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Introduction

Mathematical Components is the name of a library of formalized mathematics for the Coq
system. It covers a variety of topics, from the theory of basic data structures (e.g., numbers,
lists, finite sets) to advanced results in various flavors of algebra. This library constitutes
the infrastructure for the machine-checked proofs of the Four Color Theorem [Gon08] and
of the Odd Order Theorem [Gon+13a].

The reason of existence of this book is to break down the barriers to entry. While there
are several books around covering the usage of the Coq system [BC04; Chl14; Pie+15]
and the theory it is based on [Coq][Pau15; Uni13], the Mathematical Components library
is built in an unconventional way. As a consequence, this book provides a non-standard
presentation of Coq, putting upfront the formalization choices and the proof style that
are the pillars of the library.

This book targets two classes of public. On the one hand, newcomers, even the more
mathematically inclined ones, find a soft introduction to the programming language of
Coq, Gallina, and the SSReflect proof language. On the other hand accustomed Coq
users find a substantial account of the formalization style that made the Mathematical
Components library possible.

By no means does this book pretend to be a complete description of Coq or SSReflect:
both tools already come with a comprehensive user manual [Coq; GMT15]. In the course
of the book, the reader is nevertheless invited to experiment with a large library of
formalized concepts and she is given as soon as possible sufficient tools to prove non-trivial
mathematical results by reusing parts of the library. By the end of the first part, the reader
has learned how to prove formally the infinitude of prime numbers, or the correctness of
the Euclidean’s division algorithm, in a few lines of proof text.
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Structure of the book

The book has two parts which are meant to be read in order.

Part 1: Languages for writing formal mathematics

This part introduces two languages and incidentally a formalization approach.
The first language is used to represent mathematics in the Coq proof assistant. It is

called Gallina and, as the expert reader may know, it is based on a variant of type theory
named the Calculus of Inductive Constructions. As this part of the book explains, the very
same language is used to define mathematical objects, to describe their properties and to
spell out the proofs of these properties. Another distinguishing feature of this foundational
framework is the status it awards to computation, and the prominent role computations
shall play in proofs.

The second language is used to write proofs and is called SSReflect, a shorthand for
Small Scale Reflection. SSReflect is a language designed to ease the activity of writing and
maintaining formal proofs. In particular the maintenance of large formal libraries requires
a solid writing discipline and a language that supports it. SSReflect provides linguistic
constructs well adapted to writing scripts that can be easily fixed in response to changes
to the contents of the formal libraries.

Actually, Small Scale Reflection is firstly the name of a formalization methodology,
sometimes also called Boolean Reflection. Initially conceived for the formal proof of the
Four Colors Theorem, it became a pillar of the Mathematical Components library and of
the formal proof of the Odd Order Theorem. The SSReflect proof language was named
after this methodology because of the support it provides for its implementation.

Part 2: Crafting a formal library

This part provides the tools to build a large library of formalized mathematics. In particular
it presents a powerful form of automation and a formalization technique that makes it
possible to organize concepts in a rational way and easily define new ones by linking them
to the already existing ones.

Automation is provided by programming type inference. The Coq system provides a
user-extensible type inference algorithm. It can be extended with declarative programs
giving canonical solutions to otherwise unsolvable problems. Such solutions typically
involve notions and theorems that are part of the Mathematical Components library. By
programming type inference one can hence teach Coq the contents of the library. The
system is then able to reconstruct non-trivial missing pieces of information, as the informed
reader typically does when reading a mathematical text.

Formalized knowledge is organized by means of interfaces (in the spirit of algebraic
structures) and relations between them. Type inference is programmed to play the role
of a librarian and recognize when an abstract theory has the right to apply to a specific
example.

Finally the rich language of Coq lets one define new concepts by refining existing
ones, typically by gluing an object with a proof of some extra property. Type inference is
programmed to transport all the theory available on the original concept to the derived
one.



How to use the book

Conventions

Advice one should keep in mind are signaled as follows:

R Remember this advice.

Tricky details typically overlooked by beginners are signaled as follows:

! Mind this detail.

Coq code is in typewriter font and (surrounded by parentheses) when it occurs in the
middle of the text. Longer snippets are in boxes with line numbers like the following one:

1 Example Gauss n : \sum_(0 <= i < n.+1) i = (n * n.+1) %/ 2.

2 Proof.

3 elim: n =>[|n IHn]; first by apply: big_nat1.

4 rewrite big_nat_recr //= IHn addnC -divnMDl //.

5 by rewrite mulnS muln1 -addnA -mulSn -mulnS.

6 Qed.

Code snippets are often accompanied by the goal status printed by Coq.

n : nat

IHn : \sum_(0 <= i < n.+1) i = (n * n.+1) %/ 2

============================

\sum_(0 <= i < n.+2) i = (n.+1 * n.+2) %/ 2

Names of library components one can Require in Coq are written like ssreflect or fintype.

Running examples in the Coq system

The contents of this book is mostly about interacting with a computer program consisting
of the Coq system and the Mathematical Components library. Many examples are given,
and we advise readers to experiment with this program, after having installed the Coq
system and the Mathematical Components library on a computer. Documentation on
how to install Coq is available at http://coq.inria.fr, while documentation on how to
install the Mathematical Components library is available at https://math-comp.github.
io/math-comp/.

There are a variety of ways to run the Coq system: a command line is provided
under the name coqtop, while a windowed interface is provided under the name coqide.
The Coq community also develops alternative approaches to integrate Coq in their
preferred programming environment. For instance, there exist special extensions of Coq
for the popular Emacs programming editor (known as Proof General) and for the Visual

Studio Code programming environment (known as vscoq). These extensions and similar
projects can easily be found by a search on the Internet. Last, but not least, you can
run Coq inside a web browser: the code snippets presented in this book can be found at
https://math-comp.github.io/mcb/snippets/.

When starting a Coq session, a few commands must be sent to the Coq system to
tell it to load the Mathematical Components library and to configure its behavior so it
matches the usual programming style of the Mathematical Components developers:

http://coq.inria.fr
https://math-comp.github.io/math-comp/
https://math-comp.github.io/math-comp/
https://math-comp.github.io/mcb/snippets/


1 From mathcomp Require Import all_ssreflect.

2 Set Implicit Arguments.

3 Unset Strict Implicit.

4 Unset Printing Implicit Defensive.

The first line actually instructs the Coq system to load the first level of the Mathematical
Components library. More advanced levels are available under names all fingroup, all algebra,
all solvable, all field, and all character. While the first chapters of this book rely mainly on
the first level, later chapters will rely on the other levels. This will be clearly stated as the
topics evolve.
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1. Functions and computation

In the formalism underlying the Coq system, functions play a central role akin to the
one of sets in set theory. However, those functions are rather different in nature from the
functions encountered in the mathematical tradition of set theory.

This chapter provides code snippets that can be loaded in a Coq session, after the
header described at the end of the introduction chapter. These snippets should be loaded
in order and without omission to avoid mistakes that would take too long to explain at
this introductory level.

1.1 Functions

Before being more precise about the logical foundations of the Coq system in chapter 3,
we review in this section some vocabulary and notations associated with functions. We
will use the words function and operation interchangeably. Sometimes, we will also use the
word program to talk about functions described in an effective way, i.e. by a code that can
be executed. As a consequence we borrow from computer science some jargon, like input
or return. For example we say that an operation takes as input a number and returns its
double to mean that the corresponding program computes or outputs the double of its
input, or that the function maps a number to its double. We start with a collection of
examples involving natural numbers. For this purpose, we casually use the Coq term nat

to refer to the collection of natural numbers, and the infix symbol + (resp. *) to denote
the addition (resp. product) operation on natural numbers, before providing their actual
formal definition in section 1.2.2. We also assume implicitly that the Coq symbols 0, 1, 2

represent natural numbers which represent the corresponding numerals 0,1,2, . . . .

1.1.1 Defining functions, performing computation

Mathematical formulas are expressions composed of operation symbols, of a certain arity,
applied to some arguments which are either variables or themselves (sub)-expressions. In
many cases these expressions are written using notations for the operations, like the infix
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+ in the expression:

2 + 1.

This expression represents a natural number, obtained as the result of an operation applied
to its arguments. More precisely, it is the result of the binary operation of addition, applied
to two natural numbers 2 and 1. The same expression can also represent the result of
the unary operation of adding one on the right to a natural number, applied to a natural
number 2.

In Coq, the operation of adding one on the right to a natural number is written in the
following manner:

1 fun n => n + 1

The textual transformation of expression (2 + 1) into an explicit application of this function
to one argument can be described as follows: select the sub-expression that is considered
as the argument of the function, here 2, and replace it with a symbolic name, here n. Then
encapsulate the resulting expression (n + 1) with the prefix “fun n =>”. We commonly say
that the prefix “fun n =>” binds the variable n in the expression n + 1. The keyword “fun”
stands for function.

Now we still need to apply this function to the argument 2, and this is written as:

1 (fun n => n + 1) 2

Note that applying a function to an argument is represented simply by writing the function
on the left of the argument, with a separating space but not necessarily with parentheses
around the argument; we will come back to this later in the present section. As a first
approximation, we can see that expressions in the language of Coq, also called terms,
are either variables, constants, functions of the form (fun x => e), where e is itself an
expression, or the application (e1 e2) of an expression e1 to another expression e2. However,
just like with pen and paper, the addition operation is denoted in the Coq language
using an infix notation + . The transformation we just detailed, from expression (2 + 1) to
expression (fun n => n + 1) 2, is called abstracting 2 in (2 + 1) . As a contrast to traditional
set-theoretic approaches, abstraction is essentially the only way to define a function in this
language. A function is never described by providing extensively the graph as a subset of
the cartesian product of the input and the output.

While the expression (fun n => n + 1) describes an operation without giving it a name,
the usual mathematical practice would be to rely on a sentence like consider the function
f from N to N which maps n to n + 1, or on a written definition like:

f :
N → N
n 7→ n + 1

(1.1)

In Coq, the user can also associate a name with the operation (fun n => n + 1), in the
following manner:

1 Definition f := fun n => n + 1.

An alternative syntax for exactly the same definition is as follows and this alternative is
actually preferred.
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1 Definition f n := n + 1.

In this syntax, the name of the argument n is provided on the left of the separating
:=, to be then referenced on the right of the separating :=, in the actual definition of the
function. The code of the actual definition is hence enclosed between the := symbol and
the terminating dot.

The information on the domain and codomain of f, as in f : N→ N, is provided using
the nat label to annotate the argument and the output in the Coq definition:

1 Definition f (n : nat) : nat := n + 1.

The label nat is in fact called a type. We refer once again to chapter 3 for a more accurate
description of types: in the present chapter we rely on the loose intuition that a type refers
to a collection of objects that can be treated in a uniform way. A type annotation has the
shape (t : T), where a colon : surrounded by two spaces separates an expression t on its
left from the type T itself on the right. For instance in (n : nat), the argument n of the
function f is annotated with type nat.

The other occurrence of nat, visible in ... : nat := ..., annotates the output of the
function and indicates that this output is of type nat. In other words, the type of any
expression made of f applied to an argument is nat.

Coq provides a command to retrieve relevant information about the definitions done
so far. Here is the response to a query about f:

1 About f. f : nat -> nat

which confirms the type information about the domain and codomain of f: the arrow->

separates the type of the input of f from the type of its output.

We can be more inquisitive in our requests for information about f, and ask also for
the value behind this name f:

1 Print f.

2

f = fun n : nat => n + 1

: nat -> nat

The output of this Print query has some similarities with the mathematical notation
in (1.1) and provides both the actual definition of f and its type information. Note that
the way the definition is printed also features a type annotation of the arguments of the
function, in the fragment “fun n : nat =>”.

Types are used in particular to avoid confusion and rule out ill-formed expressions. For
example the function f we just defined can only be applied to a natural number, i.e., a term
of type nat. Coq provides a command to check whether an expression is well typed : as 3 is
a natural number, the following query succeeds:

1 Check f 3. f 3 : nat

But f cannot be applied to an argument that is not a natural number, like for example a
function:
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1 Check f (fun x : nat => x + 1).

2

3

Error:

The term "(fun x : nat => x + 1)"

has type "nat -> nat" while it is

expected to be "nat".

As expected, it makes little sense to compute the sum of a function and 1.

Expressions that are well typed can be computed by Coq, meaning that they are
reduced to a “simpler” form, also called a normal form. For example computing (f 3)

returns value 4:

1 Compute f 3. = 4 : nat

We can observe that in the course of the computation, argument 3 has been substituted
for the argument variable in the definition of function f, and that the addition has been
evaluated. This capability of Coq plays a crucial role in the Mathematical Components
library, as we shall see in chapter 2. It is however too early to be more precise about this
normalization strategy. This would indeed require describing in more details the formalism
underlying the Coq system, which we do only in chapter 3. The interested reader can
consult [Coq, section 5.3.7, “Performing computations”] for the official documentation of
the underlying vm_compute tactic. For now, we suggest to keep only the intuition that this
normalization procedure provides the “explicit result” of a computation.

1.1.2 Functions with several arguments

The command we used to define a function with a single argument generalizes to the case
of functions with several arguments, which are then separated by a space. Here is an
example of a function with two arguments:

1 Definition g (n : nat) (m : nat) : nat := n + m * 2.

In fact, for the sake of compactness, consecutive arguments of one and the same type can
be grouped and share the same type annotation, so that the above definition is better
written:

1 Definition g (n m : nat) : nat := n + m * 2.

This asserts firstly (by the (n m : nat) type annotation) that both arguments n and m have
type nat, and secondly that the output of the function also has type nat, as prescribed by
the ... : nat := ... type annotation. Again, the About command provides information on
the type of the arguments and values of g:

1 About g. g : nat -> nat -> nat

The first two occurrences of nat in the response (nat -> nat -> nat) assert that function
g has two arguments, both of type nat; the last occurrence refers to the type of the output.
This response actually reads (nat -> (nat -> nat)), as the -> symbol associates to the right.
Otherwise said, a multiple argument function is a single argument function that returns
a function. This idea that multiple argument functions can be represented using single
argument functions (rather than, for instance, tuples of arguments) is called currying and
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will play a special role in chapter 3. For now, let us just insist on the fact that in Coq,
functions with several arguments are not usually represented with a tuple of arguments.

Back to our example, here is an alternative definition h which has a single argument n

of type nat and returns a function of one argument as a result:

1 Definition h (n : nat) : nat -> nat := fun m => n + m * 2.

Queries on the respective types of g and h provide identical answers:

1 About h. h : nat -> nat -> nat

If we go further in our scrutiny and ask the Coq system to print the definitions
associated to names g and h, we see that these definitions are exactly the same: The Coq
system does not make any difference between these two ways of describing a two-argument
function.

1 Print g.

2

3 Print h.

4

g = fun n m : nat => n + m * 2

: nat -> nat -> nat

h = fun n m : nat => n + m * 2

: nat -> nat -> nat

Since g is also a one-argument function, it is sensible to apply this function to a single
argument. We can call this partial application because g is also meant to be applied to
two arguments. As expected, the value we obtain this way is itself a function, of a single
argument, as illustrated by the following query:

1 Check g 3. g 3 : nat -> nat

Now, the function g can be applied to the numbers 2 and 3, as in g 2 3. This results in
a term of type nat, the type of the outputs of g, and we can even compute this value:

1 Compute g 2 3. = 8 : nat

Term (g 2 3) actually reads ((g 2) 3) and features three nested sub-expressions. The
symbol g is the deepest sub-expression and is applied to 2 in (g 2). The value of this
sub-expression (g 2) is a function, which can be written:

1 fun m => 2 + m * 2

Finally, (g 2 3) is in turn the application of the latter function to 3, which results in:

1 2 + 3 * 2

by substituting the value 3 for the bound variable m in fun m => 2 + m * 2.
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1.1.3 Higher-order functions

Earlier in this section we defined functions like f, g and h which operate on natural numbers.
Functions whose arguments are themselves functions are called higher-order functions. For
instance, the following definition introduces a function that takes a function from nat to
nat and produces a new function from nat to nat, by iterating its argument.

1 Definition repeat_twice (g : nat -> nat) : nat -> nat :=

2 fun x => g (g x).

Once again, let us scrutinize this Coq statement. The first line asserts that the name of
the function to be defined is repeat_twice. We also see that it has one argument, a function
of type nat -> nat. For later reference in the definition of repeat_twice, the argument is
given the name g. Finally we see that the value produced by the function repeat_twice is
itself a function from nat to nat.

Reading the second line of this statement, we see that the value of repeat_twice when
applied to one argument is a new function, described using the “fun .. => ..” construct.
The argument of that function is called x. After the => sign, we find the ultimate value of
this function. This fragment of text, g (g x), also deserves some explanation. It describes
the application of function g to an expression (g x). In turn, the fragment (g x) describes
the application of function g to x. Remember that the application of a function to an
argument is denoted by juxtaposing the function (on the left) and the argument (on the
right), separated by a space. Moreover, application associates to the left: expressions made
with several sub-expressions side by side should be read as if there were parentheses around
the subgroups on the left. Parentheses are only added when they are needed to resolve
ambiguities. For instance, the inner (g x) in (g (g x)) needs surrounding parentheses
because expression (g g x) reads ((g g) x). The latter expression would be ill-formed
because it contains the sub-expression (g g) where g receives a function as argument, while
it is expected to receive an argument of type nat.

We can play a similar game as in section 1.1.2, and scrutinize the expression obtained
by applying the function repeat_twice to the function f and the number 2. Let us compute
the resulting value of this application:

1 Compute repeat_twice f 2. = 4 : nat

The expression (repeat_twice f 2) actually reads ((repeat_twice f) 2) and features three
nested sub-expressions separated by spaces. The symbol repeat_twice is the deepest sub-
expression and is applied to f in (repeat_twice f). According to the definition of the
repeat_twice function, the value of this sub-expression is a function, which is then applied
to 2. The resulting expression is (f (f 2)), and given the definition of f, this expression
can also be read as ((2 + 1) + 1). Thus, after computation, the result is 4.

The function repeat_twice is an instance of a function with several arguments: as
illustrated in section 1.1.2, its partial application to a single argument provides a well-
formed function, from nat to nat:

1 Check (repeat_twice f). repeat_twice f : nat -> nat

Now, looking at the type of repeat_twice itself (and adding redundant parentheses
for clarity), we obtain (

:
(
:::
nat

::
->

::::
nat

:
) -> (nat -> nat)): Thus, once the first argument
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(f :
::
nat

:::
->

::::
nat) is passed, we obtain a term the type of which is the right hand side

of the main arrow, that is (nat -> nat). By passing another argument, like (2 : nat), we
obtain an expression the type of which is, again, the right hand side of the main arrow,
here nat. Remark that each function has an arrow type and that the type of its argument
matches the left hand side of this arrow (as depicted with different underline styles). When
this is not the case, Coq issues a type error.

1 Check (repeat_twice f f).
Error: The term "f" has type "nat -> nat"

while it is expected to have type "nat".

1.1.4 Local definitions

The process of abstraction described at the beginning of this section can be seen as the intro-
duction of a name – the one used for the bound variable – in place of a sub-expression that
may appear at several occurrences. For instance, in the expression (fun x => x + x + x) B,
we use the variable x as an abbreviation for B. It is specially useful when B happens to
be a very large expression: readability is improved by avoiding the repetition of B, which
may otherwise obfuscate the triplication pattern. An alternative way of declaring such an
abbreviation in Coq uses the following syntax (which is more readable, as it defines the
meaning of the abbreviation x before it is used):

1 let x := B in

2 x + x + x

In this expression, the variable x is bound and can be used in the text that comes after
the in keyword. Variants of this syntax make it possible to state the type ascribed to the
variable x, which may come handy when the code has to be very explicit about the nature
of the values being abbreviated. Here is an example of usage of this syntax:

1 Compute

2 let n := 33 : nat in

3 let e := n + n + n in

4 e + e + e.

= 297 : nat

When it comes to comparing the values of computations, a local definition has the same
result as the expression where all occurrences of the bound variable are replaced by the
corresponding expression. Thus, the example expression above has exactly the same value
as:

1 (33 + 33 + 33) + (33 + 33 + 33) + (33 + 33 + 33)

However, in practice the evaluation strategy used in a normalization command like
Compute takes advantage of the let .. in .. notation to avoid duplicating computation
efforts. In our example, the value of the partial sum (33 + 33 + 33) is computed only once
and shared at every occurrence of the bound variable. This abbreviation facility can thus
also be used to organize intermediate computations.
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1.2 Data types, first examples

A well-formed mathematical expression is a combination of variables and symbols of a
given language that respects the prescribed arities of the operations. For instance, the
expression:

(>∨⊥)∧b

is a well-formed expression in the language {>,⊥,∨,∧} of boolean arithmetic, while the
expression:

0 + x× (S 0)

is a well-formed expression in the language {0,S,+,×} of Peano arithmetic. These languages
are usually equipped with behavior rules, expressed in the form of equality axioms, like

>∨b => or 0 + x = x

In practice, these axioms confer a distinctive status upon the symbols > and ⊥ for booleans,
and upon the symbols 0 and S for natural numbers. More precisely, any variable-free
boolean expression is equal to either > or ⊥ modulo these axioms, and any variable-free
expression in Peano arithmetic is equal either to 0 or to an iterated application of the
symbol S to 0. In both cases, the other symbols in the signature represent functions, whose
computational content is prescribed by the axioms. In what follows, we shall call the
distinctive symbols constructors. So the constructors of boolean arithmetic are > and ⊥
and the constructors of Peano arithmetic are 0 and S.

In Coq, such languages are represented using a data type, whose definition provides in
a first single declaration the name of the type and the constructors, plus some rules on
how to define maps on these data types or prove theorems about their elements. The other
operations are then derived from these rules. The first single declarations of data types
are introduced by the means of inductive type definitions. One can then explicitly define
more operations on the elements of the type by describing how they compute on a given
argument in the type using a case analysis or a recursive definition on the shape of this
argument. This approach is used in a systematic way to define a variety of basic types,
among which boolean values, natural numbers, pairs or sequences of values are among the
most prominent examples.

In the following sections, we introduce basic types bool for boolean values and nat

for natural numbers, taking the opportunity to describe various constructs of the Coq
language as they become relevant. These sections serve simultaneously as an introduction
to the data types bool and nat and to the Coq language constructs that are used to define
new data types and describe operations on these data types.

1.2.1 Boolean values

The collection B := {>,⊥} of boolean values is formalized by a type called bool, with two
inhabitants true and false, representing > and ⊥ respectively. The declaration of this type
happens in one of the first files to be automatically loaded when Coq starts, so booleans
look like a built-in notion. Nevertheless, the type of boolean values is actually defined in
the following manner:

1 Inductive bool := true | false.
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This is one of the simplest possible inductive definitions, with only base cases, and no
inductive cases. This declaration states explicitly that there are exactly two elements in
type bool: the distinct constants true and false, called the constructors of type bool.

In practice, this means that we can build a well-formed expression of type bool by using
either true or false.

1 Check true. true : bool

In order to use a boolean value in a computation, we need a syntax to represent the
two-branch case analysis that can be performed on an expression of type bool. The Coq
syntax for this case analysis is “if .. then .. else ..” as in:

1 if true then 3 else 2

More generally, we can define a function that takes a boolean value as input and returns
one of two possible natural numbers in the following manner:

1 Definition twoVthree (b : bool) := if b then 2 else 3.

As one expects, when b is true, the expression (twoVthree b) evaluates to 2, while it
evaluates to 3 otherwise:

1 Compute twoVthree true.

2 Compute twoVthree false.

= 2 : nat

= 3 : nat

As illustrated on this example, the Compute command rewrites any term of the shape
if true then t1 else t2 into t1 and rewrites any term of the shape if false then t1 else t2

into t2.
We can then use this basic operation to describe the simplest binary operations that we

usually consider as parts of the boolean language: conjunction, written &&, and disjunction,
written ||. We first define these as functions, as follows:

1 Definition andb (b1 b2 : bool) := if b1 then b2 else false.

2 Definition orb (b1 b2 : bool) := if b1 then true else b2.

and then the notations && and || are attached to these two functions, respectively.
For any choice of values b1, b2, and b3, the expressions b1 && (b2 && b3) and (b1 && b2) && b3

always compute to the same result. In this sense, the conjunction operation is associative.
We shall see in chapter 2 that this known property can be stated explicitly. To a practiced
pair of eyes, this associativity property is implicitly used in the reading process, so that
the two forms of three-argument conjunctions are identified. However, when manipulating
boolean expressions of the Coq language, there is a clear distinction between these two
forms of conjunctions of three values, and the notation conventions make sure that the two
forms appear differently on the screen. We will come back to this question in section 1.7.

The Mathematical Components library provides a collection of boolean operations that
model reasoning steps on truth values. The functions are called negb, orb, andb, and implyb,
with notations ~~ , ||, &&, and ==>, respectively (the last three operators are infix, i.e., they
appear between the arguments, as in b1 && b2). Note that the symbol ~~ uses two characters
~ : it should not be confused with two consecutive occurrences of the one-character symbol
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~ , which would normally be written with a separating space. The latter has a meaning in
Coq, but is almost never used in the Mathematical Components library.

1.2.2 Natural numbers

The collection of natural numbers is formalized by a type called nat. An inhabitant of this
type is either the constant O (capital “o” letter) representing zero, or an application to an
existing natural number of the function symbol S representing the successor:

1 Inductive nat := O | S (n : nat).

This inductive definition of the expressions of type nat has one base case, the constant
O, and one inductive case, for the natural numbers obtained using the successor function at
least once: therefore O has type nat, (S O) has type nat, so does (S (S O)), and so on, and
any natural number has this shape. The constant O and the function S are the constructors
of type nat.

The decimal notations we have used so far are only a parsing and display facility
provided to the user for readability: O is displayed 0, (S O) is displayed 1, etc. Users can
also type decimal numbers to describe values in type nat: these are automatically translated
into terms built (only) with O and S. In the rest of this chapter, we call such a term a
numeral.

The Mathematical Components library provides a few notations to make the use of the
constructor S more intuitive to read. In particular, if x is a value of type nat, then x.+1 is
another way to write (S x). The “.+1” notation binds stronger than function application,
rendering some parentheses unnecessary: assuming that f is a function of type nat -> nat,
the expression (f n.+1) reads (f (S n)). Notations are also provided for S (S n), written
n.+2, and so on until n.+4.

1 Check fun n => f n.+1. fun n : nat => f n.+1 : nat -> nat

When defining functions that operate on natural numbers, we can proceed by case
analysis, as was done in the previous section for boolean values. Here again, there are
two cases: either the natural number used in the computation is O or it is p.+1 for some p,
and the value of p may be used to describe the computations to be performed. This case
analysis can be seen as matching against patterns: if the data fits one of the patterns, then
the computation proceeds with the expression in the corresponding branch. Such a case
analysis is therefore also called pattern matching. Here is a toy example:

1 Definition non_zero n := if n is p.+1 then true else false.

The function non_zero returns the boolean value false if its argument is 0, and true

otherwise. In this definition p.+1 is a pattern: The value bound to the name p mentioned
in this pattern is not known in advance. This value is actually computed at the moment
the argument n provided to the function is matched against the pattern. For instance:

1 Compute non_zero 5. = true : bool

The Compute command rewrites any term of the shape if 0 is p.+1 then t1 else t2 into
t2 and any term of the shape if k.+1 is p.+1 then t1 else t2 into t1 where all occurrences
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of p have been replaced by k. In our example, the value of k.+1 is 5, thus the value of k is 4

and t1 is true.
The symbols that are allowed in a pattern are essentially restricted to the constructors,

here O and S, and to variable names. Thanks to notations however, a pattern can also
contain occurrences of the notation “.+1” which represents S, and decimal numbers, which
represent the corresponding terms built with S and O. When a variable name occurs, this
variable can be reused in the result part, as in:

1 Definition pred n := if n is p.+1 then p else 0.

Observe that in the definitions of functions predn and non_zero, we did omit the type
of the input n: matching n against the p.+1 pattern imposes that n has type nat, as the S

constructor belongs to exactly one inductive definition, namely the one of nat.
The pattern used in the if statement can be composed of several nested levels of the

.+1 pattern. For instance, if we want to write a function that returns true for every input n
larger than 4 and f alse otherwise, we can write the following definition:

1 Definition larger_than_4 n :=

2 if n is u.+1.+1.+1.+1.+1 then true else false.

On the other hand, if we want to describe a different computation for three different cases
and use variables in more than one case, we need the more general “match .. with .. end”
syntax. Here is an example:

1 Definition three_patterns n :=

2 match n with

3 u.+1.+1.+1.+1.+1 => u

4 | v.+1 => v

5 | 0 => n

6 end.

This function maps any number n larger than or equal to 5 to n− 5, any number
n ∈ {1, . . . ,4} to n−1, and 0 to 0.

The pattern matching construct “match .. with .. end” may contain an arbitrarily large
number of pattern matching rules of the form “pattern=>result” separated by the | symbol.
Optionally one can prefix the first pattern matching rule with |, in order to make each line
begin with |. Each pattern matching rule results in a new rewrite rule available to the
compute command. All the pattern matching rules are tried successively against the input.
The patterns may overlap, but the result is given by the first pattern that matches. For
instance with the function three_patterns, if the input is 2, in other words 0.+1.+1, the first
rule cannot match, because this would require that 0 matches u.+1.+1.+1 and we know that
0 is not the successor of any natural number; when it comes to the second rule 0.+1.+1

matches v.+1, because the rightmost .+1 in the value of 2 matches the rightmost .+1 part
in the pattern and 0.+1 matches the v part in the pattern.

A fundamental principle is enforced by Coq on case analysis: exhaustiveness. The
patterns must cover all constructors of the inductive type. For example, the following
definition is rejected by Coq.

1 Definition wrong (n : nat) :=

2 match n with 0 => true end.

3

Error: Non exhaustive pattern-matching:

no clause found for

pattern S _



24 Chapter 1. Functions and computation

We finish the section by showing a syntactic facility to scrutinize multiple values at
the same time. However, this part is not specific to natural numbers, and we use boolean
values to illustrate the facility.

1 Definition same_bool b1 b2 :=

2 match b1, b2 with

3 | true, true => true

4 | false, false => true

5 | _, _ => false

6 end.

Here, the reserved word _ stands for a “throwaway variable”, i.e., a variable that we
choose to give no name because we are not going to reference it (for example, the constant
function fun (n : nat) => 2 can also be written fun (_ : nat) => 2).

The above code defining same_bool is parsed as follows:

1 Definition same_bool b1 b2 :=

2 match b1 with

3 | true => match b2 with true => true | _ => false end

4 | false => match b2 with true => false | _ => true end

5 end.

1.2.3 Recursion on natural numbers

Using constructors and pattern matching, it is possible to add or subtract one, but not to
describe the addition or subtraction of arbitrary numbers. For this purpose, we resort to
recursive definitions. The addition operation is defined in the following manner:

1 Fixpoint addn n m :=

2 if n is p.+1 then (addn p m).+1 else m.

As this example illustrates, the keyword for defining a recursive function in Coq is Fixpoint:
the function being defined, here called addn, is used in the definition of the function addn

itself. This text expresses that the value of (addn p.+1 m) is (addn p m).+1 and that the value
(addn 0 m) is m. This first equality may seem redundant, but there is progress when reading
this equality from left to right: an addition with p.+1 as the first argument is explained
with the help of addition with p as the first argument, and p is a smaller number than
p.+1. When considering the expression (addn 2 3), we can know the value by performing
the following computation:

(addn 2 3) use the “then” branch, p = 1

(addn 1 3).+1 use the “then” branch, p = 0

(addn 0 3).+1.+1 use the “else” branch
3.+1.+1 remember that 5 = 3.+1.+1

When the computation finishes, the symbol addn disappears. In this sense, the recursive
definition is really a definition. Remark that the (addn n m) program simply stacks n times
the successor symbol on top of m.

If we reflect again on the discussion of Peano arithmetic, as in Section 1.2, we see that
addition is provided by the definition of addn, and the usual axioms of Peano arithmetic,
namely:

S x + y = S(x + y) 0 + x = x
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are actually provided by the computation behavior of the function, namely by the “then”
branch and the “else” branch respectively. Therefore, Peano arithmetic is really provided
by Coq in two steps, first by providing the type of natural numbers and its constructors
thanks to an inductive type definition, and then by providing the operations as defined
functions (usually recursive functions as in the case of addition). The axioms are not
constructed explicitly, but they appear as part of the behavior of the addition function. In
practice, it will be possible to create theorems whose statements are exactly the axioms of
Peano arithmetic, using the tools provided in Chapter 2. The fact that the computation of
addn 2 3 ends in an expression where the addn symbol does not appear is consistent with the
fact that O (also noted 0) and S (also noted .+1) are the constructors of natural numbers.

An alternative way of writing addn is to provide explicitly the rules of the pattern-
matching at stake instead of relying on an if statement. This can be written as follows:

1 Fixpoint addn n m :=

2 match n with

3 | 0 => m

4 | p.+1 => (addn p m).+1

5 end.

With this way of writing the recursive function, it becomes obvious that pattern-matching
rules describe equalities between two symbolic expressions, but these equalities are always
used from left to right during computations.

When writing recursive functions, the Coq system imposes the constraint that the
described computation must be guaranteed to terminate. The reason for this requirement
is sketched in section 3.7. This guarantee is obtained by analyzing the description of
the function, making sure that recursive calls always happen on a given argument that
decreases. Termination is obvious when the recursive calls happen only on “syntactically
smaller arguments”. For instance, in our example addn, the function is defined by matching
its first argument n against the patterns p.+1 and 0; in the branch corresponding to the
pattern p.+1, the recursive call happens on p, a strict subterm of p.+1. Had we matched the
argument n against the pattern p.+1.+1, then the recursive call would have been allowed on
arguments p or p.+1, but not p.+1.+1. The way Coq verifies that recursive functions will
terminate is explained in more detail in the reference manual [Coq] or in the Coq’Art book
[BC04].

An erroneous, in the sense of non-terminating, definition is rejected by Coq:

1 Fixpoint loop n :=

2 if n is 0 then loop n else 0.

3

Error: Recursive call to loop has

principal argument equal to "n"

instead of a subterm of "n".

We have seen that addition is implemented by repeating the operation of applying .+1

to one of the arguments. Conversely, comparing two natural numbers is implemented by
repeating the operation of fetching a subterm. Consider two terms m and n representing
the natural numbers m and n respectively. Then m is larger than n if and only if m has k
more constructors than n for some k ≥ 0, which measures the distance between m and n.
Comparison is thus implemented in terms of an auxiliary truncated subtraction, which is
again easily expressed using pattern matching constructs:
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1 Fixpoint subn m n : nat :=

2 match m, n with

3 | p.+1, q.+1 => subn p q

4 | _ , _ => m

5 end.

Number m is less or equal to number n if and only if (subn m n) is zero. Here as well, this
subtraction is already defined in the libraries, but we play the game of re-defining our
own version. The second pattern matching rule indicates that when any argument of the
subtraction is 0, then the result is the first argument. This rule thus also covers the case
where the second argument is non-zero while the first argument is 0: in that case, the result
of the function is zero. Another possible view on subn it to see it as a subtraction operation
on natural numbers, made total by providing a default value in the “exceptional” cases.

We can also write a recursive function with two arguments of type nat, that returns
true exactly when the two arguments are equal:

1 Fixpoint eqn m n :=

2 match m, n with

3 | 0, 0 => true

4 | p.+1, q.+1 => eqn p q

5 | _, _ => false

6 end.

The last rule in the code of this function actually covers two cases : 0, _.+1 and _.+1, 0.

For equality test functions, it is useful to add a more intuitive notation. For instance
we can attach a notation to eqn in the following manner:

1 Notation "x == y" := (eqn x y).

Now that we have programmed this equality test function, we can verify that the Coq
system really identifies various ways to write the same natural number.

1 Compute 0 == 0.

2 Compute 1 == S 0.

3 Compute 1 == 0.+1.

4 Compute 2 == S 0.

5 Compute 2 == 1.+1.

6 Compute 2 == addn 1 0.+1.

= true : bool

= true : bool

= true : bool

= false : bool

= true : bool

= true : bool

In this section, we introduced a variety of functions and notations for operations on
natural numbers. In practice, these functions and notations are already provided by the
Mathematical Components library. In particular it provides addition (named addn, infix
notation +), multiplication (muln, *), subtraction (subn,- ), division (divn, %/), modulo (modn,
%%), exponentiation (expn, ^), equality comparison (eqn, ==), order comparison (leq, <=)
on natural numbers. All these operations (apart from the comparisons) output natural
numbers: as explained above, subtraction is made to return 0 when the subtrahend exceeds
the minuend; similarly, division is integer division. The trailing n in the names is chosen to
signal that these operations are on the nat data type. Postfix notations such as .-1 and .*2

are provided for the predecessor (predn) and double (double) functions.

We detail here the definition of leq since it will be often used in examples.
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1 Definition leq m n := m - n == 0.

2 Notation "m <= n" := (leq m n).

Note that this definition crucially relies on the fact that subtraction computes to 0

whenever the first argument is less than or equal to the second argument.
The Mathematical Components library also provides concepts that make sense only for

the nat data type, like the test functions identifying prime and odd numbers. In that case,
the trailing n is omitted in their name.

We strongly advise the reader wanting to explore the Mathematical Components library
to browse the source files1 and not to limit herself to interactive queries to the system. The
information provided by the Print and About commands is useful to understand how to use
the objects defined in the libraries once they are known by their name. By contrast, the
source files describe what is formalized, under which name and notation.

R Each file in the Mathematical Components library starts with a banner describing all
the concepts and associated notations introduced by the file. There is no better way
to browse the library than reading these banners.

1.3 Containers

A container is a data type which describes a collection of objects grouped together so that
they can be manipulated as a single object. For instance, we might want to compute the
sequence of all predecessors or all divisors of a number. We could define the following data
type for this purpose:

1 Inductive listn := niln | consn (hd : nat) (tl : listn).

The elements of this data type constitute a possible description of lists of zero or
more natural numbers; the first constructor niln builds the empty list, whereas the second
constructor consn builds a nonempty list by combining a natural number hd with an already
existing list tl. For example:

1 Check consn 1 (consn 2 niln).

2 Check consn true (consn false niln).

3

4

consn 1 (consn 2 niln) : listn

Error: The term "true" has

type "bool" while it is

expected to have type "nat".

As expected, listn cannot hold boolean values. So if we need to manipulate a list of
booleans we have to define a similar data type: listb.

1 Inductive listb := nilb | consb (hd : bool) (tl : listb).

This approach is problematic for two reasons. First, every time we write a function
that manipulates a list, we have to decide a priori if the list holds numbers or booleans,
even if the program does not really use the objects held in the list. A concrete example
is the function that computes the size of the list; in the current setting such a function
has to be written twice. Worse, starting from the next chapter we will prove properties of

1https://math-comp.github.io/htmldoc/libgraph.html

https://math-comp.github.io/htmldoc/libgraph.html
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programs, and given that the two size functions are “different”, we would have to prove
such properties twice.

However it is clear that the two data types we just defined follow a similar schema, and
so do the two functions for computing the size of a list or the theorems we may prove about
these functions. Hence, one would want to be able to write something like the following,
where α is a schematic variable:

1 Inductive list := nil | cons (hd : α) (tl : list).

This may look familiar jargon to some readers. In the present context however, we would
rather like to avoid appealing to any notion of schema, that would somehow be added on
top of the Coq language. This way, we will make possible the writing of formal sentences
with arbitrary quantifications on this parameter α.

1.3.1 The (polymorphic) sequence data type

The Mathematical Components library provides a generic data type to hold several objects
of any given type A. This is the data type seq, defined as follows:

1 Inductive seq (A : Type) := nil | cons (hd : A) (tl : seq A).

The name seq refers to (finite) “sequences”, also called “lists”. This definition actually
describes the type of lists as a polymorphic type. This means that there is a different type
(seq A) for each possible choice of type A. For example (seq nat) is the type of sequences of
natural numbers, while (seq bool) is the type of sequences of booleans. The type (seq A)

has two constructors, named nil and cons. Constructor nil represents the empty sequence.
The type of the constructor cons is devised specifically to describe how to produce a new
list of type (seq A) by combining an element of A, the head of the sequence, and an existing
list of type (seq A), the tail of the sequence. This also means that this data-type does not
allow users to construct lists where the first element would be a boolean value and the
second element would be a natural number.

In the declaration of seq, the keyword Type denotes the type of all data types. For
example nat and bool are of type Type, and can be used in place of A. In other words seq

is a function of type (Type -> Type), sometimes called a type constructor. The symbol seq

alone does not denote a data type, but if one passes to it a data type, then it builds one.
Remark that this also means that (seq (seq nat)) is a valid data type (namely, the type of
lists of lists of natural numbers), and that the construction can be iterated. Types again
avoid confusion: it is not licit to form the type (seq 3), since the argument 3 has type nat,
while the function seq expects an argument of type Type.2

In principle, the constructors of such a polymorphic data type feature a type argument:
nil is a function that takes a type A as argument and returns an empty list of type (seq A).
The type of the output of this function hence depends on the value of this input. The type
of nil is thus not displayed with the arrow notation “.. -> ..” that we have used so far for
the type of functions. It is rather written as follows:

1 ∀ A : Type, seq A

2For historical reasons Coq may display the type of nat or bool as Set and not Type. We beg the reader
to ignore this detail, which plays no role in the Mathematical Components library.
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so as to bind the value A of the argument in the type of the output. Even if the ∀ symbol
is actually written and displayed as forall in Coq, in this book we typeset it following
the standard mathematical notation for that quantifier. The same goes for the other
constructor of seq, named cons. This function actually takes three arguments: a type A,
a value in this type, and a value in the type (seq A). The type of cons is thus written as
follows:

1 ∀ A : Type, A -> seq A -> seq A

Since the type of the output does not depend on the second and third arguments of
cons, respectively of type A and (seq A), the type of cons features two arrow separators for
these. Altogether, we conclude that the sequence holding a single element 2 : nat can be
constructed as (cons nat 2 (nil nat)). Actually, the two occurrences of type nat in this
term are redundant: the tail of a sequence is a sequence with elements of the same type.
Better yet, this type can be inferred from the type of the given element 2. One can thus
write the sequence as (cons _ 2 (nil _)), using the placeholder _ to denote a subterm, here
a type to be inferred by Coq. In the case of cons, however, one can be even more concise.
Let us ask for information about cons using the command About:

1 About cons.

2

3

cons : ∀ A : Type, A -> seq A -> seq A

...

Argument A is implicit and maximally

inserted

The Coq system provides a mechanism to avoid that users need to give the type
argument to the cons function when it can be inferred. This is the information meant
by the message “Argument A is implicit and ..”. Every time users write cons, the system
automatically inserts an argument in place of A, so that this argument does not need to be
written: The argument is said to be implicit. It is then the job of the Coq system to guess
what this argument is when looking at the first explicit argument given to the function.
The same happens to the type argument of nil in the built-in version of seq provided by
the Mathematical Components library. In the end, this ensures that users can write the
following expression.

1 Check cons 2 nil. [:: 2] : seq nat

This example shows that the function cons is only applied explicitly to two arguments (the
two arguments effectively declared for cons in the inductive type declaration). The first
argument, which is implicit, has been guessed so that it matches the actual type of 2. Also
for nil the argument has been guessed to match the constraints that it is used in a place
where a list of type (seq nat) is expected.

To locally disable the status of implicit arguments, one can prefix the name of a constant
with @ and pass all arguments explicitly, as in (@cons nat 2 nil) or (@cons nat 2 (@nil nat))

or even (@cons _ 2 (@nil _)).

The reader should refer to the documentation of the Arguments command [Coq] to know
how to modify the implicit status of an argument).

The previous example, and the following ones, also show that Coq and the Mathematical
Components library provide a collection of notations for lists.
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1 Check 1 :: 2 :: 3 :: nil.

2 Check fun l => 1 :: 2 :: 3 :: l.

3

[:: 1; 2; 3] : seq nat

fun l : seq nat => [:: 1, 2, 3 & l]

: seq nat -> seq nat

In particular Coq provides the infix notation :: for cons. The Mathematical Components
library follows a general pattern for n-ary operations obtained by the (right-associative)
iteration of a single binary one. In particular [:: begins the repetition of :: and ] ends it.
Elements are separated by , (comma) but for the last one separated by &. For example,
the above [:: 1, 2, 3 & l] stands for 1 :: (2 :: (3 :: l)). For sequences that are nil-
terminated, a very frequent case, the Mathematical Components library provides an
additional notation where all elements are separated by ; (semi-colon) and the last element,
nil, is omitted.
The Mathematical Components library provides similar notations to iterate contants
other than cons. For example, one can write the boolean conjunction of three terms
as [&& true, false & true], the boolean disjunction as [|| b1, b2 | b3] and the boolean
implication as [==> b1, b2 => b3].

Pattern matching can be used to define functions on sequences, like the following
example which computes the first element of a non-empty sequence, with a default value
for the empty case:

1 Definition head T (x0 : T) (s : seq T) := if s is x :: _ then x else x0.

1.3.2 Recursion for sequences

Terms of type (seq A), for a type A, are finite stacks of cons constructors, terminated with
a nil. They are similar to the terms of type nat, except that each cons constructor carries
a datum of type A. Here again, recursion provides a way to process sequences of arbitrary
size.

The Coq system provides support for the recursive definition of functions over any
inductive type (not just nat). The recursive definition of the value of a function at a given
constructor can use the value of the function at the arguments of the constructor. This
defines the function over the entire type since all values of an inductive type are finite
stacks of constructors.

The size function counts the number of elements in a sequence:

1 Fixpoint size A (s : seq A) :=

2 if s is _ :: tl then (size tl).+1 else 0.

During computation on a given sequence, this function traverses the whole sequence,
incrementing the result for every cons that is encountered. Note that in this definition,
the function size is described as a two argument function, but the recursive call (size tl)

is done by providing explicitly only one argument, tl. Remember that the Coq system
makes arguments of functions that can be guessed from the type of the following arguments
automatically implicit, and A is implicit here. This feature is already active in the expression
defining size.

Another example of recursive function on sequences is a function that constructs a new
sequence whose entries are values of a given function applied to the elements of an input
sequence. This function can be defined as:
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1 Fixpoint map A B (f : A -> B) s :=

2 if s is e :: tl then f e :: map f tl else nil.

This function provides an interesting case study for the definition of appropriate notations.
For instance, we will add a notation that makes it more apparent that the result is the
sequence of all expressions f (i) for i taken from another sequence.

1 Notation "[ ’seq’ E | i <- s ]" := (map (fun i => E) s).

For instance, with this notation we write the computation of successors for a given sequence
of natural numbers as follows:

1 Compute

2 [seq i.+1 | i <- [:: 2; 3]].

= [:: 3; 4] : seq nat

In addition to the function map and the associated notation we describe here, the Mathe-
matical Components library provides a large collection of useful functions and notations to
work on sequences, as described in the header of the file seq. For instance [seq i <- s | p]

filters the sequence s keeping only the values selected by the boolean test p. Another
useful function for sequences is cat (with infix notation ++) that is used to concatenate two
sequences together.

1.3.3 Option and pair data types

Here is another example of polymorphic data type, which represents a box that can either
be empty, or contain a single value:

1 Inductive option A := None | Some (a : A).

Type (option A) contains a copy of all the elements of A, built using the Some constructor,
plus an extra element given by the constructor None. It may be used to represent the output
of a partial function or of a filtering operation, using None as a default element.

For example, function only_odd “filters” natural numbers, keeping the odd ones and
replacing the even ones by the None default value:

1 Definition only_odd (n : nat) : option nat :=

2 if odd n then Some n else None.

Similarly, one can use the option type to define a partial function which computes the
head of a non-empty list:

1 Definition ohead (A : Type) (s : seq A) :=

2 if s is x :: _ then Some x else None.

See also the sub-type kit presented in chapter 7, which makes use of the option type to
describe a partial injection.

Another typical polymorphic data type is the one of pairs, that lets one put together
any two values:
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1 Inductive pair (A B : Type) : Type := mk_pair (a : A) (b : B).

2 Notation "( a , b )" := (mk_pair a b).

3 Notation "A * B" := (pair A B).

The type pair has two type parameters, A and B, so that it can be used to form any
instance of pairs: (pair nat bool) is the type of pairs with an element of type nat in its
first component and one of type bool in its second, but we can also form (pair bool nat),
(pair bool bool), etc. The type pair is denoted by an infix * symbol, as in (nat * bool).
This inductive type has a single constructor mk_pair. It takes over the two polymorphic
parameters, that become its two first, implicit arguments. The constructor mk_pair has
two more explicit arguments which are the data stored in the pair. This constructor
is associated with a notation so that (a, b) builds the pair of a and b, and (a, b) has
type (pair A B). For a given pair, we can extract its first element, and we can provide a
polymorphic definition of this projection:

1 Definition fst A B (p : pair A B) :=

2 match p with mk_pair x _ => x end.

We leave as an exercise the definition of the projection on the second component of a
pair. The Mathematical Components library has a notation for these projections: c.1 is
the first component of the pair c and c.2 is its second.

1 Check (3, false).

2 Compute (true, false).1.

(3, false) : nat * bool

= true : bool

As one expects, pairs can be nested. Coq provides a slightly more complex notation
for pairs, which makes it possible to write (3,true,4) for ((3,true),4). In this example, the
value true is the second component of this tuple, or more precisely the second component
of its first component: it can thus be obtained as (3,true,4).1.2. This is a consequence of
representing tuples as nested pairs. If tuples of a certain fixed length are pervasive to a
development, one may consider defining another specific container type for this purpose.

We conclude this example with a remark on notations. After declaring such a notation
for the type of pairs, the expression (a * b) becomes“ambiguous”, in the sense that the same
infix * symbol can be used to multiply two natural numbers as in (1 * 2) but also to write
the type of pairs (nat * bool). Such an ambiguity is somewhat justified by the fact that the
pair data type can be seen as the (Cartesian) product of the arguments.3 The ambiguity
can be resolved by annotating the expression with a specific label: (a * b)%N interprets the
infix * as multiplication of natural numbers, while (a * b)%type would interpret * as the
pair data type constructor. The %N and %type labels are said to be notation scope delimiters
(for more details see [Coq, “Interpretation scopes”]).

1.3.4 Aggregating data in record types

Inductive types with a single constructor, like the type pair in section 1.3.3, provide a
general pattern to define a type which aggregates existing objects into a single packaged
one. This need is so frequent that Coq provides a specialized command to declare this
class of data type, called Record.

For example here is an instance of a type representing triples of natural numbers, which
can be used to represent a grid point in a 3-dimensional cone:

3In reality the data type of pairs, as it comes with Coq, is called prod and its constructor pair.
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1 Record point : Type := Point { x : nat; y : nat; z : nat }.

This line of code defines an inductive type point, with no parameter and with a single
constructor Point, which has three arguments each of type nat. Otherwise said, this type is:

1 Inductive point : Type := Point (x : nat) (y : nat) (z : nat).

Using the Record version of this definition instead of its equivalent Inductive allows us
to declare names for the projections at the time of the definition. In our example, the
record point defines three projections, named x, y and z respectively. In the case where
they come from a record definition, these projections are also called fields of the record.
One can thus write:

1 Compute x (Point 3 0 2).

2 Compute y (Point 3 0 2).

= 3 : nat

= 0 : nat

As expected, the code for the x projection is:

1 Definition x (p : point) := match p with Point a _ _ => a end.

When an inductive type has a single constructor, like in the case of pair or for records,
the name of this constructor is not relevant in pattern matching, as the “case analysis” has
a single, irrefutable, branch. There is a specific syntax for irrefutable patterns, letting one
rewrite the definition above as follows:

1 Definition x (p : point) := let: Point a _ _ := p in a.

Record types are as expressive as inductive types with one constructor: they can be
polymorphic, they can package data with specifications, etc. In particular, they will be
central to the formalization techniques presented in Part II.

1.4 The Section mechanism

When several functions are designed to work on similar data, it is useful to set a working
environment where the common data is declared only once. Such a working environment
is called a Section, and the data that is local to this section is declared using Variable

commands. A typical example happens when describing functions that are polymorphic.
In that case, definitions rely in a uniform way on a given type parameter plus possibly on
existing functions in this type.

1 Section iterators.

2

3 Variables (T : Type) (A : Type).

4 Variables (f : T -> A -> A).

5

6 Implicit Type x : T.

7

8 Fixpoint iter n op x :=

9 if n is p.+1 then op (iter p op x) else x.

10
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11 Fixpoint foldr a s :=

12 if s is y :: ys then f y (foldr a ys) else a.

13

14 End iterators.

The Section and End keywords delimit a scope in which the types T and A and the function
f are given as parameters: T, A and f are called section variables. These variables are used
in the definition of iter and foldr.

The Implicit Type annotation tells Coq that, whenever we name an input x (or x’,
or x1, . . . ), its type is supposed to be T. Concretely, it lets us omit an explicit type
annotation in the definition of programs using x, such as iter. The Implicit Type command
is used frequently in the Mathematical Components library; the reader can refer to [Coq,
“Extensions of Gallina”] for a more detailed documentation of it.

When the section is closed (using the End command), these variables are abstracted:
i.e., from then on, they start appearing as arguments to the various functions that use
them in the very same order in which they are declared. Variables that are not actually
used in a given definition are omitted. For example, f plays no role in the definition of
iter, and thus does not become an argument of iter outside the section. This process is
called an abstraction mechanism.

Concretely, the definitions written inside the section are elaborated to the following
ones.

1 Fixpoint iter (T : Type) n op (x : T) :=

2 if n is p.+1 then op (iter p op x) else x.

3 Fixpoint foldr (T A : Type) (f : T -> A -> A) a s :=

4 if s is x :: xs then f x (foldr f a xs) else a.

Finally, remark that T and A are implicit arguments; hence they are not explicitly passed
to iter and fold in the recursive calls.

1 About foldr.

2

3

foldr : ∀ T A : Type,

(T -> A -> A) -> A -> seq T -> A

Arguments T, A are implicit ...

We can now use iter to compute, for example, the subtraction of 5 from 7, or foldr to
compute the sum of all numbers in [:: 1; 2]:

1 Compute iter 5 predn 7.

2 Compute foldr addn 0 [:: 1; 2].

= 2 : nat

= 3 : nat

1.5 Symbolic computation

As we mentioned in section 1.1, the Compute command of Coq can be used to normalize
expressions, which eventually leads to simpler terms, like numerals. This flavour of
computation can however accommodate to the presence of parameters in the expression to
be computed.

1 Section iterators.

2

3 Variables (T : Type) (A : Type).
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4 Variables (f : T -> A -> A).

5

6 Fixpoint foldr a s :=

7 if s is x :: xs then f x (foldr a xs) else a.

If we ask for the type of foldr in the middle of the section, we see that it is not a
polymorphic function (yet).

1 About foldr. foldr : A -> seq T -> A

We hence postulate a term of type A and two of type T in order to apply foldr to a
two-element list, and we ask Coq to compute this expression.

1 Variable init : A.

2 Variables x1 x2 : T.

3 Compute foldr init [:: x1; x2]. = f x1 (f x2 init) : A

The symbols f, x1, x2 and init are inert: They represent unknown values, hence compu-
tation cannot proceed any further. Still Coq has developed the expression symbolically.
To convince ourselves that such an expression is meaningful we can try to substitute f,
x1, x2 and init with the values we used at the end of the last section to play with foldr,
namely addn, 1, 2 and 0:

1 Compute addn 1 (addn 2 0). = 3 : nat

The expression, which now contains no inert symbols, computes to the numeral 3, the
very same result we obtained by computing (foldr addn 0 [:: 1; 2]) directly.

The way functions are described as programs has an impact on the way symbolic
computations unfold. For example, recall from section 1.2.3 the way we defined an addition
operation on elements of type nat. It was defined using the if .. is .. then .. else ..

syntax:

1 Fixpoint addn n m := if n is p.+1 then (addn p m).+1 else m.

Now let us consider the following alternative definition:

1 Fixpoint add n m := if n is p.+1 then add p m.+1 else m.

Both are sensible definitions, and we can show that the two addition functions compute
the same results when applied to numerals. Still, their computational behavior may differ
when computing on arbitrary symbolic values. In order to highlight this, we will use
another normalization strategy to perform computation, the simpl evaluation strategy.
One difference between the Eval simpl and Compute strategies is that the simpl one usually
leaves expressions in nicer forms whenever they contain variables. Here again we point the
interested reader to [Coq, section 5.3.7, “Performing computations”] for

more details.
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1 Variable n : nat.

2 Eval simpl in predn (add n.+1 7).

3 Eval simpl in predn (addn n.+1 7).

= predn (add n 8) : nat

= addn n 7 : nat

Here we see the impact of the difference in the definitions of addn and add: the add

variant transfers the number of successor symbols S given as first argument to its second
argument before resorting to its base case, whereas in the addn variant, the resulting stack of
successor symbols is constructed top down. An intermediate expression in the computation
of (addn n m) exposes as many successors as recursive calls have been performed so far.
Since bits of the final result are exposed early, the predn function can eventually compute,
and it cancels the .+1 coming out of the sum. On the other hand, add does not expose a
successor when a recursive call is performed; hence symbolic computation in predn is stuck.

As chapter 2 illustrates, symbolic computation plays an important role in formal proofs,
and this kind of difference matters. For instance the addn variant helps showing that
(addn n.+1 7) is different from 0 because by computation Coq would automatically expose
a S symbol and no natural number of the form (S ..) is equal to 0. For a worked out
example, see also the proof of muln_eq0 in section 2.2.2.

1.6 Iterators and mathematical notations

Numbers and sequences of objects are so pervasive in the mathematical discourse that we
could hardly omit to present them in such an introductory chapter. On the other hand,
the reader may wonder what role programs like foldr may play in mathematical sentences.

Actually, in order to formalize the left hand side of the two following formulas:

n

∑
i=1

(i∗2−1) = n2
n

∑
i=1

i =
n∗ (n + 1)

2

and, more generally, in order to make explicit the meaning of the capital notations like⋂n
i=1 Ai,∏

n
i=1 ui, . . . , we need to describe an iteration procedure akin to the foldr program.

We illustrate this on the example of the summation symbol (for a finite sum):

1 Fixpoint iota m n := if n is u.+1 then m :: iota m.+1 u else [::].

2 Notation "\sum_ ( m <= i < n ) F" :=

3 (foldr (fun i a => F + a) 0 (iota m (n-m))).

The iota function generates the list [:: m; m+1; ...; m+n-1] of natural numbers corre-
sponding to the range of the summation. On the second line, we re-use a notation that
is already present in the library with shape \sum_ (m <= i < n) F, with F a sub-expression
featuring variable i, the one used for the index. We attach this notation to a specific
expression combining foldr and iota. For instance, once the above notation is granted and
for any natural number (n : nat), one may write the Coq expression (\sum_(1 <= i < n) i)

to represent the sum
n−1
∑

i=1
i. The name i is really used as a binder name here and we may

substitute i with any other name we may find more convenient, as in (\sum_(1 <= j < n) j),
without actually changing the expression4.

The notation represents an instance of the foldr program, iterating a function of type
nat -> nat -> nat: the two type parameters of foldr are set to nat in this case. The first

4Although this change results in two syntactically different expressions, they have the same meaning for
Coq
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explicit argument given to foldr is hence a function of type nat -> nat -> nat, which is
created by abstracting the variable i in the expression F, as mentioned in section 1.1.1. The
name of the second argument of the function, called a here, should not appear in expression
F in order for the notation to be meaningful. Crucially, the foldr iterator takes as input
a functional argument that is able to represent faithfully any general term. As a second
explicit argument to foldr, we also provide the neutral element 0 for the addition: this is
the initial value of the iteration, corresponding to an empty index range.

Let us perform a few examples of computations with these iterated sums.

1 Compute

2 \sum_( 1 <= i < 5 ) (i * 2 - 1).

3 Compute

4 \sum_( 1 <= i < 5 ) i.

= 16 : nat

= 10 : nat

Behind the scenes, iteration happens following the order of the list, as we observed
in section 1.5. In the present case the operation we iterate, addition, is commutative, so
this order does not impact the final result. But it may not be the case, for example if the
iterated operation is the product of matrices.

Defining the meaning of this family of notations using a generic program foldr, which
manipulates functions, is not only useful for providing notations, but it also facilitates
the design of the corpus of properties of these expressions. This corpus comprises lemmas
derived from the generic properties of foldr, which do not depend on the function iterated.
By assuming further properties linking the iterated operation to the initial value, like
forming a monoid, we will be able to provide a generic theory of iterated operations in
section 6.7.

1.7 Notations, abbreviations

Throughout this chapter, we have used notations to display formal terms in a more readable
form, closer to the usual conventions adopted on paper. Without notations, formal terms
soon get unreadable for humans for they often expose too low level details in mathematical
expressions. For this purpose, the Coq system provides a Notation command, and we have
mentioned it several times already, relying on the reader’s intuition to understand roughly
how it works. Its actual behavior is quite complex. With this command, it is possible to
declare various kinds of notations and to specify their associativity and their precedence to
the parsing engine of Coq. It is also possible to provide some hints for printing, like good
breaking points. Scopes are groups of notation that go together well, and can be activated
or deactivated simultaneously. They are usually associated with a scope delimiter, which
allows the activation of a scope locally in a sub-expression.

For instance the infix notation that we have used so far for the constant addn can be
declared as follows:

1 Notation "m + n" := (addn m n) (at level 50, left associativity).

For infix notations, which are meant to be printed between two arguments of the
operator (like addition in 2 + 3), we advise to always include space around the infix
operator, so that notations don’t get mixed up with potential notations occurring in the
arguments.

Similarly, the comparison relation leq on type nat comes with an infix notation <= which
can be defined as:
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1 Notation "m <= n" := (leq m n) (at level 70, no associativity).

where the rightmost annotations, between parentheses, indicate a precedence level and
an associativity rule so as to avoid parsing ambiguities. A lower level binds more than a
higher level. A comprehensive description of the Notation command goes beyond the scope
of this book; the interested reader can refer to [Coq, “Syntax extensions and interpretation
scopes”].

A notation can denote an arbitrary expression, not just a single constant. Here is for
instance the definition of the infix notation < , for the strict comparison of two natural
numbers: it denotes the composition of the comparison _ <= _ (which refers to the constant
leq) with the successor _.+1 (which refers to the constructor S) on its first argument:

1 Notation "m < n" := (m.+1 <= n).

! There is no function testing if a natural number is strictly smaller than another one.
(a < b) is just an alternative syntax for (a.+1 <= b)

The converse relation (n > m) is defined as a notation for (m < n). However, it is only
accepted in input, and is always printed as (m < n), thanks to the following declaration:

1 Notation "n > m" := (m.+1 <= n) (only parsing).

Another frequently used form of notation is called syntactic abbreviation. It simply
lets one specify a different name for the same object. For example the S constructor of
natural numbers can also be accessed by writing succn. This is useful if S is used in the
current context to, say, denote a ring.

1 Notation succn := S.

The notation _.+1 we have been using so far is defined on top of this abbreviation, as:

1 Notation "n .+1" := (succn n) (at level 2, left associativity): nat_scope.

The Locate command can be used to reveal the actual term represented by a notation.
In order to understand the meaning of an unknown notation like for instance (a <= b <= c),
one can use the Locate command to uncover the symbols it involves.

1 Locate "<=".

Notation Scope

"m <= n <= p" := andb (leq m n) (leq n p) : nat_scope

"m <= n < p" := andb (leq m n) (leq (S n) p) : nat_scope

"m <= n" := leq m n : nat_scope

The only difficulty in using Locate comes from the fact that one has to provide a
complete symbol. A symbol is composed of one or more non-blank characters and its first
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character is necessarily a non-alphanumerical one. The converse is not true: a sequence of
characters is recognized as a symbol only if it is used in a previously declared notation.
For example 3.+1.+1 is parsed as a number followed by two occurrences of the .+1 symbol,
even if .+1.+1 could, in principle, be a single symbol.

Moreover substrings of a symbol are not necessarily symbols. As a consequence
Locate "=" does not find notations like the ones above, since <= is a different symbol even
if it contains = as a substring. For the same reason Locate ".+" returns an empty answer
since .+ is not a (complete) symbol.

We mention here some notational conventions adopted throughout the Mathematical
Components library.

• Concepts that are typically denoted with a letter, like N(G) for the normalizer of
the group G, are represented by symbols beginning with ’ as in ’N(G) , where ’N is a
symbol.

• At the time of writing, notations for numerical constants are specially handled by
the system. The algebraic part of the library overrides specific cases, like binding 1

and 0 to ring elements.
• Postfix notations begin with ., as in .+1 and .-group to let one write (p.-group G).

There is one exception for the postfix notation of the factorial, which starts with `,
as in m`!.

• Taking inspiration from LATEX some symbols begin with \, like \in, \matrix, \sum, . . .
• Arguments typically written as subscripts appear after a symbol which ends with an

underscore like ’N_ in ’N_G(H) .
• N-ary notations begin with [ followed by the symbol of the operation being repeated,

as in [&& true, false & false].
• Bracket notations are also used for operations building data, as in [seq .. | .. ].
• Curly braces notations like {poly R} are used for data types with parameters.
• Curly braces are also used to write localized statements such as {in A, injective f} ,

which means that the restriction of f to A is injective.
Each file in the Mathematical Components library comes with a header documenting

all concepts and associated notations it provides.





2. First steps in formal proofs

In this chapter, we explain how to use the Coq system to state and prove theorems,
focusing on simple statements and basic proof commands. In the course of this book,
we will see that choosing the right way to state a proposition formally can be a rather
delicate matter. For equivalent wordings of one and the same proposition, some can be
much simpler to prove, and some can be more convenient to invoke inside the proof of
another theorem. This chapter emphasizes the use of computable definitions and equational
reasoning whenever possible, an approach that will be developed fully in chapter 5.

2.1 Formal statements

In this section, we illustrate how to state elementary candidate theorems, starting with
identities.

2.1.1 Ground equalities

Coq provides a binary predicate named eq and equipped with the infix notation =. This
predicate is used to write sentences expressing that two objects are equal, like in 2 + 2 = 4.
Let us start with examples of Coq ground equality statements: ground means that these
statements do not feature parameter variables. For instance 2+2 = 4 is a ground statement,
but (a + b)2 = a2 + 2ab + b2 has two parameters a and b: it is not ground.

The Check command can be used not only to verify the type of some expression, but
also to check whether a formal statement is well formed or not:

1 Check 3 = 3.

2 Check false && true = false.

3 = 3 : Prop

false && true = false : Prop

Let’s anatomize the two above examples. Indeed, just like Coq’s type system prevents
us from applying functions to arguments of a wrong nature, it also enforces a certain
nature of well-formedness at the time we enunciate sentences that are candidate theorems.
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Indeed, formal statements in Coq are themselves terms and as such they have a type and
their subterms obey type constraints. An equality statement in particular is obtained by
applying the constant eq to two arguments of the same type. This application results in a
well-formed term of type Prop, for proposition.

Throughout this book, we will use the word proposition for a term of type Prop, typically
something one wants to prove.

The About vernacular command provides information on a constant: its type, the list of
arguments of the constant that are implicit, . . . . For instance we can learn more about the
constant eq:

1 Locate "=".

2

3 About eq.

4

"x = y" := eq x y

eq : ∀ A : Type, A -> A -> Prop

Argument A is implicit ...

The constant eq is a predicate, i.e., a function that outputs a proposition. The equality
predicate is polymorphic: exactly like we have seen in the previous chapter, the ∀ quantifier
is used to make the (implicit) parameter A range over types. Both examples 3 = 3 and
false && true = false thus use the same equality constant, but with different values (respec-
tively, nat and bool) for the type parameter A. Since the first argument of eq is implicit, it is
not part of the infix notation and its value is not provided by the user. This value can indeed
be inferred from the type of the two sides of the identity: (3 = 3) unfolds to (eq _ 3 3), and
the missing value must be nat, the type of 3. Similarly, (false && true = false) unfolds to
(eq _ (false && true) false) and the missing value is bool, the common type of false and
(false && true).

As the Coq system checks the well-typedness of statements, the two sides of a well-
formed equality should have the same type:

1 Check 3 = [:: 3].

2

Error: The term [:: 3] has type seq nat

while it is expected to have type nat.

Yet it does not check the provability of the statement!

1 Check 3 = 4. 3 = 4 : Prop

In order to establish that a certain equality holds, the user should first announce that
she is going to prove a sentence, using a special command like Lemma. This command has
several variants Theorem, Remark, Corollary,. . . which are all synonyms for what matters here.
A Lemma keyword is followed by the name chosen for the lemma and then by the statement
itself. Command Lemma and its siblings are in fact a variant of the Definition syntax we
used in chapter 1: everything we mentioned about it also applies here. The Proof command
marks the beginning of the proof text, which ends either with Qed or Admitted. After the
command Proof is executed, the system displays the current state of the formal proof in a
dedicated window.

1 Lemma my_first_lemma : 3 = 3.

2 Proof.

3 (* your proof text *)

4

1 subgoal

======================

3 = 3
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Indeed, Coq is now in its so-called proof mode: we can execute new commands to
construct a proof and inspect the current state of a proof in progress, but some other
commands, like opening sections, are no longer available. At any stage of the proof
construction, Coq displays the current state of the (sub)proof currently pending: a list of
named hypotheses forms the current context and is printed on top of the horizontal bar
(empty here), whereas the statement of the current goal (the conjecture to be proved) is
below the bar.

We will explain how to proceed with such a proof in section 2.2.1. For now, let us just
admit this result, using the Admitted command.

1 Lemma my_first_lemma : 3 = 3.

2 Proof.

3 Admitted.

Although we have not (yet) provided a proof for this lemma, a new definition has been
added to our environment:

1 About my_first_lemma. my_first_lemma : 3 = 3

In the rest of the chapter, we will often omit the Admitted proof terminator, and simply
reproduce the statement of some lemmas in order to discuss their formulation.

2.1.2 Identities

Ground equalities are a very special case of mathematical statements called identities.
An identity is an equality relation A = B that holds regardless of the values that are
substituted for the variables in A and B. Let us state for instance the identity expressing
the associativity of the addition operation on natural numbers:

1 Lemma addnA (m n k : nat) : m + (n + k) = m + n + k.

Note that in the statement of addnA, the right hand side does not feature any parentheses
but should be read ((m + n) + k): This is due to the left-associativity of the infix + notation,
which was prescribed back when this notation was defined (see section 1.7). Command
Lemma, just like Definition, allows for dropping the type annotations of parameters if these
types can be inferred from the statement itself:

1 Lemma addnA n m k : m + (n + k) = m + n + k.

Boolean identities play a central role in the Mathematical Components library. They
state equalities between boolean expressions (possibly with parameters). For instance,
the orbT statement expresses that true is right absorbing for the boolean disjunction
operation orb. Recall from section 1.2.1 that orb is equipped with the || infix notation:

1 Lemma orbT b : b || true = true.

More precisely, lemma orbT expresses that the truth table of the boolean formula
(b || true) coincides with the (constant) one of true: otherwise said, that the two proposi-
tional formulas are equivalent, or that (b || true) is a propositional tautology. Below, we
provide some other examples of such propositional equivalences stated as boolean identities.
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1 Lemma orbA b1 b2 b3 : b1 || (b2 || b3) = b1 || b2 || b3.

2 Lemma implybE a b : (a ==> b) = ~~ a || b.

3 Lemma negb_and (a b : bool) : ~~ (a && b) = ~~ a || ~~ b.

2.1.3 From boolean predicates to formal statements

A boolean predicate means a function to bool. A boolean predicate can indeed be seen as
an effective truth table, which can be used to form a proposition in a systematic way by
equating its result to true. More generally, boolean identities are equality statements in
type bool, which may involve arbitrary boolean predicates and boolean connectives. They
can feature variables of an arbitrary type, not only of type bool.

For instance, the boolean comparison function (leq : nat -> nat -> bool) is a boolean
binary predicate on natural numbers. Lemma leq0n is a proposition asserting that a certain
comparison always holds, by stating that the truth value of the boolean (0 <= n) is true,
whatever term of type nat is substituted for the parameter n.

1 Lemma leq0n (n : nat) : 0 <= n = true.

The Mathematical Components library makes an extensive use of boolean predicates,
and of the associated propositions. For the sake of readability, the default behavior of the
Mathematical Components library is to omit the “.. = true” part in these boolean identities.
Coq is actually able to insert automatically and silently this missing piece whenever it fits
and is non-ambiguous, thanks to its coercion mechanism. We postpone further explanation
of this mechanism to section 5.5, but from now on, we stop displaying the .. = true parts
of the statement that are silently inserted this way. For instance, lemma leq0n is displayed
as:

1 Lemma leq0n (n : nat) : 0 <= n.

As a general fact, boolean identities express that two boolean statements are equivalent.
We already encountered special cases of such equivalence with propositional tautologies
in section 2.1.2. Here are a few more examples involving boolean predicates on natural
numbers that we have defined in chapter 1: the equality test == and its negation !=, the
order relation < and its large version <= , and the divisibility predicate %|, with (a %| b)

meaning a divides b. Note that we omit the type of the parameters; they are all of type
nat, as enforced by the type of the operators involved in the statements:

1 Lemma eqn_leq m n : (m == n) = (m <= n) && (n <= m).

2 Lemma neq_ltn m n : (m != n) = (m < n) || (n < m).

3 Lemma leqn0 n : (n <= 0) = (n == 0).

4 Lemma dvdn1 d : (d %| 1) = (d == 1).

5 Lemma odd_mul m n : odd (m * n) = odd m && odd n.

2.1.4 Conditional statements

In the previous sections, we have seen statements of unconditional identities: either
equalities between ground terms, or identities that hold for any value of their parameters.
A property that holds only when its parameters satisfy some condition is stated using an
implication, and the Coq syntax for this connective is “-> ”. For instance:
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1 Lemma leq_pmull m n : n > 0 -> m <= n * m.

2 Lemma odd_gt0 n : odd n -> n > 0.

This arrow-> is the same as the one we used in chapter 1 in order to represent function
types. This is no accident, but we postpone further comments on the meaning of this
arrow to section 3.2. For now let us only stress that-> is right-associative, and therefore a
succession of arrows expresses a conjunction of conditions:

1 Lemma dvdn_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2.

Replacing conjunctions of hypotheses by a succession of implications is akin to replacing a
function taking a tuple of arguments by a function with a functional type (“currying”), as
described in section 1.1.2.

2.2 Formal proofs

We shall now explain how to turn a well-formed statement into a machine-checked theorem.
Let us come back to our first example, that we left unproved:

1 Lemma my_first_lemma : 3 = 3.

2 Proof.

3 Admitted.

In the Coq system, the user builds a formal proof by providing, interactively, instructions
to the Coq system that describe the gradual construction of the proof she has in mind.
This list of instructions is called a proof script, and the instructions it is made of are called
proof commands, or more traditionally tactics. The language of tactic we use is called
SSReflect.

1 Lemma my_first_lemma : 3 = 3.

2 Proof.

3 (* your finished proof script comes here *)

4 Qed.

Once the proof is complete, we can replace the Admitted command by the Qed one. This
command calls the proof checker part of the Coq system, which validates a posteriori that
the formal proof that has been built so far is actually a complete and correct proof of the
statement, here 3 = 3.

In this section, we will review different kinds of proof steps and the corresponding
tactics.

2.2.1 Proofs by computation

Here is now a proof script that validates the statement 3 = 3.

1 Lemma my_first_lemma : 3 = 3.

2 Proof. by []. No more subgoals.

Indeed, this statement holds trivially, because the two sides of the equality are syntacti-
cally the same. The tactic “by []” is the command that implements this nature of trivial
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proof step. The proof command by typically prefixes another tactic (or a list thereof): it is
a tactical. The by prefix checks that the following tactic trivializes the goal. But in our
case, no extra work is needed to solve the goal, so we pass an empty list of tactics to the
tactical by, represented by the empty bracket [].

The system then informs the user that the proof looks complete. We can hence
confidently conclude our first proof by the Qed command:

1 Lemma my_first_lemma : 3 = 3.

2 Proof. by []. Qed.

3 About my_first_lemma.

No more subgoals.

my_first_lemma is defined

my_first_lemma : 3 = 3

Just like when it was Admitted, this script results in a new definition being added in our
context, which can then be reused in future proofs under the name my_first_lemma. Except
that this time we have a machine checked proof of the statement of my_first_lemma. By
contrast Admitted happily accepts false statements. . .

What makes the by [] tactic interesting is that it can be used not only when both sides
of an equality coincide syntactically, but also when they are equal modulo the evaluation of
programs used in the formal sentence to be proved. For instance, let us prove that 2+1 = 3.

1 Lemma my_second_lemma : 2 + 1 = 3.

2 Proof. by []. Qed.

Indeed, this statement holds because the two sides of the equality are the same, once
the definition of the addn function, hidden behind the infix + notation, is unfolded, and
once the calculation is performed. In a similar way, we can prove the statement (0 <= 1),
or (odd 5), because both expressions compute to true.

As we have seen in chapter 1, computation is not limited to ground terms; it is really
about using the rules of the pattern matching describing the code of the function. For
instance the proof of the addSn identity:

1 Lemma addSn m n : m.+1 + n = (m + n).+1. Proof. by []. Qed.

is trivial as well because it is a direct consequence of the definition of the addn function:
This function is defined by pattern matching, with one of the branches stating exactly this
identity. Statements like (0 + n = n) or (0 < n.+1) can be proved in a similar way, but also
(2 + n = n.+2), which requires several steps of computation.

Lastly, the by tactical turns its argument into a terminating tactic — and thus by [] is
such a terminating tactic. A tactic is said to be terminating if, whenever it does not solve
the goal completely, it fails and stops Coq from processing the proof script. A terminating
tactic is colored in red so that the eye can immediately spot that a proof, or more commonly
a subproof, ends there.

2.2.2 Case analysis

Let us now consider the tautology ~~ (~~ b) = b . The “proof by computation” technique of
section 2.2.1 fails in this case:

1 Lemma negbK (b : bool) : ~~ (~~ b) = b.

2 Proof. by [].
Error: No applicable tactic.
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Indeed, proving this identity requires more than a simple unfolding of the definition of
negb:

1 Definition negb (b : bool) : bool := if b then false else true.

One also needs to perform a case analysis on the boolean value of the parameter b and
notice that the two sides coincide in both cases. The tactic case implements this action:

1 Lemma negbK b : ~~ (~~ b) = b.

2 Proof.

3 case: b.

4

5

6

2 subgoals

============================

~~ ~~ true = true

subgoal 2 is:

~~ ~~ false = false

More precisely, the tactic “case: b” indicates that we want to perform a case analysis
on term b, whose name follows the separator :. The Coq system displays the state of
the proof after this command: The proof now has two subcases, treated in two parallel
branches, one in which the parameter b takes the value true and one in which the parameter
b takes the value false. More generally, the case: t tactic only works when t belongs to an
inductive type. This tactic then performs a case analysis on (the shape of) a term t. As
any inhabitant of an inductive type is necessarily built from one of its constructors, this
tactic creates as many branches in the proof as the type has constructors, in the order in
which they appear in the definition of the type. In our example, the branch for true comes
first, because this constructor comes first in the definition of type bool.

We shall thus provide two distinct pieces of script, one for each subproof to be con-
structed, starting with the branch associated with the true value. In order to help the
reader identify the two parts of the proof script, we indent the first one.

Once the case analysis has substituted a concrete value for the parameter b, the proof
becomes trivial, in both cases: We are in a similar situation as in the proofs of section 2.2.1
and the tactic by [] applies successfully:

1 Lemma negbK b : ~~ (~~ b) = b.

2 Proof.

3 case: b.

4 by [].

1 subgoal

============================

~~ ~~ false = false

Once the first goal is solved, we only have one subgoal left, and we solve it using the
same tactic.

1 Lemma negbK b : ~~ (~~ b) = b.

2 Proof.

3 case: b.

4 by [].

5 by [].

6 Qed.

No more subgoals.

negbK is defined

However, as we mentioned earlier, we can also use the by tactical as a prefix for any
tactic (not just an empty list of tactics), and have the system check that after the case

tactic, the proof actually becomes trivial, in both branches of the case analysis. This way,
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the proof script becomes a one-liner:

1 Lemma negbK b : ~~ (~~ b) = b.

2 Proof. by case: b. Qed.

Case analysis with naming

The boolean equivalence leqn0 is another example of statement that cannot be proved by
computation only:

1 Lemma leqn0 n : (n <= 0) = (n == 0).

2 Proof.

n : nat

=====================

(n <= 0) = (n == 0)

Both comparison operations <= and == are defined by case analysis on their first argument,
independently of the shape of the second. The proof of leqn0 thus goes by case analysis
on term (n : nat), as it appears as a first argument to both these comparison operators.
Remember that the inductive type nat is defined as:

1 Inductive nat := O | S (n : nat).

with two constructors, O which has no argument and S which has one (recursive) argument.
A case analysis on term (n : nat) thus has two branches: one in which n is 0 and one in
which n is (S k), denoted k.+1, for some (k : nat). We hence need a variant of the case

tactic, in order to name the parameter k that appears in the second branch as the argument
of the S constructor of type nat:

1 Lemma leqn0 n : (n <= 0) = (n == 0).

2 Proof.

3 case: n => [| k].

4

5

======================

(0 <= 0) = (0 == 0)

subgoal 2 is:

(k < 0) = (k.+1 == 0)

The tactic “case: n => [|k]” can be decomposed into two components, separated by the
arrow =>. The left block “case: n” indicates that we perform a case analysis action, on term
(n : nat), while the right block “[|k]” is an introduction pattern. The brackets surround
slots separated by vertical pipes, and each slot allows us to name the parameters to be
introduced in each subgoal created by the case analysis in order.

As type nat has two constructors, the introduction pattern [|k] of our case analysis
command uses two slots: the last one introduces the name k in the second subgoal and
the first one is empty. Indeed, in the first subgoal (first branch of the case analysis), n is
substituted with 0. In the second one, we can observe that n has been substituted with
k.+1. As hinted in the first chapter, the term (k.+1 <= 0) is displayed as (k < 0).

The first goal can easily be solved by computation, as both sides of the equality evaluate
to true.

1 Lemma leqn0 n : (n <= 0) = (n == 0).

2 Proof.

3 case: n => [| k].

4 by [].

k : nat

=========================

(k < 0) = (k.+1 == 0)
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The second and now only remaining goal corresponds to the case when n is the successor
of k. Note that (k < 0) is a superseding notation for (k.+1 <= 0), as mentioned in section
1.7. This goal can also be solved by computation, as both sides of the equality evaluate to
false. The final proof script is hence:

1 Lemma leqn0 n : (n <= 0) = (n == 0).

2 Proof. by case: n => [| k]. Qed.

We will use a last example of boolean equivalence to introduce more advanced proof
techniques, leading to less verbose proof scripts. Remember from chapter 1 that the
product of two natural numbers is defined as a function (muln : nat -> nat -> nat). From
this definition, we prove that the product of two (natural) numbers is zero if and only if
one of the numbers is zero:

1 Fixpoint muln (m n : nat) : nat :=

2 if m is p.+1 then n + muln p n else 0.

3

4 Lemma muln_eq0 m n : (m * n == 0) = (m == 0) || (n == 0).

In the case when m is zero (whatever value n takes), both sides of the equality evaluate to
true: the left hand side is equal modulo computation to (0 == 0), which itself computes
to true, and the right hand side is equal modulo computation to ((0 == 0) || (n == 0)),
hence to (true || (n == 0)) and finally to true because the boolean disjunction (_ || _) is
defined by case analysis on its first argument.

1 Lemma muln_eq0 m n :

2 (m * n == 0) = (m == 0) || (n == 0).

3 Proof.

4 case: m => [|m].

5 by [].

n, m : nat

=========================

(m.+1 * n == 0) =

(m.+1 == 0) || (n == 0)

In this script, we used the name m for the argument of the constructor in the second
branch of the case analysis. There is no ambiguity here and this proof step reads: either m

is zero, or it is of the form m.+1 (for a new m).
By default, the successor case is treated in the second subgoal, according to the order

of constructors in the definition of type nat. If we want to treat it first, we can use the
“; last first” tactic suffix:

1 Lemma muln_eq0 m n :

2 (m * n == 0) = (m == 0) || (n == 0).

3 Proof.

4 case: m => [|m].

5 by [].

6 case: n => [|k]; last first.

7

8

m, k : nat

============================

(m.+1 * k.+1 == 0) =

(m.+1 == 0) || (k.+1 == 0)

subgoal 2 is:

(m.+1 * 0 == 0) =

(m.+1 == 0) || (0 == 0)

It is a good practice to get rid of the easy subgoal first: since we are going to indent
the text of its subproof, it better be the shortest one. In this way the reader can easily
skip over the simple case, that is likely to be less interesting than the hard one.

Here the successor case is such an easy subgoal: when n is of the form k.+1, it is easy to
see that the right hand side of the equality evaluates to false, as both arguments of the
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boolean disjunction do. Now the left hand side evaluates to false too: by the definition
of muln, the term (m.+1 * k.+1) evaluates to (k.+1 + (m * k.+1)), and by definition of the
addition addn, this in turn reduces to (k + (m * k.+1)).+1. The left hand side term hence
is of the form t.+1 == 0, where t stands for (k + (m * k.+1)), and this reduces to false. In
consequence, the successor branch of the second case analysis is trivial by computation.

1 Lemma muln_eq0 m n :

2 (m * n == 0) = (m == 0) || (n == 0).

3 Proof.

4 case: m => [|m].

5 by [].

6 case: n => [|k]; last first.

7 by [].

1 subgoal

m : nat

=========================

(m.+1 * 0 == 0) =

(m.+1 == 0) || (0 == 0)

This proof script can actually be made more compact and, more importantly, more
linear by using extra features of the introduction patterns. It is indeed possible, although
optional, to inspect the subgoals created by a case analysis and to solve the trivial ones on
the fly, as the by [] tactic would do, except that in this case no failure happens in the case
some, or even all, subgoals remain. For instance in our case, we can add the optional //
simplify switch to the introduction pattern of the first case analysis:

1 Lemma muln_eq0 m n :

2 (m * n == 0) = (m == 0) || (n == 0).

3 Proof.

4 case: m => [|m] //.

n, m : nat

=========================

(m.+1 * n == 0) =

(m.+1 == 0) || (n == 0)

Only the first generated subgoal is trivial: Thus, it has been closed and we are left with
the second one. Similarly, we can get rid of the second goal produced by the case analysis
on n:

1 Lemma muln_eq0 m n :

2 (m * n == 0) = (m == 0) || (n == 0).

3 Proof.

4 case: m => [|m] //.

5 case: n => [|k] //.

m : nat

=========================

(m.+1 * 0 == 0) =

(m.+1 == 0) || (0 == 0)

This // switch can be used in more general contexts than just this special case of
introduction patterns: It can actually punctuate more complex combinations of tactics,
avoiding spurious branching in proofs in a similar manner [GMT15, section 5.4].

The last remaining goal cannot be solved by computation. The right hand side evaluates
to true, as the left argument of the disjunction is false (modulo computation) and the
right one is true. However, we need more than symbolic computation to show that the left
hand side is true as well: the fact that 0 is a right absorbing element for multiplication
indeed requires reasoning by induction (see section 2.3.4).

To conclude the proof we need one more proof command, the rewrite tactic, that lets
us appeal to an already existing lemma.

2.2.3 Rewriting

This section explains how to locally replace certain subterms of a goal with other terms
during the course of a formal proof. In other words, we explain how to perform a rewrite
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proof step, thanks to the eponymous rewrite tactic. Such a replacement is licit when the
original subterm is equal to the final one, up to computation or because of a proved identity.
The rewrite tactic comes with several options for an accurate specification of the operation
to be performed.

Let us start with a simple example and come back to the proof that we left unfinished
at the end of the previous section:

1 Lemma muln_eq0 m n :

2 (m * n == 0) = (m == 0) || (n == 0).

3 Proof.

4 case: m => [|m] //.

5 case: n => [|k] //.

m : nat

=======================

(m.+1 * 0 == 0) =

(m.+1 == 0) || (0 == 0)

At this stage, if we replace subterm (m.+1 * 0) by 0, the subgoal becomes:

1 (0 == 0) = (m.+1 == 0) || (0 == 0)

which is equal modulo computation to (true = true), hence trivial. But since the definition
of muln proceeded by pattern matching on its first argument, (m.+1 * 0) does not evaluate
symbolically to 0: This equality holds but requires a proof by induction, as explained in
section 2.3.4. For now, let us instead derive (m.+1 * 0 = 0) from a lemma. Indeed, the
Mathematical Components library provides a systematic review of the properties of the
operations it defines. The lemma we need is available in the library as:

1 Lemma muln0 n : n * 0 = 0.

As a side remark, being able to find the “right” lemma is of paramount importance for
writing modular libraries of formal proofs. See section 2.5 which is dedicated to this topic.

Back to our example, we use the rewrite tactic with lemma muln0, in order to perform
the desired replacement.

1 Lemma muln_eq0 m n :

2 (m * n == 0) = (m == 0) || (n == 0).

3 Proof.

4 case: m => [|m] //.

5 case: n => [|k] //.

6 rewrite muln0.

m : nat

=======================

(0 == 0) =

(m.+1 == 0) || (0 == 0)

The rewrite tactic uses the muln0 lemma in the following way: It replaces an instance of
the left hand side of this identity with the corresponding instance of the right hand side.
The left hand side of muln0 can be read as a pattern (_ * 0), where _ denotes a wildcard:
The identity is valid for any value of its parameter n. The tactic automatically finds where
in the goal the replacement should take place, by searching for a subterm matching the
pattern (_ * 0). In the present case, there is only one such subterm, (m.+1 * 0), for which
the parameter (or the wild-card) takes the value m.+1. This subterm is hence replaced by 0,
the right hand side of muln0, which does not depend on the value of the pattern. We can
now conclude the proof script, using the prenex by tactical1:

1Passing a single tactic to by requires no brackets; i.e., we can write by rewrite muln0 instead of
by [rewrite muln0].
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1 Lemma muln_eq0 m n : (m * n == 0) = (m == 0) || (n == 0).

2 Proof.

3 case: m => [|m] //.

4 case: n => [|k] //.

5 by rewrite muln0.

6 Qed.

Arguments to the rewrite tactic are typically called rewrite rules and can be prefixed
by flags tuning the behavior of the tactic.

Rewriting many identities in one go

The boolean identity muln_eq0 that we just established expresses a logical equivalence that
can in turn be used in proofs via the rewrite tactic. For instance, let us consider the case
of lemma leq_mul2l, which provides a necessary and sufficient condition for the comparison
(m * n1 <= m * n2) to hold:

1 Lemma leq_mul2l m n1 n2 : (m * n1 <= m * n2) = (m == 0) || (n1 <= n2).

The proof goes as follows: The left hand side can equivalently be written as (m * n1 - m * n2 == 0),
which factors into (m * (n1 - n2) == 0). But this is equivalent to one of the arguments of
the product being zero. And (n1 - n2 == 0) means (n1 <= n2).

The first step is performed using the following equation:

1 Lemma leqE m n : (m <= n) = (m - n == 0).

2 Proof. by []. Qed.

The proof of this identity is trivial, as the right hand side is the definition of the leq

relation, denoted by the <= infix notation. Rewriting with this equation turns the left hand
side of our goal into a subtraction:

1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) = (m == 0) || ...

3 Proof.

4 rewrite leqE.

m, n1, n2 : nat

==========================

(m * n1 - m * n2 == 0) =

(m == 0) || (n1 <= n2)

The command rewrite leqE only affects the first occurrence of <= , but we would like to
substitute both. In order to rewrite all the possible instances of the rule in the goal, we
may use a repetition flag, which is !:

1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) = (m == 0) || ...

3 Proof.

4 rewrite !leqE.

m, n1, n2 : nat

==========================

(m * n1 - m * n2 == 0) =

(m == 0) || (n1 - n2 == 0)

Now the definition of <= has been exposed everywhere in the goal, i.e., at both its
occurrences in the initial goal. We can now factor out m on the left, according to the
appropriate distributivity property:

1 Lemma mulnBr n m p : n * (m - p) = n * m - n * p.
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This time we need to perform a right-to-left rewriting of the mulnBr lemma (instead of
the default left-to-right). The rewriting step first finds in the goal an instance of pattern
(_ * _ - _ * _), where the terms matched by the first and the third wildcards coincide.
The syntax for right-to-left rewriting consists in prefixing the name of the rewrite rule with
a minus- :

1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) = (m == 0) || ...

3 Proof.

4 rewrite !leqE. rewrite -mulnBr.

m, n1, n2 : nat

==========================

(m * (n1 - n2) == 0) =

(m == 0) || (n1 - n2 == 0)

Consecutive rewrite steps can be chained as follows:

1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) = (m == 0) || ...

3 Proof.

4 rewrite !leqE -mulnBr.

m, n1, n2 : nat

==========================

(m * (n1 - n2) == 0) =

(m == 0) || (n1 - n2 == 0)

The last step of the proof uses lemma muln_eq0 to align the left and the right hand sides of
the identity.

1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) = (m == 0) || ...

3 Proof.

4 rewrite !leqE -mulnBr muln_eq0.

m, n1, n2 : nat

==========================

(m == 0) || (n1 - n2 == 0) =

(m == 0) || (n1 - n2 == 0)

The proof can now be completed by prefixing the tactic with the by tactical.
We only provided here some hints on the basic features of the rewrite tactic. Section 2.4.1

gives more details on the matching algorithm and on the flags supported by rewrite. The
complete description of the features of this tactic is found in the manual [GMT15].

2.3 Quantifiers

2.3.1 Universal quantification, first examples

Let us compare an example of a function we defined in chapter 1:

1 Definition leq n m := m - n == 0.

with an example of a parametric statement we have used in the present chapter:

1 Lemma leqn0 n : (n <= 0) = (n == 0).

We recall, as seen in chapter 1, that this concise syntax for defining leq stands for:

1 Definition leq := fun (n m : nat) => m - n == 0.

and that the type of the constant leq is:

1 About leq. leq : nat -> nat -> bool
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The curious reader might already have tested the answer of the About command on
some parametric lemmas:

1 About leqn0. leqn0 : ∀ n : nat, (n <= 0) = (n == 0)

She has thus observed that Coq’s output features a prenex forall quantifier. This
universal quantifier binds a natural number, and expresses — as expected — that the
equation holds for any natural number. In fact, the types of the lemmas and theorems
with parameters all feature prenex universal quantifiers:

1 About muln_eq0.

2

muln_eq0 : ∀ m n : nat,

(m * n == 0) = (m == 0) || (n == 0)

Quantifiers may also occur elsewhere in a statement, and not only in prenex position.
In the following example, we use the function nth, extracting the element of a sequence
at a given position. This statement expresses that two sequences with the same size and
whose n-th elements coincide for any n are the same. The second hypothesis, about the
elements, is itself a quantified formula:

1 Lemma seq_eq_ext (s1 s2 : seq nat) :

2 size s1 = size s2 ->

3 (∀ i : nat, nth 0 s1 i = nth 0 s2 i) ->

4 s1 = s2.

Quantifiers are also allowed to range over functions:

1 Lemma size_map (T1 T2 : Type) :

2 ∀ (f : T1 -> T2) (s : seq T1), size (map f s) = size s.

Observe that in the above statement of size_map, we have used a compact notation for
successive universal quantifications: “∀ (f : T1 -> T2) (s : seq T1), ...” is syntactic sugar
for “∀ f : T1 -> T2, ∀ s : seq T1, ...”. However, in this case of prenex quantification, we
could just as well write:

1 Lemma size_map (T1 T2 : Type) (f : T1 -> T2) (s : seq T1) :

2 size (map f s) = size s.

as all quantifiers are in prenex positions.

Quantifiers may also occur in the body of definitions, which is useful to define predicates
expressing standard properties on objects. For instance, the commutativity property of a
binary operator is defined as:

1 Definition commutative (S T : Type) (op : S -> S -> T) :=

2 ∀ x y, op x y = op y x.

and the lemma stating the commutativity of the addn operation is in fact:

1 Lemma addnC : commutative addn.
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The Mathematical Components library defines several such predicates, which are used
as templates in order to state standard properties in a consistent and compact way. We
provide below a few examples:

1 Section StandardPredicates.

2 Variable T : Type.

3 Implicit Types (op add : T -> T -> T).

4 Definition associative op := ∀ x y z, op x (op y z) = op (op x y) z.

5 Definition left_distributive op add :=

6 ∀ x y z, op (add x y) z = add (op x z) (op y z).

7 Definition left_id e op := ∀ x, op e x = x.

8 End StandardPredicates.

Beside the standardization of the statements through these predicates, the Mathematical
Components library uses a systematic naming policy for the lemmas that are instances of
these predicates. A common suffix C is used for commutativity properties like addnC or mulnC.
Such naming conventions are also useful to search the library, as detailed in section 2.5.

Another class of predicates typically describes usual properties of functions; these
usually feature quantifiers in their definitions:

1 Section MoreStandardPredicates.

2 Variables rT aT : Type.

3 Implicit Types (f : aT -> rT).

4 Definition injective f := ∀ x1 x2, f x1 = f x2 -> x1 = x2.

5 Definition cancel f g := ∀ x, g (f x) = x.

6 Definition pcancel f g := ∀ x, g (f x) = Some x.

7 End MoreStandardPredicates.

The types of these predicates deserve a few comments:

1 About commutative.

2

commutative :

∀ S T : Type, (S -> S -> T) -> Prop

The constant commutative has polymorphic parameters S and T, takes a binary operation
as argument and builds a proposition. It is hence a polymorphic unary predicate on a
certain class of functions, the binary functions with both their arguments having the same
type. Just like the polymorphic binary predicate eq, the predicate commutative can be used
to form propositions:

1 Check 3 = 3.

2 Check (commutative addn).

3 = 3 : Prop

commutative addn : Prop

2.3.2 Organizing proofs with sections

The Section mechanism presented in Section 1.4 can be used to factor not only the
parameters but also the hypotheses of a corpus of definitions and properties. For instance,
the proof of the Chinese Remainder Theorem is stated within such a section. It uses a
self-explanatory notation for congruences:



56 Chapter 2. First steps in formal proofs

1 Section Chinese.

2

3 Variables m1 m2 : nat.

4 Hypothesis co_m12 : coprime m1 m2.

5

6 Lemma chinese_remainder x y :

7 (x == y %[mod m1 * m2]) = (x == y %[mod m1]) && (x == y %[mod m2]).

8 Proof.

9 ...

10 End.

11

12 End Chinese.

The part of this excerpt up to the beginning of the lemma corresponds to a mathematical
sentence of the form: In this section, m1 and m2 are two coprime natural numbers. . . .
Within the scope of this section, the parameters m1 and m2 are fixed and the hypothesis
co_m12 is assumed to hold. Outside the scope of the section (i.e., after the End Chinese

command), these variables and the hypotheses are generalized, so that the statement of
chinese_remainder becomes:

1 Lemma chinese_remainder m1 m2 (co_m12 : coprime m1 m2) x y :

2 (x == y %[mod m1 * m2]) = (x == y %[mod m1]) && (x == y %[mod m2]).

Note that the syntax to start a Lemma lets one name not only parameters such as m1 and m2,
but also assumptions such as co_m12.

In general, when a section ends, the types of the constants and the statements of the
lemmas change to include those section variables and hypotheses that are actually used in
their definitions or proofs.

2.3.3 Using lemmas in proofs

In order to use a known lemma, one should provide the values of its parameters that
specify the instance relevant to the current proof. Fortunately, Coq can assist its user in
describing these values, and the apply: tactic, like the rewrite one in section 2.4, finds the
appropriate instance by comparing the lemma to the current goal:

1 Lemma leqnn n : n <= n. Proof. Admitted.

2

3 Lemma example a b : a + b <= a + b.

4 Proof. by apply: leqnn. Qed.

The comparison performed by the apply tactic is up to computation:

1 Lemma example a b : a.+1 + b <= (a + b).+1.

2 Proof. by apply: leqnn. Qed.

In order to save the effort of explicitly mentioning trivial steps in the proof script, we can
extend the power of the by terminator to make it aware of some lemmas available in the
library. The Hint Resolve command is used to tag these lemmas, as in:

1 (* This line belongs to the file where leqnn is stated and proved.*)

2 Hint Resolve leqnn.

3 Lemma example a b : a + b <= a + b.
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4 Proof. by []. Qed.

Observe that the goal is now closed without a mention of leqnn, although it has been used
by the system to conclude the proof.

In order to illustrate more proof techniques related to the use of lemmas inside proofs,
let us scrutinize a formal proof that a prime number which divides m! + 1 for a certain
integer m has to be greater than m. This lemma is a key step in a proof that there are
infinitely many primes, which will be studied in section 4.2.1. The proof of the lemma goes
by contraposition: If p is a prime number smaller than m, then it divides m! and thus it
cannot divide m! + 1 as it does not divide 1. We first state this lemma as follows:

1 Lemma example m p : prime p -> p %| m `! + 1 -> m < p.

where p %| m`! stands for “p divides the factorial of m”.

The first step of our formal proof will be to give a name to the hypothesis (prime p),
which means that we add it to the current context of the goal. The dedicated tactic for this
naming step is move=> followed by the name given to the hypothesis, because the hypothesis
moves from under the bar to above the bar:

1 Lemma example m p : prime p ->

2 p %| m `! + 1 -> m < p.

3 Proof.

4 move=> prime_p.

m, p : nat

prime_p : prime p

====================

p %| m`! + 1 -> m < p

The second step of the proof is to transform the current goal into its contrapositive.
This means that we use the lemma

1 Lemma contraLR (c b : bool) : (~~ c -> ~~ b) -> (b -> c).

which describes (one direction of) the contraposition law (namely, that an implication
between booleans can be derived from its contraposition). The apply: contraLR tactic finds
the appropriate values of the premise and conclusion and instantiates the law, leaving us
with the task of proving that p is not a divisor of (m `! + 1) under the assumption that p is
not greater than m:

1 Lemma example m p : prime p ->

2 p %| m `! + 1 -> m < p.

3 Proof.

4 move=> prime_p.

5 apply: contraLR.

m, p : nat

prime_p : prime p

====================

~~ (m < p) -> ~~ (p %| m`! + 1)

More precisely, the values chosen by the tactic for the two parameters c, b of lemma
contraLR are (m < p) and (p %| m `! + 1). They have been found by comparing the statement
to be proved with the conclusion (b -> c) of the statement of the lemma contraLR. The new
statement of the goal is the corresponding instance of the premise (~~ c -> ~~ b) of lemma
contraLR.

The next steps in our formal proof are to improve the shape of the hypothesis ~~ (m < p)

(using rewrite -leqNgt) and to give it a name (using move=> leq_p_m):
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1 Lemma example m p : prime p ->

2 p %| m `! + 1 -> m < p.

3 Proof.

4 move=> prime_p.

5 apply: contraLR.

6 rewrite -leqNgt.

7 move=> leq_p_m.

m, p : nat

prime_p : prime p

leq_p_m : p <= m

====================

~~ (p %| m`! + 1)

And the next step uses the following lemma:

1 Lemma dvdn_addr m d n : d %| m -> (d %| m + n) = (d %| n).

This is a conditional equivalence, expressed as a conditional identity. We can replace
our current goal with ~~ (p %| 1) by rewriting it using (the appropriate instance of) this
identity. This operation will open an extra goal requiring a proof of (the corresponding
instance of) the side condition p %| m`!.

1 Lemma example m p : prime p ->

2 p %| m `! + 1 -> m < p.

3 Proof.

4 move=> prime_p.

5 apply: contraLR.

6 rewrite -leqNgt.

7 move=> leq_p_m.

8 rewrite dvdn_addr.

m, p : nat

prime_p : prime p

leq_p_m : p <= m

============================

~~ (p %| 1)

subgoal 2 is:

p %| m`!

Observe the second goal at the bottom of the buffer, which displays the statement of
the side condition to be proved later. The context of this subgoal is omitted but we do not
really need to see it: We know that statement p %| m`! holds because p <= m and because
we can combine the following lemmas:

1 Lemma dvdn_fact m n : 0 < m <= n -> m %| n`!.
2 Lemma prime_gt0 p : prime p -> 0 < p.

Notice that the expression 0 < m <= n in dvdn_fact is really an abbreviation for (0 < m) && (m <= n).
The first goal is also easy to solve, using the following basic facts:

1 Lemma gtnNdvd n d : 0 < n -> n < d -> (d %| n) = false.

2 Lemma prime_gt1 p : prime p -> 1 < p.

Finally, the resulting script would be:

1 Lemma example m p : prime p -> p %| m `! + 1 -> m < p.

2 Proof.

3 move=> prime_p.

4 apply: contraLR.

5 rewrite -leqNgt.

6 move=> leq_p_m.

7 rewrite dvdn_addr.

8 rewrite gtnNdvd.

9 by []. (* ~~ false *)

10 by []. (* 0 < 1 *)



2.3 Quantifiers 59

11 by apply: prime_gt1. (* 1 < p *)

12 apply: dvdn_fact.

13 rewrite prime_gt0. (* 0 < p <= n *)

14 by []. (* true && p <= m *)

15 by []. (* prime p *)

16 Qed.

For brevity, we record the goal solved by a tactic in a comment after this tactic. Before
improving this script a comment is due: the goal after line 12, 0 < p <= m, is really an
abbreviation for (0 < p) && (p <= m). The subsequent rewrite command replaces (0 < p)

with true: after all the conclusion of prime_gt0 is an equation. We explain such tricks in
detail later on.

We shall improve this script in two steps. First, we take advantage of rewrite sim-
plification flags. It is quite common for an equation to be conditional, hence for rewrite

to generate side conditions. We have already suggested that a good practice consists in
proving the easy side conditions as soon as possible. Here, the first two side conditions are
indeed trivial, and, just as with the introduction patterns of the case tactic, we can use a
simplification switch // to prove them. We also combine on the same line the first three
steps, using the semicolon.2 The proof script (up to the end of the proof of the first goal)
then looks like this:

1 Lemma example m p : prime p -> p %| m `! + 1 -> m < p.

2 Proof.

3 move=> prime_p; apply: contraLR; rewrite -leqNgt; move=> leq_p_m.

4 rewrite dvdn_addr.

5 rewrite gtnNdvd //.

6 by apply: prime_gt1. (* 1 < p *)

A careful comparison of the conclusions of gtnNdvd and prime_gt1 reveals that they are both
rewriting rules. While the former features an explicit “.. = false”, in the latter one the
“.. = true” part is hidden, but is there. This means both lemmas can be used as identities.

R All boolean statements can be rewritten as if they were regular identities. The result
is that the matched term is replaced with true.

Rewriting with prime_gt1 leaves open the trivial goal true (i.e., (true = true)), and the
side condition (prime p). Both are trivial, hence solved by prefixing the line with by.

1 Lemma example m p : prime p -> p %| m `! + 1 -> m < p.

2 Proof.

3 move=> prime_p; apply: contraLR; rewrite -leqNgt; move=> leq_p_m.

4 rewrite dvdn_addr.

5 by rewrite gtnNdvd // prime_gt1.

The same considerations hold for the last goal.

1 Lemma example m p : prime p -> p %| m `! + 1 -> m < p.

2 Proof.

3 move=> prime_p; apply: contraLR; rewrite -leqNgt; move=> leq_p_m.

4 rewrite dvdn_addr.

2From this example, one might take away the wrong impression that a semicolon is synonymous to a dot.
In general, it is not, since the tactic following it is applied to each goal resulting from the tactic preceding
it. More details can be found in [Coq, “The tactic language”].
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5 by rewrite gtnNdvd // prime_gt1.

6 by rewrite dvdn_fact // prime_gt0.

7 Qed.

To sum up, both apply: and rewrite are able to find the right instance of a quantified
lemma and to generate subgoals for its eventual premises. Hypotheses can be named using
move=>.

The proof script given above for example m p can be further reduced in size. One
simple improvement is to replace the chained tactic rewrite -leqNgt; move=> leq_p_m by the
equivalent rewrite -leqNgt => leq_p_m. Indeed, as we will see later (in subsection 4.1), the
move tactic does nothing; it is the => that is responsible for naming the hypothesis.

In section 2.4.1, we shall describe some further ways to shrink the proof script.

2.3.4 Proofs by induction

Let us take the well known induction principle for Peano’s natural numbers and let us
formalize it in the language of Coq. It reads: let P be a property of natural numbers; if
P holds for 0 and if, for each natural number n, the property P holds for n + 1 as soon as
it holds for n, then P holds for any n. Induction is typically regarded as a schema, where
the variable P stands for any property we could think about.

In the language of Coq, it is possible to use a quantification to bind the parameter
P in the schema, akin to the universal quantification of polymorphic parameters in data
types like seq. Induction principles, instead of being “schemas”, are regular lemmas with a
prenex quantification on predicates:

1 About nat_ind.

2

3

nat_ind : ∀ P : nat -> Prop,

P 0 -> (∀ n : nat, P n -> P n.+1) ->

∀ n : nat, P n

Here P is quantified exactly as n is, but its type is a bit more complex and deserves an
explanation. As we have seen in the first chapter, the -> denotes the type of functions;
hence P is a function from nat to Prop. Recall that Prop is the type of propositions, i.e.,
something we may want to prove. In the light of that, P is a function producing a proposition
out of a natural number. For example, the property of being an odd prime can be written
as follows:

1 (fun n : nat => (odd n && prime n) = true)

Indeed, if we take such function as the value for P, the first premise of nat_ind becomes

1 (fun n => (odd n && prime n) = true) 0

1 odd 0 && prime 0 = true

Remark the similarity between the function argument to foldr that is used to describe the
general term of an iterated sum in section 1.6 and the predicate P here used to describe a
general property.

For example, here is the induction principle for sequences (although denoted by list_ind

rather than seq_ind, as seq is defined merely as a synonym for list), which has some
similarities with the one for natural numbers:
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1 About list_ind.

list_ind : ∀ (A : Type) (P : seq A -> Prop),

P [::] -> (∀ (a : A) (l : seq A), P l -> P (a :: l)) ->

∀ l : seq A, P l

To sum up: reasoning by induction on a term t means finding the induction lemma
associated to the type of t and synthesizing the right predicate P. The elim: tactic has
these two functionalities, while apply: does not. Thus, while both elim: and apply: can be
used to formalize a proof by induction, the user would have to explicitly specify both t

and P in order to make use of the apply: tactic, whereas the elim: tactic does the job of
determining these parameters itself. The induction principle to be used is guessed from
the type of the argument of the tactic. Let us illustrate on an example how the value of
the parameter P is guessed by the elim: tactic and let us prove by induction on m that 0 is
neutral on the right of addn.

1 Lemma addn0 m : m + 0 = m.

2 Proof.

3 elim: m => [ // |m IHm].

m : nat

IHm : m + 0 = m

=======================

m.+1 + 0 = m.+1

The elim: tactic is used here with an introduction pattern similar to the one we used
for case:. It has two slots, because of the two constructors of type nat (corresponding
naturally to what is commonly called the “induction base” and the “induction step”), and
in the second branch we give a name not only to the argument m of the successor, but also
to the induction hypothesis. We also used the // switch to deal with the base case because
if m is 0, both sides evaluate to zero. The value of the parameter P synthesized by elim: for
us is (fun n : nat => n + 0 = n). It has been obtained by abstracting the term m in the goal
(see section 1.1.1). This proof can be concluded by using lemma addSn to pull the .+1 out
of the sum, so that the induction hypothesis IHm can be used for rewriting.

Unfortunately proofs by induction do not always run so smooth. To our aid the elim:

tactic provides two additional services.
The first one is to let one generalize the goal. It is typically needed when the goal

mentions a recursive function that uses an accumulator: a variable whose value changes
during recursive calls; hence the induction hypothesis must be general. We show this
feature later on a concrete example (lemma foldl_rev).

Another service provided by elim: is specifying an alternative induction principle. For
example, one may reason by induction on a list starting from its end, using the following
induction principle:

1 Lemma last_ind A (P : list A -> Prop) :

2 P [::] -> (∀ s x, P s -> P (rcons s x)) -> ∀ s, P s.

where rcons is the operation of concatenating a sequence with an element, as in (s ++ [::x]).
For example last_ind can be used to relate the foldr and foldl iterators as follows:

1 Fixpoint foldl T R (f : R -> T -> R) z s :=

2 if s is x :: s’ then foldl f (f z x) s’ else z.
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3

4 Lemma foldl_rev T R f (z : R) (s : seq T) :

5 foldl f z (rev s) = foldr (fun x z => f z x) z s .

The proof uses the following lemmas:

1 Lemma cats1 T s (z : T) : s ++ [:: z] = rcons s z.

2 Lemma foldr_cat T R f (z0 : R) (s1 s2 : seq T) :

3 foldr f z0 (s1 ++ s2) = foldr f (foldr f z0 s2) s1.

4 Lemma rev_rcons T s (x : T) : rev (rcons s x) = x :: rev s.

The complete proof script follows:

1 Lemma foldl_rev T A f (z : A) (s : seq T) :

2 foldl f z (rev s) = foldr (fun x z => f z x) z s .

3 Proof.

4 elim/last_ind: s z => [|s x IHs] z //.

5 by rewrite -cats1 foldr_cat -IHs cats1 rev_rcons.

6 Qed.

Here “elim/last_ind: s z” performs the induction using the last_ind lemma on s after
having generalized the initial value of the accumulator z. The resulting value for P hence
features a quantification on z:

1 (fun s => ∀ z, foldl f z (rev s) = foldr (fun x z => f z x) z s)

Thanks to the generalization, the induction hypothesis IHs states:

1 IHs : ∀ z : A, foldl f z (rev s) = foldr (fun x z => f z x) z s

which is more general than what we would have obtained if we had not generalized z

beforehand. The quantification on z is crucial since the goal in the induction step, just
before we use IHs, is the following one:

1 foldl f z (rev (s ++ [:: x])) =

2 foldr (fun y w => f w y) (foldr (fun y w => f w y) z [:: x]) s

The instance of the induction hypothesis that we need is one where z takes the
value (foldr (fun y w => f w y) z [:: x]). The generalization of z gave us the freedom to
substitute a different value for z.

2.4 Rewrite, a Swiss army knife

Approximately one third of the proof scripts in the Mathematical Components library is
made of invocations of the rewrite tactic. This proof command provides many features we
cannot extensively cover here. We just sketch a very common idiom involving conditional
rewrite rules and we mention the RHS pattern. The interested reader can find more about
the pattern language in section 2.4.1 or in the dedicated chapter of the SSReflect language
user manual [GMT15].

We have seen before that applying the rewrite tactic can create side conditions which
themselves need to be proven (i.e., they are sub-goals).

For example, recall our proof of example m p:
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1 Lemma example m p : prime p -> p %| m `! + 1 -> m < p.

2 Proof.

3 move=> prime_p; apply: contraLR; rewrite -leqNgt => leq_p_m.

4 rewrite dvdn_addr.

5 by rewrite gtnNdvd // prime_gt1. (* ~~ (p %| 1) *)

6 by rewrite dvdn_fact // prime_gt0. (* p %| m`! *)

7 Qed.

Here, our use of the rewrite dvdn_addr tactic forced us to prove the side condition
p %| m`!. Side conditions (by default) become the second, third (and potentially higher)
sub-goals in a proof script, so their proofs are usually postponed to after the first sub-goal
(the main one) is proven. This is not always desirable; therefore, it is helpful to have a
way to prove side conditions right away, on the same line where they arise. One way to do
this (which we have already seen in action) is using the simplification item //. When this
does not suffice, one can invoke another rewrite rule using the optional iterator ?. A rule
prefixed by ? is applied to all goals zero-or-more times.

The side condition p %| m`! spawned by rewrite dvdn_addr was proven in the last
line of the script. Instead, we could have solved it right away by rewriting using
?dvdn_fact ?prime_gt0. In fact, optionally rewriting with dvdn_fact on all goals affects
only the side condition, since the main goal does not mention the factorial operator. The
same holds for prime_gt0. The resulting proof script is:

1 Lemma example m p : prime p -> p %| m `! + 1 -> m < p.

2 Proof.

3 move=> prime_p; apply: contraLR; rewrite -leqNgt => leq_p_m.

4 rewrite dvdn_addr ?dvdn_fact ?prime_gt0 //.

5 by rewrite gtnNdvd // prime_gt1.

6 Qed.

Another functionality offered by rewrite is the possibility to focus the search for the
term to be replaced by providing a context. For example, the most frequent context is RHS

(for Right Hand Side) and is used to force rewrite to operate only on the right hand side of
an equational goal.

1 Lemma silly_example n : n + 0 = (n + 0) + 0.

2 Proof. by rewrite [in RHS]addn0. Qed.

The last rewrite flag worth mentioning is the /= simplification flag. It performs
computations in the goal to obtain a “simpler” form.

1 Lemma simplify_me : size [:: true] = 1.

2 Proof.

3 rewrite /=.

==========================

1 = 1

The /= flag simply invokes the Coq standard simpl tactic. Whilst being handy, simpl

tends to oversimplify expressions, hence we advise using it with care. In section 5.4 we
propose a less risky alternative. The sequence “// /=” can be collapsed into //=.

Another form of simplification that is often needed is the unfolding of a definition. For
example, the lemma leqE that we used in the proof of leq_mul2l back in page 52 does not
exist in the library, and there is no name associated to this equation. It is simply the
definition of leq, and we actually do not need to state a lemma in order to relate the name
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of a definition, like leq, to its body fun n m => n - m == 0. Such operation can be performed
by prefixing the name of the object with /, as in rewrite /leq. Unfolding a definition is not
a deductive operation but an instance of computation, as made more precise in chapter 3.

2.4.1 Rewrite contextual patterns

The example leq_mul2l illustrates how the rewrite tactic, provided a rewrite rule like mulnBr

or muln_eq0, is able to identify a subterm in the goal to be substituted. The usability of
the tactic crucially relies on an appropriate combination of automation and control. The
user should be able to predict which subterm will be substituted and to drive the tactic if
needed, with enough control options, but not too much verbosity. A key ingredient of the
rewrite tactic is hence the matching algorithm that elects this subterm from the arguments
provided to the tactic. Let us provide some insights on the power and on the limitations of
this algorithm, as well as on the control primitives that can drive it.

First, remember that our first attempt, using the simple rewrite leqE command, only
affected the left hand side of the initial goal because of the behavior of this matching
algorithm. Indeed, the matching algorithm traverses the entire goal left-to-right, looking for
the first subterm matching pattern (_ <= _), and hence picks the subterm (m * n1 <= m * n2).
Now suppose we want to pick the other instance of a subterm matching this pattern in
the goal. We can use the command rewrite [n1 <= _]leqE: the pattern given by the user
overrides the one inferred from the rewrite rule and is used to select the subterm to be
rewritten. In this case, term (m * n1 <= m * n2) is ruled out because the first argument
of <= , namely (m * n1), does not match the first argument n1 required in the user-given
pattern. Therefore, rewrite picks the term (n1 <= n2), in the right hand side.

1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) =

3 (m == 0) || (n1 <= n2).

4 Proof.

5 rewrite [n1 <= _]leqE.

m, n1, n2 : nat

==========================

(m * n1 <= m * n2) =

(m == 0) || (n1 - n2 == 0)

Another way of driving the matching algorithm is by providing a context, restricting
the part of the goal to be explored. For instance, in this case, the instance we want to pick
is on the right hand side of the identity to be proved. We can implement this specification
using the pattern [in RHS]:

1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) =

3 (m == 0) || (n1 <= n2).

4 Proof.

5 rewrite [in RHS]leqE.

m, n1, n2 : nat

==========================

(m * n1 <= m * n2) =

(m == 0) || (n1 - n2 == 0)

More generally, one can provide context patterns like [in X in T] where X is a variable
name, bound in T. For instance pattern [in RHS] is just syntactic sugar for the context pat-
tern [in X in _ = X]. We invite the interested reader to check the reference manual [GMT15,
section 8] for more variants of patterns and for a more precise description of the different
phases in the matching algorithm used by this tactic.

As we have said, the lemma leqE does not in fact exist in the library, and instead is
just the definition of leq. However if we try to omit the first rewrite !leqE command, then
the next one, namely rewrite -mulnBr, fails:
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1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) =

3 (m == 0) || (n1 <= n2).

4 Proof.

5 rewrite -mulnBr.

Error: The RHS of mulnBr

(_ * _ - _ * _)

does not match any subterm

of the goal

This indicates in particular that, although the term (m * n1 <= m * n2) is equal up to
computation to the term (m * n1 - m * n2 == 0), the matching algorithm is not able to
see it. This is due to the compromise that has been chosen, between predictability and
cleverness. Indeed the algorithm looks for a verbatim occurrence of the head symbol3 of the
pattern: in this case it hence looks for an occurrence of (_ - _), which is not found. As a
consequence, we need an explicit step in the proof script in order to expose the subtraction
before being able to rewrite right to left with mulnBr. However if we tackle the proof in
reverse, starting from the right hand side, the first-muln_eq0 step will succeed:

1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) =

3 (m == 0) || (n1 <= n2).

4 Proof.

5 rewrite -[_ || _]muln_eq0.

m, n1, n2 : nat

==========================

(m * n1 <= m * n2) =

(m * (n1 - n2) == 0)

Indeed, the [_ || _] pattern identifies term (m == 0) || (n1 <= n2), as their head symbols
coincide. Now that we have selected a subterm, the rewrite tactic is able to identify it with
the term (m == 0) || (n1 - n2 == 0), itself an instance of the right hand side of muln_eq0.
Indeed, while matching only sees syntactic occurrences of the head symbols of patterns, it
is able to compare the other parts of the pattern up to symbolic computation. Note that
the [_ || _] pattern is redundant here; there is no other location in the goal where the
right hand side of muln_eq0 could appear.

Patterns can not only be used in combination with a rewriting rule, but also with a
simplification step /= or an unfolding step like /leq. For example:

1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) =

3 (m == 0) || (n1 <= n2).

4 Proof.

5 rewrite [in LHS]/leq.

m, n1, n2 : nat

==========================

(m * n1 - m * n2 == 0) =

(m == 0) || (n1 <= n2)

One can also re-fold a definition, but in such a case one has to specify, at least partially,
its folded form.

1 Lemma leq_mul2l_rewritten m n1 n2 :

2 (m * n1 - m * n2 == 0) =

3 (m == 0) || (n1 <= n2).

4 Proof.

5 rewrite -/(leq _ _).

m, n1, n2 : nat

==========================

(m * n1 <= m * n2) =

(m == 0) || (n1 <= n2)

Here, we have used the-/ prefix for the rewrite tactic; it allows folding a definition, i.e.,
the reverse of unfolding.

More generally, the rewrite tactic can be used to replace a certain subterm of the goal

3The head symbol is the root of the syntax tree of an expression.
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by another one, which is equal to the former modulo computation:

1 Lemma leq_mul2l m n1 n2 :

2 (m * n1 <= m * n2) = (m == 0) || (n1 <=

n2).

3 Proof.

4 rewrite -[n1]/(0 + n1).

m, n1, n2 : nat

==========================

(m * (0 + n1) <= m * n2) =

(m == 0) || (0 + n1 <= n2)

Lastly, an equation local to the proof context, like an induction hypothesis, can be
disposed of after using it by prefixing its name with{} . For example rewrite -{}IHn rewrites
with IHn right to left and drops IHn from the context.

2.5 Searching the library

Finding the name of the “right” lemma in a library that contains thousands of them may
be quite a challenge. In spite of their digital nature, formal libraries are not so easy to
browse and the state of the art of search tools for formal libraries is far from being as
advanced as what exists for instance for the world wide web.

In order to help the users find their needle in the haystack, the Mathematical Compo-
nents library follows uniform naming policies, and the SSReflect proof language provides
a Search command which displays lists of items filtered using patterns, like (_ * _ + _) or
(addn _ _), and substrings of the names, like "rev" "cons".

2.5.1 Search by pattern

The Search command takes a list of filters and prints the lemmas that do match all the
criteria.

The first pattern provided is special, since it is required to match the conclusion of a
lemma, while all other patterns can match anywhere.

For example “Search (odd _)” only prints one lemma:

1 dvdn_odd ∀ m n : nat, m %| n -> odd n -> odd m

Indeed the conclusion matches the pattern. Note that one is not forced to use wildcards; odd
alone is a perfectly valid pattern. Many more lemmas are found by leaving the conclusion
unspecified, as in “Search _ odd”.

If we require the lemma to be an equation, as in “Search eq odd”, we find the following
two lemmas (among many other things):

1 dvdn2 ∀ n : nat, (2 %| n) = ~~ odd n

2 coprime2n ∀ n : nat, coprime 2 n = odd n

If we want to rule out all lemmas about coprimality we can refine the search by writing
“Search eq odd -coprime”.

2.5.2 Search by name

Being acquainted to the naming policy followed by the Mathematical Components library
provides one of the more effective ways of finding lemmas in the loaded libraries. The name
my_first_lemma we chose in section 2.1.1 is a very bad name, as it gives no insight about
what the lemma says. Most of the time, we refrain from naming lemmas with numbers,
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as is typically done in standard mathematical texts. Finding an appropriate name for a
lemma can be a delicate task. It should convey as much information as possible, while
striving to remain short and handy. In particular, bureaucratic lemmas that are frequently
used but represent no deep mathematical step should have a short name: this way they
are both easy to type and easy to disregard when skimming through a proof script.

Partial names can be used as filters by the Search command. For example Search "C"

prints, among other things, addnC and mulnC, the commutativity properties of addition
and multiplication. Multiple strings can be specified, for example Search "1" "muln". This
time we find muln1 but also muln_eq1, the equation saying that the product of two natural
numbers is 1 if and only if they are both 1.

Here are the general principles governing the names of lemmas in the Mathematical
Components library:

• Generalities
– Most of the time the name of a lemma can be read off its statement: a lemma

named fee_fie_foe will say something about (fee .. (fie ..(foe ..) ..) ..), e.g.
lemma size_cat in seq.v.

– We often use a one-letter suffix to resolve overloaded notation, e.g., addn, addb,
and addr denote nat, boolean, and ring addition, respectively.

– Finally, a handful of theorems have historical names, e.g, Cayley_Hamilton or
factor_theorem.

• Structures and Records
– Each structure type starts with a lower case letter, and its constructor has the

same name but with a capital first letter.
– Each instance of a structure type has a name formed with the name of the

carrier type, followed by an underscore and the one of the structure type like
in seq_sub_subType, the structure of subType defined on seq_sub (see fintype.v).
Notable exceptions to this rule are canonical constructions taking benefits of
modular name spaces, like in ssralg.v.

• Suffixes
– If the conclusion of a lemma is a predicate or an equality for a predicate, then

that predicate is a suffix of the lemma name, like in addn_eq0 or rev_uniq.
– If the conclusion of a lemma is a standard property such as \char, <| , etc.4:

the property should be indicated by a suffix (like _char, _normal, etc), so the
lemma name should start with a description of the argument of the property,
such as its key property, or its head constant. Thus we have quotient_normal,
not normal_quotient, etc. This convention does not apply to monotony rules, for
which we either use the name of the property with the suffix for the operator
(e.g., groupM), or the name of the operator with the S suffix for subset monotony
(e.g., mulgS).

– We try to use and maintain the following set of lemma suffixes:
∗ 0 : zero, or the empty set
∗ 1 : unit, or the singleton set (use _set1 for the latter to disambiguate)
∗ 2 : two, doubling, doubletons
∗ 3 etc, similarly
∗ A : associativity
∗ C : commutativity, or set complement (use Cr for trailing complement)
∗ D : set difference, addition
∗ E : definition elimination (often conversion lemmas)

4These examples are taken from libraries in the Mathematical Components distribution.
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∗ F : boolean false, finite type variant (as in canF_eq), or group functor
∗ G : group argument
∗ I : set intersection, injectivity for binary operators
∗ J : group conjugation
∗ K : cancellation lemmas
∗ L : left hand side (as in canLR)
∗ M : group multiplication
∗ N : boolean negation, additive opposite
∗ P : characteristic properties (often reflection lemmas)
∗ R : group commutator, or right hand side (as in canRL)
∗ S : subset argument, or integer successor
∗ T : boolean truth and Type-wide sets
∗ U : set union
∗ V : group or ring multiplicative inverse
∗ W : weakening
∗ X : exponentiation, or set Cartesian product
∗ Y : group join
∗ Z : module/vector space scaling



3. Dependent type theory

The formal language we use to write mathematical statements and proofs in the Coq
proof assistant is called Gallina. This language is an evolution of the Calculus of Inductive
Constructions (CIC) [CH88; CP90] implemented in the early versions of Coq in the 80’s.
In turn, CIC is one of the many descendants of the intuitionistic type theory [Mar80]
Martin-Löf developed in the 70’s. In order to avoid ambiguities with other type theories
we refer to this family of formal systems using the term dependent type theory.
In this chapter, we provide some hints on the main features of this formalism. The interested
reader shall refer to the reference manual of Coq [Coq] for a formal definition of Gallina.

3.1 Propositions as types, proofs as programs

Set theory is commonly invoked as the foundational language for mathematics [Bou04].
Informally speaking, a set-theoretic framework has two stages. First order logic provides
the former layer: it describes the language of logical sentences and how these statements
can be combined and proved. This language is then used in the second layer to formulate
the axioms of the particular theory of interest, for example the ones of Zermelo-Fraenkel set
theory. By contrast, proof assistants based on a flavor of dependent type theory, like Coq,
embrace an approach coined propositions-as-types [How80], and use the same language of
types in a uniform way to describe mathematical objects, mathematical assertions, and
their proofs. As we shall see the rules dictating which sentences and proofs are well-formed
are phrased quite differently in the two formal languages.

In set theory the rules which govern the construction of well-formed, grammatically
correct, statements are rather loose. For example x ∈ x is a valid sentence, where x plays
the role of both an element and as set. Still, the goal of the game is to construct a proof
for a given well-formed proposition, using first-order logic to combine the axioms of the
theory, and nonsensical sentences supposedly have no proof.

The first two chapters of the present book illustrate how types can be used to help
classify, and clarify expressions passed to the checker. In fact, the language of types
available in the Calculus of Inductive Constructions, and thus in Coq, is so expressive that
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logical statements are identified with some types and their proofs with terms, or programs,
having this type. This way, proving a statement consists in fact in constructing a term of
the corresponding type. Objects of the formalism are programs, and proofs are themselves
objects of the formalism.

In this setting the analogue of “a proposition has a proof” is that “a term has a given
type”. Such a statement, called a typing judgment, is a ternary relation written as follows:

Γ ` t : T

and reads: in the context Γ, the term t has the type T . A type is just a term, which is called
a type when it occurs on the right hand-side of a column in a well-formed typing judgment,
like T in our case. A context is a list of variables, each paired with a type, that can occur
in t and T . This typing judgment expresses that under the typing assumptions listed in
the context Γ, t and T are well-formed, and moreover that term t has type T . Example:

x : N ` x + x : N

A typing judgment is valid if it is justified by combining the typing rules of the type
theory, up to atomic ones like this one:

x : T ` x : T

which asserts that a context assigns a type to each variable it contains. A call to the
Check command introduced in Chapter 1 verifies that a certain typing judgment holds in
the current context. For instance, term 3 has type nat in an empty context:

1 Check 3 : nat. 3 : nat

The context of a typing judgment includes all the variables and hypothesis currently
assumed. For instance, in a context containing a variable n with type nat, the term n + n

has type nat:

1 Variable n : nat.

2 Check n + n : nat. n + n : nat

Coq complains if we try to verify the typing judgment asserting the same term has
type bool. In this case, it even computes and displays the correct type:

1 Fail Check n + n : bool.

2

The term "n + n" has type "nat" while it

is expected to have type "bool".

Our last example is a typing judgment Γ ` t : T where the term t is a proof. Indeed, in
a context containing a variable n of type nat, the term (muln0 n) has type n * 0 = 0 and is
thus a proof of the corresponding equational assertion:

1 Variable n : nat.

2 Check muln0 n : n * 0 = 0. muln0 n : n * 0 = 0
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3.2 Terms, types, sorts

This section makes more precise what contexts, terms and types are. Note that, for the
sake of the exposition, the description is restricted to a subset of Gallina. We refer again
the reader looking for an exhaustive description to the corresponding chapter of Coq’s
reference manual [Coq].

As alluded to in the introduction, type theory avoids the distinction set theory makes
between sets and propositions: type theory is based on a same and single collection of
inductively defined terms. A judgment Γ ` t : T relates two terms, t and T (in the context
Γ), and T is called a type because it appears on the right hand side of the column symbol in
a typing judgment. Term T can be thought of as a label for a collection of terms, and the
judgment Γ ` t : T , as the statement that (in context Γ) “term t belongs to the collection T”,
or even, to some extent, t ∈ T . For instance, we have used in previous examples assumptions
of the form n : nat to model the sentence “let n be a natural number”.

This set-theoretic analogy should be taken with a pinch of salt though. First, there is no
way in type theory to introduce a term, even a variable, without simultaneously introducing
its type. Things are different in set theory, where an object a can be constructed without
necessarily being cast as being the element of a super-set A. Second, a judgment is not a
proposition in the same sense as the set-theoretic sentence t ∈ T would be. In particular,
one cannot reason (internally) by case analysis on the proof that t has type T , nor can we
disprove (internally) that t has type T for some particular T . Finally, as we shall see later
in this section, substitution of equals does not behave the same for terms at the left of a
column, and for those on the right — types.

We assume a collection of distinct names, used to denote atomic terms and called sorts.
One of this sorts is called Prop, and it is the type of statements:

1 Check 7 = 7 : Prop. 7 = 7 : Prop

As noted already in Chapter 2, a well formed statement is not necessary a provable one:

1 Check 7 = 9 : Prop. 7 = 9 : Prop

Types used as data-structures, to represent mathematical objects (as opposed to
mathematical assertions), live in a distinct sort named Set:

1 Check nat : Set. nat : Set

Gallina moreover features a countable, cumulative hierarchy of sorts, displayed as Type

and indexed by an integer variable which is by default hidden to the user. In the following
typing judgment we tell Coq to print the index of Type:

1 Set Printing Universes.

2 Check Type : Type. Type@{U1} : Type@{U2} (* U1 < U2 *)

the instance of Type on the right side of the column has a greater index (named U2 here)
than the instance of Type on the left.

In an empty context, the term Prop has type Type (for any value of the index) :
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1 Check Prop : Type. Prop : Type@{U3} (* Prop < U3 *)

Set happens to be a name for the smallest element of the hierarchy of Type:

1 Check Set : Type. Set : Type@{U4} (* Set < U3 *)

Terms nat, bool, Prop are simple, atomic types, which can be used to build non-atomic
ones. For instance, in Chapter 2, we met the type of functions from natural numbers
to boolean, which is nat -> bool. Similarly the type of addition over natural numbers is
nat -> nat -> nat, and the type of boolean negation is bool -> bool.

In Chapter 1, we used a polymorphic type to represent sequences of elements:

1 Inductive seq (A : Type) := nil | cons (hd : A) (tl : seq A).

Since seq builds a new type for each given instance of its parameter, it has the type of
a function:

1 Check seq : Type -> Type.

Non-atomic terms are defined from a countable infinite set of symbols, called variables.
It is thus always possible to exhibit a new variable distinct from a given arbitrary finite
collection of variables. In Coq syntax, we can use letters, or more generally sequences
of alpha-numeric characters, to represent variables. For instance, the following command
declares two variables of type nat, i.e. two natural numbers and one of type seq nat, i.e. a
list of numbers:

1 Variables (n m : nat) (l : seq nat).

Hypotheses are themselves variables, whose type represent the assumed statement. The
following line assumes a hypothesis:

1 Hypothesis neq0 : n = 0.

But it is just a synonym, with a more suggestive name, of:

1 Variable neq0 : n = 0.

Of course, it is only possible to extend the current context with variables, or hy-
potheses, or definitions, with a well-formed type. As we have seen so far, well-formed
types include atomic types, like nat or Prop, and function types like nat -> bool. In Gal-
lina, it is also possible to define functions which build a type for any value of a given
datatype:

1 Variable t : nat -> Type.

Term t is called a dependent type, as it constructs a family of types which depend on
a parameter in a data type. For instance, t could be the type of lists of booleans with a
prescribed length, t n being the type of lists of length n. Now such a dependent type can
itself be used as the return type of a function, like in:
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1 Variable g : ∀ n : nat, t n.

For instance, g n could build the list of length n containing only true elements. Thus
in Gallina, the return type of a function may depend on the value of its argument: the
prefix ∀ n, part of the type of g is a binder, which allows one to describe the dependency in
the return type. A type of the form ∀ x, T is called a product type, or sometimes a Π-type.
Note that a product type ∀ x, T is well-formed for any T of type Type, Set or Prop, even when
T does not depend on x. In this case, when the return type is constant in the argument,
the product type is displayed with an arrow, as in:

1 Check ∀ x : nat, bool : Type. nat -> bool : Type

A term with a product (or arrow) type is a function, in the sense that it can be applied
to an argument, provided that the type of this argument agrees with the source of the
function type:

1 Variable f : nat -> bool.

2 Check f 3 : bool.

3 Fail Check f true : bool.

4

5 Variable g : ∀ n, t n.

6 Check g 3 : t 3.

The typing rule governing the application of functions to arguments is a emblematic
example of the strict well-formedness conditions enforced by types on mathematical
statements. This rule will rule out nonsensical assertions, like “π is equilateral” or “2
is a Banach space”. But the same rule shall also play a nastier role, for instance if the
user wants to casually embed natural numbers into integers, or and integer into rational
numbers: working with these obvious inclusions might require an explicit cast in a typed
setting, if N, Z, Q are represented by distinct types.

New functions are defined by abstracting a variable in a term, as discussed in Chapter 1.
The resulting term has a product (or an arrow) type:

1 Definition bar (n : nat) : bool :=

2 n == 0.

3 Check bar : nat -> bool.

Term bar has type nat -> bool because in the current context, augmented with a variable
declaration n : nat, corresponding to the name and type of the argument, the body n == 0

of the definition has type bool.
As we have seen in Chapter 1, a function is defined by binding its argument in the

body of its definition: in bar, the variable n, on the left of the := delimiter, is bound in the
body of the definition, the n on the right of the := delimiter. When a defined function is
applied to its argument, the resulting term is computed by substituting the bound variable
for the value of the argument.

1 Definition bar (n : nat) : nat := n.

2 Print bar.

3 Compute bar 4.

bar = fun n => n : nat -> nat

= 4 : nat
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3.3 Propositions, implication, universal quantification

The sort Prop is the type of propositions. If A and B are two types in sort Prop, then A -> B is
also a type, living as well in sort Prop. A term of type A -> B is a function, that transforms
any term of type A into a term of type B, and that can be applied to any term of type A.
This is the central typing rule of our formal system. It is a deep remark that the typing
rules for function formation and function application can be read as the introduction rule
and elimination rule of logical implication, respectively. For instance, let us analyse a proof
that modus ponens holds:

1 Lemma modus_ponens (A B : Prop) : (A -> B) -> A -> B.

2 Proof.

3 move=> hAB hA.

4 apply: hAB.

5 exact: hA.

6 Qed.

This proof starts by introducing the two hypotheses, akin to the two arguments of a
function. Then it builds a proof of B which is the result of the function hAB applied to the
argument hA. A variant is:

1 Lemma modus_ponens (A B : Prop) : (A -> B) -> A -> B.

2 Proof.

3 move=> hAB hA.

4 exact: (hAB hA).

5 Qed.

A last variant, providing directly the proof, without interactive commands:

1 Lemma modus_ponens (A B : Prop) : (A -> B) -> A -> B.

2 Proof.

3 exact: (fun hAB hA => hAB hA).

4 Qed.

The remark extends to universal quantification, whose introduction and elimination
rules also coincide with the formation and application rules of a product type. Just like
the constructive proof of an implication is a function transforming an arbitrary proof of
the premise into a proof of the conclusion, a constructive proof of a universal statement is
a family of proofs, indexed by the inhabitants of the type over which quantification takes
place. In this view, a proof of the Pythagorean theorem is a family of proofs indexed by
the collection of rectangular triangles.

The proofs-as-programs correspondence has a visible impact in the proofs part of the
Mathematical Components library. In particular, quantified lemmas, being programs, can
be instantiated by simply passing arguments to them. Exactly as one can pass 3 to addn

and obtain (addn 3), the function adding three, one can “pass” 3 to the lemma addnC and
obtain a proof of the statement (∀ y, 3 + y = y + 3). Remark that the argument passed to
addnC shows up in the type of the resulting term (addnC 3): The type of the addnC program
depends on the value the program is applied to. Functions whose codomain type depend
on the value of their input have a type of the form ∀x : A,B, where x can occur in B. When
B does not depend on x this type is written A→ B, avoiding the useless introduction of a
name x. The former is sometimes called the dependent function space (∀) and the latter,
the standard function space (→).
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R Lemma names can be used as functions, and you can pass arguments to them. For
example, (addnC 3) is a proof that (∀ y, 3 + y = y + 3), and (prime_gt0 p_pr) is a
proof that (0 < p) whenever (p_pr : prime p).

Yet providing all the arguments of a given lemma, so as to describe the precise instance
useful in a proof, can be tedious. It is one of the duties of the language used in the
interactive construction of proofs to leverage this bureaucracy. For instance, the tactics
apply and rewrite introduced in Chapter 2 are designed to guess some of these arguments.
This guess is based on matching and unification with the current goal, or with a pattern
provided in argument.

We refer the reader to the reference manual of Coq [Coq] for the other rules of the
system, which are variants of the ones we presented or which express subtleties of the type
system that are out of the scope of the present book, like the difference between the sorts
Prop and Type.

3.4 Conversion

The conversion (typing) rule in Gallina describes the status of computation in this dependent
type theory, and plays a fundamental role in the formalization choices adopted in the
Mathematical Component libraries. Computation is modeled by rewrite rules explaining
how to apply functions to their argument. For instance, the so-called β -reduction rule
rewrites the application of a function to an argument (fun x => t) u into t[u/x]: the formal
argument x is substituted by the actual argument u in the body t of the function. A similar
rule models the computation of a term of the shape (let x := u in t) into t[u/x]. Two
terms t1 and t2 that are equal modulo computation rules are said to be convertible, written
t1 ≡ t2, and these terms are indistinguishable to the type system.

This is the feature of the formalism that we have used in section 2.2.1: The proofs of
the statements 2 + 1 = 3 and 3 = 3 are the same, because the terms 2 + 1 = 3 and 3 = 3

are convertible. In chapter 1 and 2 we used boolean programs to express predicates and
connectives exactly to take advantage of convertibility: Also the compound statement
(2 != 7 && prime 7) is convertible to true. Finally, as illustrated in section 1.5, computation
is not limited to terms without variables: The term (isT : true)1 is a valid proof of
(0 < n.+1), as well as a proof of (0 != p.+1).

It is out of scope for this book to detail other uses of conversion. We just mention
that while the Mathematical Components library takes advantage of conversion to deal
with “little” computations like the ones above, the Coq system efficiently supports “large”
computations as well. One idiomatic example is found in the formal proof of the Four-Color
theorem [Gon08], another one in the implementation of the proof command ring that
decides equalities in the homonymous algebraic structure [GM05].

3.5 Inductive types

Stricto sensu, in the formalism described in section 3.2, types are either sorts, like Prop

and Type, or functional types constructed from these atomic ones. However, in the previous
chapters, we have casually used other types like nat or bool and terms of these types like
O : nat or S : nat -> nat. In fact, in the Calculus of Inductive Construction it is also
possible to introduce new types – and in fact new terms – via inductive definitions [CP90;

1In other words isT is a proof of all statements that are trivial by computation. We invite the reader
that finds the writing (isT : true) ill typed to peek ahead to section 5.5.
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Pau93]. We only provide a very brief overview of this subtle feature and again refer the
reader to the reference manual for a precise and formal account.

An inductive definition simultaneously introduces several new objects into the context:
a new type, in a given sort, and new terms for the constructors, with their types. For
instance, the command:

1 Inductive nat : Set := O : nat | S (n : nat).

introduces a new type nat : Set and two new terms (O : nat) and (S : nat -> nat). Con-
structors of a type T are function symbols, possibly of zero arguments like O, and the
codomain of their type is always T. The inductive type T may occur in the type of certain
arguments of its constructors, like nat in the type of S. The only way to construct an
inhabitant of an inductive type is to apply a constructor to sufficiently many arguments:

1 Unset Printing Notations.

2 Variable n : nat.

3

4 Check O.

5 Check S O.

6 Check S (S (S O)).

7 Check S (S (S n)).

Note that for the sake of clarity, we do not make use in this section of the postfix
notations n.+1 for term (S n), n.+2 for term (S (S n)), etc. so as to display constructors
explicitly in examples.

Constructors are by definition injective functions: two terms featuring the same head
constructor can only be equal if the arguments passed to this constructor are equal. E.g.,
in the following goal:

n, m : nat

eqSnSm : S n = S m

========================

G

where G is an arbitrary formula, it is possible to simplify hypothesis eqSnSm:

1 case: eqSnSm.

2

3

4

5

n, m : nat

========================

n = m -> G

Moreover, two distinct constructors construct distinct terms; this is why a function with
an argument of an inductive type can be described by pattern matching on this argument.
For instance, in chapter 1, we have defined the non-zero test function by:

1 Definition non_zero n := if n is (S p) then true else false.

where we recall from Chapter 1 that if ... then ... else ... is a notation for the special
case of pattern matching with only two branches and one pattern. The definition of the
terms of the formalism is in fact extended with the match ... with ... end construction
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described in section 1.2.2. A special reduction rule expresses that pattern matching a
term which features a certain constructor in head position reduces to the term in the
corresponding branch of the case analysis.

The definition of the terms of CIC also includes so-called guarded fixpoints, which
represent functions with a recursive definition. We have used these fixpoints in chapter 1,
for instance when defining the addition of two natural numbers as:

1 Fixpoint addn n m :=

2 match n with

3 | 0 => m

4 | S p => S (addn p m)

5 end.

These fixpoints are said to be guarded because the corresponding function should always
terminate: more precisely, the Fixpoint command expects termination to follow from a
syntactic criterion. For instance, in the case of addn, the recursive call happens on a strict
subterm of the argument. Allowing non-terminating computations for well-typed terms
would actually interact badly with the conversion rule, and ultimately lead to proofs of
absurdity (see section 3.7). When the termination argument of a function falls outside this
syntactic guard condition, its definition usually involves an extra argument, witnessing
the decreasing order relation. For a more detailed exposition of these techniques, see for
instance the corresponding chapter in Bertot and Casteran’s book [BC04, Chapter 14].

3.6 More connectives

We have seen in section 3.3 that functions, i.e. terms with a product type, provide a data
structure for proofs of implication and universally quantified statements. Using inductive
types, it is possible to describe more data structures than mere functions. These data
structures and their typing rules are used to model every other logical connectives.

For instance, the introduction rule of the conjunction connective reads: to prove A∧B
one needs to prove both A and B. Conversely, the elimination rule states that one proves A
whenever one is able to prove the stronger statement A∧B.

In Coq this connective is modeled by the following inductive definition, which provides
a type for pairs of proofs, of the parameter statements A and B:

1 Inductive and (A B : Prop) : Prop := conj (pa : A) (pb : B).

2 Notation "A /\ B" := (and A B).

Remark that the “data” type and is tagged as Prop, i.e., we declare the intention to
use it as a logical connective rather than a data type. The single constructor conj takes
two arguments: a proof of A and a proof of B. Moreover and is polymorphic: A and B are
parameters standing for arbitrary propositions. As a consequence, it models faithfully
the introduction rule of conjunction, i.e. the rule governing the construction of proofs of
conjunctive statements.

Note that the definition of the pair data type, in section 1.3.3, is almost identical to
the one of and:

1 Inductive prod (A B : Type) := pair (a : A) (b : B).

Pattern matching provides the elimination rule for conjunction, i.e. the (two) rules
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governing the construction of proofs using a conjunctive hypothesis. Here is left elimination
rule:

1 Definition proj1 A B (p : A /\ B) : A :=

2 match p with conj a _ => a end.

Now recall the similarity between → and ∀, where the former is the simple, non-
dependent case of the latter. If we ask for the type of the conj constructor:

1 About conj. conj: ∀ A B : Prop, A -> B -> A /\ B

we may wonder what happens if the type of the second argument (i.e., B) becomes
dependent on the value of the first argument (of type A). What we obtain is actually the
inductive definition corresponding to the existential quantification.

1 Inductive ex (A : Type) (P : A -> Prop) : Prop :=

2 ex_intro (x : A) (p : P x).

3 Notation "’exists’ x : A , p" := (ex A (fun x : A => p)).

As ex_intro is the only constructor of the ex inductive type, it is the only means to
prove a statement like (exists n, prime n). In such a — constructive — proof, the first
argument would be a number n of type nat while the second argument would be a proof
p of type (prime n). The parameter P causes the dependency of the second component of
the pair on the first component. It is a function representing an arbitrary predicate over a
term of type A. Hence (P x) is the instance of the predicate, for x. E.g., the predicate of
being an odd prime number is expressed as (fun x : nat => (odd x) && (prime x)), and the
statement expressing the existence of such a number is

(ex nat (fun x : nat => (odd x) && (prime x)))

which (thanks to the Notation mechanism of Coq) is parsed and printed as the more
familiar (exists x : nat, odd x && prime x).

It is worth summing up the many features of type theory that intervene in the type of
ex and ex_intro:

1 ex : ∀ A : Type, (A -> Prop) -> Prop.

2 ex_intro : ∀ A : Type, ∀ P : A -> Prop, ∀ a : A, P a -> ex A P.

Both ex and ex_intro are parameterized by (A : Type): as we have seen in chapter 1, the
(∀ A : Type) quantification indicates that ex are ex_intro are polymorphic constants, that can
be instantiated for any type. Both ex and ex_intro also have a parameter of type (A -> Prop):
since it does not appear in the rest of the type of ex, this parameter is not named and
the type uses the arrow syntax instead of a more verbose ∀ A : Type, ∀ P : A -> Prop, Prop.
This parameter is indicated by a so-called higher-order quantification, because the pa-
rameter has an arrow type. Constants ex and ex_intro can thus be be specialized to any
predicate P, so that the ex inductive declaration can be used on any formula. Finally, the
ex_intro constant features a last, inner-most ∀ a : A quantifier, which binds a term variable
a representing the witness of the existential statement for P.

We now look at the inductive definition of the disjunction or and its two constructors
or_introl and or_intror.
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1 Inductive or (A B : Prop) : Prop := or_introl (a : A) | or_intror (b : B).

2 Notation "A \/ B" := (or A B).

The elimination rule can again be expressed by pattern matching:

1 Definition or_ind (A B P : Prop)

2 (aob : A \/ B) (pa : A -> P) (pb : B -> P) : P :=

3 match aob with or_introl a => pa a | or_intror b => pb b end.

The detail worth noting here is that the pattern match construct has two branches,
and each branch represents a distinct sub proof. In this case, in order to prove P starting
from A \/ B, one has to deal with all cases: i.e., to prove P under the assumption A, and to
prove P under the assumption B.

Usual constants and connectives such as >, ⊥ and ¬ can be defined as follows.

1 Inductive True : Prop := I.

2 Inductive False : Prop := .

3 Definition not (A : Prop) := A -> False.

4 Notation "~ A" := (not A).

Hence, in order to prove True, one just has to apply the constructor I, which requires
no arguments. So proving True is trivial, and as a consequence eliminating it provides little
help (i.e., no extra knowledge is obtained by pattern matching over I). Contrarily, it is
impossible to prove False, since it has no constructor, and pattern matching on False can
inhabit any type, since no branch has to be provided:

1 Definition exfalso (P : Prop) (f : False) : P :=

2 match f with end. (* no constructors, no branches *)

The only base predicate we still haven’t described is equality. The reason we left it as
the last one is that it has a tricky nature. In particular, equality, as we have seen in the
previous chapters, is an open notion in the following sense. Terms that compute to the
same syntactic expression are considered as equal, and this is true for any program the user
may write. Hence such notion of equality needs to be somewhat primitive, as match and fun

are. One also expects such notion to come with a substitutivity property: replacing equals
by equals must be licit.

The way this internal notion is exposed is via the concept of index on which an inductive
type may vary.

1 Inductive eq (A:Type) (x:A) : A -> Prop := erefl : eq A x x.

2 Notation "x = y" := (@eq _ x y).

This is the first time we see a function type after the : symbol in an inductive type
declaration. The eq type constructor takes three arguments: a type A and two terms of
that type (the former is named x). Hence one can write (a = b) whenever a and b have the
same type. The erefl constructor takes no arguments, as I, but its type annotation says it
can be used to inhabit only the type (x = x). Hence one is able to prove (a = b) only when
a and b are convertible (i.e., indistinguishable from a logical standpoint). Conversely, by
eliminating a term of type (a = b) one discovers that a and b are equal and b can be freely
replaced by a.
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1 Definition eq_ind A (P : A -> Prop) x (px : P x) y (e : x = y) : P y :=

2 match e with erefl => px end.

The notion of equality is one of the most intricate aspects of type theory; an in-depth
study of it is out of the scope of this book. The interested reader finds an extensive study
of this subject in [Uni13].

3.7 Inductive reasoning

In chapter 1 we have seen how to build and use (call or destruct) anonymous functions and
data types. All these constructions have found counterparts in the propositions-as-types
correspondence. The only missing piece is recursive programs. For example, addn was
written by recursion on its first argument, and is a function taking as input two numbers
and producing a third one. We can write programs by recursion that take as input, among
regular data, proofs and produce other proofs as output. Let’s look at the induction
principle for natural numbers through the looking glasses of the propositions-as-types
correspondence.

1 About nat_ind.

nat_ind : ∀ P : nat -> Prop,

P 0 -> (∀ n : nat, P n -> P n.+1) -> ∀ n : nat, P n

nat_ind is a program that produces a proof of (P n) for any n, proviso a proof for the base
case (P 0), and a proof of the inductive step (∀ n : nat, P n -> P n.+1). Let us write such
a program by hand.

1 Fixpoint nat_ind (P : nat -> Prop)

2 (p0 : P 0) (pS : ∀ n : nat, P n -> P n.+1) n : P n :=

3 if n is m.+1 then

4 let pm (* : P m *) := nat_ind P p0 pS m in

5 pS m pm (* : P m.+1 *)

6 else p0.

The Coq system generates this program automatically, as soon as the nat data type is
defined.

It is worth mentioning that this principle is general enough to prove the “stronger”
induction principle that give access, in the inductive step, to the property P on all numbers
smaller than n.+1 and not just its predecessor.

1 Lemma strong_nat_ind (P : nat -> Prop)

2 (base : P 0)

3 (step : ∀ n, (∀ m, m <= n -> P m) -> P n.+1) x : P x.

In order to prove this statement it is sufficient to craft the right “P” for n, .

1 Check (nat_ind (fun n => ∀ m, m <= n -> P m)).
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(∀ m, m <= 0 -> P m) ->

(∀ n, (∀ m, m <= n -> P m) -> ∀ m, m <= n.+1 -> P m) ->

∀ n m, m <= n -> P m

If we fulfill the last premise with (leqnn x : x <= x) we obtain the following proof goals:

1 Proof.

2 apply: (nat_ind (fun n => ∀ m, m <= n -> P m) _ _ x x (leqnn x)).

P : nat -> Prop

base : P 0

step : ∀ n : nat, (∀ m : nat, m <= n -> P m) -> P n.+1

x : nat

============================

∀ m : nat, m <= 0 -> P m

subgoal 2 is:

∀ n : nat,

(∀ m : nat, m <= n -> P m) -> ∀ m : nat, m <= n.+1 -> P m

The two goals follow from base and step respectively. Induction principles like this one
can be used by giving their name to elim as in elim/strong_nat_ind. Still, strong induction
is such a frequent proof step that the Mathematical Components library provides dedicated
idioms that we will detail in Section 5.3.

Finally, recall that recursive functions are checked for termination: Through the lenses
of the proofs-as-programs correspondence, this means that the induction principle just
coded is sound, i.e., based on a well-founded order relation.

If non-terminating functions are not ruled out, it is easy to inhabit the False type, even
if it lacks a proper constructor.

1 Fixpoint oops (n : nat) : False := oops n.

2 Check oops 3. (* : False *)

Of course Coq rejects the definition of oops. To avoid losing consistency, Coq also enforces
some restrictions on inductive data types. For example the declaration of hidden is rejected.

1 Inductive hidden := Hide (f : hidden -> False).

2 Definition oops (hf : hidden) : False := let: Hide f := hf in f hf.

3 Check oops (Hide oops). (* : False *)

Note how oops calls itself, as in the previous example, even if it is not a recursive function.
Such restriction is called positivity condition and, roughly speaking, it says that constructors
for an inductive data type can only depend on maps to the data type but not on maps
from it. The interested reader shall refer to [Coq].





4. A proof language for formal proofs

Since proofs are just terms one could, in principle, use no proof language and directly input
proof terms instead. Indeed this was the modus operandi in the pioneering work of De
Bruijn on Automath (automating mathematics) in the seventies [NGV94].

Still, the use of a dedicated proof language enables a higher level description of the
formal proof being constructed. The Small Scale Reflection proof language give us tools to
structure proofs and to tame bookkeeping, a form of bureaucracy typical of formal proofs.

Structure is given by splitting large proofs in blocks with a specific, declared, purpose
and by factoring repetition such as symmetric or less general cases. The main tool logic
gives us is the cut rule where the author of a proof identifies an intermediate fact, or a
generalization of the goal. The have and without loss tactics precisely cover this need.

Bookkeeping is the ubiquitous activity of context management, that is naming or
discarding assumptions in order to track their lifetime to tide the context up, as well
as massaging assumptions and goals as to please the formality requirements of Coq. A
paradigmatic bookkeeping example is destructing assumption of (A && B) in order to give
distinct names to A and B: unlikely to be a pregnant step of the proof. The language
of intro-patterns together with then goal-as-stack model provides a very flexible tool to
succinctly deal with bookkeeping.

Structure and manageable size are key to the maintenance of proofs by a team of people.
Being small in size helps maintenance since when computer code does not fit the screen
one has hard times understanding it [Wei85] and hence repairing it. Moreover, structure
confines errors arising after a change to smaller text blocks, and declares what the original
author of the block being repaired was doing effectively implementing a form of check
pointing and documentation. All that works best if the tactics used to fill in the blocks
have a predictable behavior: fail early and locally when a breaking change takes place.

This chapter covers the tools to structure and tie proofs up and discusses some of
the good practices that made the development of the Mathematical Components library
possible.
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4.1 Bookkeeping: goals as stacks

The presentation we gave so far of proof commands like case: n => [|m] is oversimplified.
While case is indeed the proof command in charge of performing case analysis, the “: n”
and “=> [|m]” parts are decorators to prepare the goal and post-process the result of the
proof command. These decorators perform what we typically call bookkeeping : actions that
are necessary in order to obtain readable and robust proof scripts but that are too frequent
to benefit from a more verbose syntax. Bookkeeping actions do convey a lot of information,
like where names are given to assumptions, but also let one deal with annoying details
using a compact, symbolic, language. Note that all bookkeeping actions correspond to
regular, named, proof commands. It is the use one makes of them that may be twofold: a
case analysis in the middle of a proof may start two distinct lines of reasoning, and hence
it is worth being noted explicitly with the case word. Conversely, breaking a pair into two
pieces is usually not a significant, meaningful step in a proof: hence the possibility to use a
lightweight and compact syntax for this bookkeeping action, instead of an explicit mention
of the case tactic.

4.1.1 Pulling from the stack

Let’s start with the post-processing phase, called introduction pattern. The postfix “=> ...”
syntax can be used in conjunction with any proof command, and it performs a sequence
of actions on the first assumption or variable that appears in the goal (i.e., on A if the
goal has the form A -> ..., or on x if the goal has the form ∀ x, ...). With these looking
glasses, the goal becomes a stack. Take for example this goal:

========================

∀ xy, prime xy.1 -> odd xy.2 -> 2 < xy.2 + xy.1

Before accessing the assumption (prime xy.1), one has to name the bound variable xy,
exactly as one can only access a stack from its top. The execution of => xy pr_x odd_y is
just the composition of => xy with => pr_x and finally => odd_y. Each action pulls an item
out of the stack and names it. The move proof command does nothing, so we use it as a
placeholder for the postfix => bookkeeping action:

1 move=> xy pr_x odd_y.

2

3

4

5

xy : nat * nat

pr_x : prime xy.1

odd_y : odd xy.2

========================

2 < xy.2 + xy.1

Now, en passant, we would like to decompose xy into its first and second component.
Instead of the verbose => xy; case: xy => x y, we can use the symbolic notation [] to
perform such action.

1 move=> [x y] pr_x odd_y.

2

3

4

5

x, y : nat

pr_x : prime (x,y).1

odd_y : odd (x,y).2

========================

2 < (x,y).2 + (x,y).1

We can place the /= switch to tell Coq to reduce the formulas on the stack, before
introducing them in the context, and obtain:
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1 move=> [x y] /= pr_x odd_y.

2

3

4

5

x, y : nat

pr_x : prime x

odd_y : odd y

========================

2 < y + x

We can also process an assumption through a lemma; when a lemma is used in this
way, it is called a view. The prime_gt1 lemma states that (prime p -> 1 < p) for any p, and
we can use it as a function to obtain a proof of (1 < x) from a proof of (prime x).

1 move=> [x y] /= /prime_gt1-x_gt1 odd_y.

2

3

4

5

x, y : nat

x_gt1 : 1 < x

odd_y : odd y

========================

2 < y + x

The leading / makes prime_gt1 work as a function instead of as a name to be assigned
to the top of the stack. The- has no effect but to visually link the function with the name
x_gt1 assigned to its output. Indeed- can be omitted.

One could also examine y: it can’t be 0, since it would contradict the assumption saying
that y is odd.

1 move=> [x [//|z]] /= /prime_gt1-x_gt1.

2

3

4

5

x, z : nat

x_gt1 : 1 < x

========================

~~ odd z -> 2 < z.+1 + x

This time, the destruction of y generates two cases for the two branches; hence the
[ .. | .. ] syntax. In the first one, when y is 0, the // action solves the goal, by the trivial
means of the by [] terminator. In the second branch we name z the new variable (the
predecessor of what used to be called y). Since y is destructed we could have reused that
name for its predecessor, as it is often done in the Mathematical Components library. In
fact, the boolean predicate odd is defined by case analysis, and induction, on its argument
of type nat:

1 Fixpoint odd n := if n is n’.+1 then ~~ odd n’ else false.

Therefore, when applied to z.+1, it simplifies to ~~ odd z .

Now, the fact that z is even is not needed to conclude, so we can discard it by giving it
the _ dummy name. 1

1 by move=> [x [//|z]] /= /prime_gt1-x_gt1 _; apply: ltn_addl x_gt1.

We finally conclude with the apply: command. In the example just shown, we have
used it with two arguments: a function and its last argument. In fact, the lemma ltn_addl

looks as follows:

1If an assumption has already a name, it can be discarded by writing its name in curly braces: e.g.
move=> {x_gt1}.
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1 About ltn_addl.

2

3

ltn_addl : ∀ m n p : nat,

m < n -> m < p + n

Arguments m, n are implicit

apply: automatically fills in the blanks between the function ltn_addl (the lemma name)
and the given argument x_gt1. Since we are passing x_gt1, the variable m takes the value 1.
The conclusion of ltn_addl hence unifies with (2 < z.+1 + x) because both + and < are defined
as programs that compute: Namely, addition exposes a .+1 by reducing to 2 < (z + x).+1;
then < (or, better, the underlying <=) eats a successor from both sides, leading to 1 < z + x,
which looks like the conclusion of the lemma we apply.

Here we have shown all possible actions one can perform in an intro pattern, squeezing
the entire proof into a single line. This has to be seen both as an opportunity and as
a danger: one can easily make a proof unreadable by performing too many actions in
the bookkeeping operator =>. At the same time, a trivial sub-proof like this one should
take no more than a line, and in that case one typically sacrifices readability in favor of
compactness: what would you learn by reading a trivial proof? Of course, finding the right
balance only comes with experience. As a rule of thumb: follow the granularity of how you
wound naturally read your script to someone else.

! The case intro pattern [..|..] obeys an exception: when it is the first item of an
intro pattern, it does not perform a case analysis, but only branch on the subgoals.
Indeed in case: n => [|m] only one case analysis is performed.

4.1.2 Working on the stack

The stack can also be used as a workplace. Indeed, there is no need to pull all items from
the stack. If we take the previous example:

========================

∀ xy, prime xy.1 -> odd xy.2 -> 2 < xy.2 + xy.1

and we stop just after applying the view, we end up in a valid state:

1 move=> [x y] /= /prime_gt1.

2

3

x, y : nat

========================

1 < x -> odd y -> 2 < y + x

One can also chain multiple views on the same stack item:

1 move=> [x y] /= /prime_gt1/ltnW.

2

3

x, y : nat

========================

0 < x -> odd y -> 2 < y + x

Two other operations are available on the top stack item: specialization and substitution.
Let’s take the following conjecture.

========================

(∀ n, n * 2 = n + n) -> 6 = 3 + 3
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The top stack item is a quantified assumption. To specialize it to, say, 3 one can write
as follows:

1 move=> /(_ 3).

2

========================

3 * 2 = 3 + 3 -> 6 = 3 + 3

The idea behind the syntax here is that when we apply a view v to the top stack item
(say, top), by writing /v, we are forming the term (v top), whereas when we specialize the
top stack item top to an object x, by writing /(_ x), we are forming the term (top x). The
application of a view written /v is short for /(v _).

When the top stack item is an equation, one can substitute it into the rest of the goal,
using <- and-> for right-to-left and left-to-right respectively.

1 move=> /(_ 3) <-.

2

========================

6 = 3 * 2

In other words, the arrows are just a compact syntax for rewriting, as in the rewrite

tactic, with the top assumption.

4.1.3 Pushing to the stack

We have seen how to pull items from the stack to the context. Now let’s see the so called
discharging operator :, performing the converse operation. Such operator decorates proof
commands as move, case and elim with actions to be performed before the command is
actually run.

! The colon symbol in apply: is not the discharging operator. It is just a marker to
distinguish the apply: tactic of Small Scale Reflection from the apply tactic of Coq.
Indeed the two tactics, while playing similar roles, behave differently [GMT15, §5.2
and §5.3].

Imagine we want to perform case analysis on y at this stage:

x, y : nat

x_gt1 : 1 < x

odd_y : odd y

========================

2 < y + x

The command case: y is equivalent to move: y; case. where move once again is a place-
holder, : y pushes the y variable onto the stack, and case operates on the top item of the
stack. Pushing items on the stack is called discharging.

Just before running case, the goal would look like this:

x : nat

x_gt1 : 1 < x

odd_y : odd y

========================

∀ y, 2 < y + x
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However, this is not actually a well-defined state. Indeed, the binding for y is needed
by the odd_y context item, so move: y fails. One has to push items onto the stack in a valid
order: first, all properties of a variable, then the variable itself. The correct invocation,
move: y odd_y, pushes first odd_y and only then y onto the stack, leading to the valid goal

x : nat

x_gt1 : 1 < x

========================

∀ y, odd y -> 2 < y + x

Via the execution of case one obtains:

2 subgoals

x : nat

x_gt1 : 1 < x

========================

odd 0 -> 2 < 0 + x

subgoal 2 is:

∀ n : nat, odd n.+1 -> 2 < n.+1 + x

Note that listing context entry names inside curly braces purges them from the context.
For instance the tactic case: y {odd_y} clears the odd_y fact. But this would lead to a dead
end in the present proof, so we don’t use it here.

One can combine : and => around a proof command, to first prepare the goal for its
execution and finally apply the necessary bookkeeping to the result. For example:

1 case: y odd_y => [|y’]

2

3

4

5

6

7

x : nat

x_gt1 : 1 < x

========================

odd 0 -> 2 < 0 + x

subgoal 2 is:

odd y’.+1 -> 2 < y’.+1 + x

At the left of the “:” operator one can also put a name for an equation that links the
term at the top of the stack before and after the execution of the tactic. For example,
case E: y odd_y => [|y’] leads to the following two subgoals:

x, y : nat

x_gt1 : 1 < x

E : y = 0

============================

odd 0 -> 2 < 0 + x

x, y : nat

x_gt1 : 1 < x

y’ : nat

E : y = y’.+1

========================

odd y’.+1 -> 2 < y’.+1 + x
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Lastly, one can push any term onto the stack – whether or not this term appears in
the context. For example, “move: (leqnn 7)” pushes on the stack the additional assumption
(7 <= 7).

4.2 Structuring proofs, by examples

So far we’ve only tackled simple lemmas; most of them did admit a one line proof. When
proofs get longer structure is the best ally in making them readable and maintainable.
Structuring proofs means identifying intermediate results, factoring similar lines of reasoning
(e.g., symmetries), signaling crucial steps to the reader, and so on. In short, a proof written
in Coq should share its structure and main steps with the same proof written on paper.

The first subsection introduces the have tactic, that is the key to structure proofs into
intermediate steps. The second subsection deals with the “problem” of symmetries.

4.2.1 Primes, a never ending story

Saying that primes are infinite can be phrased as: for any natural number m, there exists a
prime greater than m. The proof of this claim goes like that: every natural number greater
than 1 has at least one prime divisor. If we take m! + 1, then such prime divisor p can be
shown to be greater than m as follows. By contraposition we assume p≤ m and we show
that p does not divide m! + 1. Being smaller than m, p divides m!, hence to divide m! + 1,
p should divide 1; that is not possible since p is prime, hence greater than 1. �

We state our theorem using a “synonym” of the exists quantifier that is specialized to
carry two properties. This way the statement is simpler to destruct: with just one case
analysis we obtain the witness and the two properties.

1 Inductive ex2 A P Q : Prop := ex_intro2 x of P x & Q x.

2 Notation "exists2 x , p & q" := (ex2 (fun x => p) (fun x => q)).

We also resort to the following notations and lemmas.

1 Notation "n `!" := (factorial n).

2 Lemma fact_gt0 n : 0 < n`!.
3 Lemma dvdn_fact m n : 0 < m <= n -> m %| n`!.
4 Lemma pdivP n : 1 < n -> exists2 p, prime p & p %| n,

5 Lemma dvdn_addr m d n : d %| m -> (d %| m + n) = (d %| n).

6 Lemma gtnNdvd n d : 0 < n -> n < d -> (d %| n) = false.

The first step is to prove that m! + 1 is greater than 1, a triviality. Still it gives us the
occasion to explain the have tactic, which lets us augment the proof context with a new
fact, typically an intermediate step of our proof.

1 Lemma prime_above m : exists2 p, m < p & prime p.

2 Proof.

3 have m1_gt1: 1 < m`! + 1.

4 by rewrite addn1 ltnS fact_gt0.

Its syntax is similar to the one of the Lemma command: it takes a name, a statement
and starts a (sub) proof.

The next step is to use the pdivP lemma to gather a prime divisor of m`!.+1. We end up
with the following, rather unsatisfactory, script.
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1 Lemma prime_above m : exists2 p, m < p & prime p.

2 Proof.

3 have m1_gt1: 1 < m`! + 1.

4 by rewrite addn1 ltnS fact_gt0.

5 case: (pdivP m1_gt1) => [p pr_p p_dv_m1].

It is unsatisfactory because in our paper proof what plays an interesting role is the p

that we obtain in the second line, and not the m1_gt1 fact we proved as an intermediate
fact.

We can resort to the flexibility of have to obtain a more pertinent script: the first
argument to have, here a name, can actually be any introduction pattern, i.e. what follows
the => operator, for example a view application. In the light of that, the script can be
rearranged as follows.

1 Lemma prime_above m : exists2 p, m < p & prime p.

2 Proof.

3 have /pdivP[p pr_p p_dv_m1]: 1 < m`! + 1.

4 by rewrite addn1 ltnS fact_gt0.

5 exists p => //; rewrite ltnNge; apply: contraL p_dv_m1 => p_le_m.

6 by rewrite dvdn_addr ?dvdn_fact ?prime_gt0 // gtnNdvd ?prime_gt1.

7 Qed.

Here the first line obtains a prime p as desired, the third one begins to show it fits by
contrapositive reasoning, and the last one, already commented in section 2.3.3, concludes.

As a general principle, in the proof script style we propose, a full line should represent
a meaningful reasoning step (for a human being).

4.2.2 Order and max, a matter of symmetry

It is quite widespread in paper proofs to appeal to the reader’s intelligence pointing out
that a missing part of the proof can be obtained by symmetry. The worst thing one can do
when formalizing such an argument on a computer is to use the worst invention of computer
science: copy-paste (i.e. duplication). The language of Coq is sufficiently expressive to
model symmetries, and the Small Scale Reflection proof language provides facilities to
write symmetric arguments.

We prove the following characterization of the max of two natural numbers:

∀n1,n2,m, m≤max(n1,n2) ⇔ m≤ n1 or m≤ n2

The proof goes as follows: Without loss of generality we can assume that n2 is greater
or equal to n1, hence n2 is the maximum between n1 and n2. Under this assumption it is
sufficient to check that m≤ n2 holds iff either m≤ n2 or m≤ n1. The only non-trivial case
is when we suppose m≤ n1 and we need to prove m≤ n2, which holds by transitivity. �

As usual we model double implication as an equality between two boolean expressions:

1 Lemma leq_max m n1 n2 : (m <= maxn n1 n2) = (m <= n1) || (m <= n2).

The proof uses the following lemmas. Pay attention to the premise of orb_idr, which is
an implication.
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1 Lemma orP {a b : bool} : a || b -> a \/ b.

2 Lemma orb_idr (a b : bool) : (b -> a) -> (a || b) = a.

3 Lemma orbC a b : a || b = b || a.

4 Lemma maxn_idPl {m n} : n <= m -> maxn m n = m.

5 Lemma maxnC m n : maxn m n = maxn n m.

6 Lemma leq_total m n : (m <= n) || (n <= m).

Our first attempt takes no advantage of the symmetry argument: we reason by cases
on the order relation, we name the resulting fact on the same line (it eases tracking where
things come from) and we solve the two goals independently.

1 Proof.

2 case: (orP (leq_total n2 n1)) => [le_n21|le_n12].

3 rewrite (maxn_idPl le_n21) orb_idr // => le_mn2.

4 by apply: leq_trans le_mn2 le_n21.

5 rewrite maxnC orbC.

6 rewrite (maxn_idPl le_n12) orb_idr // => le_mn1.

7 by apply: leq_trans le_mn1 le_n12.

8 Qed.

After line 2, the proof status is the following one:

2 subgoals

m, n1, n2 : nat

le_n21 : n2 <= n1

========================

(m <= maxn n1 n2) = (m <= n1) || (m <= n2)

subgoal 2 is:

(m <= maxn n1 n2) = (m <= n1) || (m <= n2)

The first goal is simplified by rewriting with maxn_idPl. Then orb_idr trivializes the
main goal and generates a side condition with an extra hypothesis we name le_mn2.

2 subgoals

m, n1, n2 : nat

le_n21 : n2 <= n1

========================

(m <= n1) = (m <= n1) || (m <= n2)

subgoal 2 is: ...

2 subgoals

m, n1, n2 : nat

le_n21 : n2 <= n1

le_mn2 : m <= n2

========================

m <= n1

subgoal 2 is: ...

Line 4 combines by transitivity the two hypotheses to conclude. Since it closes the
proof branch we use the prefix by to asserts the goal is solved and visually signal the end
of the paragraph. Line 5 commutes max and ||. We can then conclude by copy-paste.
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To avoid copy-pasting, shrink the proof script and finally make the symmetry step
visible we can resort to the have tactic. In this case the statement is a variation of what we
need to prove. Remark that as for Lemma, we can place parameters, x and y here, before the
: symbol.

1 Lemma leq_max m n1 n2 : (m <= maxn n1 n2) = (m <= n1) || (m <= n2).

2 Proof.

3 have th_sym x y: y <= x -> (m <= maxn x y) = (m <= x) || (m <= y).

4 move=> le_yx; rewrite (maxn_idPl le_yx) orb_idr // => le_my.

5 by apply: leq_trans le_my le_yx.

6 by case: (orP (leq_total n2 n1)) => /th_sym; last rewrite maxnC orbC.

7 Qed.

The proof for th_sym is the text we were copy-pasting in the previous script, while here
it is factored out. Once we have such extra fact in our context we reason by cases on
the order relation and we conclude. Remark that the last line instantiates th_sym in each
branch using the corresponding hypothesis on n1 and n2 generated by the case analysis. If
we stop just before ; last rewrite ... these are the (symmetric) goals:

2 subgoals

m, n1, n2 : nat

th_sym : ∀ x y : nat,

y <= x -> (m <= maxn x y) = (m <= x) || (m <= y)

========================

(m <= maxn n1 n2) = (m <= n1) || (m <= n2) ->

(m <= maxn n1 n2) = (m <= n1) || (m <= n2)

subgoal 2 is:

(m <= maxn n2 n1) = (m <= n2) || (m <= n1) ->

(m <= maxn n1 n2) = (m <= n1) || (m <= n2)

The instance of th_sym is is exactly what is needed in the first branch, while the last goal
requires the commutativity of max and ||.

We can further improve the script. For example we could rephrase the proof putting
in front the justification of the symmetry, and then prove one case when we pick x to be
smaller than y.

1 Lemma leq_max m n1 n2 : (m <= maxn n1 n2) = (m <= n1) || (m <= n2).

2 Proof.

3 suff th_sym x y: y <= x -> (m <= maxn x y) = (m <= x) || (m <= y).

4 by case: (orP (leq_total n2 n1)) => /th_sym; last rewrite maxnC orbC.

5 move=> le_yx; rewrite (maxn_idPl le_yx) orb_idr // => le_my.

6 by apply: leq_trans le_my le_yx.

7 Qed.

The suff tactic (or suffices) is like have but swaps the two goals.

Note that here the sub proof is now the shortest paragraph. This is another recurrent
characteristic of the proof script style we adopt in the Mathematical Components library.

There is still a good amount of repetition in the current script. In particular the
main conjecture has been almost copy-pasted in order to invoke have or suff. When this
repetition is undesirable, i.e. the statement to copy is large, one can resort to the wlog

tactic (or without loss).
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1 Lemma leq_max m n1 n2 : (m <= maxn n1 n2) = (m <= n1) || (m <= n2).

2 Proof.

3 wlog le_n21: n1 n2 / n2 <= n1 => [th_sym|].

4 by case: (orP (leq_total n2 n1)) => /th_sym; last rewrite maxnC orbC.

5 rewrite (maxn_idPl le_n21) orb_idr // => le_mn2.

6 by apply: leq_trans le_mn2 le_n21.

7 Qed.

Thanks to wlog one only needs to write the statement of the extra assumption, here
n2 <= n1, and which portion of the context needs to be abstracted, here n1 and n2. The two
goals to be proved are the following ones:

m, n1, n2 : nat

th_sym : ∀ n1 n2 : nat, n2 <= n1 ->

(m <= maxn n1 n2) = (m <= n1) || (m <= n2)

========================

(m <= maxn n1 n2) = (m <= n1) || (m <= n2)

m, n1, n2 : nat

le_n21 : n2 <= n1

========================

(m <= maxn n1 n2) = (m <= n1) || (m <= n2)

To keep the script similar to the previous one, we named explicitly th_sym, but one
typically leaves the assumption on the stack and omit the trailing intro pattern => [th_sym|].

Shrinking proof scripts is a never ending game. The impatient reader can jump to the
next section to see how intro patterns can be used to squeeze the last two lines into a
single one. In the end, this proof script consists of three steps: the remark that we can
assume (n2 <= n1) without losing generality; its justification in terms of totality of the order
relation and commutativity of max and ||; and the final proof, by transitivity, in the case
when the max is n1 due to the extra assumption.

Partially applied views

A less important, but very widespread, feature of the Small Scale Reflection proof language
can be used to shrink the proof even further. In the previous proof script at line 5 we had to
name le_mn2 the new assumption only for the purpose of referring to it in the immediately
following transitivity step. We can avoid this by using leq_trans as a view.

1 Lemma leq_max m n1 n2 : (m <= maxn n1 n2) = (m <= n1) || (m <= n2).

2 Proof.

3 wlog le_n21: n1 n2 / n2 <= n1 => [th_sym|].

4 by case: (orP (leq_total n2 n1)) => /th_sym; last rewrite maxnC orbC.

5 by rewrite (maxn_idPl le_n21) orb_idr // => /leq_trans->.

6 Qed.

The statement of leq_trans is (∀ c a b, a <= c -> c <= b -> a <= b) and we use it to
transform the top assumption (m <= n2) that fits in the place of the first proof argument
(a <= c). Note that the leq_trans expects a second proof argument, and that its type would
fix b, that is otherwise unspecified. As a result b stays quantified. We can put a full stop
just before the terminating -> in order to observe the shape of the top assumption before
rewriting it:
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1 (∀ b, n2 <= b -> m <= b) -> m <= n1.

Rewriting the top assumption left to right fixes b to n1, trivializes the goal (m <= n1) to
true and opens the side condition (n2 <= n1) which is trivial.

4.3 Proof maintenance: a matter of style

The Mathematical Components library started from a few files from the Four Color Theorem
in 2006 and it was developed over 6 years by 10 people to support the formal proof of the
Odd Order Theorem, completed in 2012. At the time of writing it has reached the size of
nearly 100 files and 100 KLOC, and has been maintained for over 12 years.

During this maintenance period breakage did happen, and breakage will happen again
in the future. Things break for many reasons, some of which are even not under the
control of the author of a formal proof. First of all Coq is an actively developed research
software and changes in behavior, for the better, are hard to avoid and do happen in
practice. Second nobody gets his definitions perfect at the first attempt in a formalization.
Definitions and lemmas get improved over time. As a consequence having to repair and
adapt proof scripts is an activity one can hardly avoid. For example around 2009 the way
algebraic structures are represented changed substantially with a major impact on most of
the files.

The maintenance cost of the Mathematical Components library and the proof of the
Odd Order Theorem were kept under control thanks to the disciplined way in which the
formal proofs are written. In this section we cover some of the aspects that we believe do
contribute in a substantial way to write maintainable formal proofs. Coming up with a list
of unobjectionable golden rules would be quite pretentious, and probably impossible to do,
but we will anyway try to give some advice out of our experience.

The first and most important one is that formal proofs are just computer code about
mathematical proofs, hence good practices in both domains are likely to apply to formal
proofs too.

For example one can claim that a well written pen and paper proof makes evident and
clear what is interesting and hides via suitable abstractions uninteresting details. Finding
the right abstraction is crucial in formal proofs too, and the related concept of triviality is
key to keep the desired level of abstraction. More specifically, each mathematical object
comes with properties that are pervasively and silently used in each and every proof. In
order to make a formal proof look like pen and paper one, this conciseness has to be
retained, or the noise of formality risks hiding the salient part of the proof.

A striking similarity lies in the usability of lemmas compared to the one of computer
code procedures (functions, or methods). It is hard to invoke a procedure that requires
passing too many arguments to it. Even worse if the order (or the name) of these arguments
is hard to remember. In order to ease invoking procedures related data is often grouped in
packages that are passed all together, and the order of arguments is standardized across the
whole codebase. Similarly the statement of a lemma can be designed so that it minimizes
the information one has to explicitly provide in order to use it in conjunction with a specific
tactic.

Finally, it is common sense to organize computer code in components with separate
concerns and well defined interfaces: Unstructured code is well known to be hard to
read, understand and locally modify. Also, mathematical theories are often organized and
structured, for example by algebraic means. The axioms characterizing structures are not
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unlike interfaces for computer code. Identifying the right components and their interfaces
is key in a library of formal proofs too and is the subject of Chapter 8.

4.3.1 On the readability of formal proofs

A desirable characteristic of formal proofs is readability, there is no questioning that: How
can a proof be maintained if it cannot even be read?

It is not uncommon for novice users to try to achieve readability by writing a single
instruction per line, and relying on the capability of user interfaces to step trough each and
every step in order to understand what is going on. We call these proofs vertical proofs:
they are lengthy and their structure, when present, is hard to find because, at a glance,
one can hardly look at the entire text. It is a bit like typesetting a book by breaking
the line after each an every word: in order to find the action the subject is performing
one would need to turn page. Lengthy proofs without an apparent structure are hard to
maintain: even manipulating their text is cumbersome. The last, and most important
observation drawn from vertical proofs, is that it is not the “atomicity” of steps that makes
the proof readable, but rather the fact that goals, that are intermediate statements, are
more readable than proof steps.
Conversely, an expert Small Scale Reflection user is typically capable of squeezing into a
single line so many steps that nobody could understand the resulting horizontal proof, even
if it requires no page flipping. The game of “compressing proofs” is a typical exercise to
learn the very articulate Small Scale Reflection proof language, and it is often mistaken
by students as the recommended way of writing proofs in the large. Horizontal proofs are
indeed short, hence handy to manipulate, but their poor readability is not always helping
maintenance.
The funny fact is that the tension between horizontal and vertical proofs is totally artificial:
there is no need to pick one direction and only one in a proof. Indeed, in order to obtain
a readable and maintainable proof one can mix both styles! Another way to put it is
that in a proof one can write readable-but-lengthy proof script for interesting steps and
obscure-but-compact scripts to deal with the bureaucracy of side conditions.

An undoubtedly readable proof step is a declarative step asserting, in the proof text, a
statement that holds. For example by using the have tactic. This step is as readable as the
statements of theorems is: It goes without saying that curating the way statements can be
written plays a main role in readability. Moreover, given that the statement is part of the
proof text, one does not need the assistance of Coq in order to see it.
A very related source of unreadability is the choice of meaningless names for theorems,
variables or hypotheses, e.g. H42. By asking Coq to display the goal one can see what the
42nd hypothesis is about, but without that one can hardly imagine. A name like leq_nm is
a more suggestive name for an assumption stating that n is smaller than m. Similarly n is a
good name for a number, A for a set or a matrix, s for a sequence, and G for a group while
x7’ is not going to help the reader much.

Obscure proof steps are not declarative: They act on a specific proof state and perform
a precise manipulation. For example “apply commutativity to the first addition on the
right hand side of the goal”. Without seeing the actual goal, one cannot understand what
the precise action is actually achieving. Another characteristic of these steps is the use of
symbolic notations for some operations, such as getting rid of trivial goals via //, that help
squeezing even more actions in a single line. One can only follow and understand a few
obscure steps without the help of Coq.
Still a few tricks to help reading these steps can be given. Symbols can be grayed out,
the whole point of having symbolic notation is indeed to have a less intrusive syntax for
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an uninteresting manipulation. In addition to that in the Mathematical Components
library short names are usually reserved for uninteresting theorems, e.g. addnCA to shuffle
summands around. What is left is the salient contents of the obscure step.

To sum up our view: Readable proofs are structured by forward steps, and their length
is kept under control by proving these steps in a compact way.

Is this way of writing proofs tied to the technology we have today?
While one can imagine a future where only declarative, readable, steps are part of a formal
proof, and all their justifications can be silently omitted thanks to automation, we are
clearly not there today. When a gap cannot be filled in automatically having the ability
to do it by hand, rather than by declaring unnatural intermediate steps just to drive the
system, proved to be quite effective since they way the machine is guided is more direct
and precise. Also, and more importantly in the long term, explicit proof steps provide
a solid ground for repair, while their absence may turn out to be an impeding factor for
maintenance.

An advice one can hardly imagine to become irrelevant in the future is the following
one. Structure formal proofs as they are structured on paper. Then, when filling the blocks,
use one line of formal text to perform one meaningful proof step for a human reader, and
use the best tools you have to achieve that: At worse, if the step is too obscure, the reader
will ignore the text, and just see what happens by executing it.
In other words, the flow of a proof script should be homogeneous and distill human-readable
information at a suitable, regular pace.

4.3.2 Fail early and locally to ease repair

There is a trade off between formal proofs that are robust in face of changes and formal
proofs that are easy to repair. With robustness we mean that the very same formal proof
text works even if the statements of the invoked lemmas change. This is often achieved
by making proof commands performs some automatic search that can compensate for the
changes. The concept of a robust proof is surely tantalizing but we believe it is also a
double-edge sword: The more sophisticated robustness is, the harder it can get to identify
the root cause of the problem when things break (and sometimes they do, no matter how
robust things are). On the contrary the failure of a predictable, dumb, tool is easy to
understand, if only because it is simpler and less sophisticated.
The tenet of the Small Scale Reflection proof language is that predictable failure leads to
easy to repair proofs.

As a consequence most Small Scale Reflection tactics fail early and locally: If they
cannot operate as expected, they fail rather than silently perform a no operation or try to
be smart and guess what one may have wanted to do. This helps errors to be discovered
early in the proof script and hence localize precisely where things actually broke. It is
a matter of style and discipline to preserve this property when composing Small Scale
Reflection tactics. Indeed it is sometimes desirable to relax this behavior, but it has to be
done with care.

For example by applying the ? modifier in rewrite rules one can make a rewrite step
never fail. While this is very useful in practice, abusing this feature typically results in
scripts that are hard to repair. The recurrent idiom is “rewrite lem1 ?lem2 // lem3”. Here
lem2 is used to trivialize a side condition of lem1 that is then closed by //. The lem3 applies
to the main goal after the rewriting of lem1, and the next line is going to take on from
that point. Now imagine what happens if the side condition of lem1 changes and lem2 is
not helping anymore in trivializing it and hence // cannot solve it. In this scenario lem3 is
likely to fail, since it is meant to apply to the main goal, and not the side condition.
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Writing “rewrite lem1 ?lem2 ?lem3 //” can have the same meaning but is harder to repair.
In particular one would discover the breakage later, in the next line, since after lem1 all
actions never fail. Also, the next line is likely is going to be run on the side condition, and
not the main goal. The person repairing the proof is hence put on the wrong track: the
line that fails was not even written to operate on the goal she sees.

4.3.3 Checkpointing

Forward steps in large proofs play the role of checkpoints: when a proof breaks one can
start replaying it from the closest forward step since it is granted that the goal is the very
same the original author was seeing when he wrote the proof. If there are no checkpoints
one may be forced to replay the proof from the very beginning.

A recurrent idiom in the Mathematical Components library is the one of refining
an assumption by replacing it with a stronger one. For example to refine H one can
write have {H}H : ty, or even have {}H : ty in recent versions of the Small Scale Reflection
language.

A related practice is the one of explicitly clearing hypothesis when they are not needed
anymore. The first beneficial effect is that the context as displayed by Coq becomes smaller,
easier to read. Also, by making the lifetime of context entries explicit, one can more easily
read the dependencies among blocks, and that is a useful piece of information when one
refactors proofs. To help keeping the context tidy, most tactics clear their arguments
automatically, unless told otherwise. For example apply: H also removes H from the context;
similarly move: H or case: H.

4.3.4 Large, monolithic, proofs: a fact of life

Somehow counter-intuitively, large proofs cannot always be broken down into smaller
lemmas. In fact, chopping up long proofs in an artificial manner is often counterproductive.

In particular, as contexts grow larger, gathering numerous facts and local definitions, it
becomes harder to extract an intermediate result and state it outside the proof mode of
the main result. Indeed, the statement of such an auxiliary lemma would probably need to
include a large chunk of the big context, in order to remain provable. Besides the trouble of
copy-pasting this portion of the context, a lemma with too many hypotheses soon becomes
very hard to use, as instantiating the latter becomes a technical issue. Lastly, it is often
quite difficult to find an appropriate name for such artificial lemmas.

The pose and set tactics provide facilities for stating local definitions in proof mode.
In particular, the set tactic eases the definition of an abbreviation for a given subterm of
the current goal, by allowing to describe the latter via a pattern. The have tactic, and its
variants suffices and wlog, provide syntactic facilities to state and use local definitions and
lemmas to a main proofs, with similar features as the Lemma vernacular command (and its
synonyms), like the automated introduction of named parameters. The wlog tactic goes
one step further, and allows one to describe the verbose cut statements hidden behind a
without loss of generality proof pattern by providing only the names of the hypotheses in
the context which should be included in the generalization. This feature saves the user
from an painful manual writing of the explicit cut statement.

4.3.5 On the usability of lemmas

The usability of lemmas contributes to maintenance only indirectly, that is by making
proofs shorter. Still it plays a crucial role in a library so it is worth spending a few words
on it.
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Most of the lemmas in the Mathematical Components libraries are equalities, meant
to be used with the rewrite tactic. Let’s take for example (mul0n : ∀ n, 0 * n = 0). Two
equivalent lemmas, mathematically speaking, are (mulnm_n0 : ∀ n m, n = 0 -> n * m = 0)

and (mul0_0n : ∀ n, 0 = 0 * n).
Let’s see why mul0n, the one present in the library, is easier to use. The rewrite tactic

uses the left hand side of the conclusion as a pattern and looks for subterms of the goal
that match. The pattern provided by the mul0n is (0 * _) and is quite precise, only the
right hand side of the multiplication is unknown. Moreover the presence of 0 is very related
to the meaning of the lemma, that shows it is the annihilator of multiplication.

The pattern for mulnm_n0 is, on the contrary, the very imprecise (_ * _). This pattern is
matched by any multiplication in the goal, including the ones where the left hand side is
not (provably) zero. As a consequence one would need to drive rewrite manually, either
by providing a more specific pattern or by specializing the lemma passing to it some
arguments.

The pattern for mul0_0n is 0. While it is very precise rewrite does not know what to put
in the resulting goal, that is it cannot find out what n is by just matching the pattern. As
a consequence this argument has to be passed explicitly. Of course mul0_0n can be used
right-to-left, but it requires the - switch to rewrite. In some sense its “default” is wrong.

By stating equalities with the most informative term on the left one obtains lemmas
that easier to rewrite with, since their arguments and the subterm of the goal to be replaced
are going to be found, automatically, by pattern matching.

A similar line of reasoning can be applied to other tactics as well. For example apply: lem

infers some of the arguments to lem by unifying the conclusion of its statement with the goal.
The position of the arguments that are not inferable this way can be chosen so that it is
easy to pass them explicitly. For example (leq_trans : ∀ y x z, x <= y -> y <= z -> x <= z)

quantifies first the variable that cannot be inferred by unifying the conclusion with the
goal (since it does not occur in the conclusion). It is hence sufficient to write (leq_trans m)

to specify the only missing piece of information.

4.3.6 Qed is not the shift bell

When a proof is finally accepted by Coq it just means that it is correct—the absence of
mistakes does not imply readability or maintainability.

As we have argued so far, a proof is eventually going to break, and repairing a tidy
proof is much easier than repairing a messy one. The advantage we have compared to, say,
cleaning up regular computer code, is that once a proof is complete and correct we can
iterate small cleanup steps much faster. Indeed we can have Coq check the proof after
each and every step: If it’s accepted, we introduced no errors and can move on with the
next cleanup iteration.

Unfortunately little support is given to the user to tidy proofs up by today’s user
interfaces, even for very recurrent steps. Among all, one that is very frequent is the removal
of duplication within the current proof or across the entire library. It is quite frequent to
end up re-proving, inline, an existing lemma when one does not know the lemma exists (or
does not find it).
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At this stage, we are in the presence of one of the main issues in the representation of
mathematics in a formal language: Very often, several data structures can be used to
represent one and the same mathematical definition or statement. The choice between
them may have a significant impact on the upcoming layers of formalized theories. So
far, we have seen two ways of expressing logical statements: using boolean predicates and
truth values on one hand, and using logical connectives and the Prop sort on the other. For
instance, in order to define the predicate “the sequence s has at least one element satisfying
the (boolean) predicate a”, we can either use a boolean predicate:

1 Fixpoint has T (a : T -> bool) (s : seq T) : bool :=

2 if s is x :: s’ then a x || has a s’ else false.

or we can use an alternate formula, like for instance:

1 Definition has_prop T (a : T -> bool) (s : seq T) :=

2 exists x0 : T, exists i, i < size s /\ a (nth x0 s i)

or the equivalent variant:

1 Definition has_prop T (a : T -> bool) (x0 : T) (s : seq T) :=

2 exists i, i < size s /\ a (nth x0 s i)

Term (has a s) is a boolean value. It is hence easy to use it in a proof to perform a case
analysis on the fact that sequence s has an element such that a holds, using the case tactic:

1 case: (has a s).

As we already noted, computation provides some automation for free. For example in order
to establish that (has odd [:: 3; 2; 7]) = true, we only need to observe that the left hand
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side computes to true.
It is not possible to perform a similar case analysis in a proof using the alternative

version (s_has_aP : has_prop a x0 s), since excluded middle holds in Coq only for boolean
tests. On the other hand, this phrasing of the hypothesis easily gives access to the value of
the index at which the witness is to be found:

1 case: s_has_aP => [n [n_in_s asn]].

introduces in the context of the goal a natural number n : nat and the fact (asn : a (nth x0 s n)).
In order to establish that (has_prop a x0 s), we cannot resort to computation. Instead, we
can prove it by providing the index at which a witness is to be found — plus a proof of
this fact — which may be better suited for instance to an abstract sequence s.

In summary, boolean statements are especially convenient for excluded middle arguments
and its variants (reductio ad absurdum, . . . ). They furthermore provide a form of small-
step automation by computation.1 Specifications in the Prop sort are structured logical
statements, that can be “destructed” to provide witnesses (of existential statements),
instances (of universal statements), subformulae (of conjunctions), etc.. They are proved
by deduction, building proof trees made with the rules of the logic. Formalizing a predicate
by means of a boolean specification requires implementing a form of decision procedure
and possibly proving a specification lemma if the code of the procedure is not a self-
explanatory description of the mathematical notion. For instance a boolean definition
(prime : nat -> bool) implements a complete primality test, which requires a companion
lemma proving that it is equivalent to the usual definition in terms of proper divisors.
Postulating the existence of such a decision procedure for a given specification is akin to
assuming that the excluded middle principle holds on the corresponding predicate.

The boolean reflection methodology proposes to avoid committing to one or the other
of these options, and provides enough infrastructure to ease the bureaucracy of navigating
between the two.

5.1 Reflection views

5.1.1 Relating statements in bool and Prop

How to best formalize the equivalence between a boolean value b and a statement P : Prop?
The most direct way would be to use the conjunction of the two converse implications:

1 Definition bool_Prop_equiv (P : Prop) (b : bool) := b = true <-> P.

where (A <-> B) is defined as ((A -> B) /\ (B -> A)).
Yet, as we shall see in this section, we can improve the phrasing of this logical sentence, in

order to improve its usability. For instance, although (bool_Prop_equiv P b) implies that the
excluded middle holds for P, it does not provide directly a convenient way to reason by case
analysis on the fact that P holds or not, or to use its companion version (b = false <-> ~ P).
The following proof script illustrates the kind of undesirable bureaucracy entailed by this
wording:

1They moreover allow for proof-irrelevant specifications. This feature is largely used throughout the
Mathematical Components library but beyond the scope of the present chapter: it will be the topic of
chapter 7.
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1 Lemma test_bool_Prop_equiv b P : bool_Prop_equiv P b -> P \/ ~ P.

2 Proof.

3 case: b; case => hlr hrl.

4 by left; apply: hlr.

5 by right => hP; move: (hrl hP).

6 Qed.

The last goal, just before line 5 is executed, is the following one:

1 subgoal

P : Prop

hlr : false = true -> P

hrl : P -> false = true

========================

P \/ ~ P

We could try alternative formulations based on the connectives seen in section 3, like
for instance (b = true /\ P) \/ (b = false /\ ~ P), but again the bureaucracy would be
non-negligible.

A first improvement on this naive approach consists in using an ad hoc inductive
definition that resembles a disjunction of conjunctions: we inline the two constructors of
a disjunction and each of these constructors has the two arguments of the conjunction’s
single constructor:

1 Inductive reflect (P : Prop) (b : bool) : Prop :=

2 | ReflectT (p : P) (e : b = true)

3 | ReflectF (np : ~ P) (e : b = false).

We can prove that the statement reflect P b is actually equivalent to the double
implication bool_Prop_equiv.

Let us illustrate the benefits of this alternate specialized double implication:

1 Lemma test_reflect b P :

2 reflect P b -> P \/ ~ P.

3 Proof.

4 case.

5

6

7

b : bool

P : Prop

============================

P -> b = true -> P \/ ~ P

subgoal 2 is:

~ P -> b = false -> P \/ ~ P

A simple case analysis on the hypothesis (reflect P b) exposes in each branch both
versions of the statement. Note that the actual reflect predicate defined in the ssrbool

library is slightly different from the one we give here: this version misses an ultimate
refinement that will be presented in section 5.2.1.

We start our collection of links between boolean and Prop statements with the lemmas
relating boolean connectives with their Prop versions:

1 Lemma andP (b1 b2 : bool) : reflect (b1 /\ b2) (b1 && b2).

2 Proof. by case: b1; case: b2; [ left | right => //= [[l r]] ..]. Qed.

3

4 Lemma orP (b1 b2 : bool) : reflect (b1 \/ b2) (b1 || b2).

5 Proof.
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6 case: b1; case: b2; [ left; by [ move | left | right ] .. |].

7 by right=> // [[l|r]].

8 Qed.

9

10 Lemma implyP (b1 b2 : bool) : reflect (b1 -> b2) (b1 ==> b2).

11 Proof.

12 by case: b1; case: b2; [ left | right | left ..] => //= /(_ isT).

13 Qed.

In each case, the lemma is proved using a simple inspection by case analysis of the truth
table of the boolean formula. The case analysis generates several branches and we use a
special syntax to describe the tactics which should be applied to some specific branches,
and the tactic which should be applied in the general case. The “;[ t1 | t2 .. | tn ]”
syntax indeed corresponds to the application of the tactic t1 to the first subgoal generated
by what comes before ;, and the application of the tactic tn to the last subgoal, and the
application of the tactic t2 to all the branches in between. See [Coq, “The tactic language”])
for a complete description of this feature.

More generally, a theorem stating an equivalence between a boolean expression and a
Prop statement is called a reflection view, since it is used to view an assumption from a
different perspective.

R The name of a reflection view always ends with a capital P.

The next section is devoted to the proof and usage of more involved views.

5.1.2 Proving reflection views

Reflection views are also used to specify types equipped with a decidable equality, by
showing that the equality predicate eq (seen in section 3.6) is implemented by a certain
boolean equality test. For instance, we can specify the boolean equality test on type nat

implemented in chapter 1 as:

1 Lemma eqnP (n m : nat) : reflect (n = m) (eqn n m).

Each implication can be proved by a simple induction on one of the natural numbers,
but we still need to generate the two subgoals corresponding to these implications, as the
split tactic is of no help here.

In order to trigger this branching in the proof tree, we resort to the bridge between the
reflect predicate and a double implication. The ssrbool library provides a general version
of this bridge:

1 About iffP.

2

3

iffP : ∀ (P Q : Prop) (b : bool),

reflect P b -> (P -> Q) -> (Q -> P) ->

reflect Q b

Lemma iffP relates two equivalences (reflect P b) and (reflect Q b) involving one and
the same boolean b but different Prop statements P and Q, as soon as one provides a proof
of the usual double implication between P and Q.

The trivial reflection view is called idP and is often used in conjunction with iffP.
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1 Lemma idP {b : bool} : reflect b b.

We can now come back to the proof of lemma eqnP, and start its proof script by applying
iffP.

1 Lemma eqnP {n m : nat} :

2 reflect (n = m) (eqn n m).

3 Proof.

4 apply: (iffP idP).

5

6

7

n : nat

m : nat

===================

m = n -> eqn m n

subgoal 2 is:

eqn m n -> m = n

In both cases the proof is now an easy induction on m.
Let us now showcase the usage of the more general form of iffP by proving that a type

equipped with an injection in type nat has a decidable equality:

1 Lemma nat_inj_eq T (f : T -> nat) x y :

2 injective f -> reflect (x = y) (eqn (f x) (f y)).

The equality decision procedure just consists in pre-applying the injection f to the
decision procedure eqn available on type nat. Since we already know that eqn is a decision
procedure for equality, we just need to prove that (x = y) if and only if (f x = f y), which
follows directly from the injectivity of f. Using iffP, a single proof command splits the
goal into two implications, replacing on the fly the evaluation (eqn (f x) (f y)) by the Prop

equality (f x = f y):

1 Lemma nat_inj_eq T (f : T -> nat) x y :

2 injective f ->

3 reflect (x = y) (eqn (f x) (f y)).

4 Proof.

5 move=> f_inj.

6 apply: (iffP eqnP).

7

8

9

T : Type

f : T -> nat

f_inj : injective f

x, y : T

====================

x = y -> f x = f y

subgoal 2 is:

f x = f y -> x = y

Note that eqn, being completely specified by eqnP, is not anymore part of the picture.
The latter example illustrates the convenience of combining an action on a goal, here

breaking an equivalence into one subgoal per implication, with a change of viewpoint, here
by the means of the eqnP view. This combination of atomic proof steps is pervasive in a
library designed using the boolean reflection methodology: the SSReflect tactic language
lets one use view lemmas freely in the middle of intro-patterns.

5.1.3 Using views in intro patterns

Reflection views are typically used in the bookkeeping parts of formal proofs, and thus
often appear as views in intro patterns, as described in section 4.1. Actually, view intro
patterns are named after reflection views because this feature of the tactic language was
originally designed for what is now the special case of reflection views. For instance, suppose
that one wants to access the components of a conjunctive hypothesis, stated as a boolean
conjunction. We can use lemma andP in a view intro-pattern in this way:
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1 Lemma example n m k : k <= n ->

2 (n <= m) && (m <= k) -> n = k.

3 Proof.

4 move=> lekn /andP.

n, m, k : nat

lekn : k <= n

==========================

n <= m /\ m <= k -> n = k

The view intro-pattern /andP has applied the reflection view andP to the top entry of the
stack (n <= m) && (m <= k) and transformed it into its equivalent form (n <= m) /\ (m <= k).
Note that strictly speaking, lemma andP does not have the shape of an implication, which
can be fed with a proof of its premise: it is (isomorphic to) the conjunction of two such
implications. The view mechanism implemented in the tactic language has automatically
guessed and inserted a term, called hint view, which plays the role of an adapter.

More precisely the /andP intro pattern has wrapped the top stack item, called top here, of
type ((n <= m) && (m <= k)) into (elimTF andP top) obtaining a term of type ((n <= m) /\ (m <= k)).

1 Lemma elimTF (P : Prop) (b c : bool) :

2 reflect P b -> b = c -> if c then P else ~ P.

Term (elimTF andP top) hence has type

1 if true then (n <= m) /\ (m <= k) else ~ ((n <= m) /\ (m <= k))

which reduces to ((n <= m) /\ (m <= k)) since c is true (recall the hidden “.. = true” in the
type of the top stack entry).

Going back to our example: we can then chain this view with a case intro-pattern to
break the conjunction and introduce its components:

1 Lemma example n m k : k <= n ->

2 (n <= m) && (m <= k) -> n = k.

3 Proof.

4 move=> lekn /andP[lenm lemk].

5

6

n, m, k : nat

lekn : k <= n

lenm : n <= m

lemk : m <= k

===========================

n = k

As (n <= m) is by definition (n - m == 0), we can use the reflection view eqnP in order
to transform this hypothesis into a proper equation. Observe the new shape of the lenm

hypothesis:

1 Lemma example n m k : k <= n ->

2 (n <= m) && (m <= k) -> n = k.

3 Proof.

4 move=> lekn /andP [/eqnP lenm lemk].

5

6

n, m, k : nat

lekn : k <= n

lenm : n - m = 0

lemk : m <= k

===========================

n = k

R Combining wisely the structured reasoning of inductive predicates in Prop with the
ease to reason by equivalence via rewriting of boolean identities leads to concise
proofs.

Let us now move to a non-artificial example to see how the SSReflect tactic language
supports the combination of views with the apply, case and rewrite tactics.
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5.1.4 Using views with tactics

We dissect the proof that <= is a total relation. As usual the statement is expressed as a
boolean formula:

1 Lemma leq_total m n : (m <= n) || (m >= n).

The first step of the proof is to view this disjunction as an implication, using the
classical equivalence and a negated premise:

1 Lemma leq_total m n :

2 (m <= n) || (m >= n).

3 Proof.

4 rewrite -implyNb.

m, n : nat

=====================

~~ (m <= n) ==> (n <= m)

This premise can be seen as n < m:

1 Lemma leq_total m n :

2 (m <= n) || (m >= n).

3 Proof.

4 rewrite -implyNb -ltnNge.

m, n : nat

=====================

(n < m) ==> (n <= m)

This is now an instance of the weakening property of the comparison, except that
it is expressed with a boolean implication. But the view mechanism not only exists in
intro-patterns: it can also be used in combination with the apply tactic, to apply a view to
a given goal with a minimal amount of bureaucracy:

1 Lemma leq_total m n :

2 (m <= n) || (m >= n).

3 Proof.

4 rewrite -implyNb -ltnNge; apply/implyP.

m, n : nat

=====================

(n < m) -> (n <= m)

We can now conclude the proof:

1 Lemma leq_total m n : (m <= n) || (m >= n).

2 Proof. by rewrite -implyNb -ltnNge; apply/implyP; apply: ltnW. Qed.

The case tactic also combines well with the view mechanism, which eases reasoning by
cases along a disjunction expressed with a boolean statement, like the just proved leq_total.
For example we may want to start the proof of the following lemma by distinguishing two
cases: n1 <= n2 and n2 <= n1.

1 Lemma leq_max m n1 n2 :

2 (m <= maxn n1 n2) = (m <= n1) || (m <= n2).

3 Proof.

4 case/orP: (leq_total n2 n1) => [le_n21 | le_n12].

That results in:
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m, n1, n2 : nat

le_n21 : n2 <= n1

============================

(m <= maxn n1 n2) = (m <= n1) || (m <= n2)

subgoal two is:

(m <= maxn n1 n2) = (m <= n1) || (m <= n2)

Even if it is not displayed here, subgoal two has (n1 <= n2) in its context.

Finally, the rewrite tactic also handles views that relate an equation in Prop with a
boolean formula.

1 Lemma maxn_idPl {m n} : reflect (maxn m n = m) (m >= n).

2

3 Lemma leq_max m n1 n2 :

4 (m <= maxn n1 n2) = (m <= n1) || (m <= n2).

5 Proof.

6 case/orP: (leq_total n2 n1) => [le_n21 | le_n12].

7 rewrite (maxn_idPl le_n21).

The tactic sees (maxn_idPl le_n21) as the equation corresponding to the boolean formula
le_n21, namely (maxn n1 n2 = n1), and rewrites with it obtaining:

m : nat

n1 : nat

n2 : nat

le_n21 : n2 <= n1

============================

(m <= n1) = (m <= n1) || (m <= n2)

subgoal 2 is:

(m <= maxn n1 n2) = (m <= n1) || (m <= n2)

The full proof of leq_max has been discussed in detail in section 4.2.2.

5.2 Advanced, practical, statements

In this section, we will further explore the possibility to improve the flow of formal proofs
by refining the shape of the definitions specifying a given concept.

5.2.1 Inductive specs with indices

What we did for reflect, an ad hoc connective, to model a line of reasoning, is a recurrent
pattern in the Mathematical Components library. Such class of inductive predicates is
called “spec”, for specification.

Spec predicates are inductive families with indexes, exactly as the eq predicate seen
in section 3.6. In particular their elimination rule encapsulates the notion of substitution,
and that operation is performed automatically by the logic.

For instance, let us recall the definition of the reflect predicate proposed in Section 5.1.1.

1 Inductive reflect (P : Prop) (b : bool) : Prop :=

2 | ReflectT (p : P) (e : b = true)

3 | ReflectF (np : ~ P) (e : b = false)



5.2 Advanced, practical, statements 107

When making use of this predicate in a proof, it is often the case that substituting b

for its value in each branch of the case is needed right after the case analysis.
The following alternative formulation makes the equation implicitly stated and also

automatically substituted during case analysis.

1 Inductive reflect (P : Prop) : bool -> Prop :=

2 | ReflectT (p : P) : reflect P true

3 | ReflectF (np : ~ P) : reflect P false

Here the second argument of reflect is said to be an index and it is allowed to vary
depending on the constructor: ReflectT always builds a term of type (reflect P true) while
ReflectF builds a term of type (reflect P false). When one reasons by cases on a term
of type (reflect P b) he obtains two proof branches, in the first one b is replaced by true,
since it corresponds to the ReflectT constructor. Conversely, b is replaced by false in the
second branch.

Let’s take an example where we reason by cases on the andP lemma, that states
(∀ a b, reflect (a /\ b) (a && b)). The definition of the andP view is accompanied by the
following configuration of its arguments:

1 Arguments andP {a b}.

We recall that this makes a and b implicit, hence writing andP is equivalent to (@andP _ _),
a term whose type is (reflect (_ /\ _) (_ && _)). The value of the index of the inductive
family, to be replaced by true and false in the respective branches of a case analysis, is
thus a pattern (_ && _). Therefore, the goal is searched for an instance of such pattern.
The matching algorithm used to find an instance of this pattern is the same as one used by
the rewrite tactic, for the instantiation of rewrite rules.

The following proof script illustrates how to deal with a boolean conjunction a && b,
which appears in the premise of a boolean implication, almost as conveniently as if it were
a conjunction in Prop.

1 Lemma example a b :

2 a && b ==> (a == b).

3 Proof.

4 case: andP => [ab|nab].

5

6

a, b : bool

ab : a /\ b

========================

true ==> (a == b)

subgoal 2 is:

false ==> (a == b)

Note that we have not specified a value for the variables quantified in the statement of
andP: the tuning of implicit arguments is key to making lemmas easy to use, even more so
in the case of the “spec” ones. Thanks to the index of the reflect inductive, the automatic
substitution trivializes the second goal. The first one can be solved by replacing both a

and b by their truth values, once ab is destructed. Hence the following proof script:

1 Lemma example a b : a && b ==> (a == b).

2 Proof. by case: andP => [[-> ->] |]. Qed.

Note that if one needs to override the pattern inferred for the index of andP, one can
provide it by hand as follows:
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1 Lemma example a b : (a || ~~ a) && (a && b ==> (a == b)).

2 Proof. by case: (a && _) / andP => [[-> ->] |] //; rewrite orbN. Qed.

A more detailed explanation of this syntax can be found in [GMT15, section 5.6].

The Mathematical Components library provides many spec lemmas to be used this way.
A paradigmatic one is ifP.

1 Section If.

2 Variables (A : Type) (vT vF : A) (b : bool).

3

4 Inductive if_spec : bool -> A -> Type :=

5 | IfSpecTrue (p : b) : if_spec true vT

6 | IfSpecFalse (p : b = false) : if_spec false vF.

7

8 Lemma ifP : if_spec b (if b then vT else vF).

Reasoning by cases on ifP has the following effects: 1) the goal is searched for an
expression like (if _ then _ else _); 2) two goals are generated, one in which the condition
of the if statement is replaced by true and the if-then-else expression by the value of the
then branch, another one where the condition is replaced by false and the if-then-else by
the value of the else branch; 3) the first goal gets an extra assumption (b = true), while
the second goal gets (b = false). Note that “case: ifP” is very compact, much shorter than
any if-then-else expression.

It is worth mentioning the convenience lemma boolP that takes a boolean formula and
reasons by excluded middle providing some extra comfort like an additional hypothesis in
each sub goal.

Another reflection view worth mentioning is leqP that replaces, in one shot, both
(_ <= _) and the converse (_ < _) by opposite truth values. Sometime a proof works best
by splitting into three branches, i.e., separating the equality case. The ltngtP lemma is
designed for that.

In practice lines of reasoning consisting in a specific branching of a proof can often be
modeled by an appropriate spec lemma.

R The structure of the proof shall not be driven by the syntax of the definition/predicate
under study but by the view/spec used to reason about it.

5.3 Strong induction via inductive specs

As we have seen in Section 3.7 the strong induction principle can be obtained from the
regular one by choosing an appropriate value for the predicate. Recall that the elim tactic
infers that predicate from the goal, so another way to specify the predicate is to load the
goal before performing the induction. For example if the goal is (G n) and one loads it to
(∀ m, m <= n -> G m) then he will have access to the induction hypothesis on all numbers
smaller than n exactly as if he was using the strong induction principle.

It is possible to do so very concisely using the discharging operator “:”. In particu-
lar

1 move: {-2}n (leqnn n)
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does exactly what we need for a goal like (G n): it first pushes to the stack (n <= n) and then
pushes to the stack n capturing all occurrences but for the second one. The Mathematical
Components library provides a few tools to load the goal like this without recurring to
occurrence selection, which can be tricky and fragile.

The following inductive specification is crafted so that its only constructor holds as
arguments exactly the items we pushed on the stack with the discharge operator.

1 Inductive ubn_geq_spec m : nat -> Type :=

2 UbnGeq n of n <= m : ubn_geq_spec m n.

3 Lemma ubnPgeq m : ubn_geq_spec m m.

4 Proof. by []. Qed.

As a consequence by performing a case analysis on (ubnPgeq m) one obtains the same
effect of move: -2m (leqnn m).

1 Lemma test_ubnP (G : nat -> Prop) m : G m.

2 Proof.

3 case: (ubnPgeq m).

G : nat -> Prop

m : nat

============================

∀ n, n <= m -> G n

By varying the arguments of the inductive specification constructor one can tune the
way the goal is loaded. The Mathematical Components library provides a few inductive
specifications like the one explained in this section, and their names contain the string
“ubn” for “upper bound”.
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5.4 Showcase: Euclidean division, simple and correct

In this section we use most of the techniques and tactics seen so far to prove correct the
Euclidean division algorithm.

Euclidean division is defined as one expects: iterating subtraction.

1 Definition edivn_rec d :=

2 fix loop m q := if m - d is m’.+1 then loop m’ q.+1 else (q, m).

3

4 Definition edivn m d := if d > 0 then edivn_rec d.-1 m 0 else (0, m).

The fix keyword lets one write a recursive function locally, without providing a global
name as Fixpoint does. This also means that d is a parameter of edivn_rec that does not
change during recursion. The edivn program handles the case of a null divisor, producing
the dummy pair (0,m) for the quotient and the remainder respectively.

We start by showing the following equation.

1 Lemma edivn_recE d m q :

2 edivn_rec d m q = if m - d is m’.+1 then edivn_rec d m’ q.+1 else (q,m).

3 Proof. by case: m. Qed.

It is often useful to state and prove unfolding equations like this one. When the simplification
tactic /= unfolds too aggressively, rewriting with such equations gives better control on
how many unfold steps one performs.

The statement of our theorem uses a let-in construct (remark the := sign) to name an
expression used multiple times, in this case the result of the division of m by d.

1 Lemma edivnP m d (ed := edivn m d) :

2 ((d > 0) ==> (ed.2 < d)) && (m == ed.1 * d + ed.2).

3 Proof.

As one expects, edivn being a recursive program, its specification needs to be proved
by induction. Given that the recursive call is on the subtraction of the input, we need to
perform a strong induction.

But let’s start by dealing with the trivial case of a null divisor.

1 rewrite -[m]/(0 * d + m).

2 case: d => [//= | d /=] in ed *.

3 rewrite -[edivn m d.+1]/(edivn_rec d m 0) in ed *.

4 case: (ubnPgeq m) @ed; elim: m 0 => [|m IHm] q [/=|n] leq_nm //.

5 rewrite edivn_recE subn_if_gt; case: ifP => [le_dm ed|lt_md]; last first.

6 by rewrite /= ltnS ltnNge lt_md eqxx.

7 rewrite -ltnS in le_dm; rewrite -(subnKC le_dm) addnA -mulSnr subSS.

8 by apply: IHm q.+1 (n-d) _; apply: leq_trans (leq_subr d n) leq_nm.

Line 1 handles the case of d being zero. The “in E...” suffix can be appended to any tactic
in order to push on the stack the specified hypotheses before running the tactic and pulling
them back afterwards (see [GMT15, section 6.5]). The * means that the goal is also affected
by the tactic, and not just the hypotheses explicitly selected.

Lines 2 and 3 prepare the induction by unfolding the definition of edivn (to expose the
initial value of the accumulators of edivn_rec) and makes the invariant of the division loop
explicit replacing m by (0 * d.+1 + m). Recall the case d being 0 has already been handled.
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Line 4 performs a strong induction, also generalizing the initial value of the accumulator
0, leading to the following goal:

d, m : nat

IHm : ∀ q n, n <= m ->

let ed := edivn_rec d n q in

(ed.2 < d.+1) && (q * d.+1 + n == ed.1 * d.+1 + ed.2)

q, n : nat

leq_nm : n < m.+1

============================

let ed := edivn_rec d n.+1 q in

(ed.2 < d.+1) && (q * d.+1 + n.+1 == ed.1 * d.+1 + ed.2)

Note that the case analysis on (ubnPgeq m) needs to grab also the occurrence of m in the
body of ed. To do so we push ed on the goal stack prior the case analysis. The @ modifier
tells Small Scale Reflection to keep the body of the let-in, which would be otherwise deleted.

Line 5 unfolds the recursive function and uses the following lemma to push the subtrac-
tion into the branches of the if statement. Then it reasons by cases on the guard of the
if-then-else statement.

1 Lemma subn_if_gt T m n F (E : T) :

2 (if m.+1 - n is m’.+1 then F m’ else E) =

3 (if n <= m then F (m - n) else E).

The else branch corresponds to the non-recursive case of the division algorithm and is
trivially solved in line 6. We are left with this goal to prove:

d, m : nat

IHm : ∀ q n, n <= m ->

let ed := edivn_rec d n q in

(ed.2 < d.+1) && (q * d.+1 + n == ed.1 * d.+1 + ed.2)

q, n : nat

leq_nm : n < m.+1

le_dm : d <= n

ed := edivn_rec d (n - d) q.+1 : nat * nat

============================

(ed.2 < d.+1) && (q * d.+1 + n.+1 == ed.1 * d.+1 + ed.2)

Line 7 prepares the goal to accommodate the application of the induction hypothesis,
instantiated at q.+1 and (n - d).

(ed.2 < d.+1) && (q.+1 * d.+1 + (n - d) == ed.1 * d.+1 + ed.2)

Finally, line 8 uses the induction hypothesis and proves its premise (m - d <= n).

5.5 Notational aspects of specifications

When a typing error arises, it always involves three objects: a term t, its type ity and the
type expected by its context ety. Of course, for this situation to be an error, the two types
ity and ety do not compare as equal. The simplest way one has to explain Coq how to fix
t, is to provide a functional term c of type (ity -> ety) that is inserted around t. In other
words, whenever the user writes t in a context that expects a term of type ety, the system
instead of raising an error replaces t by (c t).
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A function automatically inserted by Coq to prevent a type error is called coercion.
The most pervasive coercion in the Mathematical Components library is is_true one that
lets one write statements using boolean predicates.

1 Lemma example : prime 17.

2

========================

is_true (prime 17)

When the statement of the example is processed by Coq and it is enforced to be a type,
but (prime 17) is actually a term of type bool. Early in the library the function is_true is
declared as a coercion from bool to Prop and hence it is inserted by Coq automatically.

1 Definition is_true b := b = true.

2 Coercion is_true : bool >-> Sortclass. (* Prop *)

Another coercion that is widely used injects booleans into naturals. Two examples
follow:

1 Fixpoint count (a : pred nat) (s : seq nat) :=

2 if s is x :: s’ then a x + count a s’ else 0.

3 Lemma count_uniq_mem (s : seq nat) x :

4 uniq s -> count (pred1 x) s = has (pred1 x) s.

where pred T is a notation for the type T -> bool of boolean predicates.
At line number 2 the term (a x) is a boolean. The nat_of_bool function is automatically

inserted to turn true into 1 and false into 0. This notational trick is reminiscent of
Kronecker’s δ notation. Similarly, in the last line the membership test is turned into
a number, that is shown to be equivalent to the count of any element in a list that is
duplicate-free.

Coercions are composed transitively: in the following example, true is used as the tail
of a seq. Even though there is no direct coercion from bool to seq, Coq can go from one to
the other via nat. Thus true is first coerced to 1 of type nat by nat_of_bool, which is then
turned into a seq (of length 1 containing 0s) by zerolist.

1 Definition zerolist n := mkseq (fun _ => 0) n.

2 Coercion zerolist : nat >-> seq.

3 Check 2 :: true == [:: 2; 0].

The reader already familiar with the concept of coercion may find the presentation of
this chapter slightly nonstandard. Coercions are usually presented as a device to model
a flavor of subtyping in a type theory that, like the Calculus of Inductive Constructions,
does not enjoy such a feature. But as will become clear in Chapter 8, the role played by
coercions in the modeling of the hierarchy of algebraic structures is actually minor. In fact,
it is limited to the easy task of forgetting some fields of a structure to obtain a simpler one.
The trickiest part of setting up a hierarchy is actually the reconstruction of the missing
fields of a richer structure from a weaker one, and the comparison of two structures in order
to find the minimum super structure. These tasks are mainly implemented by programming
type inference, which is the main topic of the next part of the book.
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6. Implicit parameters

The rules of the Calculus of Inductive Constructions, as the ones sketched in 3, are
expressed on the syntax of terms and are implemented by the kernel of Coq. Such a
software component performs type checking : given a term and type, it checks if such term
has the given type. To keep type checking simple and decidable, the syntax of terms makes
all information explicit. As a consequence, the terms written in such verbose syntax are
pretty large.

Luckily the user very rarely interacts directly with the kernel. Instead she almost always
interacts with the refiner, a software component that is able to accept open terms. Open
terms are in general way smaller than regular terms because some information can be left
implicit [Pol92]. In particular one can omit any subterm by writing “_” in place of it. Each
missing piece of information is either reconstructed automatically by the type inference
algorithm, or provided interactively by means of proof commands. In this chapter we focus
on type inference.

Type inference is ubiquitous: whenever the user inputs a term (or a type) the system
tries to infer a type for it. One can think of the work of the type inference algorithm as
trying to give a meaning to the input of the user possibly completing and constraining it
by inferring some information. If the algorithm succeeds, the term is accepted; otherwise
an error is given.

What is crucial to the Mathematical Components library is that the type inference
algorithm is programmable: one can extend the basic algorithm with small declarative
programs1 that have access to the library of already formalized facts. In this way one can
make the type inference algorithm aware of the contents of the library and make Coq
behave as a trained reader who is able to guess the intended meaning of a mathematical
expressions from the context thanks to her background knowledge.

This chapter also introduces the key concepts of interface and instance. An interface is

1A program is said to be declarative when it explains what it computes rather than how. The programs
in question are strictly linked with the Prolog programming language, a technology that found applications
in artificial intelligence and computational linguistics.
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essentially the signature of an algebraic structure: operations, properties and notations
letting one reason abstractly about a family of objects sharing the interface. An instance is
an example of an algebraic structure, an object that fits an interface. For example eqType is
the interface of data types that come equipped with a comparison function, and the type
nat forms, together with the eqn function, an example of eqType.

The programs we will write to extend type inference play two roles. On one hand
they link instances to interfaces, like nat to eqType. On the other hand they build derived
instances out of basic ones. For example we teach type inference how to synthesize an
instance of eqType for a type like (A * B) whenever A and B are instances of eqType.

The concepts of interface and instances are recurrent in both computer science and
modern mathematics, but are not a primitive notion in Coq. Despite that, they can be
encoded quite naturally, although not trivially, using inductive types and the dependent
function space. This encoding is not completely orthogonal to the actual technology (the
type inference and its extension mechanism). For this reason we shall need to dive, from
time to time, into technical details, especially in sections labelled with two stars.

6.1 Type inference and higher-order unification

The type inference algorithm is quite similar to the type checking one: it recursively
traverses a term checking that each subterm has a type compatible with the type expected
by its context. During type checking types are compared taking computation into account.
Types that compare as equal are said to be convertible. Termination of reduction and
uniqueness of normal forms provide guidance for implementing the convertibility test, for
which a complete and sound algorithm exists. Unfortunately type inference works on open
terms, and this fact turns convertibility into a much harder problem called higher-order
unification. The special placeholder “_”, usually called implicit argument, may occur inside
types and stands for one, and only one, term that is not explicitly given. Type inference
does not check if two types are convertible; it checks if they unify. Unification is allowed
to assign values to implicit arguments in order to make the resulting terms convertible.
For example unification is expected to find an assignment that makes the type (list _)

convertible to (list nat). By picking the value nat for the placeholder the two types become
syntactically equal and hence convertible.

Unfortunately it is not hard to come up with classes of examples where guessing
appropriate values for implicit arguments is, in general, not possible. In fact such guessing
has been shown to be as hard as proof search in the presence of higher-order constructs.
For example to unify (prime _) with true one has to guess a prime number. Remember
that prime is a boolean function that fed with a natural number returns either true or false.
While assigning 2 to the implicit argument would be a perfectly valid solution, it is clear
that it is not the only one. Enumerating all possible values until one finds a valid one is
not a good strategy either, since the good value may not exist. Just think at the problem
(prime (4 * _)) versus true. An even harder class of problems is the one of synthesizing
programs. Take for example the unification problem (_ 17) versus [:: 17]. Is the function
we are looking for the list constructor? Or maybe, is it a factorization algorithm?

Given that there is no silver bullet for higher-order unification Coq makes a sensible
design choice: provide an (almost) heuristic-free algorithm and let the user extend it via
an extension language. We refer to such language as the language of canonical structures.
Despite being a very restrictive language, it is sufficient to program a wide panel of useful
functionalities.

The concrete syntax for implicit arguments, an underscore character, does not let one
name the missing piece of information. If an expression contains multiple occurrence of the
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placeholder “_”, they are all considered as potentially different by the system, and hence
hold (internally) unique names. For the sake of clarity we take the freedom to use the
alternative syntax ?x for implicit arguments (where x is a unique name).

6.2 Type inference by example

Most of the code we have discussed so far uses some amount of type inference. In this
section, we go over a few elementary examples, so as to clarify them.

For once, let us start with an example of code meant to be executed in a Coq session
before importing any library, nor positioning any global option. This example is one of the
simplest possible: it defines the polymorphic identity function and checks its application to
3.

1 Definition id A (a : A) : A := a.

2 Check (id nat 3).

3 Check (id _ 3).

id nat 3 : nat

id nat 3 : nat

In the expression (id nat 3) no subterm was omitted, therefore Coq accepts the term
and prints its type. In the third line, even if the subterm nat is omitted, Coq accepts the
term. Type inference finds a value for the placeholder for the user by proceeding in the
following way: it traverses the term recursively from left to right, ensures that the type
of each argument of the application had the type expected by the function. In particular
id takes two arguments. The former argument is expected to have type Type and the user
leaves such argument implicit (we name it ?A). Type inference imposes that ?A has type
Type, and this constraint is satisfiable. The algorithm continues checking the remaining
argument. According to the definition of id the type of the second argument must be
the value of the first argument. Hence type inference runs recursively on the argument 3

discovering it has type nat and imposes that it unifies with the value of the first argument
(that is ?A). For this to be true ?A has to be assigned the value nat. As a result the system
prints the input term, where the placeholder has been replaced by the value type inference
assigned to it.

In the light of this process, it becomes clear that every time we apply the identity
function to a term, we can omit to specify its first argument, since Coq is able to infer it
and complete the input term for us. This phenomenon is so common that one can ask the
system to insert the right number of _ for us. Here we only provide a simple example. For
more details refer to [Coq, “Extensions of Gallina”].

1 Arguments id {A} a.

2 Check (id 3).

3 Check (@id nat 3).

id 3 : nat

id 3 : nat

The Arguments directive “documents” the constant id. In this case it just marks the
argument that has to be considered as implicit by surrounding it with curly braces. In our
case, argument A is thus declared as implicit. The declaration of implicit arguments can be
locally disabled by prefixing the name of the constant with the @ symbol.

Very often, it is possible to determine the most plausible status of each argument,
explicit or implicit, using a heuristic. Such a heuristic is applied in a systematic way when a
global option is declared: every definition posterior to the declaration may feature implicit
arguments even if not Argument command is used to declare them manually. This has been
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the case so far, and in the rest of the section and of the book, we will work again under the
assumption that following the global options have been set, in accordance with Chapter :

1 Unset Strict Implicit.

2 Unset Printing Implicit Defensive.

Of course, the Argument command remains useful on specific cases when a finer, manual
tuning of implicit arguments remains needed. The command About provides the user with
the type of a given constant, and with the status, implicit or not, of each argument of the
constant.

Another piece of information that is often not explict is the type of abstracted or
quantified variables.

1 Check (fun x => @id nat x).

2

3 Lemma prime_gt1 p :

4 prime p -> 1 < p.

5

fun x : nat => id x : nat -> nat

p : nat

============================

prime p -> 1 < p

In the first line the syntax (fun x => ...) is sugar for (fun x : _ => ...) where we leave
the type of x implicit. Type inference fixes it to nat when it reaches the last argument of
the identity function. It unifies the type of x with the value of the first argument given to
id that in this case is nat. This last example is emblematic: most of the time the type of
abstracted variables can be inferred by looking at how they are used. This is very common
in lemma statements. For example, the third line states a theorem on p without explicitly
giving its type. Since the statement uses p as the argument of the prime predicate, it is
automatically constrained to be of type nat.

The kind of information filled in by type inference can also be of another, more
interesting, nature. So far all placeholders were standing for types, but the user is also
allowed to put _ in place of a term.

1 Lemma example q : prime q -> 0 < q.

2 Proof.

3 move=> pr_q.

q : nat

pr_q : prime q

========================

0 < q

The proof begins by giving the name pr_q to the assumption (prime q). Then it builds
a proof term by hand using the lemma stated in the previous example and names it q_gt1.

1 have q_gt1 := @prime_gt1 _ pr_q.

2 exact: ltnW q_gt1.

3 Qed.

In the expression (prime_gt1 _ pr_q), the placeholder, that we name ?p, stands for a
natural number. When type inference reaches ?p, it fixes its type to nat. What is more
interesting is what happens when type inference reaches the pr_q term. Such term has its
type fixed by the context: (prime q). The type of the second argument expected by prime_gt1

is (prime ?p) (i.e., the type of prime_gt1 where we substitute ?p for p. Unifying (prime ?p)

with (prime q) is possible by assigning q to ?p. Hence the proof term just constructed is
well typed, its type is (1 < q) and the placeholder has been set to be q. As we did for the
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identity function, we can declare the p argument of prime_gt1 as implicit: this is actually
the case in the library. In this case, the script is:

1 have q_gt1 := prime_gt1 pr_q.

2 exact: ltnW q_gt1.

3 Qed.

Choosing a good declaration of implicit arguments for lemmas is tricky and requires
one to think ahead how the lemma is used.

So far we have been using only the simplest form of type inference in our interaction
with the system. The unification problems we have encountered would have been solved by
a first order unification algorithm and we did not need to compute or synthesize functions.
In the next section we illustrate how the unification algorithm used in type inference can
be extended in order to deal with higher-order problem. This extension is based on the use
of declarative programs, and we present the encoding of the relations which describe these
programs. As of today however there is no precise, published, documentation of the type
inference and unification algorithms implemented in Coq. For a technical presentation
of a type inference algorithm close enough to the one of Coq we suggest the interested
reader to consult [Asp+12]. The reader interested in a technical presentation of a simplified
version of the unification algorithm implemented in Coq can read [Gon+13b; SZ14].

6.3 Records as relations

In computer science a record is a very common data structure. It is a compound data type, a
container with named fields. Records are represented faithfully in the Calculus of Inductive
Constructions as inductive data types with just one constructor, recall section 1.3.4. The
peculiarity of the records we are going to use is that they are dependently typed : the type
of each field is allowed to depend on the values of the fields that precede it.

Coq provides syntactic sugar for declaring record types.

1 Record eqType : Type := Pack {

2 sort : Type;

3 eq_op : sort -> sort -> bool

4 }.

The sentence above declares a new inductive type called eqType with one constructor
named Pack with two arguments. The first one is named sort and holds a type; the second
and last one is called eq_op and holds a comparison function on terms of type sort. We
recall that what this special syntax does is declaring at once the following inductive type
plus a named projection for each record field:

1 Inductive eqType : Type :=

2 Pack sort of sort -> sort -> bool.

3 Definition sort (c : eqType) : Type :=

4 let: Pack t _ := c in t.

5 Definition eq_op (c : eqType) : sort c -> sort c -> bool :=

6 let: Pack _ f := c in f.

Note that the type dependency between the two fields requires the first projection to
be used in order to define the type of the second projection.

We think of the eqType record type as a relation linking a data type with a comparison
function on that data type. Before putting the eqType relation to good use we declare an
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inhabitant of such type, that we call an instance, and we examine a crucial property of the
two projections just defined.

We relate the eqn comparison function with the nat data type.

1 Definition nat_eqType : eqType := @Pack nat eqn.

Projections, when applied to a record instance like nat_eqType compute and extract the
desired component.

1 Eval simpl in sort nat_eqType.

2 Eval simpl in @eq_op nat_eqType.

= nat : Type

= eqn : sort nat_eqType ->

sort nat_eqType -> bool

Given that (sort nat_eqType) and nat are convertible, equal up to computation, we can
use the two terms interchangeably. The same holds for (eq_op nat_eqType) and eqn. Thanks
to this fact Coq can type check the following term:

1 Check (@eq_op nat_eqType 3 4). eq_op 3 4 : bool

This term is well typed, but checking it is not as simple as one may expect. The
eq_op function is applied to three arguments. The first one is nat_eqType and its type,
eqType, is trivially equal to the one expected by eq_op. The following two arguments are
hence expected of to be of type (sort nat_eqType) but 3 and 4 are of type nat. Recall that
unification takes computation into account exactly as the convertibility relation. In this
case the unification algorithm unfolds the definition of nat_eqType obtaining (Pack nat eqn)

and reduces the projection extracting nat. The obtained term literally matches the type of
the last two arguments given to eq_op.

Now, why this complication? Why should one prefer (eq_op nat_eqType 3 4) to (eqn 3

4)? The answer is overloading. It is recurrent in mathematics and computer science to
reuse a symbol, a notation, in two different contexts. A typical example coming from the
mathematical practice is to use the same infix symbol ∗ to denote any ring multiplication.
A typical computer science example is the use of the same infix == symbol to denote the
comparison over any data type. Of course the underlying operation one intends to use
depends on the values it is applied to, or better their type 2. Using records lets us model
these practices. Note that, thanks to its higher-order nature, the term eq_op can always
be the head symbol denoting a comparison. This makes it possible to recognize, hence
print, comparisons in a uniform way as well as to input them. On the contrary, in the
simpler expression (eqn 3 4), the name of the head symbol is very specific to the type of
the objects we are comparing.

In the rest of this chapter, we focus on the overloading of the == symbol and we start
by defining another comparison function, this time for the bool data type.

1 Definition eqb (a b : bool) := if a then b else ~~ b.

2 Definition bool_eqType : eqType := @Pack bool eqb.

2The meaning of a symbol in mathematics is even deeper: by writing a∗b one may expect the reader to
figure out which ring she talks about, recall its theory, and use this knowledge to justify some steps in a
proof. By programming type inference appropriately, we model this practice in section 6.4.
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Now the idea is to define a notation that applies to any occurrence of the eq_op head
constant and use such notation for both printing and parsing.

1 Notation "x == y" := (@eq_op _ x y).

2 Check (@eq_op bool_eqType true false).

3 Check (@eq_op nat_eqType 3 4).

true == false : bool

3 == 4 : bool

As a printing rule, the placeholder stands for a wild card: the notation is used no
matter the value of the first argument of eq_op. As a result both occurrences of eq_op, line 2
and 3, are printed using the infix == syntax. Of course the two operations are different; they
are specific to the type of the arguments and the typing discipline ensures the arguments
match the type of the comparison function packaged in the record.

When the notation is used as a parsing rule, the placeholder is interpreted as an implicit
argument: type inference is expected to find a value for it. Unfortunately such notation
does not work as a parsing rule yet.

1 Check (3 == 4).

2

Error: The term "3" has type "nat" while

it is expected to have type "sort ?e".

If we unravel the notation, the input term is really (eq_op _ 3 4). We name the
placeholder ?e. If we replay the type inference steps seen before, the unification step is now
failing. Instead of (sort nat_eqType) versus nat, now unification has to solve the problem
(sort ?e) versus nat. This problem falls in one of the problematic classes we presented in
section 6.1: the system has to synthesize a comparison function (or better a record instance
containing a comparison function).

Coq gives up, leaving to the user the task of extending the unification algorithm
with a declarative program that is able to solve unification problems of the form (sort ?e)

versus T for any T. Given the current context, it seems reasonable to write an extension
that picks nat_eqType when T is nat and bool_eqType when T is bool. In the language of
Canonical Structures, such a program is expressed as follows.

1 Canonical nat_eqType.

2 Canonical bool_eqType.

The keyword Canonical was chosen to stress that the program is deterministic: each
type T is related to (at most) one canonical comparison function.

1 Check (3 == 4).

2 Check (true == false).

3 Compute (3 == 4).

3 == 4 : bool

true == false : bool

= false : bool

The mechanics of the small program we wrote using the Canonical keyword can be
explained using the global table of canonical solutions. Whenever a record instance is
declared as canonical Coq adds to such table an entry for each field of the record type.

canonical structures Index

projection value solution

sort nat nat_eqType

sort bool bool_eqType
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Whenever a unification problem with the following shape is encountered, the table of
canonical solution is consulted.

(projection ?S) versus value

The table is looked up using as keys the projection name and the value. The corresponding
solution is assigned to the implicit argument ?S.

In the table we reported only the relevant entries. Entries corresponding to the eq_op

projection play no role in the Mathematical Components library. The name of such
projections is usually omitted to signal that fact.

What makes this approach interesting for a large library is that record types can play
the role of interfaces. Once a record type has been defined and some functionality associated
to it, like a notation, one can easily hook a new concept up by defining a corresponding
record instance and declaring it canonical. One gets immediately all the functionalities tied
to such interface to work on the new concept. For example a user defining new data type
with a comparison function can immediately take advantage of the overloaded == notation
by packing the type and the comparison function in an eqType instance.

This pattern is so widespread and important that the Mathematical Components library
consistently uses the synonym keyword Structure in place of Record in order to make record
types playing the role of interfaces easily recognizable.

The computer-science inclined reader shall see records as first-class values in the Calculus
of Inductive Constructions programming language. Otherwise said, the projections of a
record are just ordinary functions, defined by pattern-matching on an inductive type, and
which access the fields of the record. In particular, the fields of two given instances of records
can be combined and used to build a new instance of another record. Canonical structures
provide a language to describe how new instances of records, also called structures in this
case, can be built from existing ones, via a set of combinators defined by the user.

So far we have used the == symbol for terms whose type is atomic, like nat or bool. If
we try for example to use it on terms whose type was built using a type constructor like
the one of pairs we encounter an error.

1 Check (3, true) == (4, false).

2

3

Error: The term "(3, true)" has type

"(nat * bool)%type" while it is expected

to have type "sort ?e".

The term (3,true) has type (nat * bool) and, so far, we only taught Coq how to
compare booleans and natural numbers, not how to compare pairs. Intuitively the way to
compare pairs is to compare their components using the appropriate comparison function.
Let’s write a comparison function for pairs.

1 Definition prod_cmp eqA eqB x y :=

2 @eq_op eqA x.1 y.1 && @eq_op eqB x.2 y.2.

What is interesting about this comparison function is that the pairs x and y are not
allowed to have an arbitrary, product, type here. The typing constraints imposed by the
two eq_op occurrences force the type of x and y to be (sort eqA * sort eqB). This means
that the records eqA and eqB hold a sensible comparison function for, respectively, terms of
type (sort eqA) and (sort eqB).

It is now sufficient to pack together the pair data type constructor and this comparison
function in an eqType instance to extend the canonical structures inference machinery with
a new combinator.
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1 Definition prod_eqType (eqA eqB : eqType) : eqType :=

2 @Pack (sort eqA * sort eqB) (@prod_cmp eqA eqB).

3 Canonical prod_eqType.

The global table of canonical solutions is extended as follows.

canonical structures Index

projection value solution combines solutions for

sort nat nat_eqType

sort bool bool_eqType

sort T1 * T2 prod_eqType pA pB pA ← (sort,T1), pB ← (sort,T2)

The third column is empty for base instances while it contains the recursive calls for
instance combinators. With the updated table, when the unification problem

(sort ?e) versus (T1 * T2)

is encountered, a solution for ?e is found by proceeding in the following way. Two new
unification problems are generated: (sort ?eqA) versus T1 and (sort ?eqB) versus T2. If
both are successful and v1 is the solution for ?eqA and v2 for ?eqB, the solution for ?e is
(prod_eqType v1 v2).

After the table of canonical solutions has been extended, our example is accepted.

1 Check (3, true) == (4, false). (3, true) == (4, false) : bool

The term synthesized by Coq is the following one:

1 @eq_op (prod_eqType nat_eqType bool_eqType) (3, true) (4, false).

6.4 Records as (first-class) interfaces

When we define an overloaded notation, we convey through it more than just the arity (or
the type) of the associated operation. We associate to it a property, or a collection thereof.
For example, in the context of group theory, the infix + symbol is typically preferred to *

whenever the group law is commutative.

Going back to our running example, the actual definition of eqType used in the Mathe-
matical Components library also contains a property which enforces the correctness and
the completeness of the comparison test.

1 Module Equality.

2

3 Structure type : Type := Pack {

4 sort : Type;

5 op : sort -> sort -> bool;

6 axiom : ∀ x y, reflect (x = y) (op x y)

7 }.

8

9 End Equality.

The extra property turns the eqType relation into a proper interface, which fully specifies
what op is.
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The axiom says that the boolean comparison function is compatible with equality: two
ground terms compare as equal if and only if they are syntactically equal. Note that this
means that the comparison function is not allowed to quotient the type by identifying two
syntactically different terms.

R The infix notation == stands for a comparison function compatible with Leibniz
equality (substitution in any context).

The Equality module enclosing the record acts as a name space: type, sort, op and
axiom, four very generic words, are here made local to the Equality name space becoming,
respectively, Equality.type, Equality.sort, Equality.op and Equality.axiom.

As in section 6.3, the record plays the role of a relation and its sort component is
again the only field that drives canonical structure inference. The set of operations (and
properties) that define an interface is called a class. In the next chapter, we are going to
re-use already defined classes in order to build new ones by mixing-in additional properties
(typically called axioms). Hence the definition of eqType in the Mathematical Components
library is closer to the following one:

1 Module Equality.

2

3 Definition axiom T (e : rel T) := ∀ x y, reflect (x = y) (e x y).

4

5 Record mixin_of T := Mixin {op : rel T; _ : axiom op}.

6 Notation class_of := mixin_of.

7

8 Structure type : Type := Pack {sort :> Type; class : class_of sort; }.

9

10 End Equality.

11

12 Notation eqType := Equality.type.

13 Definition eq_op T := Equality.op (Equality.class T).

14 Notation "x == y" := (@eq_op _ x y).

In this simple case, there is only one property, named Equality.axiom, and the class is
exactly the mixin.

That being said, nothing really changes: the eqType structure relates a type with a
signature.

Remark the use of :> instead of : to type the field called sort. This tells Coq
to declare the Equality.sort projection as a coercion. This makes it possible to write
(∀ T : eqType, ∀ x y : T, P) even if T is not a type and only (sort T) is.

! Since Equality.sort is a coercion, it is not displayed by Coq; hence error messages
about a missing canonical instance declaration typically look very confusing, akin
to: “. . . has type nat but should have type ?e”, instead of “. . . but should have type
(sort ?e)”.

Given the new definition of eqType, when we write (a == b), type inference does not
only infer a function to compare a with b, but also a proof that such a function is correct.
Declaring the eqType instance for nat now requires some extra work, namely proving the
correctness of the eqn function.
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1 Lemma eqnP : Equality.axiom eqn.

2 Proof.

3 move=> n m; apply: (iffP idP) => [|<-]; last by elim n.

4 by elim: n m => [|n IHn] [|m] //= /IHn->.

5 Qed.

We now have all the pieces to declare eqn as canonical.

1 Definition nat_eqMixin := Equality.Mixin eqnP.

2 Canonical nat_eqType := @Equality.Pack nat nat_eqMixin.

Note that the Canonical declaration is expanded (showing the otherwise implicit first
argument of Pack) to document that we are relating the type nat with its comparison
operation.

6.5 Using a generic theory

The whole point of defining interfaces is to share a theory among all examples of each
interface. In other words a theory proved starting from the properties (axioms) of an
interface applies to all its instances, transparently. Every lemma part of an abstract theory
is generic: the very same name can be used for each and every instance of the interface,
exactly as the == notation.

The simplest lemma part of the theory of eqType is the eqP generic lemma that can be
used in conjunction with any occurrence of the == notation.

1 Lemma eqP (T : eqType) : Equality.axiom (@Equality.op T).

2 Proof. by case: T => ty [op prop]; exact: prop. Qed.

The proof is just unpacking the input T. We can use it on a concrete example of eqType

like nat

1 Lemma test (x y : nat) : x == y -> x + y == y + y.

2 Proof. by move=> /eqP ->. Qed.

In short, eqP can be used to change view: turn any == into = and vice versa.
The eqP lemma also applies to abstract instances of eqType. When we rework the instance

of the type (T1 * T2) we see that the proof, by means of the eqP lemma, uses the axiom of
T1 and T2:

1 Section ProdEqType.

2 Variable T1 T2 : eqType.

3

4 Definition pair_eq := [rel u v : T1 * T2 | (u.1 == v.1) && (u.2 == v.2)].

5

6 Lemma pair_eqP : Equality.axiom pair_eq.

7 Proof.

8 move=> [x1 x2] [y1 y2] /=; apply: (iffP andP) => [[]|[<- <-]] //=.

9 by move/eqP->; move/eqP->.

10 Qed.

11

12 Definition prod_eqMixin := Equality.Mixin pair_eqP.

13 Canonical prod_eqType := @Equality.Pack (T1 * T2) prod_eqMixin.

14 End ProdEqType.
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where notation [rel x y : T | E] defines a binary boolean relation on type T. Note that
a similar notation [pred x : T | E] exists for unary boolean predicates.

The generic lemma eqP applies to any eqType instance, like (bool * nat)

1 Lemma test (x y : nat) (a b : bool) : (a,x) == (b,y) -> fst (a,x) == b.

2 Proof. by move=> /eqP ->. Qed.

The (a,x) == (b,y) assumption is reflected to (a,x) = (b,y) by using the eqP view specified
by the user. Here we write == to have all the benefits of a computable function (simplification,
reasoning by cases), but when we need the underlying logical property of substitutivity we
access it via the view eqP.

1 Lemma test (x y : nat) : (true,x) == (false,y) -> false.

2 Proof. by []. Qed.

This statement is true (or better, the hypothesis is false) by computation. In this last
example the use of == give us immediate access to reasoning by cases.

1 Lemma test_EM (x y : nat) : if x == y.+1 then x != 0 else true.

2 Proof. by case: ifP => // /eqP ->. Qed.

R Whenever we want to state equality between two expressions, if they live in an eqType,
always use ==.

6.6 The generic theory of sequences

Now that the eqType interface equips a type with a well specified comparison function we
can use it to build abstract theories, for example the one of sequences.

It is worth to remark that the concept of interface is crucial to the development of such
a theory. If we try to develop the theory of the type (seq T) for an arbitrary T, we can’t go
very far. For example we can express what belonging to a sequence means, but not write a
program that tests if a value is actually in the list. As a consequence we lose the former
automation provided by computation and it also becomes harder to reason by cases on the
membership predicate. On the contrary when we quantify a theory on the type (seq T) for
a T that is an eqType, we recover all that. In other words, by better specifying the types
parameters of a generic container, we define which operations are licit and which properties
hold. So far the only interface we know is eqType, that is primordial to boolean reflection.
In the next chapters more elaborate interfaces will enable us to organize knowledge in
articulated ways.

Going back to the abstract theory of sequences over an eqType, we start by defining the
membership operation.

1 Section SeqTheory.

2 Variable T : eqType.

3 Implicit Type s : seq T.

4
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5 Fixpoint mem_seq s x :=

6 if s is y :: s’ then (y == x) || mem_seq s’ x else false.

Like we did for the overloaded == notation, we can define the \in (and \notin) infix
notation. We can then easily define what a duplicate-free sequence is, as well as a procedure
for removing duplicates from a sequence.

1 Fixpoint uniq s :=

2 if s is x :: s’ then (x \notin s’) && uniq s’ else true.

3 Fixpoint undup s :=

4 if s is x :: s’ then

5 if x \in s’ then undup s’ else x :: undup s’

6 else [::].

Proofs about such concepts can be made pretty much as if the type T was nat or bool,
i.e. our predicates do compute.

1 Lemma in_cons y s x : (x \in y :: s) = (x == y) || (x \in s).

2 Proof. by []. Qed.

3

4 Lemma mem_undup s : undup s =i s.

5 Proof.

6 move=> x; elim: s => //= y s IHs.

7 case Hy: (y \in s); last by rewrite in_cons IHs.

8 by rewrite in_cons IHs; case: eqP => // ->.

9 Qed.

where (A =i B) is a synonym for (∀ x, x \in A = x \in B),
The in_cons lemma is just a convenient rewrite rule, while mem_undup says that the undup

function does not drop any non-duplicate element. Note that in the proof we use both the
decidability of membership (Hy) and the decidability of equality (via eqP).

1 Lemma undup_uniq s : uniq (undup s).

2 Proof.

3 by elim: s => //= x s IHs; case sx: (x \in s); rewrite //= mem_undup sx.

4 Qed.

The proof of undup_uniq requires no new ingredients and completes the specification of
undup.

The last, very important step in the theory of sequences is to show that the container
preserves the eqType interface: whenever we can compare the elements of a sequence, we
can also compare sequences.

1 Fixpoint eqseq s1 s2 {struct s2} :=

2 match s1, s2 with

3 | [::], [::] => true

4 | x1 :: s1’, x2 :: s2’ => (x1 == x2) && eqseq s1’ s2’

5 | _, _ => false

6 end.

7

8 Lemma eqseqP : Equality.axiom eqseq.

9 Proof.

10 elim=> [|x1 s1 IHs] [|x2 s2] /=; do? [exact: ReflectT | exact: ReflectF].

11 case: (x1 =P x2) => [<-|neqx]; last by apply: ReflectF => -[eqx _].
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12 by apply: (iffP (IHs s2)) => [<-|[]].

13 Qed.

14

15 Definition seq_eqMixin := Equality.Mixin eqseqP.

16 Canonical seq_eqType := @Equality.Pack (seq T) seq_eqMixin.

In this script, (x1 =P x2) is a notation for (@eqP T x1 x2), a proof of the reflect inductive spec;
a case analysis on the term (x1 =P x2) has thus two branches. Since the constructors ReflectT

and ReflectF carry a proof, each branch of this analysis features an extra assumption; the
branch corresponding to ReflectT has the hypothesis x1 = x2 and the branch corresponding
to ReflectF has its negation x1 != x2.

As an example we build a sequence of sequences, and we assert that we can use the ==

and \in notation on it, as well as apply the list operations and theorems on objects of type
(seq (seq T)) when T is an eqType.

1 Let s1 := [:: 1; 2 ].

2 Let s2 := [:: 3; 5; 7].

3 Let ss : seq (seq nat) := [:: s1 ; s2 ].

4 Check (ss != [::]) && s1 \in ss.

5 Check undup_uniq ss.

As we have anticipated in chapter 1, functional programming and lists can model
definite, iterated operations like the “big” sum Σ. The next section describes how the
generic theory of iterated operations can be built and made practical thanks again to
programmable type inference.

6.7 The generic theory of “big” operators

The objective of the bigop library is to provide compact notations for definite iterated
operations and a library of general results about them.

Let us take two examples of iterated operations:

n

∑
i=1

f (i) = f (1)+ f (2)+ . . .+ f (n)
⋃
a∈A

g(a) = g(a1)∪g(a2)∪ . . .∪g(a|A|)

To share an infrastructure for this class of operators we have to identify a common
pattern. First the big symbol in front specifies the operation being iterated and the neutral
element for such operator. For example if A is empty, then the union of all g(a) is /0, while
if n = 0, then the sum of all f (i) is 0. Then the range is an expression identifying a finite
set of elements, sometimes expressing an order (relevant when the iterated operation is not
commutative). Finally a general term describing the items being combined by the iterated
operation.

As already mentioned in section 1.6, the functional programming language provided by
Coq can express in a very natural way iterations over a finite domain. In particular such
finite domain can be represented as a list; the general term f (i) by a function (fun i => ...);
the operation of evaluating a function on all the elements of a list and combining the results
by the foldr iterator.

Functional programming can also be used to describe the finite domain. For example,
the list of natural numbers m,m+1, . . . ,m+(n−m)−1 corresponding to the range m≤ i < n
can be built using the iota function as follows:
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1 Definition index_iota m n := iota m (n - m).

The only component of typical notations for iterated operations we have not discussed
yet is the filter, used to iterate the operation only on a subset of the domain. For example,
to state that the sum of the first n odd numbers is n2, one could write:

∑
i<2n,2-i

i = n2

An alternative writing for the same summation exploits the general terms to rule out even
numbers:

∑
i<n

(i∗2 + 1) = n2

While this latter writing is elegant, it is harder to support generically, since the filtering
condition is not explicit. For example the following equation clearly holds for any filter,
range and general term. It would be hard to express such a statement if the filter were
mixed with the general term, and hence its negation were not obvious to formulate.

∑
i<2n,2|i

i + ∑
i<2n,2-i

i = ∑
i<2n

i

Lastly, not all filtering conditions can be naturally expressed in the general term. An
example is not being a prime number.

In the light of that, our formal statement concerning the sum of odd numbers is the
following:

1 Lemma sum_odd n : \sum_(0 <= i < n.*2 | odd i) i = n^2.

where .*2 is a postfix notation, similar to .+1, standing for doubling. Under the hood we
expect to find the following expression:

1 Lemma sum_odd n :

2 foldr (fun acc i => if odd i then i + acc else acc)

3 0 (index_iota 0 n.*2)

4 = n^2

The following section details how the generic notation for iterated operation is built
and specialized to frequent operations like Σ. Section 6.7.2 focuses on the generic theory of
iterated operations.

6.7.1 The generic notation for foldr

The generic notation for iterated operations has to be attached to a slightly specific variant
of the foldr iterator, in order to clearly identify all components. This variant, called bigop,
takes as argument a range (r : seq I), a neutral element (op : R), and a binary operation
(op : R -> R -> R), to be iterated. Note that the type of the elements in the range are not
the same as the type of the arguments of the iterated operation. Indeed, bigop also uses a
function (F : I -> R), as well as a filtering predicate (P : pred I), to construct the actual
iteration range. In the end, bigop filters the range r using predicate P, and precomposes by
the function F before iterating the binary operation op. And idx is the value output when
the filtered range is empty.
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1 Definition bigop R I idx op r (P : pred I) (F : I -> R) : R :=

2 foldr (fun i x => if P i then op (F i) x else x) idx r.

Using the bigop constant to express our statement leads to

1 Lemma sum_odd n :

2 bigop 0 addn (index_iota 0 n.*2) odd (fun i => i) = n^2.

Note that odd is already a predicate on nat, the general term is the identity function,
the range r is (index_iota 0 n.*2), the iterated operation addn and the initial value is 0.

A generic notation can now be attached to bigop.

1 Notation "\big [ op / idx ]_ ( i <- r | P ) F" :=

2 (bigop idx op r (fun i => P%B) (fun i => F)) : big_scope.

Here op is the iterated operation, idx the neutral element, r, the range, P the filter
(hence the boolean scope) and F the general term. Using such notation the running example
can be stated as follows.

1 Lemma sum_odd n : \big[addn/0]_(i <- index_iota 0 n.*2 | odd i) i = n^2.

To obtain a notation closer to the mathematical one, we can specialize at once the
iterated operation and the neutral element as follows.

1 Local Notation "+%N" := addn (at level 0, only parsing).

2 Notation "\sum_ ( i <- r | P ) F" :=

3 (\big[+%N/0%N]_(i <- r | P%B) F%N) : nat_scope.

Such a notation is placed in nat_scope as it is specialized to addn and 0. The general
term F is also placed in the scope of natural numbers. We can proceed even further and
specialize the notation to a numerical range:

1 Notation "\big [ op / idx ]_ ( m <= i < n | P ) F" :=

2 (bigop idx op (index_iota m n) (fun i : nat => P%B) (fun i => F))

3 : big_scope.

4 Notation "\sum_ ( m <= i < n ) F" :=

5 (\big[+%N/0%N]_(m <= i < n) F%N) : nat_scope.

We can now comfortably state the theorem about the sum of odd numbers inside
nat_scope. The proof of this lemma is left as an exercise; we now focus on a simpler instance,
for n equal to 3, to introduce the library that equips iterated operations.

1 Lemma sum_odd_3 : \sum_(0 <= i < 3.*2 | odd i) i = 3^2.

2 Proof.

3 rewrite unlock /=.

The bigop constant is “locked” to make the notation steady. To unravel its computational
behavior one has to rewrite with the unlock lemma.
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============================

1 + (3 + (5 + 0)) = 3^2

The computation behavior of bigop is generic; it does not depend on the iterated
operation. By contrast, some results on iterated operations may depend on a particular
property of the operation. For example, to pull out the last item from the summation, i.e.,
using the following lemma

if a≤ b then ∑
a≤i<b+1

Fi = ∑
a≤i<b

Fi + Fb

to obtain

============================

1 + (3 + 0) + 5 = 3^2

one really needs the iterated operation, addition here, to be associative. Also note that,
given the filter, what one really pulls out is (if odd 5 then 5 else 0), so for the theorem to
be true for any range, 0 must also be neutral.

The lemma to pull out the last item of an iterated operation is provided as the
combination of two simpler lemmas called respectively big_nat_recr and big_mkcond.

The former states that one can pull out of an iterated operation on a numerical range
the last element, proviso the range is non-empty.

1 Lemma big_nat_recr n m F : m <= n ->

2 \big[*%M/1]_(m <= i < n.+1) F i = (\big[*%M/1]_(m <= i < n) F i) * F n.

Such lemma applies to any operation *%M and any neutral element 1 and any generic
term F, while the filter P is fixed to true (i.e., no filter). The big_mkcond lemmas moves the
filter into the generic term.

1 Lemma big_mkcond I r (P : pred I) F :

2 \big[*%M/1]_(i <- r | P i) F i =

3 \big[*%M/1]_(i <- r) (if P i then F i else 1).

If we chain the two lemmas we can pull out the last item.

1 Lemma sum_odd_3 :

2 \sum_(0 <= i < 3.*2 | odd i) i = 3^2.

3 Proof.

4 rewrite big_mkcond big_nat_recr //=.

5 rewrite unlock /=.

============================

\sum_(0 <= i < 5) (if odd i then i else 0)

+ 5 =

3^2

When the last item is pulled out, we can unlock the computation and obtain the
following goal:

============================

0 + (1 + (0 + (3 + (0 + 0)))) + 5 = 3^2

It is clear that for the two lemmas to be provable, one needs the associativity property
of addn and also that 0 is neutral. In other words, the lemmas we used require the operation
*%M to form a monoid together with the unit 1.
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We detail how this requirement is stated, and automatically satisfied by Coq in the
case of addn, in the next section. We conclude this section by showing that the same lemmas
also apply to an iterated product.

1 Lemma prod_fact_4 :

2 \prod_(1 <= i < 5) i = 4`!.
3 Proof.

4 rewrite big_nat_recr //=.

============================

\prod_(1 <= i < 4) i * 4 = 4`!

This is the reason why we can say that the bigop library is generic: it works uniformly
on any iterated operator, and, provided the operator has certain properties, it gives uniform
access to a palette of lemmas.

6.7.2 Assumptions of a bigop lemma

As we anticipated, canonical structures can be indexed not only on types, but on any term.
In particular we can index them on function symbols to relate, for example, addn and its
monoid structure.

Here we only present the Monoid interface an operation has to satisfy in order to access
a class of generic lemmas. Chapter 8 adds other interfaces to the picture and organizes the
bigop library around them.

1 Module Monoid.

2 Section Definitions.

3 Variables (T : Type) (idm : T).

4

5 Structure law := Law {

6 operator : T -> T -> T;

7 _ : associative operator;

8 _ : left_id idm operator;

9 _ : right_id idm operator

10 }.

The Monoid.law structure relates the operator (the key used by canonical structures) to
the three properties of monoids.

We can then use this interface as a parameter for a bunch of lemmas, describing the
theory shared by its instances. The (Monoid.law idx) type annotation may seem puzzling at
first. It combines various mechanisms we have seen earlier in the book: once the section
Definitions is closed, the Variables (T : Type) and (idm : T) are abstracted in the definition
of law (and the operator projection). Moreover T becomes an implicit argument: applying
Monoid.law to idx thus builds a type.

1 Coercion operator : law >-> Funclass.

2 Section MonoidProperties.

3 Variable R : Type.

4

5 Variable idx : R.

6 Local Notation "1" := idx.

7

8 Variable op : Monoid.law idx.

9 Local Notation "*%M" := op (at level 0).

10 Local Notation "x * y" := (op x y).

The lemma we used in the previous section, big_nat_recr, is stated as follows. Note
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that op is a record, and not a function, but since the operator projection is declared as a
coercion we can use op as such. In particular under the hood of the expression \big[*%M/1]

we find \big[ operator op / idx ].

1 Lemma big_nat_recr n m F : m <= n ->

2 \big[*%M/1]_(m <= i < n.+1) F i = (\big[*%M/1]_(m <= i < n) F i) * F n.

If we print such a statement once the Section MonoidProperties is closed, we see the
requirement affecting the operation op explicitly.

big_nat_recr :

∀ (R : Type) (idx : R) (op : Monoid.law idx) (n m : nat) (F : nat -> R),

m <= n ->

\big[op/idx]_(m <= i < n.+1) F i =

op (\big[op/idx]_(m <= i < n) F i) (F n)

Note that wherever the operation op occurs, we also find the Monoid.operator projection.
To make this lemma available for addition on natural numbers, we need to declare the

canonical monoid structure on addn.

1 Canonical addn_monoid := Monoid.Law addnA add0n addn0.

This command adds the following rule to the canonical structures index:

canonical structures Index

projection value solution

Monoid.operator addn addn_monoid

Whenever the lemma is applied to an expression about natural numbers as

1 Lemma test : \sum_(0 <= i < 6) i = \sum_(0 <= i < 5) i + 5.

2 Proof. by apply: big_nat_recr. Qed.

the following unification problem has to be solved: addn versus (operator ?m). Inferring
a value for ?m mean inferring a proof that addn forms a monoid with 0; this is a prerequisite
for the big_nat_recr lemma we don’t have to provide by hand.

6.7.3 Searching the bigop library

Searching the bigop library for a lemma is slightly harder than searching the other libraries
as explained in section 2.5. In particular one can hardly search with patterns. For example
the following search returns no results:

1 Search _ (\sum_(0 <= i < 0) _).

A lemma stating that an empty sum is zero is not part of the library. What is part of
the library is a lemma that says that, if the list being folded is nil, then the result is the
initial value. Such a lemma, called big_nil, thus mentions only [::] in its statement, and
not the (logically) equivalent (index_iota 0 0). Still the goal (\sum_(0 <= i < 0) i = 0) can
be solved by big_nil. Finally, the pattern we provide specifies a trivial filter, while the
lemma is true for any filtering predicate. Of course one can craft a pattern that finds such
lemma, but it is very verbose and hence inconvenient.
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1 Search _ (\big[_/_]_(i <- [::] | _) _).

The recommended way to search the library is by name, using the word “big”. For exam-
ple to find all lemmas allowing one to prove the equality of two iterated operators one can
Search "eq" "big". Similarly, induction lemmas can be found with Search "ind" "big"; index
exchange lemmas with Search "exchange" "big"; lemmas pulling out elements from the itera-
tion with Search "rec" "big"; lemmas working on the filter condition with Search "cond" "big",
and so on.

Finally the Mathematical Components user is advised to read the contents of the bigop
file in order to get acquainted with the naming policy used in that library.

6.8 Stable notations for big operators

The bigop constant and the notations attached to it are defined in a more complex way in
the Mathematical Components library. In particular, bigop is fragile because the predicate
and the general term do not share the same binder. For example, if we write the following

1 Lemma sum_odd n :

2 bigop 0 addn (index_iota 0 n.*2) (fun j => odd j) (fun i => i) = n^2

What should be printed by the system? It is an iterated sum on j or i? Similarly, if
the index becomes unused during a proof, which name should be printed?

1 Lemma sum_0 n :

2 bigop 0 addn (index_iota 0 n) (fun _ => true) (fun _ => 0) = 0

To solve these problems we craft a box, BigBody, with separate compartments for each
sub component. Such a box will be used under a single binder and will hold an occurrence
of the bound variable even if it is unused in the predicate and in the general term.

1 Inductive bigbody R I := BigBody of I & (R -> R -> R) & bool & R.

The arguments of BigBody are respectively the index, the iterated operation, the filter
and the generic expression. For our running example the bigbody component would be:

1 Definition sum_odd_def_body i := BigBody i addn (odd i) i.

It is then easy to turn such compound term into the function expected by foldr:

1 Definition applybig {R I} (body : bigbody R I) acc :=

2 let: BigBody _ op b v := body in if b then op v acc else acc.

Finally the generic iterated operator can be defined as follows.

1 Definition bigop R I idx r (body : I -> bigbody R I) :=

2 foldr (applybig \o body) idx r.

And a generic notation can be attached to it.
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1 Notation "\big [ op / idx ]_ ( i <- r | P ) F" :=

2 (bigop idx r (fun i => BigBody i op P%B F)) : big_scope.

6.9 Working with overloaded notations

This little section deals with two “technological issues” the reader may need to know in
order to define overloaded notations or work comfortably with them.

The first one is the necessity to tune the behavior of the simplification tactic (the /=

switch) to avoid loosing the head constant to which the overloaded notation is attached.
For example the following term:

1 (@eq_op bool_eqType true false).

can be simplified (reduced) to the following one

1 (@eqb true false).

While the two terms are logically equivalent (i.e., the logic cannot distinguish them),
the pretty printer can. The overloaded == notation is attached to the eq_op constant, and
if such constant fades away the notation follows it. Coq lets one declare constants that
should not be automatically simplified away, unless they occur in a context that demands
it.

1 Arguments eq_op {_} _ _ : simpl never.

2 Eval simpl in ∀ x y : bool, x == y.

3 Eval simpl in ∀ x y : bool, true == false || x == y.

The first call to simpl does not reduce away eq_op leaving the expression untouched. In
the second example, it does reduce to false the test (true == false) in order to simplify
the || connective.

The converse technological issue may arise when canonical structure inference“promotes”
the operator name to a projection of the corresponding canonical monoid structure.

1 Implicit Type l : seq nat.

2 Lemma example F l1 l2 :

3 \sum_(i <- l1 ++ l2) F i =

4 \sum_(i <- l2 ++ l1) F i.

5 Proof.

6 rewrite big_cat.

7

F : nat -> nat

l1, l2 : seq nat

============================

addn_monoid

(\big[addn_monoid/0]_(i <- l1) F i)

(\big[addn_monoid/0]_(i <- l2) F i) =

\sum_(i <- (l2 ++ l1)) F i

It is not uncommon to see /= switch in purely algebraic proofs (where no computation is
really involved) just to clean up the display of the current conjecture. The proof concludes
as follows:

1 by rewrite addnC -big_cat.

2 Qed.
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6.10 Ad-hoc polymorphism

6.10.1 Phantom types

First of all, canonical structure resolution kicks in during unification that in turn is used to
compare types. Types are compared whenever a function is applied to an argument, and
in particular the type expected by the function and the one of the argument are unified.
What we need to craft is a mechanism that takes any input term (proper terms like addn

but also types as nat) and puts it into a type. We will then wire things up so that such
type is unified with another one containing the application of a projection to an unknown
canonical structure instance.

1 Inductive phantom (T : Type) (p : T) := Phantom.

The Phantom constructor expects two arguments. If we apply it to nat, as in (Phantom Type nat),
we obtain a term of type (phantom Type nat). If we apply it to addn as in (Phantom (nat -> nat -> nat) addn)

we obtain a term of type (phantom (nat -> nat -> nat) addn). In both cases the input term
(nat and addn respectively) is now part of a type.

The following example defines a notation {set T} that fails if T is not an eqType: it is an
alias of the type (seq T) that imposes extra requirements on the type argument.

1 Definition set_of (T : eqType) (_ : phantom Type (Equality.sort T)) := seq T.

2 Notation "{ ’set’ T }" := (set_of _ (Phantom Type T))

3 (at level 0, format "{ ’set’ T }") : type_scope.

When type inference runs on{set nat} the underlying term being typed is (set_of ?T (Phantom Type nat)).
The unification problem arising for the last argument of set_of is (phantom Type (Equality.sort ?T))

versus (phantom Type nat), that in turn contains the sub problem we are interested in:
(Equality.sort ?T) versus nat.

6.10.2 Querying canonical structures

It is possible to ask Coq if a certain term does validate an interface. For example, to check
if addn forms a monoid one can Check [law of addn]. A notation of this kind exists for any
interface, for example [eqType of nat] is another valid query to check if nat is equipped
with a canonical comparison function.

This mechanism can also be used to craft notations that assert if one of their arguments
validates an interface. For example imagine one wants to define the concept of finite set as
an alias of (seq T) but such that only values for T being eqTypes are accepted.

The rest of this section introduces the general mechanism of phantom types used to
trigger canonical structure resolution.
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Inductive data types have been used to both code data, like lists, and logical connectives,
like the existential quantifier. Properties were always expressed with boolean programs.
The questions addressed in this chapter are the following ones. What status do we want
to give to, say, lists of size 5, or integers smaller than 7? Which relation to put between
integers and integers smaller than 7? How to benefit from extra properties integers smaller
than 7 have, like being a finite collection?

In standard mathematics one would simply say that the integers are an infinite set
(called nat), and that the integers smaller that 7 form a finite subset of the integers (called
’I_7 ). Integers and integers smaller than 7 are interchangeable data: if (n : nat) and
(i : ’I_7) one can clearly add n to i, and possibly show that the sum is still smaller than
7. Also, an informed reader knows which operations are compatible with a subset. E.g.
(i-1) stays in ’I_7 , as well as (i+n %| 7). So in a sense, subsets also provide a linguistic
construct to ask the reader to track an easy invariant and relieving the proof text from
boring details.

The closest notion provided by the Calculus of Inductive Constructions is the one of
Σ−types, that we have already seen in the previous chapter in their general form of records.
For example, one can define the type ’I_7 as the Σ-type Σ(n:nat)n < 7 which pairs a natural
number n and proof that it is smaller than 7. Since proofs are terms, one can pack together
objects and proofs of some properties to represent the objects that have those properties.
For example 3, when seen as an inhabitant of ’I_7 , is represented by a dependent pair
(3, p) where (p : 3 < 7). Note that, by forgetting the proof p, one recovers a nat that can
be passed to, say, the program computing the addition of natural numbers, or to theorems
quantified on any nat. Also, an inhabitant of ’I_7 can always be proved smaller than 7,
since such evidence is part of the object itself. We call this construction a sub-type.

Such representation can be expensive in the sense that it imposes extra work (proofs!)
to create a sub-type object, so it must be used with care. The Mathematical Components
library provides several facilities that support the creation of record-based sub-types, and
of their inhabitants. We shall in particular see how both type inference and dynamic tests
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can be used to supply the property proofs, modelling once again the eye of a trained reader.

Finally, let us point out that we have already encountered proof-carrying records in the
previous chapter, with eqType. The eqType record played the role of an interface, expressing
a relation between a type and a function (the comparison operation), and giving access to
a whole theory of results through type inference. Many such interfaces can be extended to
sub-types, and we shall see that the Mathematical Components library provides facilities
to automate this.

7.1 n-tuples, lists with an invariant on the length

We begin by defining the type of n-tuples: sequences of length n. In this section we focus
on how tuples are defined, used as regular sequences and how to program type inference to
track for us the invariant on tuples’ length. Next section will complete the definition of the
tuple sub-type by making the abstract theory attached to the eqType interface available on
tuples whenever it is available on sequences.

A tuple is a sequence of values (of the same type) whose length is made explicit in the
type.

1 Structure tuple_of n T := Tuple { tval :> seq T; _ : size tval == n }.

2 Notation "n .-tuple T" := (tuple_of n T).

The key property of this type is that it tells us the length of its elements when seen as
sequences:

1 Lemma size_tuple T n (t : n.-tuple T) : size t = n.

2 Proof. by case: t => s /= /eqP. Qed.

In other words each inhabitant of the tuple type carries, in the form of an equality
proof, its length. As test bench we pick this simple example: a tuple is processed using
functions defined on sequences, namely rev and map. These operations do preserve the
invariant of tuples, i.e., they don’t alter the length of the subjacent list.

1 Example seq_on_tuple n (t : n.-tuple nat) :

2 size (rev [seq 2 * x | x <- rev t]) = size t.

There are two ways to prove that lemma. The first one is to ignore the fact that t is a
tuple; consider it as a regular sequence, and use only the theory of sequences.

1 Proof. by rewrite map_rev revK size_map. Qed.

Mapping a function over the reverse of a list is equivalent to first mapping the function
over the list and then reversing the result (map_rev). Then, reversing twice a list is a no-op,
since rev is an involution (revK). Finally, mapping a function over a list does not change
its size (size_map). The sequence of rewritings makes the left hand side of the conjecture
identical to the right hand side, and we can conclude.

This simple example shows that the theory of sequences is usable on terms of type
tuple. Still we didn’t take any advantage from the fact that t is a tuple.

The second way to prove this theorem is to rely on the rich type of t to actually compute
the length of the underlying sequence.
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1 Example just_tuple_attempt n (t : n.-tuple nat) :

2 size (rev [seq 2 * x | x <- rev t]) = size t.

3 Proof. rewrite size_tuple.

1 subgoal

n : nat

t : n .-tuple nat

============================

size (rev [seq 2 * x | x <- rev t]) = n

The rewriting replaces the right hand side with n as expected, but we can’t go any
further: the lemma does not apply (yet) to the left hand side, even if we are working with
a tuple t. Why is that? In the left hand side t is processed using functions on sequences.
The type of rev for example is (∀ T, seq T -> seq T). The coercion tval from tuple_of to
seq makes the expression (rev (tval t)) well typed, but the output is of type (seq nat). We
would like the functions on sequences to return data as rich as the one taken in input, i.e.,
preserve the invariant expressed by the tuple type. Or, in alternative, we would like the
system to recover such information.

Let us examine what happens if we try to unify the left hand side of the size_tuple

equation with the redex (size (rev t)), using the following toolkit:

1 Notation "X (*...*)" :=

2 (let x := X in let y := _ in x) (at level 100, format "X (*...*)").

3 Notation "[LHS ’of’ equation ]" :=

4 (let LHS := _ in

5 let _infer_LHS := equation : LHS = _ in LHS) (at level 4).

6 Notation "[unify X ’with’ Y ]" :=

7 (let unification := erefl _ : X = Y in True).

We can now simulate the unification problem encountered by rewrite size_tuple

1 Check ∀ T n (t : n.-tuple T),

2 let LHS := [LHS of size_tuple _] in

3 let RDX := size (rev t) in

4 [unify LHS with RDX].

The corresponding error message is the following one:

Error:

In environment

T : Type

n : nat

t : n .-tuple T

LHS := size (tval ?94 ?92 ?96) (*...*) : nat

RDX := size (rev (tval n T t)) : nat

The term "erefl ?95" has type "?95 = ?95" while

it is expected to have type "LHS = RDX".

Unifying (size (tval ?n ?T ?t)) with (size (rev (tval n T t))) is hard. Both term’s
head symbol is size, but then the projection tval applied to unification variables has to be
unified with (rev ...), and both terms are in normal form.
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Such problem is nontrivial because to solve it one has to infer a record for ?t that
contains a proof: a tuple whose tval field is rev t (and whose other field contains a proof
that such sequence has length ?n).

We have seen in the previous chapter that this is exactly the class of problems that
is addressed by canonical structure instances. We can thus use Canonical declarations to
teach Coq the effect of list operations on the length of their input.

1 Section CanonicalTuples.

2 Variables (n : nat) (A B : Type).

3

4 Lemma rev_tupleP (t : n.-tuple A) : size (rev t) == n.

5 Proof. by rewrite size_rev size_tuple. Qed.

6 Canonical rev_tuple (t : n.-tuple A) := Tuple (rev_tupleP t).

7

8 Lemma map_tupleP (f: A -> B) (t: n.-tuple A) : size (map f t) == n.

9 Proof. by rewrite size_map size_tuple. Qed.

10 Canonical map_tuple (f: A -> B) (t: n.-tuple A) := Tuple (map_tupleP f t).

Even if it is not needed for the lemma we took as our test bench, we add another
example where the length is not preserved, but rather modified in a statically known way.

1 Lemma cons_tupleP (t : n.-tuple A) x : size (x :: t) == n.+1.

2 Proof. by rewrite /= size_tuple. Qed.

3 Canonical cons_tuple x (t : n.-tuple A) : n.+1 .-tuple A :=

4 Tuple (cons_tupleP t x).

The global table of canonical solutions is extended as follows.

Canonical Structures Index

projection value solution combines solutions for

tval N A rev A S rev_tuple N A T T ← (tval N A, S)

tval N B map A B F S map_tuple N A B F T T ← (tval N A, S)

tval N.+1 A X :: S cons_tuple N A T X T ← (tval N A, S)

Thanks to the now extended capability of type inference, we can prove our lemma by
just reasoning about tuples.

1 Example just_tuple n (t : n.-tuple nat) :

2 size (rev [seq 2 * x | x <- rev t]) = size t.

3 Proof. by rewrite !size_tuple. Qed.

The iterated rewriting acts now twice replacing both the left hand and the right hand
side with n. It is worth observing that the size of this proof (two rewrite steps) does not
depend on the complexity of the formula involved, while the one using only the theory of
lists requires roughly one step per list-manipulating function. What depends on the size of
the formula is the number of canonical structure resolution steps type inference performs.
Another advantage of this last approach is that one is not required to know the names of
the lemmas: it is the new concept of tuple that takes care of the size related reasoning
steps.
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7.2 n-tuples, a sub-type of sequences

We have seen that (seq T) is an eqType whenever T is. We now want to transport such
eqType structure on tuples. We first do it manually, then we provide a toolkit to ease the
declaration of sub-types.

The first step is to define a comparison function for tuples.

1 Definition tcmp n (T : eqType) (t1 t2 : n.-tuple T) := tval t1 == tval t2.

Here we simply reuse the one on sequences, and we ignore the proof part of tuples.
What we need now to prove

1 Lemma eqtupleP n (T : eqType) : Equality.axiom (@tcmp n T).

2 Proof.

3 move=> x y; apply: (iffP eqP); last first.

4 by move=> ->.

5 case: x; case: y => s1 p1 s2 p2 /= E.

6 rewrite E in p2 *.

7 by rewrite (eq_irrelevance p1 p2).

8 Qed.

The first direction is trivial by rewriting. The converse direction makes an essential use
of the eq_irrelevance lemma, which is briefly discussed in section 7.2.2.

2 subgoals

n : nat

T : eqType

x, y : n .-tuple T

============================

x = y -> tval x = tval y

subgoal 2 is:

tval x = tval y -> x = y

1 subgoal

n : nat

T : eqType

s1 : seq T

p1 : size s1 = n

s2 : seq T

p2 : size s2 = n

E : s2 = s1

============================

Tuple p2 = Tuple p1

We can then declare the canonical eqType instance for tuples.

1 Canonical tuple_eqType n T : eqType :=

2 Equality.Pack (Equality.Mixin (@eqtupleP n T)).

As a simple test we check that the notations and the theory that equips eqType is
available on tuples.
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1 Check ∀ t : 3.-tuple nat, [:: t] == [::].

2 Check ∀ t : 3.-tuple bool, uniq [:: t; t].

3 Check ∀ t : 3.-tuple (7.-tuple nat), undup_uniq [:: t; t].

Although all these proofs and definitions are specific to tuple, we are following a
general schema here, involving three parameters: the original type (seq T), the sub-type
(n.-tuple T) and the projection tval. The Mathematical Components library provides a
sub-type kit to let one write just the following text:

1 Canonical tuple_subType := [subType for tval].

2 Definition tuple_eqMixin := [eqMixin of n.-tuple T by <:].

3 Canonical tuple_eqType := EqType (n.-tuple T) tuple_eqMixin.

Line 1 registers tval as a canonical projection to obtain a known type out of the newly
defined type of tuples. Once the projection is registered the equality axiom can be proved
automatically by [eqMixin of n.-tuple T by <:], where <: is just a symbol that is reminiscent
of sub-typing in functional languages like OCaml. Note that hnf is an evaluation strategy
that focuses on the head symbol of the expression and that ignores its subterms, see [Coq,
section 5.3.7, “Performing computations”]. The following section details the implementation
of the sub-type kit.

7.2.1 The sub-type kit

When one has a base type T and a sub-type ST defined as a boolean sigma type, the
Mathematical Components library provides facilities to build all the applicable canonical
instances from just the name of the projection going from ST to T.

To register tval as the projection from tuples to sequences one writes:

1 Canonical tuple_subType := Eval hnf in [subType for tval].

As we will see in the next section, the subType structure provides a generic notation val

for the projector of a sub-type (i.e., tval for tuple), with an overloaded injectivity lemma
val_inj saying that two objects equal in T are also equal in ST.

In addition to the generic projection, we get a generic static constructor Sub, which
takes a value in the type T and a proof.

More interestingly, the sub-type kit provides the dynamic constructors insub and insubd

that do not need a proof as they dynamically test the property, and offer an attractive
encapsulation of the difficult convoy pattern [Chl14, section 8.4]. The insubd constructor
takes a default sub-type value which it returns if the tests fails, while insub takes only a
base type value and returns an option; both are locked and will not evaluate the test, even
for a ground base type value.1

Both Sub and insub expect the typing context to specify the sub-type.
Here is a few example uses, using tuple:

1 Variables (s : seq nat) (t : 3.-tuple nat).

2 Hypothesis size3s : size s == 3.

3 Let t1 : 3.-tuple nat := Sub s size3s.

1The equations describing the computation of insub are called insubT and insubF.



7.2 n-tuples, a sub-type of sequences 143

4 Let t2 := if insub s is Some t then val (t : 3.-tuple nat) else nil.

5 Let t3 := insubd t s. (* : 3.-tuple nat *)

We put insub to good use in section 7.4 when an enumeration for sub-types is to be
defined.

The subType structure describes a boolean sigma-type (a dependent pair whose second
component is the proof of a boolean formula) in terms of its projector, constructor, and
elimination rule:

1 Section SubTypeKit.

2 Variables (T : Type) (P : pred T).

3

4 Structure subType : Type := SubType {

5 sub_sort :> Type;

6 val : sub_sort -> T;

7 Sub : ∀ x, P x -> sub_sort;

8 (* elimination rule for sub_sort *)

9 _ : ∀ K (_ : ∀ x Px, K (@Sub x Px)) u, K u;

10 _ : ∀ x Px, val (@Sub x Px) = x

11 }.

Instances can provide unification hints for any of the three named fields, not just for
sub_sort. Hence, val ?u unifies with tval t, and Sub ?x ?xP unifies with Tuple s sP, including
in rewrite patterns.

The subType constructor notation assumes the sub-type is isomorphic to a sigma-type,
so that its elimination rule can be derived using Coq’s generic destructing let, and the
projector-constructor identity can be proved by reflexivity.

1 Notation "[ ’subType’ ’for’ v ]" := (SubType _ v _

2 (fun K K_S u => let (x, Px) as u return K u := u in K_S x Px)

3 (fun x px => erefl x)).

Note how the value of Sub is determined by unifying the type of the first function with
the type expected by SubType, with the help of the “as u return K u” annotation, see [Coq,
section 1.2.13].

A useful variant of [subType for tval] is [newType for Sval]. Such specialized construc-
tors force the predicate defining the sub-type to be the trivial one: the sub-type ST adds
no property to the type T, but the resulting type ST is different from T and inhabitants of
ST cannot be mistaken for inhabitants of T. Of course all the theory that equips T is also
available on ST. Aliasing a type is useful to attach to it different notations or coercions.

7.2.2 A note on boolean Σ-types

The eq_irrelevance theorem used to prove that tuples form an eqType is a delicate matter
in the Calculus of Inductive Constructions. In particular it is not valid in general: two
proofs of the same predicate may not be provably equal.

To the rescue comes the result of Hedberg [Hed98] that proves such property for a
wide class of predicates. In particular it shows that any type with decidable identity has
unique identity proofs. This result can be proved in its full generality in the Mathematical
Components library, using to the eqType interface.
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1 Theorem eq_irrelevance (T : eqType) (x y : T) : ∀ e1 e2 : x = y, e1 = e2.

If we pick the concrete example of bool, then all proofs that (b = true) for a fixed b are
identical.

Here we can see another crucial advantage of boolean reflection. Forming sub-types
poses no complication from a logic perspective since proofs of boolean identities are very
simple, canonical, objects.

In the Mathematical Components library, where all predicates that can be expressed as
a boolean function are expressed as a boolean function, forming sub-types is extremely easy.

R It is convenient to define new types as sub-types of existing ones, since they inherit
all the theory.

7.3 Finite types and their theory

Before describing other sub-types, we introduce the interface of types equipped with a
finite enumeration.

1 Notation count_mem x := (count [pred y | y == x]).

2 Module Finite.

3 Definition axiom (T : eqType) (e : seq T) :=

4 ∀ x : T, count_mem x e = 1.

5

6 Record mixin_of (T : eqType) := Mixin {

7 enum : seq T;

8 _ : axiom enum;

9 }

10 End Finite.

The axiom asserts that any inhabitant of T occurs exactly once in the enumeration e.
We omit here the full definition of the interface, as it will be discussed in detail in the next
chapter. What is relevant for the current section is that finType is the structure of types
equipped with such enumeration, that any finType is also an eqType (see the parameter of
the mixin), and that, to declare a finType instance, one can write:

1 Definition mytype_finMixin := Finite.Mixin mytype_enum mytype_enumP.

2 Canonical mytype_finType := @Finite.Pack mytype mytype_finMixin.

Given that the most recurrent way of showing that an enumeration validates Finite.axiom

is by proving that it is both duplicate-free and exhaustive, a convenience mixin constructor
is provided.

1 Lemma myenum_uniq : uniq myenum.

2 Lemma mem_myenum : ∀ x : T, x \in myenum.

3 Definition mytype_finMixin := Finite.UniqFinMixin myenum_uniq mem_myenum.

The interface of finType comes equipped with a theory that, among other things, provides
a cardinality operator #|T| and bounded boolean quantifications like [∀ x, P].
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1 Lemma cardT (T : finType) : #|T| = size (enum T).

2 Lemma forallP (T : finType) (P : pred T) : reflect (∀ x, P x) [∀ x, P x].

Given that [∀ x, P x] is a boolean expression, it enables reasoning by excluded middle
and also combines well with other boolean connectives.

What makes this formulation of finite types handy is the explicit enumeration. It is
hence trivial to iterate over the inhabitants of the finite type. This makes finite type easy to
integrate in the library of iterated operations. In particular notations like (\sum_(i : T) F)

are used to express the iteration over the inhabitants of the finite type T.

7.4 The ordinal subtype

Apart from the aforementioned theory, finite types can serve as a powerful notational
device for ranges. For example one may want to state that a matrix of size m×n is only
accessed inside its bounds, i.e., that one cannot get the m + 1 row. The way this will be
formulated in the Mathematical Components library is by saying that its row accessors
accept only inhabitants of a finite type of size m. Accessing a matrix out of its bounds
becomes a type error. Of course one wants to access a matrix using integer coordinates,
but integers are infinite. Hence the first step is to define the sub-type of bounded integers:

1 Inductive ordinal (n : nat) : Type := Ordinal m of m < n.

2 Notation "’’I_’ n" := (ordinal n)

3

4 Coercion nat_of_ord i := let: @Ordinal m _ := i in m.

5

6 Canonical ordinal_subType := [subType for nat_of_ord].

7 Definition ordinal_eqMixin := Eval hnf in [eqMixin of ordinal by <:].

8 Canonical ordinal_eqType := Eval hnf in EqType ordinal ordinal_eqMixin.

The constructor Ordinal has two arguments: a natural number m and a proof that this number
is smaller than the parameter n. We use the of notation for arguments of constructors that
do not need to be named; thus Ordinal m of m < n stands for Ordinal m (_ : m < n)

We start by making ordinals a subtype of natural numbers, and hence inherit the theory
of eqType. To show they form a finType, we need to provide a good enumeration.

1 Definition ord_enum n : seq (ordinal n) := pmap insub (iota 0 n).

The iota function produces the sequence [:: 0; 1; ...; n.-1]. Such a sequence is
mapped via insub that tests if an element x is smaller than n. If it is the case it produces
(Some x), where x is an ordinal, else None. pmap drops all None items, and removes the Some

constructor from the others.
What ord_enum produces is hence a sequence of ordinals, i.e., a sequence of terms

like (@Ordinal m p) where m is a natural number (as produced by iota) and p is a proof
that (m <= n). What we are left to show is that such an enumeration is complete and
non-redundant.

1 Lemma val_ord_enum : map val ord_enum = iota 0 n.

2 Proof.

3 rewrite pmap_filter; last exact: insubK.

4 by apply/all_filterP; apply/allP=> i; rewrite mem_iota isSome_insub.

5 Qed.
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6

7 Lemma ord_enum_uniq : uniq ord_enum.

8 Proof. by rewrite pmap_sub_uniq ?iota_uniq. Qed.

9

10 Lemma mem_ord_enum i : i \in ord_enum.

11 Proof. by rewrite -(mem_map ord_inj) val_ord_enum mem_iota ltn_ord. Qed.

It is worth pointing out how the val_ord_enum lemma shows that the ordinals in ord_enum

are exactly the natural numbers generated by (iota 0 n). In particular, the insub construc-
tion completely removes the need for complex dependent case analysis.

2 subgoals

n : nat

============================

[seq x <- iota 0 n | isSome (insub x)] = iota 0 n

subgoal 2 is:

ocancel insub val

The view all_filterP shows that reflect ([seq x <- s | a x] = s) (all a s) for any se-
quence s and predicate a. After applying that view, one has to prove that if (i \in iota 0 n)

then (i < n), that is trivialized by mem_iota.
We can now declare the type of ordinals as a instance of finType.

1 Definition ordinal_finMixin n :=

2 Eval hnf in UniqFinMixin (ord_enum_uniq n) (mem_ord_enum n).

3 Canonical ordinal_finType n :=

4 Eval hnf in FinType (ordinal n) (ordinal_finMixin n).

An example of ordinals at work is the tnth function. It extracts the n-th element of a
tuple exactly as nth for a sequence but without requiring a default element. As a matter of
fact, one can use ordinals to type the index, making Coq statically checks that the index
is smaller than the size of the tuple.

1 Lemma tnth_default T n (t : n.-tuple T) : ’I_n -> T.

2 Proof. by rewrite -(size_tuple t); case: (tval t) => [|//] []. Qed.

3

4 Definition tnth T n (t : n.-tuple T) (i : ’I_n) : T :=

5 nth (tnth_default t i) t i.

Another use of ordinals is to express the position of an inhabitant of a finType in its
enumeration.

1 Definition enum_rank (T : finType) : T -> ’I_#|T|.

7.5 Finite functions

In standard mathematics, functions that are point wise equal are considered as equal. This
principle, that we call functional extensionality, is compatible with the Calculus of Inductive
Constructions but is not built-in. At the time of writing, only very recent variations of
CIC, as Cubical Type Theory [Coh+15], include such principle.

Still, this principle is provable in Coq for functions with a finite domain, provided that
they are described with a suitable representation. Indeed, the graph of a function with a
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finite domain is just a finite set of points, which can be represented by a finite sequence
of values. The length of this sequence is the size of the domain. Pointwise equal finite
functions have the same sequence of values, hence their representations are equal. The
actual definition2 of the type of finite functions in the Mathematical Components library
uses this remark, plus the tricks explained in section 6.10.2

1 Section FinFunDef.

2 Variable (aT : finType). (* domain type *)

3 Variable (rT : Type). (* codomain type *)

4

5 Inductive finfun_type : Type := Finfun of #|aT|.-tuple rT.

6 Definition finfun_of of phant (aT -> rT) := finfun_type.

7 Definition fgraph f := let: Finfun t := f in t.

8

9 Canonical finfun_subType := Eval hnf in [newType for fgraph].

10

11 End FinFunDef.

12

13 Notation "{ ’ffun’ fT }" := (finfun_of (Phant fT)).

As a result, the final notation provides a way to describe an instance of the type of finite
function by giving the mere type of the domain and co-domain, without mentioning the name
of the instance of finType for the domain. One can thus write the term{ffun ’I_7 -> nat} but
the term {ffun nat -> nat} would raise an error message, and their cannot be a registered
instance of finite type for nat.

Other utilities let one apply a finite function as a regular function or build a finite
function from a regular function.

1 Definition fun_of_fin aT rT f x := tnth (@fgraph aT rT f) (enum_rank x).

2 Coercion fun_of_fin : finfun >-> Funclass.

3 Definition finfun aT rT f := @Finfun aT rT (codom_tuple f).

4 Notation "[ ’ffun’ x : aT => F ]" := (finfun (fun x : aT => F))

What codom_tuple builds is a list of values f takes when applied to the values in the
enumeration of its domain.

1 Check [ffun i : ’I_4 => i + 2]. (* : {ffun ’I_4 -> nat} *)

Finite functions inherit from tuples the eqType structure whenever the codomain is an
eqType.

1 Definition finfun_eqMixin aT (rT : eqType) :=

2 Eval hnf in [eqMixin of finfun aT rT by <:].

3 Canonical finfun_eqType :=

4 Eval hnf in EqType (finfun aT rT) finfun_eqMixin.

When the codomain is finite, the type of finite functions is itself finite. This property
is again inherited from tuples. The all_words program takes in input a length n and an

2Since Mathematical Components version 1.9 the definition of finite functions changed. The new
implementation is based on a specific list-like data type indexed over the list of the elements of the domain.
Thanks to this more sophisticated ecoding, the current Coq type checker accepts, for example, the following
declaration of a 3-branch tree: Inductive tree3 := Leaf of nat | Node of {ffun ’I_3 -> tree3}. At
the time of writing Coq rejects the declaration above with the definition of finite functions given in this
section since the so called “positivity checker” is too incomplete.
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alphabet (a sequence of symbols (enum T)) and generates a list of all words of size n using
the symbols from the alphabet.

1 Definition tuple_enum (T : finType) n : seq (n.-tuple T) :=

2 pmap insub (all_words n (enum T)).

3 Lemma enumP T n : Finite.axiom (tuple_enum T n).

4

5 Definition tuple_finMixin := Eval hnf in FinMixin (@FinTuple.enumP n T).

6 Canonical tuple_finType:= Eval hnf in FinType (n.-tuple T) tuple_finMixin.

7

8 Definition finfun_finMixin (aT rT : finType) :=

9 [finMixin of (finfun aT rT) by <:].

10 Canonical finfun_finType aT rT :=

11 Eval hnf in FinType (finfun aT rT) (finfun_finMixin aT rT).

A relevant property of the finType of finite functions is its cardinality, being equal to
#|rT| ^ #|aT|.

1 Lemma card_ffun (aT rT : finType) : #| {ffun aT -> rT} | = #|rT| ^ #|aT|.

Also, as expected, finite functions validate extensionality.

1 Definition eqfun (f g : B -> A) : Prop := ∀ x, f x = g x.

2 Notation "f1 =1 f2" := (eqfun f1 f2).

3

4 Lemma ffunP aT rT (f1 f2 : {ffun aT -> rT}) : f1 =1 f2 <-> f1 = f2.

A first application of the type of finite functions is the following lemma.

1 Lemma bigA_distr_bigA (I J : finType) F :

2 \big[*%M/1]_(i : I) \big[+%M/0]_(j : J) F i j

3 = \big[+%M/0]_(f : {ffun I -> J}) \big[*%M/1]_i F i (f i).

Such lemma, rephrased in mathematical notation down below, states that the indices i

and j are independently chosen.

∏
i∈I

∑
j∈J

Fi j = ∑
f∈I→J

∏
i∈I

Fi( f i)

Remark how the finite type of functions from I to J is systematically formed in order
to provide its enumeration as the range of the summation.

7.6 Finite sets

We have seen how sub-types let one easily define a new type by, typically, enriching an
existing one with some properties. While this is very convenient for defining new types, it
does not work well when the subject of study are sets and subsets of the type’s inhabitants.
In such case, it is rather inconvenient to define a new type for each subset, because one
typically combines elements of two distinct subsets with homogeneous operations, like
equality.

The Mathematical Components library provides an extensive library of finite sets and
subsets that constitutes the pillar of finite groups.
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1 Section finSetDef.

2 Variable T : finType.

3 Inductive set_type : Type := FinSet of {ffun pred T}.

4 Definition finfun_of_set A := let: FinSet f := A in f.

Recall that (pred T) is the type of functions from T to bool.

Using the sub-type kit we can easily transport the eqType and finType structure over
finite sets.

1 Canonical set_subType := Eval hnf in [newType for finfun_of_set].

2 Definition set_eqMixin := Eval hnf in [eqMixin of set_type by <:].

3 Canonical set_eqType := Eval hnf in EqType set_type set_eqMixin.

4 Definition set_finMixin := [finMixin of set_type by <:].

5 Canonical set_finType := Eval hnf in FinType set_type set_finMixin.

6 End finSetDef.

7 Notation "{ ’set’ T }" := (set_type T).

We omit again the trick to statically enforce that T is a finite type whenever we write
{set T} , exactly as we did for finite functions. Finite sets do validate extensionality and
are equipped with subset-wise and point-wise operations:

1 Lemma setP A B : A =i B <-> A = B.

2

3 Lemma example (T : finType) (x : T) (A : {set T}) :

4 (A \subset x |: A) && (A :==: A :&: A) && (x \in [set y | y == x])

It is worth noticing that many “set” operations are actually defined on simpler structures
we did not detail for conciseness. In particular membership and subset are also applicable
to predicates, i.e. terms that can be seen as functions from a type to bool.

Since T is finite, values of type {set T} admit a complement and {set T} is closed under
power-set construction.

1 Lemma setCP x A : reflect (~ x \in A) (x \in ~: A).

2 Lemma subsets_disjoint A B : (A \subset B) = [disjoint A & ~: B].

3 Definition powerset D : {set {set T}} := [set A : {set T} | A \subset D].

4 Lemma card_powerset (A : {set T}) : #|powerset A| = 2 ^ #|A|.

We have seen how tuples can be used to carry an invariant over sequences. In particular
type inference was programmed to automatically infer the effect of sequence operations
over the size of the input tuple. In a similar way finite groups can naturally be seen as sets
and some set-wise operations, like intersection, do preserve the group structure and type
inference can be programmed to infer so automatically.

7.7 Permutations

Another application of finite functions is the definition of the type of permutations.

1 Inductive perm_of (T : finType) : Type :=

2 Perm (pval : {ffun T -> T}) & injectiveb pval.

3 Definition pval p := let: Perm f _ := p in f.

4 Notation "{ ’perm’ T }" := (perm_of T).
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This time we add the property of being injective, that in conjunction with finiteness
characterizes permutations as bijections.

Similarly to finite functions we can declare a coercion to let one write (s x) for
(s : {perm T}) to denote the result of applying the permutation s to x.

Thanks to the sub-type kit it is easy to transport to the type {perm T} the eqType and
finType structures of ffun T -> T.

1 Canonical perm_subType := Eval hnf in [subType for pval].

2 Definition perm_eqMixin := Eval hnf in [eqMixin of perm_type by <:].

3 Canonical perm_eqType := Eval hnf in EqType perm_type perm_eqMixin.

4 Definition perm_finMixin := [finMixin of perm_type by <:].

5 Canonical perm_finType := Eval hnf in FinType perm_type perm_finMixin.

A special class of permutations that comes in handy to express the calculation of a
matrix determinant is the permutation of ’I_n .

1 Notation "’’S_’ n" := {perm ’I_n}.

A relevant result of the theory of permutations is about counting their number. It is
expressed on a subset S and counts only non-identity permutations.

1 Definition perm_on T (S : {set T}) : pred {perm T} :=

2 fun s => [set x | s x != x] \subset S.

3 Lemma card_perm A : #|perm_on A| = #|A| `!.

7.8 Matrix

We finally have all the bricks to define the type of matrices and provide compact formulations
for their most common operations.

1 Inductive matrix R m n : Type := Matrix of {ffun ’I_m * ’I_n -> R}.

2 Definition mx_val A := let: Matrix g := A in g.

3 Notation "’’M[’ R ]_ ( m , n )" := (matrix R m n).

4 Notation "’’M_’ ( m , n )" := (matrix _ m n).

5 Notation "’’M[’ R ]_ n" := (matrix R n n).

As for permutations and finite functions we declare a coercion to let one denote (A i j)

the coefficient in column j of row i. Note that type inference will play an important role
here. If A has type ’M[R]_(m,n) , then Coq will infer that (i : ’I_m) and (j : ’I_n) from the
expression (A i j). In combination with the notations for iterated operations, this lets one
define, for example, the trace of a square matrix as follows.

1 Definition mxtrace R n (A : ’M[R]_n) := \sum_i A i i.

2 Local Notation "’\tr’ A" := (mxtrace R n A).

Note that, for the \sum notation to work, R needs to be a type equipped with an addition,
for example a ringType. We will describe such type only in the next chapter. From now on
the reader shall interpret the + and * symbols on the matrix coefficients as (overloaded)
ring operations, exactly as == is the overloaded comparison operation of eqType.

Via the sub-type kit we can transport eqType and finType from {ffun ’I_m * ’I_n -> R}

to ’M[R]_(m,n) . We omit the Coq code for brevity.
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A useful accessory is the notation to define matrices in their extension. We provide a
variant in which the matrix size is given and one in which it has to be inferred from the
context.

1 Definition matrix_of_fun R m n F :=

2 Matrix [ffun ij : ’I_m * ’I_n => F ij.1 ij.2].

3 Notation "\matrix_ ( i < m , j < n ) E" :=

4 (matrix_of_fun (fun (i : ’I_m) (j : ’I_n) => E))

5 Notation "\matrix_ ( i , j ) E" := (matrix_of_fun (fun i j => E)).

6

7 Example diagonal := \matrix_(i < 3, j < 7) if i == j then 1 else 0.

An interesting definition is the one of determinant. We base it on Leibniz’s formula:

∑σ∈Sn sgn(σ)∏
n
i=1 Ai,σ(i).

1 Definition determinant n (A : ’M_n) : R :=

2 \sum_(s : ’S_n) (-1) ^+ s * \prod_i A i (s i).

The (-1) ^+ s denotes the signature of a permutation s: s can be used, thanks to a
coercion, as a natural number that is 0 if s is an even permutation, 1 otherwise, and ^+ is
ring exponentiation. In other words the (-1) factor is annihilated when s is even.

What makes this definition remarkable is the resemblance to the same formula typeset
in LATEX:

\sum_{\sigma \in S_n} \sgn(\sigma) \prod_{i = 1}^n A_{i, \sigma(i)}

Matrix multiplication deserves a few comments too.

1 Definition mulmx m n p (A : ’M_(m, n)) (B : ’M_(n, p)) : ’M[R]_(m, p) :=

2 \matrix_(i, k) \sum_j (A i j * B j k).

3 Notation "A *m B" := (mulmx A B) : ring_scope.

First, the type of the inputs makes such operation total, i.e., Coq rejects terms which
would represent the product of two matrices whose sizes are incompatible.

This has to be compared with what was done for integer division, that was made total
by returning a default value, namely 0, outside its domain. In the case of matrices a size
annotation is enough to make the operation total, while for division a proof would be
necessary. Working with rich types is not always easy, for example the type checker does
not understand automatically that a square matrix of size (m + n) can be multiplied with
a matrix of size (n + m). In such case the user has to introduce explicit size casts, see
section 7.8.3. At the same time type inference lets one omit size information most of the
time, playing once again the role of a trained reader.

7.8.1 Example: matrix product commutes under trace

As an example let’s take the following simple property of the trace. Note that we can omit
the dimensions of B since it is multiplied by A to the left and to the right.

1 Lemma mxtrace_mulC m n (A : ’M[R]_(m, n)) B :

2 \tr (A *m B) = \tr (B *m A).

3 Proof.

4 have -> : \tr (A *m B) = \sum_i \sum_j A i j * B j i.
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5 by apply: eq_bigr => i _; rewrite mxE.

The idea of the proof is to lift the commutativity property of the multiplication in
the coefficient’s ring. The first step is to prove an equation that expands the trace of
matrix product. The plan is to expand it on both sides, then exchange the summations
and compare the coefficients pairwise.

1 subgoal

R : comRingType

m, n : nat

A : ’M_(m, n)

B : ’M_(n, m)

============================

\sum_i \sum_j A i j * B j i = \tr (B *m A)

It is worth noticing that the equation we used to expand the left hand side and the one
we need to expand the right hand side are very similar. Actually the sub proof following
have can be generalized to any pair of matrices A and B. The Small Scale Reflection proof
language provides the gen modifier in order to tell have to abstract the given formula over a
list of context entries, here m n A B.

1 Lemma mxtrace_mulC m n (A : ’M[R]_(m, n)) B :

2 \tr (A *m B) = \tr (B *m A).

3 Proof.

4 gen have trE, trAB: m n A B / \tr (A *m B) = \sum_i \sum_j A i j * B j i.

5 by apply: eq_bigr => i _; rewrite mxE.

6 rewrite trAB trE.

The gen have step now generates two equations, a general one called trE, and its instance
to A and B called trAB.

1 subgoal

R : comRingType

m, n : nat

A : ’M_(m, n)

B : ’M_(n, m)

trE : ∀ m n (A : ’M_(m, n)) B, \tr (A *m B) = \sum_i \sum_j A i j * B j i

trAB : \tr (A *m B) = \sum_i \sum_j A i j * B j i

============================

\sum_i \sum_j A i j * B j i = \sum_i \sum_j B i j * A j i

The proof is then concluded by exchanging the summations, i.e., summing on both
sides first on i then on j, and then proving their equality by showing the identity on the
summands.

1 rewrite exchange_big /=.

2 by do 2!apply: eq_bigr => ? _; apply: mulrC.

3 Qed.

Note that the final identity is true only if the multiplication of the matrix coefficients is
commutative. Here R was assumed to be a comRingType, the structure of commutative rings
and mulrC is the name of the commutative property (C) of ring (r) multiplication (mul). A
more detailed description of the hierarchy of structures is the subject of the next chapter.
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7.8.2 Block operations

The size information stocked in the type of a matrix is also used to drive the decomposition
of a matrix into sub-matrices, called blocks. For example when the size expression of a
square matrix is like (n1 + n2), then the upper left block is a square matrix of size n1.

1 Definition lsubmx (A : ’M_(m, n1 + n2)) : ’M_(m, n1)

2 Definition usubmx (A : ’M_(m1 + m2, n)) : ’M_(m1, n)

3 Definition ulsubmx (A : ’M_(m1 + m2, n1 + n2)) : ’M_(m1, n1)

Conversely blocks can be glued together. This time, it is the size of the resulting matrix
that shows a trace of the way it was built.

1 Definition row_mx (A1 : ’M_(m, n1)) (A2 : ’M_(m, n2)) : ’M_(m, n1 + n2)

2 Definition col_mx (A1 : ’M_(m1, n)) (A2 : ’M_(m2, n)) : ’M_(m1 + m2, n)

3 Definition block_mx Aul Aur Adl Adr : ’M_(m1 + m2, n1 + n2)

The interested reader can find in [Gar+09] a description of Cormen’s LUP decomposition,
an algorithm making use of these constructions. In particular, recursion on the size of a
square matrix of size n naturally identifies an upper left square block of size 1, a row and a
column of length n−1, and a square block of size n−1.

7.8.3 Size casts

Types containing values are a double edged sword. While we have seen that they make the
writing of matrix expressions extremely succinct, in some cases they require extra care.
In particular the equality predicate accepts arguments of the very same type. Hence a
statement like this one requires a size cast:

1 Section SizeCast.

2 Variables (n n1 n2 n3 m m1 m2 m3 : nat).

3

4 Lemma row_mxA (A1 : ’M_(m, n1)) (A2 : ’M_(m, n2)) (A3 : ’M_(m, n3)) :

5 row_mx A1 (row_mx A2 A3) = row_mx (row_mx A1 A2) A3.

Observe that the left hand side has type ’M_(m, n1 + (n2 + n3)) while the right hand
side has type ’M_(m, (n1 + n2) + n3) . The castmx operator, and all its companion lemmas,
let one deal with this inconvenience.

1 Lemma row_mxA (A1 : ’M_(m, n1)) (A2 : ’M_(m, n2)) (A3 : ’M_(m, n3)) :

2 let cast := (erefl m, esym (addnA n1 n2 n3)) in

3 row_mx A1 (row_mx A2 A3) = castmx cast (row_mx (row_mx A1 A2) A3).

The cast object provides the proof evidence that (m = m), not strictly needed, and that
(n1 + (n2 + n3) = (n1 + n2) + n3).

Lemmas like the following two let one insert or remove additional casts.

1 Lemma castmxKV (eq_m : m1 = m2) (eq_n : n1 = n2) :

2 cancel (castmx (esym eq_m, esym eq_n)) (castmx (eq_m, eq_n)).

3 Lemma castmx_id m n erefl_mn (A : ’M_(m, n)) : castmx erefl_mn A = A.

Remark that erefl_mn must have type ((m = m) * (n = n)), i.e., it is a useless cast.
Another useful tool is conform_mx that takes a default matrix of the right dimension and

a second one that is returned only if its dimensions match.



154 Chapter 7. Sub-types

1 Definition conform_mx (B : ’M_(m1, n1)) (A : ’M_(m, n)) :=

2 match m =P m1, n =P n1 with

3 | ReflectT eq_m, ReflectT eq_n => castmx (eq_m, eq_n) A

4 | _, _ => B

5 end.

Remember that the notation (m =P m1) stands for (@eqP nat_eqType m m1), a proof of the
reflect inductive spec. Remember also that the ReflectT constructor carries a proof of the
equality.

The following helper lemmas describe the behavior of conform_mx and how it interacts
with casts.

1 Lemma conform_mx_id (B A : ’M_(m, n)) : conform_mx B A = A.

2 Lemma nonconform_mx (B : ’M_(m1, n1)) (A : ’M_(m, n)) :

3 (m != m1) || (n != n1) -> conform_mx B A = B.

4

5 Lemma conform_castmx (e_mn : (m2 = m3) * (n2 = n3))

6 (B : ’M_(m1, n1)) (A : ’M_(m2, n2)) :

7 conform_mx B (castmx e_mn A) = conform_mx B A.

Sorts and reflect

The curious reader may have spotted that the declaration of the reflect inductive predicate
of section 5.2.1 differs from the one part of the Mathematical Components library in a tiny
detail. The real declaration indeed puts reflect in Type and not in Prop.

Recall that reflect is typically used to state properties about decidable predicates. It
is quite frequent to reason on such a class of predicates by excluded middle in both proofs
and programs. As soon as one needs proofs to cast terms, the proof evidence carried by
the reflection lemma becomes doubly useful. Placing the declaration of reflect in Type is
enough to make such a proof accessible within programs.

However the precise difference between Prop and Type in the Calculus of Inductive
Constructions is off topic for this text, so we will not detail further.
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We have seen in the last two chapters how inferred dependent records — structures — are
an efficient means of endowing mathematical objects with their expected operations and
properties. So far we have only seen single-purpose structures: eqType provides decidable
equality, subType an embedding into a representation type, etc.

However, the more interesting mathematical objects have many operations and prop-
erties, most of which they share with other kinds of objects: for example, elements of
a field have all the properties of those of a ring (and more), which themselves have all
the properties of an additive group. By organizing the corresponding Calculus of Induc-
tive Constructions structures in a hierarchy, we can materialize these inclusions in the
Mathematical Components library, and share operations and properties between related
structures. For example, we can use the same generic ring multiplication for rings, integral
domains, fields, algebras, and so on.

Organizing structures in a hierarchy does not require any new logical feature beyond
those we have already seen: type inference with dependent types, coercions and canonical
instances of structures. It is only a “simple matter of programming”, albeit one that involves
some new formalisation idioms. This chapter describes the most important: telescopes,
packed classes, and phantom parameters.

While some of these formalisation patterns are quite technical, casual users do not
need to master them all. Indeed the documented interface of structures suffices to use and
declare instances of structures. We describe these interfaces first, so only those who wish
to extend old or create new hierarchies need to read on.

8.1 Structure interface

Most of the documented interface to a structure concerns the operations and properties
it provides. This will be obvious from the embedded documentation of the ssralg library,
which provides structures for most of basic algebra (including rings, modules, fields). While
these are of course important, they pertain to elements of the structure rather than the
structure itself, and indeed are usually defined outside of the module introducing the
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structure.

The intrinsic interface of a structure is much smaller, and consists mostly of functions
for creating instances to be typically declared Canonical. For structures like eqType that are
packaged in a submodule (Equality for eqType), the interface coincides with the contents of
the Exports submodule. For eqType the interface comprises:

• eqType: a short name for the structure type (here, Equality.type);
• EqMixin, PcanEqMixin, [eqMixin of T by <:]: mixin constructors that bundle the new

operations and properties the structure provides;
• EqType: an instance constructor that creates an instance of the structure from a mixin;
• [eqType of T], [eqType of T for S]: cloning constructors that specialize a canonical or

given instance of the structure (to T here);
• canonical instances and coercions that link the structures to lower ones in the hierarchy

or to its elements, e.g., Equality.sort.

Canonical instances and coercions are not mentioned directly in the documentation because
they are only used indirectly, through type inference; a casual user of a structure only
needs to be aware of which other structure it extends, in the hierarchy.

Let us see how the creation operations are used in practice, drawing examples from the
zmodp library which puts a “mod p” algebraic structure on the type ordinal p of integers
less than p. The ordinal type is defined in library fintype as follows:

1 Inductive ordinal n := Ordinal m of m < n.

2 Notation "’I_’ n" := (ordinal n).

3 Coercion nat_of_ord n (i : ’I_n) := let: @Ordinal _ m _ := i in m.

Algebra only makes sense on non-empty types, so zmodp only defines arithmetic on ’I_p

when p is an explicit successor. This makes it easy to define inZp, a “mod p” right inverse
to the ordinal >-> nat coercion, and a zero value, named ord0. With these the definition of
arithmetic operations and the proof of the basic algebraic identities is straightforward.

1 Variable p’ : nat.

2 Local Notation p := p’.+1.

3 Implicit Types x y : ’I_p.

4 Definition inZp i := Ordinal (ltn_pmod i (ltn0Sn p’)).

The inZp construction injects any natural number i into ’I_p by applying the modulus.
Indeed the type of ltn_pmod is (∀ m d : nat,0 < d -> m %% d < d), and (ltn0Sn p’) is a proof
that (0 < p).

We can now build the Z-module operations and properties:

1 Definition Zp0 : ’I_p := ord0.

2 Definition Zp1 := inZp 1.

3 Definition Zp_opp x := inZp (p - x).

4 Definition Zp_add x y := inZp (x + y).

5 Definition Zp_mul x y := inZp (x * y).

6

7 Lemma Zp_add0z : left_id Zp0 Zp_add.

8 Lemma Zp_mulC : commutative Zp_mul.

9 ...

Creating an instance of the lowest ssralg structure, the Z-module (i.e., additive group),
requires two lines using the constructor ZmodMixin, which bundles a carrier type, an internal
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binary operation on this type, an inhabitant of the carrier type, and proofs that these data
are endowed with the properties of a commutative group:

1 Definition Zp_zmodMixin := ZmodMixin Zp_addA Zp_addC Zp_add0z Zp_addNz.

2 Canonical Zp_zmodType := ZmodType ’I_p Zp_zmodMixin.

Line 1 bundles the additive operations (0, +, −) and their properties in a mixin, which
is then used in line 2 to create a canonical instance. After line 2 all the additive algebra
provided in ssralg becomes applicable to ’I_p; for example 0 denotes the zero element, and
i + 1 denotes the successor of i mod p.

R The ZmodMixin constructor infers the operations Zp_add, etc., from the identities
Zp_add0z, etc.. Providing an explicit definition for the mixin, rather than inlining it
in line 2, is important as it speeds up type checking, which never needs to open the
mixin bundle.

The first argument to the instance constructor ZmodType is somewhat redundant, but
documents precisely the type for which this instance will be used. This is important as the
value inferred by Coq could be different. Indeed line 2 performs some nontrivial inference,
because zmodType is not at the bottom of the hierarchy. In particular zmodType derives from
eqType, so that the == test can be used on all zmodType elements. The ZmodType constructor
thus infers a parent structure instance from its first argument, and combines it with the
mixin to create a full zmodType instance. This inference can have the side effect of unfolding
constants occurring in the description of the type (though not in this case), that is the
value on which the canonical solution is indexed. For this reason the type description,
’I_p here, has to be provided explicitly. Section 8.4 gives the technical details of instance
constructors.

Rings are the next step in the algebraic hierarchy. In order to simplify the formalization
of the theory of polynomials, ssralg only provides structures for nontrivial rings, so we now
need to restrict to p of the form p’.+2:

1 Variable p’ : nat.

2 Local Notation p := p’.+2.

3 Lemma Zp_nontrivial : Zp1 != 0 :> ’I_p. Proof. by []. Qed.

4 Definition Zp_ringMixin :=

5 ComRingMixin (@Zp_mulA _) (@Zp_mulC _) (@Zp_mul1z _) (@Zp_mul_addl _)

Zp_nontrivial.

6 Canonical Zp_ringType := RingType ’I_p Zp_ringMixin.

7 Canonical Zp_comRingType := ComRingType ’I_p (@Zp_mulC _).

Line 6 endows ’I_p with a ringType structure, making it possible to multiply in ’I_p or
have polynomials over ’I_p. Line 7 adds a comRingType commutative ring structure, which
makes it possible to reorder products, or distribute evaluation over products of polynomials.
Note that no mixin definition like the one at line 4 is needed to define Zp_comRingType, as a
single property is added.

Constraining the shape of the modulus p is a simple and robust way to enforce p > 1:
it standardizes the proofs of p > 0 and p > 1, which avoid the unpleasantness of multiple
interpretations of 0 stemming from different proofs of p > 0 — the latter tends to happen
with ad hoc inference of such proofs using canonical structures or tactics. The shape
constraint can however be inconvenient when the modulus is an abstract constant (say,
Variable p), and zmodp provides some syntax to handle that case:
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1 Definition Zp_trunc p := p.-2.

2 Notation "’’Z_’ p" := ’I_(Zp_trunc p).+2.

Although it is provably equal to ’I_p when p > 1, ’Z_p is the preferred way of referring
to that type when using its ring structure. Note that the two types are identical when p is
a nat literal such as 3 or 5.

Cloning constructors are mainly used to quickly create instances for defined types, such
as

1 Definition Zmn := (’Z_m * ’Z_n)%type.

While ssralg and zmodp provide the instances type inference needs to synthesize a ring
structure for Zmn, Coq has to expand the definition of Zmn to do so. Declaring Zmn-specific
instances will avoid such spurious expansions, and is easy thanks to cloning constructors:

1 Canonical Zmn_eqType := [eqType of Zmn].

2 Canonical Zmn_zmodType := [zmodType of Zmn].

3 Canonical Zmn_ringType := [ringType of Zmn].

Cloning constructors are also useful to create on-the-fly instances that must be passed
explicitly, e.g., when specializing lemmas:

1 have Zp_mulrAC := @mulrAC [ringType of ’Z_p].

Finally, instances of join structures that are just the union of two smaller ones are always
created with cloning constructors. For example, ’I_p is also a finite (explicitly enumerable)
type, and the fintype library declares a corresponding finType structure instance. This
means that ’I_p should also have an instance of the finRingType join structure (for p of the
right shape). This is not automatic, but thanks to the cloning constructor it requires only
one line in zmodp.

1 Canonical Zp_finRingType := [finRingType of ’I_p].

8.2 Telescopes

While using and populating a structure hierarchy is fairly straightforward, creating a robust
and efficient hierarchy can be more difficult. In this section we explain telescopes [Bru91],
one of the simpler ways of implementing a structure hierarchy. Telescopes suffice for most
simple — tree-like and shallow — hierarchies, so new users do not necessarily need expertise
with the more sophisticated packed class organization covered in the next section.

Because of their limitations (covered at the end of this section), telescopes were not
suitable for the main type structure hierarchy of the Mathematical Components library,
including eqtype, choice, fintype and ssralg. However, as we have seen in section 6.7.2,
structures can be used to associate properties to any logical object, not just types, and the
Monoid.law structure introduced in section 6.7.2 is part of a telescope hierarchy. Recall that
Monoid.law associates an identity element and Monoid axioms to a binary operator:
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1 Module Monoid.

2 Variables (T : Type) (idm : T).

3 Structure law := Law {

4 operator : T -> T -> T;

5 _ : associative operator;

6 _ : left_id idm operator;

7 _ : right_id idm operator

8 }.

9 Coercion operator : law >-> Funclass.

The Coercion declaration helps writing generic bigop simplification rules such as

1 big1_eq R (idx : R) (op : Monoid.law idx) I r (P : pred I) :

2 \big[op/idx]_(i <- r | P i) idx = idx

Because the Monoid structure is at the bottom of the hierarchy, there is no need to
bundle the Monoid.law properties in a mixin. It thus takes only one line to declare an
instance for the boolean “and” operator andb

1 Canonical andb_monoid := Law andbA andTb andbT.

This declaration makes it it possible to use big1_eq to simplify the “big and” expression

1 \big[and/true]_(i in A) true

to just true,1 as it informs type inference how to solve the unification problem (operator?L)

versus andb, by setting ?L to andb_monoid.
Now many of the more interesting bigop properties permute the operands of the iterated

operator; for example

1 pair_bigA: \big[op/idx]_i \big[op/idx]_j F i j = \big[op/idx]_p F p.1 p.2

Such properties only hold for commutative monoids, so, in order to state pair_bigA as
above, we need a structure encapsulating commutative monoids — and one that builds on
Monoid.law at that, to avoid mindless duplication of theories. The most näıve way of doing
this, merely combining a law with a commutativity axiom, works remarkably well.

1 Structure com_law := ComLaw {

2 com_operator : law;

3 _ : commutative com_operator

4 }.

5 Coercion com_operator : com_law >-> law.

At this stage, one can declare the canonical instance:

1 Canonical andb_comoid := ComLaw andbC.

and then use pair_bigA to factor nested “big ands” such as

1There is no spurious add_monoid because the identity element is a manifest field stored in the structure
type.
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1 \big[andb/true]_i \big[andb/true]_j M i j.

However, things are not so simple on closer examination: the idiom only works because
of the invisible coercions inserted during type inference.

The definition of andb_comoid infers the implicit com_operator argument ?L of ComLaw by
unifying the expected statement commutative (operator ?L) of the commutativity property,
with the actual statement of andbC : commutative andb. This finds ?L to be andb_monoid as
above.

More importantly, the op in the statement of pair_bigA really stands for operator

(com_operator op). Thus applying pair_bigA to the term above leads to the unification
of operator (com_operator ?C) with andb. This first resolves the outer operator, as above,
reducing the problem to unifying com_operator ?C with andb_monoid, which is finally solved
using andb_comoid. Hence, andb_comoid associates commutativity with the law andb_monoid

rather than the operator andb, and the invisible chain of coercions guides the instance
resolution.

The telescope idiom works recursively for arbitrarily deep hierarchies, though the Monoid

one only has one more level for a distributivity property

1 Structure add_law (mul : T -> T -> T) := AddLaw {

2 add_operator : com_law;

3 _ : left_distributive mul add_operator;

4 _ : right_distributive mul add_operator

5 }.

6 Coercion add_operator : add_law >-> com_law.

The instance declaration

1 Canonical andb_addoid := AddLaw orb_andl orb_andr.

then associates distributivity to the andb_comoid structure which is inferred by the two-stage
resolution process above, and applying the iterated distributivity

1 bigA_distr_bigA :

2 \big[times/one]_(i : I) \big[plus/zero]_(j : J) F i j

3 = \big[plus/zero]_(f : {ffun I -> J}) \big[times/one]_i F i (f i).

to \big[andb/true]_i /big[orb/false]_j M i j involves a three-stage resolution.

The coercion chains that support the ease of use of telescope hierarchies have un-
fortunately two major drawbacks: they limit the shape of the hierarchy to a tree (with
linear ancestry) and trigger crippling inefficiencies in the type inference and type checking
heuristics for deep hierarchies.

8.3 Packed classes

The type structure hierarchy for the Mathematical Components library is both deep (up
to 11 levels) and non-linear. It is not uncommon for an algebraic structure to combine the
properties of two unrelated structures. For example an algebra is both a ring and a module,
neither of which is an instance of the other. Thus the Mathematical Components type
structures are organized along a different pattern, packed classes, which is more flexible
and efficient than the telescope pattern, but requires more work to follow.
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The packed class design calls for three layers of records for each structure: a mixin
record holding the new operations and properties the structure adds to the structures it
extends (as in section 8.1), a class record holding all the primitive operations and properties
in the structure, including those in substructures, and finally a packed class record that
associates the class to a type, and is used to define instances of the structure. Crucially,
in this organization, the type “key” which directs inference is always a direct field of a
structure’s instance record, so all coercion chains have length one.

This arrangement was already hinted at in section 6.4 while commenting on the
formalisation of the eqType structure, which we recall here:

1 Module Equality.

2

3 Definition axiom T (e : rel T) := ∀ x y, reflect (x = y) (e x y).

4

5 Record mixin_of T := Mixin {op : rel T; _ : axiom op}.

6 Notation class_of := mixin_of.

7

8 Structure type := Pack {sort :> Type; class : class_of sort}.

9 ...

10 Module Exports.

11 Coercion sort : type >-> SortClass.

12 Notation eqType := type.

13 ...

14 End Equality.

15 Export Equality.Exports.

The Exports submodule, which we had omitted in section 6.4, regroups all the dec-
larations in Equality that should have global scope, such as the Coercion declaration for
Equality.sort.

The roles of mixin and class are conflated for eqType because it sits at the bottom of
the type structure hierarchy. To clarify the picture, we need to move one level up, to the
choiceType structure which provides effective choice for decidable predicates:

1 Module Choice.

2

3 Record mixin_of T := Mixin {

4 find : pred T -> nat -> option T;

5 _ : ∀ P n x, find P n = Some x -> P x;

6 _ : ∀ P : pred T, (exists x, P x) -> exists n, find P n;

7 _ : ∀ P Q : pred T, P =1 Q -> find P =1 find Q

8 }.

9

10 Record class_of T :=

11 Class {base : Equality.class_of T; mixin : mixin_of T}.

12

13 Structure type := Pack {sort; _ : class_of sort}.

The mixin provides a specific, depth-based, strategy, the find operator, for searching a
witness. The second argument of this operator, of type nat acts as a“fuel”auxiliary argument,
and bounds the depth of the search. But the main operation provided by the choiceType

structure T is a choice function for decidable predicates (choose : pred T -> T -> T) satisfying
the following properties:
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1 Lemma chooseP P x0 : P x0 -> P (choose P x0).

2 Lemma choose_id P x0 y0 : P x0 -> P y0 -> choose P x0 = choose P y0.

3 Lemma eq_choose P Q : P =1 Q -> choose P =1 choose Q.

The choose operation can be defined using the find operator provided by the interface,
and its properties follow from the axiom of countable choice. Indeed, although the choice
axiom is not provable in general in Calculus of Inductive Constructions, its restriction to
countable types is provable.

1 Lemma find_ex_minn (P : pred nat) :

2 (exists n, P n) -> {m | P m & ∀ n, P n -> n >= m}.

Requiring a find operator is stronger than requiring a choose operator: this strengthened
requirement makes it possible to compose instances of choiceType, so that the type of pairs
of instances of choiceType, or the type of sequences of a choiceType are themselves instances
of choiceType. This subtlety is detailed in the comments of the choice file.

An important difference to telescopes is that the definition of Choice.type does not link
it directly to eqType, as a choiceType structure contains an Equality.class_of record, rather
than an eqType structure. That link needs to be constructed explicitly in the code that
follows the definition of Choice.type:

1 Coercion base : class_of >-> Equality.class_of.

2 Coercion mixin : class_of >-> mixin_of.

3 Coercion sort : type >-> Sortclass.

4 Variables (T : Type) (cT : type).

5 Definition class := let: @Pack _ c as cT’ := cT return class_of cT’ in c.

6 Definition eqType := Equality.Pack class.

Here class is just the explicit definition of the second component of the section variable
cT : type.

Thanks to the Coercion declarations, the eqType definition is indeed the eqType structure
associated to cT, with sort equal to cT≡ sort cT and class equal to base class. The actual
link between choiceType and eqType is established by the following two lines:

1 Coercion Exports.eqType : type >-> Equality.type.

2 Canonical Exports.eqType.

Line 1 merely lets us explicitly use a choiceType where an eqType is expected, which
is rare as structures are almost always implicit and inferred. It is line 2 that really lets
choiceType extend eqType, because it makes it possible to use any element (T : choiceType)

as an element of an eqType, namely Choice.eqType T: it tells type inference that Choice.sort T

can be unified with Equality.sort ?E by taking ?E = Choice.eqType T.
The lower structure in the Mathematical Components algebraic hierarchy introduced

by the ssralg library is zmodType (GRing.Zmodule.type); it encapsulates additive groups, and
directly extends the choiceType structure.

1 Module GRing.

2

3 Module Zmodule.

4

5 Record mixin_of (V : Type) : Type := Mixin {
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6 zero : V; opp : V -> V; add : V -> V -> V;

7 _ : associative add;

8 ...}.

9

10 Record class_of T := Class { base: Choice.class_of T; mixin: mixin_of T }.

11 Structure type := Pack {sort; _ : class_of sort}.

Strictly speaking, the Mathematical Components algebraic structures do not really
have to extend choiceType, but it is very convenient that they do. We can use eqType and
choiceType operations to test for 0 in fields, or choose a basis of a subspace, for example.
Furthermore, this is essentially a free assumption, because the Mathematical Components
algebra mixins specify strict identities,2 such as associative add on line 7 above. In the
pure Calculus of Inductive Constructions, these can only be realized for concrete data types
with a binary representation, which are both discrete and countable, hence are instances of
choiceType. On the other hand, postulating that any type can be endowed with a structure
of choiceType is a consistent extension to the Calculus of Inductive Constructions.

Similarly to the definition of eq_op in eqtype, the operations afforded by zmodType are
defined just after the Zmodule module.

1 Definition zero V := Zmodule.zero (Zmodule.class V).

2 Definition opp V := Zmodule.opp (Zmodule.class V).

3 Definition add V := Zmodule.add (Zmodule.class V).

4 Notation "+%R" := (@add V).

These are defined inside the GRing module which encloses most of ssralg. They are also
given the usual arithmetic syntax (0,- x , x + y) in the %R scope. Only the notations are
exported from GRing, as these definitions are intended to remain private.

The next structure in the hierarchy encapsulates nontrivial rings. Imposing the non-
triviality condition 1 6= 0 is a compromise; it greatly simplifies the theory of polynomials
(ensuring for instance that X has degree 1), at the cost of ruling out possibly trivial matrix
rings.

1 Module Ring.

2

3 Record mixin_of (R : zmodType) : Type := Mixin {

4 one : R;

5 mul : R -> R -> R;

6 _ : associative mul;

7 _ : left_id one mul;

8 _ : right_id one mul;

9 _ : left_distributive mul +%R;

10 _ : right_distributive mul +%R;

11 _ : one != 0

12 }.

13

14 Record class_of (R : Type) : Type := Class {

15 base : Zmodule.class_of R;

16 mixin : mixin_of (Zmodule.Pack base)

17 }.

18

19 Structure type := Pack {sort; _ : class_of sort}.

2Identities are said to be strict when they are stated using the equality predicate, unlike other equivalence
relations such as the ones induced by a quotient.
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Unlike choiceType and zmodType, the definition of the ringType mixin depends on the
zmodType structure it extends. Observe how the class definition instantiates the mixin’s
zmodType parameter with a record created on the fly by packing the representation type
with the base class.

This additional complication does not affect the hierarchy declarations. These follow
exactly the pattern we saw for choiceType, except that we have three definitions, one for
each of the three structures ringType extends. They all look identical, thanks to the hidden
XXX.base coercions.

1 Definition eqType := Equality.Pack class.

2 Definition choiceType := Choice.Pack class.

3 Definition zmodType := Zmodule.Pack class.

Two structures extend rings independently: comRingType provides multiplication com-
mutativity, and unitRingType provides computable inverses for all units (i.e., invertible
elements) along with a test of invertibility. These structures are incomparable, and there
are reasonable instances of each: 2×2 matrices over Q have computable inverses but do not
commute, while polynomials over Zp commute but do not have easily computable inverses.
The respective definitions of comRingType and unitRingType follow exactly the pattern we
have seen, except there is no need for a ComRing.mixin_of record.

Since there are also rings such as Zp that commute and have computable inverses,
and properties such as (x/y)n = xn/yn that hold only for such rings, ssralg provides a
comUnitRingType structure for them. Although this structure simultaneously extends two
unrelated structures, it is easy to define using the packed class pattern: we just reuse the
UnitRing mixin.

1 Module ComUnitRing.

2

3 Record class_of (R : Type) : Type := Class {

4 base : ComRing.class_of R;

5 mixin : UnitRing.mixin_of (Ring.Pack base)

6 }.

7

8 Structure type := Pack {sort; _ : class_of sort}.

The two structures that are compounded this way can be declared indifferently as base or
as mixin. Since we construct explicitly the links between structures with the packed class
pattern, the fact that the hierarchy is no longer a tree is not an issue.

1 Definition eqType := Equality.Pack class.

2 Definition choiceType := Choice.Pack class.

3 Definition zmodType := Zmodule.Pack class.

4 Definition ringType := Ring.Pack class.

5 Definition comRingType := ComRing.Pack class.

6 Definition unitRingType := UnitRing.Pack class.

7 Definition com_unitRingType := @UnitRing.Pack comRingType class.

In the above code, lines 1–6 relate the new structure to each of the six structures
it extends, just as before. Line 7 is needed because comUnitRingType has several direct
ancestors in the hierarchy. Making ComUnitRing.com_unitRingType a canonical unitRingType

instance tells type inference that it can unify UnitRing.sort ?U with ComRing.sort ?C, by
unifying ?U with ComUnitRing.com_unitRingType ?R and ?C with ComUnitRing.comRingType ?R,
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where ?R : comUnitRingType is a fresh unification variable. In other words, the ComUnitRing.

com_unitRingType instance says that comUnitRingType is the join of comRingType and unitRingType

in the structure hierarchy (see also [MT13, section 5]).
If a new structure S extends structures that are further apart in the hierarchy more than

one such additional link may be needed: precisely one for each pair of structures whose
join is S. For example, unitRingType requires three such links, while finFieldType in library
finalg requires 11. It is highly advisable to map out the hierarchy when simultaneously
extending multiple structures.

Finally, the telescope and packed class design patterns are not at all incompatible: it
is possible to extend a packed class hierarchy with telescopes (library fingroup does this),
or to add explicit “join” links to a telescope hierarchy (ssralg does this for its algebraic
predicate hierarchy).

8.4 Parameters and constructors

We have noted already that instances of structures are often hard to provide explicitly,
because they are in fact expected to be constructed automatically via inference, rather
than being provided explicitly by the user. For example the explicit ringType structure for
int * rat is

1 pair_ringType int_ringType rat_ringType.

Inference usually happens when an element x of the structure is passed explicitly;
unifying the actual type of x with its expected type — the sort of the unspecified structure

— then triggers the search for a canonical instance. Unfortunately there are two common
situations where a structure is required and no element is at hand:

• in a type parameter;
• when constructing an instance explicitly.

The first case occurs in ssralg for structure types for modules and algebras, which depend
on a ring of scalars; we would like to specify the type of scalars, and infer its ringType. We
have seen in section 6.10.2 how to do this, using the phantom type

1 Inductive phantom T (p : T) := Phantom.

2 Arguments phantom : clear implicits.

Here we can use a simpler type, equivalent to phantom Type

1 Inductive phant (p : Type) := Phant.

In the definition of the structure type for left modules, which depends on ringType

parameter R, we add a dummy phant R parameter phR.

1 Module Lmodule.

2

3 Variable R : ringType.

4

5 Record mixin_of (R : ringType) (V : zmodType) := Mixin {

6 scale : R -> V -> V;

7 ...}.

8

9 Record class_of V := Class {



166 Chapter 8. Organizing Theories

10 base : Zmodule.class_of V;

11 mixin : mixin_of R (Zmodule.Pack base)

12 }.

13

14 Structure type (phR : phant R) := Pack {sort; _ : class_of sort}.

Then the Phant constructor readily yields a value for phR, from just the sort of R. Hiding
the call to Phant in a Notation

1 Notation lmodType R := (type (Phant R)).

allows us to write (V : lmodType (int * rat)). Indeed, type inference fills in the unsightly
expression (pair_ringType int_ringType rat_ringType) for R. This elaboration happens when
solving the unification problem triggered by the need to unify (Phant ?) with (int * rat).

Inference for constructors is more involved, because it has to produce bespoke classes
and mixins subject to dependent typing constraints. While it is in principle possible to
program this using dependent matching and transport, the complexity of doing so can be
daunting.

Instead, we propose a simpler, static solution using a combination of phantom and
function types:

1 Definition phant_id T1 T2 v1 v2 := phantom T1 v1 -> phantom T2 v2.

For example, each packed class contains exactly the same definition of the clone
constructor3, following the introduction of section variables T and cT, and the definition of
class:

1 Definition clone c & phant_id class c := @Pack T c.

Recall that with SSReflect loaded, & T introduces an anonymous parameter of type T.
As with lmodType above we use Notation to supply the identity function for this dummy
functional parameter

1 Notation "[ ’choiceType’ ’of’ T ]" := (@clone T _ _ id).

In the context of Definition NN := nat, [choiceType of NN] will by construction return a
choiceType instance with sort exactly NN — provided it is well typed.

More precisely, type checking (@clone NN _ _ id) will try to give id≡ (fun x => x) the type
(phant_id (Choice.class ?cT) ?c). It will assign x the type (phantom (Choice.class_of (Choice.

sort ?cT)) (Choice.class ?cT)), which it will then unify with (phantom (Choice.class_of NN)

?c). To do so Choice.sort ?cT will first be unified with NN, by setting ?cT to the canonical
instance nat_choiceType found by unfolding the definition of NN, then setting ?c to Choice.

class nat_choiceType.
The code for the instance constructor for choiceType is almost identical, because it only

extends eqType with a mixin that does not depend on eqType. Note that this definition
allows Coq to infer T from m.

3More precisely, the situation is slightly different in the case of structure with a parameter, like modules.



8.5 Linking a custom data type to the library 167

1 Definition pack T m :=

2 fun bT b & phant_id (Equality.class bT) b => Pack (@Class T b m).

3 Notation ChoiceType T m := (@pack T m _ _ id).

For ringType we use a second phant_id id parameter to check the dependent type
constraint on the mixin.

1 Definition pack T b0 (m0 : mixin_of (@Zmodule.Pack T b0)) :=

2 fun bT b & phant_id (Zmodule.class bT) b =>

3 fun m & phant_id m0 m => Pack (@Class T b m).

4 Notation RingType T m := (@pack T _ m _ _ id _ id).

Type-checking the second id will set m to m0 after checking that the inferred base class
b ≡ Zmodule.class bT coincides with the actual base class b0 in the structure parameter of
the type of m0. Forcing the sort of that parameter to be equal to T allows Coq to infer T

from m.
The instance constructor for the join structure comUnitRingType uses a similar projection-

by-unification idiom to extract a mixin of the appropriate type from the inferred unitRingType

of a given type T. This is the only constructor for comUnitRingType.

1 Definition pack T :=

2 fun bT b & phant_id (ComRing.class bT) (b : ComRing.class_of T) =>

3 fun mT m & phant_id (UnitRing.class mT) (@UnitRing.Class T b m) =>

4 Pack (@Class T b m).

5 Notation "[ ’comUnitRingType’ ’of’ T ]" := (@pack T _ _ id _ _ id).

Finally, the instance constructor for the left algebra structure lalgType, a join structure
with an additional axiom and a ringType parameter, uses all the patterns discussed in this
section, using a phant and three phant_id arguments.

1 Definition pack T b0 mul0 (axT: @axiom R (@Lmodule.Pack R _ T b0 T) mul0):=

2 fun bT b & phant_id (Ring.class bT) (b : Ring.class_of T) =>

3 fun mT m & phant_id (@Lmodule.class R phR mT) (@Lmodule.Class R T b m) =>

4 fun ax & phant_id axT ax =>

5 Pack (Phant R) (@Class T b m ax) T.

6 ...

7 Notation LalgType R T a := (@pack _ (Phant R) T _ _ a _ _ id _ _ id _ id).

The interested reader can also refer to [MT13, section 7] for a description of this technique.

8.5 Linking a custom data type to the library

The sub-type kit of chapter 7 is not the only way to easily add instances to the library.
For example imagine we are interested in defining the type of a wind rose and attach to it
the theory of finite types.

1 Inductive windrose := N | S | E | W.

The most naive way to show that windrose is a finType is to provide a comparison function,
then a choice function, . . . finally an enumeration. Instead, it is much simpler to show one
can punt windrose in bijection with a pre-existing finite type, like ’I_4 . Let us start by
defining the obvious injections.
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1 Definition w2o (w : windrose) : ’I_4 :=

2 match w with

3 | N => inord 0 | S => inord 1 | E => inord 2 | W => inord 3

4 end.

More generally, the inord constructor lets us postpone the (trivial by computation) proofs
that 0, 1, 2, 3 are smaller than 4.

We provide only an artificially partial function, so as to fit the signature expected by
the choice mixin, which is more liberal than needed here.

1 Definition o2w (o : ’I_4) : option windrose :=

2 match val o with

3 | 0 => Some N | 1 => Some S | 2 => Some E | 3 => Some W

4 | _ => None

5 end.

Then we can show that these two functions cancel out.

1 Lemma pcan_wo4 : pcancel w2o o2w.

2 Proof. by case; rewrite /o2w /= inordK. Qed.

Now, thanks to the PcanXXXMixin family of lemmas, one can inherit on windrose the structures
of ordinals.

1 Definition windrose_eqMixin := PcanEqMixin pcan_wo4.

2 Canonical windrose_eqType := EqType windrose windrose_eqMixin.

3 Definition windrose_choiceMixin := PcanChoiceMixin pcan_wo4.

4 Canonical windrose_choiceType := ChoiceType windrose windrose_choiceMixin.

5 Definition windrose_countMixin := PcanCountMixin pcan_wo4.

6 Canonical windrose_countType := CountType windrose windrose_countMixin.

7 Definition windrose_finMixin := PcanFinMixin pcan_wo4.

8 Canonical windrose_finType := FinType windrose windrose_finMixin.

Only one tiny detail has been left on the side so far. To use windrose in conjunction with
the \in infix notation or with the notation #|...| for cardinality, the type declaration has
to be tagged as an instance of the predArgType structure, for types which model a predicate,
as it is the one which supports the latter notations. It can be done as follows.

1 Inductive windrose : predArgType := N | S | E | W.

After that, our new data type can be used exactly as the ordinal one can.

1 Check (N != S) && (N \in windrose) && (#| windrose | == 4).

A generic technique is available in order to equip a data type with structures of eqType,
choiceType, and countType. It consists in providing a correspondence with the generic tree
data type (GenTree.tree T): an n-ary tree with nodes labelled with natural numbers and
leaves carrying a value in T.
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Concepts

abbreviation, 37

Abstracting variables, 34

abstraction, 14

binder, 14, 19

case analysis, 46

naming, 48

coercion, 112

computation, 16, 24, 45

symbolic, 34

consistency, 81

convertibility, 75

currying of functions, 17

dependent function space, 73, 74

equality, 41, 79

formal proof, 45

forward reasoning, 89, 90

function application, 14

functional extensionality, 146

general term, see also higher-order, 60

goal stack model, 84

ground equality, 41

higher-order, 18, 60

identity, 43
implicit argument, 29
improving by [], 56
induction, 60

generalizing, 62
inductive type, 20

constructor, 21
injectivity of constructors, 76

keyed matching, 65

list comprehension, 31

machine checked proof, 46
matching algorithm, 64

natural number, 22
notation, 37
notation scope, 32

partial application, 17
pattern, 51
pattern matching, 23, 76

exhaustiveness, 23
irrefutable, 33

polymorphism, 28
positivity, 81
proof irrelevance, 141, 143
proposition, 41



provide choiceType structure, 167
provide eqType structure, 167
provide finType structure, 167

record, 32, 33
recursion, 24, 30

termination, 25
reflection view, 100
reordering goals, 49
rewrite rule, 52
rewriting, 51

search, 66
section, 33

simplifying equation, 110
symmetric argument, 90

terminating tactic, 46
termination, 25, 81
type, 15
type error, 16
typing an application, 17

unfolding equation, 110

view, 85

well typed, 15



Ssreflect Tactics

;[.., ..]102
apply:, 56
by [], 45
case: name => [|m], 48
case: name, 47
elim: name => [|m IHm], 61
gen have name : name / type, 152
have name : type by tactic, 89
have name : type, 89
last first, 49
rewrite, 51

//= (simplify close), 63
// (close trivial goals), 59
/= (simplification), 63
! (iteration), 52
-/ (folding), 65
-[term]/(term) (changing), 66
- (right-to-left), 53
/ (unfolding), 64
? (optional iteration), 63

[in RHS] (focusing), 63
{name} (clear), 66

suff also suffices, 92
tactic : .., 87

: {name} (disposal), 88
: term (generalization), 88
name: term (equation), 89

tactic => .., 84
=> -> (rewriting L2R), 87
=> /(_ arg) (specialization), 87
=> // (close trivial goals), 85
=> /= (simplification), 85
=> /view/view (many views), 86
=> /view (view application), 85
=> <- (rewriting R2L), 87
=> [ ..| .. ] (case), 84

tactic in name, 110
wlog also without loss, 93
tactic => ..

=> {name} (disposal), 85





Definitions and Notations

(_ * _) (pair), 31
(_ ++ _), 31
(_ , _), 31
(_ .*2), 26
(_ .+1), see also S

(_ .-1), 26
(_ :: _), 29
(_ =1 _), 148
(_ =P _), 128, see also eqP

.. <= .. < .., 38

.. <= .. <= .., 38

.. <= .., 38
AddLaw, 160
ComLaw, 159
EqMixin, 156
EqType, 156
Equality.sort, 156
Equality.type, 156
False, 79
GenTree.tree, 168
I, 79
Law, 159
O, 22
PcanEqMixin, 156
S, 22
True, 79
[&& .. , .. & ..], 30
[:: .. , .. & ..], 30

[==> .. , .. => ..], 30
[eqMixin of .. by <:], 156
[eqType of ..], 156
[pred x : T , E]126
[rel x y : T , E]126
[seq .. ; ..], 30
[seq .. <- .. | ..], 31
[seq .. | .. <- ..], 31
[|| .. , .. | ..], 30
\big[../..]_(..|..) .., 130
\sum, 36, 130
_, 24

‘, 89
addSn, 46
addn, 24, 25, 35
add, 35
andP, 102
andb, 21
associative, 55
block_mx, 153
cancel, 55
castmxKV, 153
castmx_id, 153
castmx, 153
choiceType, 161
col_mx, 153
comRingType, 164
com_unitRingType, 164



commutative, 54
conform_mx, 154
conj, 78
contraLR, 57
elimTF, 104
eqP, 125
eqType, 156, 161
eqnP, 102
erefl, 79
ex_intro, 78
exists2, 89
fix, 110
foldr, 34
forall, 28
fun .. => .., 14
idP, 103
if .. then .. else .., 21
ifP, 108
iffP, 102
implyP, 102
injective, 55
iota, 36
isT, 75
iter, 34
left_distributive, 55
left_id, 55
leqP, 108
leqn0, 48
leq, 38
let: .. := .. in .., 33

lsubmx, 153

ltngtP, 108

map, 31

muln_eq0, 49

muln, 49

nat_ind, 80

nat, 22

negbK, 46

not, 79

of, 145

option, 31

orP, 102

or_introl, 79

or_intror, 79

pcancel, 55

preArgType, 168

predn , see also .-1

pred (predicate), 112

reflect, 101, 107

ringType, 164

row_mx, 153

size_map, 54

size, 30

subn, 26

ubnPgeq, 109

ulsubmx, 153

unitRingType, 164

usubmx, 153

zmodType, 163



Coq Commands

About, 15
Admitted, 43
Arguments, 107
Check, 15
Compute, 16
Definition, 14
Fixpoint, 24
Hint Resolve, 56
Hint View, 104
Implicit Type, 34

Inductive, 21, 77

Lemma, 42

Notation, 37

Print, 15, 17

Record, 33

Section, 34

Structure, 122

Theorem, 42

Variable, 34
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