
“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

Appendix 2: Tools for Computational Reproducibility
This section outlines some open, scholar-led software projects that are aimed at helping

researchers make their work computationally reproducible. While there are proprietary

tools for computational reproducibility, they are not widely available and this resource

focuses on openly available tools as a matter of ethics. The options discussed here are all

free and open source, grassroots initiatives from scholars who are deeply invested in

openness and reproducible research. Konkol et. al (2020), provides a wider survey of tools

for computational reproducibility geared towards publishing computational research,

which is inclusive of proprietary software as well as some open platforms described

below.

There are four classes of computational reproducibility tools that will be discussed in this

section:

1. Containers: lightweight, portable, virtual operating systems.

2. Web-based integrated development environments (IDEs): which provide code editing

and execution and often have additional features for reproducibility.

3. Web-based replay systems: support for computational replay of materials that are

hosted in a different place from the system.

4. Packaging tools: software that automatically captures dependencies &

computational environment used at time of executing a computational pipeline.

Containers
The research community has been increasingly using and sharing containers in service of

reproducibility. Containers are a popular way to create virtual operating systems, like

sandboxes, separate from the physical infrastructure and native operating system.1 Two

popular container systems, Singularity and Docker, are especially popular for research

reproducibility.

Docker was made to “pack, ship and run any application as a lightweight container,”

specifically with the advantage of working in most computational environments.2 It is

2 Docker Inc., “Docker,” accessed August 13, 2020, https://www.docker.com/.

1 Scott Hogg, “Software Containers: Used More Frequently than Most Realize,” Network World, May 26,
2014,
https://www.networkworld.com/article/2226996/software-containers--used-more-frequently-than-most-r
ealize.html.

1

https://sylabs.io/singularity/
https://www.docker.com/
https://www.docker.com/
https://www.networkworld.com/article/2226996/software-containers--used-more-frequently-than-most-realize.html
https://www.networkworld.com/article/2226996/software-containers--used-more-frequently-than-most-realize.html

“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

widely used in software development to deploy software in the cloud as well as ensure a

common development environment amongst programmers. There are several other tools

that will be described below that rely on Docker in the back-end to remain reproducible.

Singularity was made for high performance computing (HPC) work because of security

considerations that both allow users full flexibility within the container and keep them

from accessing parts of the HPC environment that administrators do not want users to

access. Starting a Singularity container “swaps'' out the host operating system

environment for one the user controls without having root access, and allows the user to

run that application in its native environment.3 Singularity containers can then be shared

to allow others to work in the same computational environment.

Containers, however, are best used for short-term reproducibility. There are several

problems with their use for long-term sustainability. Containers have no idea of

provenance or the computational pipeline used -- a container with code and data can be

rendered virtually useless if not accompanied by extensive documentation about its

inputs and workflow steps. In addition, learning how to use containers is also difficult as it

is not always practical for researchers to create and use containers in their daily workflow.

Web-based Integrated Development Environments (IDEs)
An Integrated Development Environment (IDE) provides features for authoring, compiling,
executing, and debugging code, as well as helpful functions like code completion, built-in
support for version control, and syntax highlighting.4 These are especially helpful for new
programmers who benefit from the visual cues and prompts. IDEs can be either desktop or
web-based applications.

The scholarly community has taken advantage of both containers and web-based IDEs to

create a new type of this application geared for reproducible research. These systems

often provide access to a coding environment in-browser, such as Jupyter notebooks or

RStudio, or their own IDE.

4 “What Is an Integrated Development Environment (IDE)? - Definition from Techopedia,” Techopedia.com,
January 11, 2017,
http://www.techopedia.com/definition/26860/integrated-development-environment-ide.

3 “Singularity,” Sylabs.io, accessed August 13, 2020, https://sylabs.io/.

2

https://jupyter.org/
https://rstudio.com/
http://www.techopedia.com/definition/26860/integrated-development-environment-ide
https://sylabs.io/

“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

If you want to learn more about containers, this zine by Julia Evans is incredible:
https://wizardzines.com/zines/containers/

and allow users to either export their work as a research compendium or allow sharing of

these environments to bolster reproducibility.

One of these applications is WholeTale, which is an “NSF-funded Data Infrastructure

Building Block (DIBBS) initiative to build a scalable, open source, web-based, multi-user

platform for reproducible research enabling the creation, publication, and execution of

tales - executable research objects that capture data, code, and the complete software

environment used to produce research findings”.5 They define a tale as “an executable

research object that combines data (references), code (computational methods),

computational environment, and narrative (traditional science story)” -- which we know is

also called a research compendium.6

6 “Whole Tale.”

5 “Whole Tale,” Whole Tale, 2019, https://wholetale.org/.

3

https://wizardzines.com/zines/containers/
https://wholetale.org/
https://wholetale.org/

“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

A beta version of the system is available at https://dashboard.wholetale.org.

When working in WholeTale, the users have the option to choose a type of environment

from a list of options: RStudio, Jupyter Notebooks, OpenRefine 2.8, Jupyter Notebooks

with Spark, and JupyterLab. Once within those environments, users can work as if they

were on their local computer -- importing and installing new libraries, adding data, and

even running high performance computing jobs. WholeTale will keep track of the version

of any software dependencies and relevant environmental variables. Once a tale is

complete, it can be published to a repository like Dataverse, with descriptive metadata

and a research compendium that can later be rerun in WholeTale for reproducibility.7

However, the web-based IDEs for reproducibility require that researchers work within a

specific online platform, and that can be untenable for those who need to be able to, for

instance, work offline, or work across multiple types of environments for collaboration or

compliance purposes. Most, if not all, of the proprietary tools that are marketed for

computational reproducibility fall in this category of web-based IDEs.

Web-based Replay Systems
Given that researchers are hard pressed to change their workflows and tools, web-based

replay systems were created. These are applications that take a link to research materials

hosted elsewhere, build the computational environment in-browser, and displays to the

user some method of interacting with the materials, such as an instance of JupyterLab.

7 Chard et al., “Application of BagIt-Serialized Research Object Bundles for Packaging and Re-Execution of
Computational Analyses.”

4

https://dashboard.wholetale.org
https://spark.apache.org/
https://jupyterlab.readthedocs.io/en/stable/
https://dataverse.org/

“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

This offloads the responsibility for hosting materials to platforms devoted to that, and

allows for the researchers to have flexibility in how they work.

Web-based replay systems allow for any user to interact with reproducible compendia in a

‘sandbox’, allowing users to modify input data or parameters, or even code, and re-execute

it. They often ask the user to follow some structure for either the input or the directory

structure in order to work properly, and use container systems in the backend to recreate

the research compendia for researchers.

There are two large scale projects that allow for computational replay of research. One of

those is Binder, from Project Jupyter. Binder uses repo2Docker to reproduce the

computational environment of research hosted on Git hosting platforms (e.g. GitLab,

GitHub) or repositories (e.g. Zenodo, Dataverse).8 Users can replay materials in RStudio,

Jupyter notebooks, JupyterLab, and Julia notebooks from Binder. When navigating to

mybinder.org, the user is prompted to enter a URL or DOI that leads to a directory that

contains Jupyter notebooks, RMarkdown files, or Julia notebooks. Binder will then look

through the directory of files for something that will tell it about the computational

dependencies, like a requirements.txt file for a Python project, or a Dockerfile. The user

will then see the materials in the original computational environment, in the original

interface.9 Binder also provides a reusable link to this page with the live materials to

others who want to reproduce the work.

9 Jupyter et al.

8 Project Jupyter et al., “Binder 2.0 - Reproducible, Interactive, Sharable Environments for Science at Scale,”
Proceedings of the 17th Python in Science Conference, July 15, 2018, 113–20,
https://doi.org/10.25080/Majora-4af1f417-011.

5

https://mybinder.org/
https://jupyter.org/
https://github.com/jupyterhub/repo2docker
https://doi.org/10.25080/Majora-4af1f417-011

“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

The homepage of mybinder.org.

REANA is another example of a computational replay system, based in high energy physics

(HEP). Made by a team at CERN (the European Organization for Nuclear Research) the

goal of REANA is to help researchers “structure their input data, analysis code,

containerised environments and computational workflows so that the analysis can be

instantiated and run on remote compute clouds”.10 REANA relies heavily on the usage of

the Common Workflow Language, “an open standard for describing analysis workflows

and tools in a way that makes them portable and scalable across a variety of software and

hardware environments”.11 This, in combination with the multiple container systems

available on REANA, allow for computational replay of HEP workflows. This idea and

process could, however, be generalized for other domains as well.

11 Peter Amstutz et al., “Common Workflow Language, v1.0,” July 8, 2016, 5921760 Bytes,
https://doi.org/10.6084/M9.FIGSHARE.3115156.V2.

10 “REANA - Reusable Analyses,” accessed August 13, 2020, http://reanahub.io/.

6

https://mybinder.org/
http://reanahub.io/
https://doi.org/10.6084%2Fm9.figshare.3115156.v2
https://doi.org/10.6084/M9.FIGSHARE.3115156.V2
http://reanahub.io/

“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

Packaging Systems
The final category of computational reproducibility tools we’ll cover are packaging

systems. Packaging systems are desktop or server-based tools that automatically capture

dependencies & computational environments at time of executing a computational

pipeline. The draw with packaging systems is the flexibility -- you don’t have to go into a

project thinking about reproducibility to be able to use a packaging tool to create a record

of the computational environment. As long as your pipeline runs, the packaging tool will

work.

One example is ReproZip. ReproZip works by running at the same time as a computational

pipeline, tracing all the steps and dependencies while the pipeline runs like normal. Then it

packages together input files, output files, parameters, environmental variables,

executable code and steps, into a portable, generalized format: the RPZ (.rpz), or the

ReproZip bundle. These bundles are small (size of the bundles really depends on the size

of input and output data), portable (can be deposited into a repository or emailed!), and

self-contained (everything needed to reproduce the pipeline is there!).12

ReproZip ecosystem, created by Fernando Chirigati. Used with permission.

ReproZip bundles can be replayed locally on any operating system (using ReproUnzip) or

in-browser (using ReproServer). These tools will take a ReproZip bundle and

12 Fernando Chirigati et al., “ReproZip: Computational Reproducibility With Ease,” in Proceedings of the 2016
International Conference on Management of Data, SIGMOD ’16 (New York, NY, USA: Association for
Computing Machinery, 2016), 2085–2088, https://doi.org/10.1145/2882903.2899401.

7

https://www.reprozip.org/
https://doi.org/10.1145/2882903.2899401

“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

automatically unpack it, setting up all the dependencies and workflow steps for users, so

they can reproduce the contents in the original computational environment. ReproUnzip

operates on the plugin model, so users can choose which unpacker they can use to

reproduce the work, for example Docker or Vagrant. However, this can be expanded to

include any container or virtual machine systems in the future, because the extensive

metadata ReproZip captures.13

ReproZip also has an ecosystem of other open tools: ReproZip-Web (combines ReproZip

with web archiving technology to capture complex server-client applications),

reprozip-jupyter (a ReproZip plugin for Jupyter notebooks, see example videos),

ReproUnzip (a tool to replay and interact with the computational pipelines archived in

ReproZip bundles), and ReproServer (a way to replay ReproZip bundles in-browser).

Right now, ReproZip, ReproZip-Web, and reprozip-jupyter can only pack materials on

Linux (because of the extensive information captured and the fact that the OS needs to be

recreated at-will from ReproZip bundles), but users can install any of the other tools

above on any operating system.

However, installing ReproUnzip and another piece of software can be a big ask for some

researchers. To that end, ReproServer was created, which allows users to either upload a

ReproZip bundle (.rpz) or provide a link to one, and then reproduce and interact with the

contents of the RPZ file in-browser, drastically reducing the number of steps and

complexity. What’s more is that ReproServer integrates with repositories, such that users

can create links like this: https://server.reprozip.org/osf.io/<5 character OSF link> to

immediately begin reproducing the work or send to reviewers/collaborators for their

input. ReproServer also provides a permanent URL to the unpacked environment and the

results of rerunning the pipeline in the RPZ file.14

Summary
Di�erent reproducibility tools will work for di�erent researchers and workflows. For instance,
when processing and analyzing research materials, many people tend to use containers or
web-based IDEs because the rapid-prototyping capabilities are useful for the more
exploratory and error-prone processing step. One key reason why they are especially useful

14 Vicky Steeves, Rémi Rampin, and Fernando Chirigati, “Reproducibility, Preservation, and Access to
Research with ReproZip and ReproServer,” IASSIST Quarterly 44, no. 1–2 (June 29, 2020): 1–11,
https://doi.org/10.29173/iq969.

13 Chirigati et al.

8

https://reprozip-web.readthedocs.io/en/latest/
https://pypi.org/project/reprozip-jupyter/
https://www.youtube.com/watch?v=Y8YmGVYHhS8&list=PLjgZ3v4gFxpWb277AEyjsVerB6nViGTVL
https://docs.reprozip.org/en/1.0.x/unpacking.html
https://server.reprozip.org/
https://gitlab.com/ViDA-NYU/reproserver/-/tree/master/reproserver/repositories
https://doi.org/10.29173/iq969

“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

in the analysis step is because they can also be ported to be compatible with web-based
replay systems, which are useful in publishing your work.

When the work is done and nearing publication, people tend to prepare, structure, or export
their research for web-based replay systems. These are useful because of the near-instant
replay of computational research for reviewers of publications or presentations, members of
promotion committees, or any interested party. This brings a wider accessibility to the
reproducible work, which helps for post-publication review.

Lastly, packaging tools are the most sustainable for long-term reproducibility, especially
when combined with emulation technology. Packaging tools are provenance-aware (e.g. it
knows the order in which research pipelines run), automatically capture dependencies,
automatically write in-depth technical and administrative metadata, and are interoperable
(in that, they are built to work with a variety of other tools). These traits make them the most
reliable for preservation and access purposes.

This section was meant to guide an understanding of the wider landscape of computational
reproducibility tools. These four key classes of tools (containers, web-based IDEs,
web-based replay systems, and packaging tools) and the examples discussed here reflect
community-based e�orts to sca�old the understandability and usability of their research,
teaching, and learning. These tools can be used to both make one’s own work reproducible,
as well as help a designated community make their work more reproducible and sustainable
in the long-term.

COI: Vicky Rampin contributes to the ReproZip project.

References

Amstutz, Peter, Michael R. Crusoe, Nebojša Tijanić, Brad Chapman, John Chilton, Michael
Heuer, Andrey Kartashov, et al. “Common Workflow Language, v1.0,” July 8, 2016,
5921760 Bytes. https://doi.org/10.6084/M9.FIGSHARE.3115156.V2.

Chard, Kyle, Niall Gaffney, Matthew B. Jones, Kacper Kowalik, Bertram Ludascher,
Timothy McPhillips, Jarek Nabrzyski, et al. “Application of BagIt-Serialized

9

“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

Research Object Bundles for Packaging and Re-Execution of Computational
Analyses.” In 2019 15th International Conference on EScience (EScience), 514–21.
San Diego, CA, USA: IEEE, 2019. https://doi.org/10.1109/eScience.2019.00068.

Chirigati, Fernando, Rémi Rampin, Dennis Shasha, and Juliana Freire. “ReproZip:
Computational Reproducibility With Ease.” In Proceedings of the 2016 International
Conference on Management of Data, 2085–2088. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016.
https://doi.org/10.1145/2882903.2899401.

Docker Inc. “Docker.” Accessed August 13, 2020. https://www.docker.com/.

Hogg, Scott. “Software Containers: Used More Frequently than Most Realize.” Network
World, May 26, 2014.
https://www.networkworld.com/article/2226996/software-containers--used-mor
e-frequently-than-most-realize.html.

Jupyter, Project, Matthias Bussonnier, Jessica Forde, Jeremy Freeman, Brian Granger, Tim
Head, Chris Holdgraf, et al. “Binder 2.0 - Reproducible, Interactive, Sharable
Environments for Science at Scale.” Proceedings of the 17th Python in Science
Conference, July 15, 2018, 113–20.
https://doi.org/10.25080/Majora-4af1f417-011.

Konkol, Markus, et al. “Publishing Computational Research -- A Review of Infrastructures
for Reproducible and Transparent Scholarly Communication.” Research Integrity and
Peer Review, vol. 5, no. 1, Dec. 2020, p. 10. arXiv.org,
https://doi.org/10.1186/s41073-020-00095-y.

Nüst, Daniel, Carl Boettiger, and Ben Marwick. “How to Read a Research Compendium.”
ArXiv:1806.09525 [Cs], June 11, 2018. http://arxiv.org/abs/1806.09525.

Nüst, Daniel, and Matthias Hinz. “Containerit: Generating Dockerfiles for Reproducible
Research with R.” Journal of Open Source Software 4, no. 40 (August 21, 2019): 1603.
https://doi.org/10.21105/joss.01603.

“REANA - Reusable Analyses.” Accessed August 13, 2020. http://reanahub.io/.

Sylabs.io. “Singularity.” Accessed August 13, 2020. https://sylabs.io/.

Steeves, Vicky, Rémi Rampin, and Fernando Chirigati. “Reproducibility, Preservation, and
Access to Research with ReproZip and ReproServer.” IASSIST Quarterly 44, no. 1–2
(June 29, 2020): 1–11. https://doi.org/10.29173/iq969.

10

https://doi.org/10.1109/eScience.2019.00068
https://doi.org/10.1145/2882903.2899401
https://www.docker.com/
https://www.networkworld.com/article/2226996/software-containers--used-more-frequently-than-most-realize.html
https://www.networkworld.com/article/2226996/software-containers--used-more-frequently-than-most-realize.html
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.1186/s41073-020-00095-y
http://arxiv.org/abs/1806.09525
https://doi.org/10.21105/joss.01603
http://reanahub.io/
https://sylabs.io/
https://doi.org/10.29173/iq969

“Tools for Computational Reproducibility” by Vicky Rampin is licensed under CC-BY-NC and is intended to
accompany Part 2: Open Data Section (section ed: Brianna Marshall), Chapter 3, “Supporting Reproducible
Research” by Hayden, Mentnech, Rampin, and Sayre, inScholarly Communication Librarianship and Open
Knowledge, edited by Bolick, Bonn, and Cross.

Techopedia.com. “What Is an Integrated Development Environment (IDE)? - Definition
from Techopedia,” January 11, 2017.
http://www.techopedia.com/definition/26860/integrated-development-environm
ent-ide.

Whole Tale. “Whole Tale,” 2019. https://wholetale.org/.

11

http://www.techopedia.com/definition/26860/integrated-development-environment-ide
http://www.techopedia.com/definition/26860/integrated-development-environment-ide
https://wholetale.org/

