statements 2 + 1 = 3 and 3 = 3 are the same, because the terms 2 + 1 = 3 and 3 = 3
are convertible. In chapter 1 and 2 we used boolean programs to express predicates and
connectives exactly to take advantage of convertibility: Also the compound statement
(2 '= 7 && prime 7) is convertible to true. Finally, as illustrated in section 1.5, computation
is not limited to terms without variables: The term (isT : true) ' is a valid proof of
(0 < n.+1), as well as a proof of (0 '= p.+1).

It is out of scope for this book to detail other uses of conversion. We just mention
that while the Mathematical Components library takes advantage of conversion to deal
with “little” computations like the ones above, the Coq system efficiently supports “large’
computations as well. One idiomatic example is found in the formal proof of the Four-Color
theorem [Gon08], another one in the implementation of the proof command ring that
decides equalities in the homonymous algebraic structure [GMO5].

)

Inductive types

Stricto sensu, in the formalism described in section 3.2, types are either sorts, like Prop
and Type, or functional types constructed from these atomic ones. However, in the previous
chapters, we have casually used other types like nat or bool and terms of these types like
0 : nat Or S : nat -> nat. In fact, in the Calculus of Inductive Construction it is also
possible to introduce new types — and in fact new terms — via inductive definitions [CP90;

IIn other words isT is a proof of all statements that are trivial by computation. We invite the reader
that finds the writing (isT : true) ill typed to peek ahead to section 5.5.

76 Chapter 3. Dependent type theory

Pau93]. We only provide a very brief overview of this subtle feature and again refer the
reader to the reference manual for a precise and formal account.

An inductive definition simultaneously introduces several new objects into the context:
a new type, in a given sort, and new terms for the constructors, with their types. For
instance, the command:

I 1 Inductive nat : Set := 0 : nat | S (n : nat).

introduces a new type nat : Set and two new terms (0 : nat) and (S : nat -> nat). Con-
structors of a type T are function symbols, possibly of zero arguments like 0, and the
codomain of their type is always T. The inductive type T may occur in the type of certain
arguments of its constructors, like nat in the type of s. The only way to construct an
inhabitant of an inductive type is to apply a constructor to sufficiently many arguments:

Check S (S (8 0)).
Check S (S (S n)).

1 Unset Printing Notatioms.
2 Variable n : nat.

3

4 Check 0.

5 Check S 0.

6

7

Note that for the sake of clarity, we do not make use in this section of the postfix
notations n.+1 for term (s n), n.+2 for term (s (S n)), etc. so as to display constructors
explicitly in examples.

Constructors are by definition injective functions: two terms featuring the same head
constructor can only be equal if the arguments passed to this constructor are equal. E.g.,
in the following goal:

n, m : nat
eqSnSm : Sn =Sm

G

where ¢ is an arbitrary formula, it is possible to simplify hypothesis eqSnSn:

case: eqSnSm.

gtk W N =

Moreover, two distinct constructors construct distinct terms; this is why a function with
an argument of an inductive type can be described by pattern matching on this argument.
For instance, in chapter 1, we have defined the non-zero test function by:

I 1 Definition non_zero n := if n is (S p) then true else false.

where we recall from Chapter 1 that if ... then ... else ... is a notation for the special
case of pattern matching with only two branches and one pattern. The definition of the
terms of the formalism is in fact extended with the match ... with ... end construction

3.6

3.6 More connectives 77

described in section 1.2.2. A special reduction rule expresses that pattern matching a
term which features a certain constructor in head position reduces to the term in the
corresponding branch of the case analysis.

The definition of the terms of CIC also includes so-called guarded fizpoints, which
represent functions with a recursive definition. We have used these fixpoints in chapter 1,
for instance when defining the addition of two natural numbers as:

1 Fixpoint addn n m :=

2 match n with

3 | 0=>m

4 | Sp=>S (addn p m)
5 end.

These fixpoints are said to be guarded because the corresponding function should always
terminate: more precisely, the Fixpoint command expects termination to follow from a
syntactic criterion. For instance, in the case of addn, the recursive call happens on a strict
subterm of the argument. Allowing non-terminating computations for well-typed terms
would actually interact badly with the conversion rule, and ultimately lead to proofs of
absurdity (see section 3.7). When the termination argument of a function falls outside this
syntactic guard condition, its definition usually involves an extra argument, witnessing
the decreasing order relation. For a more detailed exposition of these techniques, see for
instance the corresponding chapter in Bertot and Casteran’s book [BC04, Chapter 14].

More connectives

We have seen in section 3.3 that functions, i.e. terms with a product type, provide a data
structure for proofs of implication and universally quantified statements. Using inductive
types, it is possible to describe more data structures than mere functions. These data
structures and their typing rules are used to model every other logical connectives.

For instance, the introduction rule of the conjunction connective reads: to prove A AB
one needs to prove both A and B. Conversely, the elimination rule states that one proves A
whenever one is able to prove the stronger statement A A B.

In CoQ this connective is modeled by the following inductive definition, which provides
a type for pairs of proofs, of the parameter statements A and B:

1 Inductive and (A B : Prop) : Prop := conj (pa : A) (pb : B).
2 Notation "A /\ B" := (and A B).

Remark that the “data” type and is tagged as prop, i.e., we declare the intention to
use it as a logical connective rather than a data type. The single constructor conj takes
two arguments: a proof of A and a proof of B. Moreover and is polymorphic: A and B are
parameters standing for arbitrary propositions. As a consequence, it models faithfully
the introduction rule of conjunction, i.e. the rule governing the construction of proofs of
conjunctive statements.

Note that the definition of the pair data type, in section 1.3.3, is almost identical to
the one of and:

I 1 Inductive prod (A B : Type) := pair (a : A) (b : B).

Pattern matching provides the elimination rule for conjunction, i.e. the (two) rules

78 Chapter 3. Dependent type theory

governing the construction of proofs using a conjunctive hypothesis. Here is left elimination
rule:

1 Definition projl AB (p : A /\ B) : A :=
2 match p with conj a _ => a end.

Now recall the similarity between — and V, where the former is the simple, non-
dependent case of the latter. If we ask for the type of the conj constructor:

I 1 About conj. I conj: VAB : Prop, A ->B -> A /\B

we may wonder what happens if the type of the second argument (i.e., B) becomes
dependent on the value of the first argument (of type 4). What we obtain is actually the
inductive definition corresponding to the existential quantification.

1 Inductive ex (A : Type) (P : A -> Prop) : Prop :=
2 ex_intro (x : A) (p : P x).
3 Notation "’exists’ x : A, p" := (ex A (fun x : A => p)).

As ex_intro is the only constructor of the ex inductive type, it is the only means to
prove a statement like (exists n, prime n). In such a — constructive — proof, the first
argument would be a number n of type nat while the second argument would be a proof
p of type (prime n). The parameter p causes the dependency of the second component of
the pair on the first component. It is a function representing an arbitrary predicate over a
term of type A. Hence (P x) is the instance of the predicate, for x. E.g., the predicate of
being an odd prime number is expressed as (fun x : nat => (odd x) && (prime x)), and the
statement expressing the existence of such a number is

(ex nat (fun x : nat => (odd x) && (prime x)))

which (thanks to the Notation mechanism of C0Q) is parsed and printed as the more
familiar (exists x : nat, odd x && prime x).

It is worth summing up the many features of type theory that intervene in the type of

ex and,ex_intrm

1 ex : VA : Type, (A -> Prop) -> Prop.
2 ex_intro : VA : Type, VP : A -> Prop, Va : A, Pa ->ex AP.

Both ex and ex_intro are parameterized by (A : Type): as we have seen in chapter 1, the
(V A : Type) quantification indicates that ex are ex_intro are polymorphic constants, that can
be instantiated for any type. Both ex and ex_intro also have a parameter of type (A -> Prop):
since it does not appear in the rest of the type of ex, this parameter is not named and
the type uses the arrow syntax instead of a more verbose V A : Type, VP : A -> Prop, Prop.
This parameter is indicated by a so-called higher-order quantification, because the pa-
rameter has an arrow type. Constants ex and ex_intro can thus be be specialized to any
predicate P, so that the ex inductive declaration can be used on any formula. Finally, the
ex_intro constant features a last, inner-most v a : A quantifier, which binds a term variable
a representing the witness of the existential statement for Pp.

We now look at the inductive definition of the disjunction or and its two constructors

or_introl and or_intror.

3.6 More connectives 79

1 Inductive or (A B : Prop) : Prop := or_introl (a : A) | or_intror (b : B).
2 Notation "A \/ B" := (or A B).

The elimination rule can again be expressed by pattern matching:

1 Definition or_ind (A B P : Prop)
2 (aob : A\/B) (pa: A->P) (pb : B->P) : P :=
3 match aob with or_introl a => pa a | or_intror b => pb b end.

The detail worth noting here is that the pattern match construct has two branches,
and each branch represents a distinct sub proof. In this case, in order to prove P starting
from A \/ B, one has to deal with all cases: i.e., to prove P under the assumption A, and to
prove P under the assumption B.

Usual constants and connectives such as T, L and — can be defined as follows.

1 Inductive True : Prop := I.

2 Inductive False : Prop := .

3 Definition not (A : Prop) := A -> False.
4 Notation "~ A" := (nmot A).

Hence, in order to prove True, one just has to apply the constructor 1, which requires
no arguments. So proving True is trivial, and as a consequence eliminating it provides little
help (i.e., no extra knowledge is obtained by pattern matching over 1). Contrarily, it is
impossible to prove False, since it has no constructor, and pattern matching on False can
inhabit any type, since no branch has to be provided:

1 Definition exfalso (P : Prop) (f : False) : P :=
2 match f with end. (* no constructors, no branches *)

The only base predicate we still haven’t described is equality. The reason we left it as
the last one is that it has a tricky nature. In particular, equality, as we have seen in the
previous chapters, is an open notion in the following sense. Terms that compute to the
same syntactic expression are considered as equal, and this is true for any program the user
may write. Hence such notion of equality needs to be somewhat primitive, as match and fun
are. One also expects such notion to come with a substitutivity property: replacing equals
by equals must be licit.

The way this internal notion is exposed is via the concept of index on which an inductive
type may vary.

1 Inductive eq (A:Type) (x:A) : A -> Prop := erefl : eq A x x.
2 Notation "x = y" := (Qeq _ x y).

This is the first time we see a function type after the : symbol in an inductive type
declaration. The eq type constructor takes three arguments: a type A and two terms of
that type (the former is named x). Hence one can write (a = b) whenever a and b have the
same type. The erefl constructor takes no arguments, as I, but its type annotation says it
can be used to inhabit only the type (x = x). Hence one is able to prove (a = b) only when
a and b are convertible (i.e., indistinguishable from a logical standpoint). Conversely, by
eliminating a term of type (a = b) one discovers that a and b are equal and b can be freely
replaced by a.

3.7

80 Chapter 3. Dependent type theory

1 Definition eq_ind A (P : A -> Prop) x (px : Px) y (e : x=y) : Py :=
2 match e with erefl => px end.

The notion of equality is one of the most intricate aspects of type theory; an in-depth
study of it is out of the scope of this book. The interested reader finds an extensive study
of this subject in [Unil3].

Inductive reasoning

In chapter | we have seen how to build and use (call or destruct) anonymous functions and
data types. All these constructions have found counterparts in the propositions-as-types
correspondence. The only missing piece is recursive programs. For example, addn was
written by recursion on its first argument, and is a function taking as input two numbers
and producing a third one. We can write programs by recursion that take as input, among
regular data, proofs and produce other proofs as output. Let’s look at the induction
principle for natural numbers through the looking glasses of the propositions-as-types
correspondence.

I 1 About nat_ind.

nat_ind : VP : nat -> Prop,
PO->(n:nat, Pn ->Pn.+1) ->Vn : nat, Pn

nat_ind is a program that produces a proof of (P n) for any n, proviso a proof for the base
case (P 0), and a proof of the inductive step (v n : nat, P n -> P n.+1). Let us write such
a program by hand.

1 Fixpoint nat_ind (P : nat -> Prop)

2 (pO : PO) (pS : Vn : nat, Pn->Pn.+1) n : Pn :=
3 if n is m.+1 then

4 let pm (* : Pm %) := nat_ind P pO pS m in

5 pSmpm (x : P m.+1 %)

6 else pO.

The CoQ system generates this program automatically, as soon as the nat data type is
defined.

It is worth mentioning that this principle is general enough to prove the “stronger’
induction principle that give access, in the inductive step, to the property p on all numbers
smaller than n.+1 and not just its predecessor.

)

1 Lemma strong_nat_ind (P : nat -> Prop)
2 (base : P 0)
3 (step : Vn, (Ym, m<=n ->Pm) ->Pn.+1) x: P x.

In order to prove this statement it is sufficient to craft the right “P” for n.

I 1 Check (nat_ind (fun n =>Vm, m <=n -> P m)).

3.7 Inductive reasoning 81

(Vm, m <=0 -> P m) —>
(Wn, m,m<=n->Pm) >Vm, m<=n.+1 -> P m) ->
Vaom, m<=n ->Pn

If we fulfill the last premise with (1eqnn x : x <= x) we obtain the following proof goals:

1 Proof.

2 apply: (nat_ind (fun n => Vm, m <= n -> P m) x x (legnn x)).

P : nat -> Prop

base : P O
step : Vn : nat, (Vm : nat, m <=n -> P m) -> P n.+1
X : nat

Vm: nat, m<=0 ->Pm

subgoal 2 is:
V n : nat,
(Vm : nat, m<=n ->Pm) ->Vm: nat, m<=n.+1 ->Pm

The two goals follow from base and step respectively. Induction principles like this one
can be used by giving their name to elim as in elim/strong_nat_ind. Still, strong induction
is such a frequent proof step that the Mathematical Components library provides dedicated
idioms that we will detail in Section 5.3.

Finally, recall that recursive functions are checked for termination: Through the lenses
of the proofs-as-programs correspondence, this means that the induction principle just
coded is sound, i.e., based on a well-founded order relation.

If non-terminating functions are not ruled out, it is easy to inhabit the False type, even
if it lacks a proper constructor.

1 Fixpoint oops (n : nat) : False := oops n.
2 Check oops 3. (* : False *)

Of course CoQ rejects the definition of cops. To avoid losing consistency, CoQ also enforces
some restrictions on inductive data types. For example the declaration of hidden is rejected.

1 Inductive hidden := Hide (f : hidden -> False).
2 Definition oops (hf : hidden) : False := let: Hide f := hf in f hf.
3 Check oops (Hide oops). (* : False %)

Note how oops calls itself, as in the previous example, even if it is not a recursive function.
Such restriction is called positivity condition and, roughly speaking, it says that constructors
for an inductive data type can only depend on maps to the data type but not on maps
from it. The interested reader shall refer to [Coq].

4. A proof language for formal proofs

Since proofs are just terms one could, in principle, use no proof language and directly input
proof terms instead. Indeed this was the modus operandi in the pioneering work of De
Bruijn on Automath (automating mathematics) in the seventies [NGV91].

Still, the use of a dedicated proof language enables a higher level description of the
formal proof being constructed. The Small Scale Reflection proof language give us tools to
structure proofs and to tame bookkeeping, a form of bureaucracy typical of formal proofs.

Structure is given by splitting large proofs in blocks with a specific, declared, purpose
and by factoring repetition such as symmetric or less general cases. The main tool logic
gives us is the cut rule where the author of a proof identifies an intermediate fact, or a
generalization of the goal. The have and without loss tactics precisely cover this need.

Bookkeeping is the ubiquitous activity of context management, that is naming or
discarding assumptions in order to track their lifetime to tide the context up, as well
as massaging assumptions and goals as to please the formality requirements of Coq. A
paradigmatic bookkeeping example is destructing assumption of (4 & B) in order to give
distinct names to A and B: unlikely to be a pregnant step of the proof. The language
of intro-patterns together with then goal-as-stack model provides a very flexible tool to
succinctly deal with bookkeeping.

Structure and manageable size are key to the maintenance of proofs by a team of people.
Being small in size helps maintenance since when computer code does not fit the screen
one has hard times understanding it [Wei85] and hence repairing it. Moreover, structure
confines errors arising after a change to smaller text blocks, and declares what the original
author of the block being repaired was doing effectively implementing a form of check
pointing and documentation. All that works best if the tactics used to fill in the blocks
have a predictable behavior: fail early and locally when a breaking change takes place.

This chapter covers the tools to structure and tie proofs up and discusses some of
the good practices that made the development of the Mathematical Components library
possible.

4.1

4.1.1

84 Chapter 4. A proof language for formal proofs

Bookkeeping: goals as stacks

The presentation we gave so far of proof commands like case: n => [Im] is oversimplified.
While case is indeed the proof command in charge of performing case analysis, the “: n”
and “=> [Im]” parts are decorators to prepare the goal and post-process the result of the
proof command. These decorators perform what we typically call bookkeeping: actions that
are necessary in order to obtain readable and robust proof scripts but that are too frequent
to benefit from a more verbose syntax. Bookkeeping actions do convey a lot of information,
like where names are given to assumptions, but also let one deal with annoying details
using a compact, symbolic, language. Note that all bookkeeping actions correspond to
regular, named, proof commands. It is the use one makes of them that may be twofold: a
case analysis in the middle of a proof may start two distinct lines of reasoning, and hence
it is worth being noted explicitly with the case word. Conversely, breaking a pair into two
pieces is usually not a significant, meaningful step in a proof: hence the possibility to use a
lightweight and compact syntax for this bookkeeping action, instead of an explicit mention
of the case tactic.

Pulling from the stack

”

Let’s start with the post-processing phase, called introduction pattern. The postfix “=> ...
syntax can be used in conjunction with any proof command, and it performs a sequence
of actions on the first assumption or variable that appears in the goal (i.e., on & if the
goal has the form A -> ..., or on x if the goal has the form v x, ...). With these looking
glasses, the goal becomes a stack. Take for example this goal:

V xy, prime xy.1 -> odd xy.2 -> 2 < xy.2 + xy.1

Before accessing the assumption (prime xy.1), one has to name the bound variable xy,
exactly as one can only access a stack from its top. The execution of => xy pr_x odd_y is
just the composition of => xy with => pr_x and finally => odd_y. Each action pulls an item
out of the stack and names it. The move proof command does nothing, so we use it as a
placeholder for the postfix => bookkeeping action:

1 move=> Xy pr_x odd_y. Xy : nat * nat

2 pr_x : prime xy.1
3 odd_y : odd xy.2
4

5 2 < xy.2 + xy.1

Now, en passant, we would like to decompose xy into its first and second component.
Instead of the verbose => xy; case: xy => x y, we can use the symbolic notation [1 to
perform such action.

move=> [x y] pr_x odd_y. X, y : nat
pr_x : prime (x,y).1
odd_y : odd (x,y).2

Ut W N =

2 < (x,y).2 + (x,y).1

We can place the /= switch to tell CoQ to reduce the formulas on the stack, before
introducing them in the context, and obtain:

4.1 Bookkeeping: goals as stacks 85

1 move=> [x y] /= pr_x odd_y. X, y : nat

2 pr_x : prime x
3 odd_y : odd y
4

5 2<y+x

We can also process an assumption through a lemma; when a lemma is used in this
way, it is called a view. The prime_gt1 lemma states that (prime p -> 1 < p) for any p, and
we can use it as a function to obtain a proof of (1 < x) from a proof of (prime x).

1 move=> [x y] /= /prime_gtl-x_gtl odd_y. X, y : nat

2 x_gtl : 1 <x
3 odd_y : odd y
4

5 2<y+x

The leading / makes prime_gt1 work as a function instead of as a name to be assigned
to the top of the stack. The- has no effect but to visually link the function with the name
x_gt1 assigned to its output. Indeed- can be omitted.

One could also examine y: it can’t be 0, since it would contradict the assumption saying
that y is odd.

move=> [x [//1z]] /= /prime_gtl-x_gtl. X, z : nat

x_gtl : 1 <x

" odd z -> 2 < z.+1 + x

This time, the destruction of y generates two cases for the two branches; hence the
[.. 1 ..1]syntax. In the first one, when y is 0, the // action solves the goal, by the trivial
means of the by [1 terminator. In the second branch we name z the new variable (the
predecessor of what used to be called y). Since y is destructed we could have reused that
name for its predecessor, as it is often done in the Mathematical Components library. In
fact, the boolean predicate odd is defined by case analysis, and induction, on its argument
of type nat:

I 1 Fixpoint odd n := if n is n’.+1 then "~ odd n’ else false.

Therefore, when applied to z.+1, it simplifies to ~~ odd z.
Now, the fact that z is even is not needed to conclude, so we can discard it by giving it
the _ dummy name. '

I 1 by move=> [x [//|z]] /= /prime_gtl-x_gtl _; apply: ltn_addl x_gt1l.

We finally conclude with the apply: command. In the example just shown, we have
used it with two arguments: a function and its last argument. In fact, the lemma 1tn_addl
looks as follows:

LIf an assumption has already a name, it can be discarded by writing its name in curly braces: e.g.
move=> {x_gt1}.

4.1.2

86 Chapter 4. A proof language for formal proofs

1 About ltn_addl. ltn_addl : Vm n p : nat,
2 m<n->m<p+n
3 Arguments m, n are implicit

apply: automatically fills in the blanks between the function 1tn_addl (the lemma name)
and the given argument x_gt1. Since we are passing x_gt1, the variable m takes the value 1.
The conclusion of 1tn_addl hence unifies with (2 < z.+1 + x) because both + and < are defined
as programs that compute: Namely, addition exposes a .+1 by reducing to 2 < (z + x).+1;
then < (or, better, the underlying <=) eats a successor from both sides, leading to 1 < z + x,
which looks like the conclusion of the lemma we apply.

Here we have shown all possible actions one can perform in an intro pattern, squeezing
the entire proof into a single line. This has to be seen both as an opportunity and as
a danger: one can easily make a proof unreadable by performing too many actions in
the bookkeeping operator =>. At the same time, a trivial sub-proof like this one should
take no more than a line, and in that case one typically sacrifices readability in favor of
compactness: what would you learn by reading a trivial proof? Of course, finding the right
balance only comes with experience. As a rule of thumb: follow the granularity of how you
wound naturally read your script to someone else.

i) The case intro pattern [..[..] obeys an exception: when it is the first item of an
intro pattern, it does not perform a case analysis, but only branch on the subgoals.
Indeed in case: n => [|m] only one case analysis is performed.

Working on the stack

The stack can also be used as a workplace. Indeed, there is no need to pull all items from
the stack. If we take the previous example:

V xy, prime xy.1 -> odd xy.2 -> 2 < xy.2 + xy.1

and we stop just after applying the view, we end up in a valid state:

1 move=> [x y] /= /prime_gtl. X, y : nat

3 1<x->o0ddy >2<y+x

One can also chain multiple views on the same stack item:

1 move=> [x y] /= /prime_gtl/ltnW. X, y : nat
2
3 0<x->o0ddy ->2<y+x

Two other operations are available on the top stack item: specialization and substitution.
Let’s take the following conjecture.

(Vn,n*2=n+mn) ->6=3+3

4.1.3

4.1 Bookkeeping: goals as stacks 87

The top stack item is a quantified assumption. To specialize it to, say, 3 one can write
as follows:

1 move=> /(_ 3).
2 3*%*x2=3+3->6=3+3

The idea behind the syntax here is that when we apply a view v to the top stack item
(say, top), by writing /v, we are forming the term (v top), whereas when we specialize the
top stack item top to an object x, by writing /(_ x), we are forming the term (top x). The
application of a view written /v is short for /(v _).

When the top stack item is an equation, one can substitute it into the rest of the goal,
using <- and-> for right-to-left and left-to-right respectively.

1 move=> /(_ 3) <-.
2 6 =3 x 2

In other words, the arrows are just a compact syntax for rewriting, as in the rewrite
tactic, with the top assumption.

Pushing to the stack

We have seen how to pull items from the stack to the context. Now let’s see the so called
discharging operator :, performing the converse operation. Such operator decorates proof
commands as move, case and elim with actions to be performed before the command is
actually run.

i) The colon symbol in apply: is not the discharging operator. It is just a marker to
distinguish the apply: tactic of Small Scale Reflection from the apply tactic of C0Q.
Indeed the two tactics, while playing similar roles, behave differently [GMT15, §5.2
and §5.3].

Imagine we want to perform case analysis on y at this stage:

X, y : nat
x_gtl : 1 <x
odd_y : odd y

2<y+x

The command case: y is equivalent to move: y; case. where move once again is a place-
holder, : y pushes the y variable onto the stack, and case operates on the top item of the
stack. Pushing items on the stack is called discharging.

Just before running case, the goal would look like this:

X : nat
x_gtl : 1 <x
odd_y : odd y

Vy, 2<y+x

88 Chapter 4. A proof language for formal proofs

However, this is not actually a well-defined state. Indeed, the binding for y is needed
by the odd_y context item, so move: y fails. One has to push items onto the stack in a valid
order: first, all properties of a variable, then the variable itself. The correct invocation,
move: y odd_y, pushes first odd_y and only then y onto the stack, leading to the valid goal

X : nat
x_gtl : 1 <x

Vy, oddy ->2<y+x

Via the execution of case one obtains:

2 subgoals

X : nat
x_gtl : 1 <x

odd 0 -=> 2 <0 + x

subgoal 2 is:
Vn : nat, odd n.+1 -> 2 < n.+1 + x

Note that listing context entry names inside curly braces purges them from the context.
For instance the tactic case: y {odd_y} clears the odd_y fact. But this would lead to a dead
end in the present proof, so we don’t use it here.

One can combine : and => around a proof command, to first prepare the goal for its
execution and finally apply the necessary bookkeeping to the result. For example:

1 case: y odd_y => [ly’] X : nat

2 x_gtl : 1 <x

3

4 odd 0 -> 2 <0 + x

5

6 subgoal 2 is:

7 odd y’.+1 -> 2 < y’.+1 + x

At the left of the “:” operator one can also put a name for an equation that links the
term at the top of the stack before and after the execution of the tactic. For example,
case E: y odd_y => [ly’] leads to the following two subgoals:

X, y : nat
x_gtl : 1 <x
E:y=0

odd 0 -> 2 <0 + x

X, ¥y : nat
x_gtl : 1 <x
y’ : nat
E:y=y.+1

odd y’.+1 -> 2 < y’.+1 + x

4.2

4.2.1

4.2 Structuring proofs, by examples 89

Lastly, one can push any term onto the stack — whether or not this term appears in
the context. For example, “move: (legnn 7)” pushes on the stack the additional assumption
(7 <= 7).

Structuring proofs, by examples

So far we’ve only tackled simple lemmas; most of them did admit a one line proof. When
proofs get longer structure is the best ally in making them readable and maintainable.
Structuring proofs means identifying intermediate results, factoring similar lines of reasoning
(e.g., symmetries), signaling crucial steps to the reader, and so on. In short, a proof written
in CoqQ should share its structure and main steps with the same proof written on paper.
The first subsection introduces the nave tactic, that is the key to structure proofs into
intermediate steps. The second subsection deals with the “problem” of symmetries.

Primes, a never ending story

Saying that primes are infinite can be phrased as: for any natural number m, there exists a
prime greater than m. The proof of this claim goes like that: every natural number greater
than 1 has at least one prime divisor. If we take m!+ 1, then such prime divisor p can be
shown to be greater than m as follows. By contraposition we assume p < m and we show
that p does not divide m!+ 1. Being smaller than m, p divides m!, hence to divide m!+1,
p should divide 1; that is not possible since p is prime, hence greater than 1. ([l

We state our theorem using a “synonym” of the exists quantifier that is specialized to
carry two properties. This way the statement is simpler to destruct: with just one case
analysis we obtain the witness and the two properties.

1 Inductive ex2 A P Q : Prop := ex_intro2 x of P x & Q x.
2 Notation "exists2 x , p & q" := (ex2 (fun x => p) (fun x => q)).

We also resort to the following notations and lemmas.

1 Notation "n “!" := (factorial n).

2 Lemma fact_gtOn : O < n°!.

3 Lemma dvdn_fact mn : 0 <m <=n ->m %| n*!.

4 Lemma pdivP n : 1 < n -> exists2 p, prime p & p %| n,

5 Lemma dvdn_addr mdn : d %l m -> (d %l m +n) = (d %l n).
6 Lemma gtnNdvd nd : 0 <n ->n <d -> (d %l n) = false.

The first step is to prove that m!+ 1 is greater than 1, a triviality. Still it gives us the
occasion to explain the have tactic, which lets us augment the proof context with a new
fact, typically an intermediate step of our proof.

Lemma prime_above m : exists2 p, m < p & prime p.
Proof.
have ml_gtl: 1 < m™! + 1.

by rewrite addnl 1tnS fact_gtO.

s oW oo e

Its syntax is similar to the one of the Lemma command: it takes a name, a statement
and starts a (sub) proof.

The next step is to use the pdivP lemma to gather a prime divisor of m*!.+1. We end up
with the following, rather unsatisfactory, script.

4.2.2

90 Chapter 4. A proof language for formal proofs

Lemma prime_above m : exists2 p, m < p & prime p.
Proof.
have ml_gtl: 1 < m™! + 1.
by rewrite addnl 1tnS fact_gtO.
case: (pdivP ml_gtl) => [p pr_p p_dv_mi].

[N

It is unsatisfactory because in our paper proof what plays an interesting role is the p
that we obtain in the second line, and not the m1_gt1 fact we proved as an intermediate
fact.

We can resort to the flexibility of have to obtain a more pertinent script: the first
argument to have, here a name, can actually be any introduction pattern, i.e. what follows
the => operator, for example a view application. In the light of that, the script can be
rearranged as follows.

Lemma prime_above m : exists2 p, m < p & prime p.
Proof.
have /pdivP[p pr_p p_dv_mi]l: 1 < m™! + 1.

by rewrite addnl 1tnS fact_gtO.
exists p => //; rewrite ltnNge; apply: contral p_dv_ml => p_le_m.
by rewrite dvdn_addr 7dvdn_fact ?prime_gtO // gtnNdvd ?7prime_gtl.
Qed.

N o s W =

Here the first line obtains a prime p as desired, the third one begins to show it fits by
contrapositive reasoning, and the last