
Master thesis in Sound and Music Computing
Universitat Pompeu Fabra

Advancing a Wavelet-Based Spatial Audio
Format

Samuel Narváez

Supervisor: Daniel Arteaga

Co-Supervisor: Davide Scaini

July 2022





Master thesis in Sound and Music Computing
Universitat Pompeu Fabra

Advancing a Wavelet-Based Spatial Audio
Format

Samuel Narváez

Supervisor: Daniel Arteaga

Co-Supervisor: Davide Scaini

July 2022





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the Art 3

2.1 Localization of Sound by Humans . . . . . . . . . . . . . . . . . . . . . 3

2.2 Spatial Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 VBAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Ambisonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.3 Spherical Wavelet Format . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Multiresolution Framework for Spatial Audio . . . . . . . . . . . . . . . 7

2.3.1 Mesh Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Multiresolution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Spherical Wavelet Format for Spatial Audio . . . . . . . . . . . . . . . 11

2.4.1 Encoding & Signal Deconstruction . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Trivial Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.3 Signal Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.4 Operator Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.5 Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.6 Lifting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



3 Methods 18

3.1 Mesh Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 The trivial filter bank . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Modified Lifting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Constructing T̄j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Optimization and Evaluation Metrics . . . . . . . . . . . . . . . . . . . 27

3.4.1 Total Acoustic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Total Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.3 Acoustic Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.4 Sound Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Energy Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Results 31

4.1 Objective Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 VBAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 3rd Order Ambisonics with various decodings . . . . . . . . . . . . . . 34

4.2 The Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Transcoding Mesh Structures . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Max Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Discussion and Conclusions 43

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

List of Figures 46



Bibliography 48





Acknowledgement

I would like to express my sincere gratitude to:

• Daniel Arteaga and Davide Scaini – for all of their support, teaching, patience

and advocating on my behalf.

• My family – for their long-distance support this past year.

• Friends, faculty and colleagues at the MTG and Taller de Musics for helping

me in uncountably many ways.

• Friends, faculty and colleagues from Oberlin, especially the Math and TIMARA

departments, for being a key step in the journey that brought me to this point





Abstract

This work further develops the theory of Spherical Wavelet Format (SWF), a spa-

tial audio format inspired by Ambisonics that makes use of Spherical Wavelets as

a basis to decompose the soundfield. In particular, we have specified a version of

SWF that implements a method to build an arbitrary wavelet representation on an

arbitrary triangular mesh. We make use of a modified lifting scheme to optimize

the interpolating scaling functions for optimal playback reproduction, and we have

demonstrated its functionality and competitiveness with state-of-the-art spatial au-

dio algorithms on a 7.1.4 layout. The resulting SWF specification is available for

use and further research in an open source python library. The python library is

flexible enough to support any layout, and includes presets for the original Octa-

hedral mesh from the first publication of SWF, as well as the 7.0.4-based SWF

format used for objective and subjective evaluation in this report, and a Spheri-

cal Wavelet Format that naturally interpolates between standard surround sound

formats (11.1.8,9.1.6,7.1.4,etc.). The library is intended to be used with the triv-

ial decoding from the coarsest level of mesh, but can also be decoded using other

strategies from less coarse representations.

Keywords: Second-Generation Wavelets; Spatial Audio; Spherical Wavelets; SWF;

Ambisonics; VBAP; Triangular Mesh; Surround Sound





Chapter 1

Introduction

Spherical Wavelet Format (SWF) is a framework for spatial audio inspired by Am-

bisonics, published in 2020 by Davide Scaini and Daniel Arteaga. [1] [2]

The final concept they developed allows to encode sound sources to a cloud of

points and to reduce (or recover) the dimensionality of the cloud at will. The

spatial downsampling is implemented as a linear transformation that can be fully

reverted. This construction allows for different coexisting spatial representations,

that can scale based on various requirements, for example transmission bandwidth

or the complexity of the destination playback system.

1.1 Motivation

The original exploration of SWF by Scaini and Arteaga was limited to a format based

on the regular octahedral mesh. This limitation was necessary in that, it allowed

them to optimize the format by brute force – taking advantage of the inherent

symmetries of this mesh. However, the theory of SWF is not limited to regular

meshes. Nor is it, neccessarily, limited to meshes that approximate the sphere

or hemisphere. This work extends SWF to all triangular meshes, and introduces

a psychoacoustically-motivated optimization technique that is general enough to

be applied to any mesh, and fast enough to be carried out at the point of mesh

1



2 Chapter 1. Introduction

instantiation.

1.2 Objectives

The most significant objective of this work is the development of an open-source

python library implementing a version of SWF for use in real-time applications that

can serve as a starting point for further research.

We sought that this version of SWF should be flexible enough to handle all possible

loudspeaker layouts by way of the base subivision mesh, particularly irregular layouts

and industry standards such as Dolby Atmos surround sound formats. Additionally,

this version of SWF should be optimized for certain psychoacoustic properties like

spatial resolution and timbre preservation.

We have been largely successful in this. The resulting library implements a method

to build an arbitrary wavelet representation on an arbitrary mesh, and a method to

refine the format for optimal reproduction.

1.3 Structure of the Report

This report will introduce Spatial Audio broadly for the uninitiated reader, both

its psychoacoustical foundations and the industry-standard methods for achieving

3D sound. We will then move into an overview of Multiresolution analysis: the

framework for introducing wavelets, scaling functions, and an algorithm called the

Lifting Scheme. We will dig into the fundamentals of SWF and expand upon how

this has been implemented. We will explore the tools and methodology necessary

to expand the SWF to general layouts. Subsequently, we will discuss the results

generated by the library, focusing in particular on the case of the 7.1.4 standard

layout, and talk about the Max patch and other realtime applications. Finally, we

will perform an objective comparison to state-of-the-art spatial audio techniques.
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State of the Art

2.1 Localization of Sound by Humans

To motivate our understanding of spatial audio, let’s ground ourselves in the phys-

iological bases for sound localization. Humans achieve localization of sound events

through assessing subtle differences in the sensations perceived by our ears.

These binaural (involving both ears) differences are key to how we perceive the

location of a sound source. They are composed of the Interaural Time Difference

(ITD) and Interaural Level Difference (ILD) [3] and can be measured by the head

related transfer function (HRTF). The ITD describes the difference in time that it

takes for a sound event to be percieved by the other ear once it has been detected

in one ear. The ILD describes the difference in loudness sensation between the two

ears as they percieve the same sound event.

Coherent signals from multiple loudspeakers combine linearly at the ears of the

listener. This commonly is referred to as the Summing Localization Principle [4] and

is the hypothesis that motivates amplitude-based panning. Summing localization

assumes that the characteristics of this additive sound field are similar enough to

the characteristics of the sound field that is produced by a single real source. A

listener perceives a single auditory event at the location of this equivalent single

sound source, commonly referred to as a phantom or virtual source.

3
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2.2 Spatial Audio

Spatial audio refers to the set of tools, technologies and theories for creation or recre-

ation of a subjective sound scene, that has to produce all the spatial characteristics

of a sound located in a 2D or 3D space: direction, distance and size.

It is possible to classify the techniques to (re)create an auditory scene (2D or 3D)

in three categories[1]:

• Discrete panning techniques (e.g. Stereo, Traditional Multichannel, VBAP,

MDAP, ABAP, VBIP, ABIP): the known apparent direction of the source is

used to feed a limited number of loudspeakers. This approach is based on the

summing localization principle, and seeks to position phantom sources through

either amplitude or intensity panning.

• Sound field reconstruction methods (e.g. Ambisonics, Wave Field Synthesis):

the intent is to control the acoustical variables of the sound field (pressure,

velocity) in the listening space.

• Head-related stereophony (binaural, transaural): the aim is to measure (bin-

aural recording) or (re)produce (binaural synthesis) the acoustic pressure at

the ears of the listener. Leverages ITD and ILD to create the impression of

space via Head Related Transfer Functions (HRTFs).[5]

Besides the underlying theory of each technology, the spatial audio techniques can be

also classified by analyzing how the whole encoding/decoding pipeline is structured:

• Layout-dependent : the whole encoding/decoding and recording/reproduction

is based on a specific channel layout, e.g. 2.0, 5.1, 7.1, ...

• Layout-independent (channel-agnostic): the recording and encoding format is

independent from the reproduction layout.

Within Layout-independent techniques, there exist two main categories:
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• Channel Based : the format is transmitted in a fixed number of channels,

which is specified at the beginning of the production chain.

• Object Based: the format is based on audio objects, which are representations

of virtual sources that move in a digital representation of space.

Malham [6] developed two criteria that can be applied to any existing or future sur-

round sound technology: the ideas of homogeneous and coherent sound reproduction

systems. Quoting from [Malham, 1999]:

“A homogeneous sound reproduction system is defined as one in which no

direction is preferentially treated. A coherent system as one in which the

image remains stable if the listener changes position within it, though

the image may change as a natural soundfield does.”

2.2.1 VBAP

Vector Based Amplitude Panning (VBAP) [1] is a channel-based discrete panning

technique and in general is not homogeneous. In a horizontal plane around the

listener, a virtual sound source at a certain position is created by applying the

tangent panning law between the closest pair of loudspeakers. This principle was

also extended to project sound sources onto a three dimensional sphere and assumes

that the listener is located in the center of the equidistant speaker setup. In three

dimensions, VBAP computes a triliinear interpolation between the points of the

triangle of loudspeakers which contains the virtual source.

2.2.2 Ambisonics

Ambisonics [7] is a theory that aims at reconstructing the sound field, is layout-

independent, is coherent and homogeneous. Ambisonics was developed in the UK in

the 1970s as a full-sphere surround sound format. It decomposes the sound field by

the spherical harmonics, an orthonormal basis for representing functions defined on

the surface of the sphere. Sound sources must be encoded to Ambisonics B-format,
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wherein the channels represent a truncated decomposition of the sound field by the

spherical harmonics. Low-order ambisonics limit this decomposition to the first order

spherical harmonics, which correspond to the three X,Y, and Z pressure gradients at

a point in space with sound pressure W. Higher order ambisonics include channels

that correspond with higher order spherical harmonics. Some of the drawbacks of

low order Ambisonics, like large source spread and small sweet-spot, are directly

related to the fact that spherical harmonics do not have compact support on the

sphere.

An Ambisonic encoding distributes a sound source over the spherical harmonic com-

ponents with different gains. This effectively represents the sound field in the basis

of the spherical harmonics. Higher order Ambisonics include higher orders of spheri-

cal harmonics, thus increasing the number of transmission channels and the number

of channels neccessary to reproduce the decoded soundfield.

2.2.3 Spherical Wavelet Format

Spherical Wavelet Format (SWF) [2] as a theory is layout-independent, channel-

based, coherent and homogeneous. The specific version of SWF developed in this

thesis is functionally layout-dependant although technically still decodable to any

layout. More details on this later.

SWF is similar in spirit to Ambisonics, though SWF replaces the spherical harmonics

by an alternative set of functions with compact support, the spherical wavelets.

Spherical wavelets are wave-like oscillations defined on the sphere that, differently

to spherical harmonics, can be associated to a certain angular direction.

Wavelets typically have compact support: they are zero or decay very fast outside the

region of interest, implying that they have an explicit directionality; they naturally

offer a system to reduce/scale information and can be tuned to the signal so to have

a set of desired properties. We will now introduce some tools and techniques needed

to enable SWF, which will be discussed in further detail in Section 2.7.
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2.3 Multiresolution Framework for Spatial Audio

Speaking generally, a virtual source distribution can be thought of as a function

on the surface of the sphere. Any virtual source can have an arbitrary position in

spherical space, with continuous azimuth and elevation coordinates (θ, σ). It is thus

necessary for any sound field theory to be able to represent general functions defined

on the sphere accurately.

Schroder [8] highlights wavelets’ suitability for this task, stating:

Wavelets have proven to be powerful bases for use in numerical analysis

and signal processing. Their power lies in the fact that they only require

a small number of coefficients to represent general functions and large

data sets accurately. This allows compression and efficient computations.

2.3.1 Mesh Subdivision

The second generation spherical wavelets used in SWF are discrete, and defined

procedurally by the repeated subdivision of a mesh approximating the sphere, which

is typically built starting from a chosen base mesh and running a subdivision scheme.

The result of an iteration of the subdivision scheme on a mesh of level n is a mesh

of level n+ 1, the base mesh being of level 0. The higher the level of subdivision of

the mesh, the closer it will approximate the sphere.

The subdivision works as follows: At the coarsest level, we start with a triangular

mesh, meaning each face of the mesh has exactly three vertices. At the midpoint of

every unique edge, we impute a new vertex and project it onto the surface of the

sphere. Then we draw new edges such that each triangular face from the coarse

level becomes four smaller triangular faces. Our result is a finer (more dense) mesh

that more closely approximates the sphere.
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Figure 1: An Illustration of one iteration of the subdivision scheme on a single
triangular face.

2.3.2 Multiresolution Analysis

The subdivision mesh is the skeleton for our multiresolution analysis, the system

that lets us represent data (our virtual source distribution) in different levels of

detail.

More generally, a multiresolution analysis consists of a nested set of closed vector

subspaces:

V0 ⊂ V1 ⊂ ...Vj ⊂ ... ⊂ Vn (2.1)

with n ≥ 0 such that:

• Vj ⊂ Vj+1∀j

• for each j, the basis functions of Vj are called scaling functions and are denoted

ϕj
k with k ∈ K(j). Where K is an index set with K(j) ⊂ K(j + 1)

• since the vector spaces are nested, it is possible to to write each ϕj
k as a function
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of the next level ϕj+1 and obtain these refinement relations:

ϕj
k =

∑
l

pj+1
l,k ϕ

j+1
l (2.2)

for some p, where n > j ≥ 0, k ∈ K(j) and l ∈ K(j + 1). We can write the

scaling functions more concisely as a row vector:

ϕj = (ϕj
1, ..., ϕ

j
mj) (2.3)

where mj is the dimension of V j

2.3.3 Wavelets

The wavelet spaces, W j, are defined to be the orthogonal complement of V j in V j+1,

such that V j ⊕W j = V j+1, meaning that W j includes all the functions in V j+1 that

are orthogonal to all those in V j under some inner product. The functions that form

a basis of W j are called wavelets, and are denoted with ψj
p. The refinement relation

for wavelets is defined similarly to the scaling functions:

ψj
k =

∑
l

qj+1
l,k ϕj+1

l (2.4)

for some q, and they can be similarly condensed as a row vector:

ψj = (ψj
1, ..., ψ

j
nj) (2.5)

where nj is the dimension of W j, with mj + 1 = mj + nj.

With this matrix notation now developed, it is clearer and more convenient to rewrite

the refinement relations as:

ϕj = ϕj+1Pj+1 (2.6)

ψj = ϕj+1Qj+1 (2.7)
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satisfying the biorthogonality condition:

⟨ϕj|ψj⟩ = 0 (2.8)

where, ⟨ϕj|ψj⟩ denotes the inner product.

Every multiresolution analysis has a dual multiresolution analysis consisting of

nested spaces Ṽ j with bases given by dual scaling functions ϕ̃j, which are biorthog-

onal to the scaling functions:

⟨ϕ̃j|ϕj⟩ = 1 (2.9)

And similarly, for any given wavelet basis there exists a dual wavelet basis ψ̃j, the

two of which are biorthogonal to each other:

⟨ψ̃j|ψj⟩ = 1 (2.10)

and the duals satisfy similar refinement relations:

ϕ̃j = ϕ̃j+1[Aj+1]T (2.11)

ψ̃j = ϕ̃j+1[Bj+1]T (2.12)

These operators, Aj, Bj, Pj, and Qj are the decomposition and reconstruction

filters (respectively) that will be contextualized and discussed further in section 2.4.

They must satisfy the following biorthogonality relations:

• BjPj = 0

• AjQj = 0

• AjPj = 1

• BjQj = 1

• BjAj +QjBj = 1
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And can be used to compute the scaling functions, wavelets, and their duals as

follows:

• ϕj
k(p) = (Pn...Pj+2Pj+1)pk

• ψj
k(p) = (Pn...Pj+2Qj+1)pk

• ϕ̃j
k(p) = (Aj+1Aj+2...An)kp

• ψ̃j
k(p) = (Bj+1Aj+2...An)kp

A more complete exposition of these details can be found in Appendix A of [2].

2.4 Spherical Wavelet Format for Spatial Audio

We are now prepared to discuss in detail the Spherical Wavelet Format. [2] A

Spherical Wavelet Format is completely determined by:

1. A recursive subdivision mesh over the sphere, ranging from the coarsest level

0 to the finest level n.

2. A set of filters {Aj,Bj,Pj,Qj|j ∈ [1, n]}, defining a wavelet space, that satisfy

the biorthogonal relations.

3. A truncation level l ∈ [0, n], defining the order of the wavelet decomposition.

2.4.1 Encoding & Signal Deconstruction

Given a mesh, we have a set of data defined over the finest level of subdivision, f =

(f1, ..., fn)
T , which in the audio domain represents the original source distribution

at the finest considered resolution (in this case, n being the number of vertices in

the finest level of mesh). The process of downsampling decomposes the signal f into

two signals, a coarse approximation, cn−1 and the details, dn−1 which are computed
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using the encoding filters:

cn−1 = Anf (2.13)

dn−1 = Bnf (2.14)

Where An,Bn are the decomposition, encoding, or analysis filters at level n. The

signal cn−1 represents a spatially low-passed and downsampled version of f . The

signal dn−1 represents the information missing from cn−1 relative to f .

The decomposition can continue by iterating the decomposition of the coarse data,

if the decomposition is followed up to the coarsest level available (level 0), there

will be a list of n− 1 detail signals or wavelet coefficients, d0, ...,dn−1 and one last

coarse signal or scaling function coefficients c0; the representation {c0,d0, ...,dn−1}

constitutes the wavelet transform. The coarse signal c0 encodes a spatially down-

sampled version of the signal at the base mesh, and the detail signals d0, ...,dn−1

encode the difference between the representations in two successive levels. This rep-

resentation is useful for transmission, and can be even decoded directly using the

trivial decoding.

2.4.2 Trivial Decoding

The trivial decoding assumes that in the reproduction setting, there is a speaker

located at each of the vertices at some level of mesh, typically level 0. Thus, the

coarse signals cl can be considered the coefficients of the trivial decoding. Details

on nontrivial decodings can be found in the original paper [2] but they will not be

considered here.

2.4.3 Signal Reconstruction

The upsampling process increases the spatial resolution of the coarse data cn−1 to

the fine data f , and if the details dn−1 are available, then the reconstruction process
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will give back the original fine data:

f = Pncn−1 +Qndn−1 (2.15)

where Pn and Qn are the reconstruction, decoding, or synthesis filters at level n. In

order to achieve compression, it may be advantageous to limit the decomposition up

to a given level, in which case if the encoding has been truncated at decomposition

level l, the detail coefficients with level equal to or greater than l will all be zero,

and thus a reconstruction of the signal will result in a spatially low-passed version

of the original signal f .

2.4.4 Operator Reference

The reader may find these abuses of notation helpful to remember the functions of

the operators mentioned so far.

P : c 7→ f (2.16)

Q : d 7→ f (2.17)

A : f 7→ c (2.18)

B : f 7→ d (2.19)

S : c 7→ d (2.20)

T : d 7→ c (2.21)

2.4.5 Filter Design

Arguably the most important factor to the success and performance of a particu-

lar Spherical Wavelet Format is the design of the filters A,B,P, and Q. Beyond

satisfying the biorthogonality conditions, they should have as compact support as

possible, have smooth spatial low-pass characteristics, preserve the total acoustic

pressure between downsampling/upsampling, and limit out of phase components.

Some example filters are included in the figures below. These filters were generated

by the lifting scheme on a second-order subdivided octahedral mesh.
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2.4.6 Lifting Scheme

The lifting scheme is a method invented by Wim Sweldens [9] to update the biorthog-

onal wavelet filters Aj, Bj, Pj, and Qj. The whole idea of the lifting scheme is to

start from one basic multiresolution analysis, which can be simple or even trivial,

and construct a new, more performant one, i.e., the basis functions are smoother

or the wavelets have more vanishing moments. In case the basic filters are finite

we will have lifted filters which are also finite. One feature of the lifting scheme is

Figure 2: The lifting scheme.

that it always generates biorthogonal lifted filters if the basic filters provided are

biorthogonal. This can be verified from the definition of the Lifting Scheme.

Let’s start with the definition of our operators Aj, Bj, Pj, and Qj and derive new

filters Āj, B̄j, P̄j, and Q̄j by chasing the diagram in Figure 2.

We have:

Ajf = c (2.22)

Bjf = d (2.23)

Pjc+Qjd = f (2.24)

(2.25)

Applying the steps from the diagram gives:
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((1−Tj · Sj) ·Aj +Tj ·Bj)f = c (2.26)

(Bj − Sj ·Aj)f = d (2.27)

(Pj +Qj · Sj)c+ (−Pj ·Tj +Qj · (1− Sj ·Tj))d = f (2.28)

(2.29)

Which implies that new filters Āj, B̄j, P̄j, and Q̄j are generated from the original

filters as follows:

P̄j = Pj +Qj · Sj (2.30)

Q̄j = −Pj ·Tj +Qj · (1− Sj ·Tj) (2.31)

Āj = (1−Tj · Sj) ·Aj +Tj ·Bj (2.32)

B̄j = Bj − Sj ·Aj (2.33)

Where Sj and Tj are the lifting operators. Sj takes information from the coarse mesh

and sends it to the details, and Tj takes information from the details and updates

the coarse mesh. It is important to note that Sj and Tj can be any matrices of the

right dimensions, but in spatial applications it is useful to define them in terms of

neighborhoods of points in the mesh for locality. [8]

The lifting scheme is a powerful tool that allows us to customize the design of the

wavelets and scaling functions for our applications, while at the same time limiting

the scope of our optimization to the lifting operators, rather than the entire set of

biorthogonal wavelet filters.
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Figure 3: A horizontal cross-section of filters generated by the lifting scheme for the
octahedral mesh.
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Figure 4: The first row of A on the subdivided octahedral mesh. This illustrates
how much signal is sent to the vertex at index 0 in the coarse mesh from all vertices
in the fine mesh by applying the filter A
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Methods

3.1 Mesh Data Structure

Many considerations should be made when selecting a data structure for any im-

plementation. A mesh needs both geometric (the locations of vertices in R3) and

topological information (the graph representing the vertex connections) , and there

is often a tradeoff between prioritizing either of the two depending on particular

considerations like memory consumption, time complexity, etc.

We are particularly interested in performing three operations on a given mesh:

• Subdivision: Geometry and topology dependant. We calculate the midpoint

of every edge in the graph and possibly project the result onto the unit sphere,

as well as generate new subdivided faces.

• Lifting Scheme: Only topology dependant. We leverage information about the

connectedness of each vertex to decide how to send signals defined over the

finer mesh into the coarser mesh.

• Query Point: Only geometry dependant. We project any point in R3 onto the

surface of the mesh and return the face that contains it.

18
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In SWF, we expect to precompute the entire set of meshes and filters before they

are ever used in the signal domain, so the time complexity of the Subdivision and

Lifting Scheme operations on a mesh is less important and does not have to operate

at real-time speed. However, our data structure should perform querying as fast as

possible, as we expect to interpolate virtual sources over our mesh in real-time.

For the Modified Lifting Scheme introduced in 3.2, the adjacency matrix represen-

tation of a graph is particularly useful for the neighborhood-dependent generation

of the lifting operator T̄j. The adjacency matrix can be generated from an edge list

at the point of calculating the lifting scheme, and later discarded to free up memory.

Figure 5: The indexed face list representation of a mesh.

We use an Indexed face list data structure for the general storage of the mesh, and

the subdivision operation, as it is standard in many visualization libraries and simple

to understand for users from a logical point of view. Further investigation into a

more optimal internal data structure like Half-edge or Winged-edge [10] has not been

carried out, but could be interesting and/or necessary for commercial applications.
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Figure 6: The subdivision method of the mesh with an index face list representation.
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3.2 The trivial filter bank

We generate a trivial filter bank as initial base to which we apply the modified

lifting scheme, detailed below, generating the second generation wavelets described

in Chapter 2. The trivial filter is simply the identity matrix corresponding to the

vertices that the filter acts upon concatenated with a matrix of zeros for those

vertices which it does not act upon. These graphics make clear how the trivial

filters are implemented with the indexed face list.

Figure 7: The trivial encoding filters.



22 Chapter 3. Methods

Figure 8: The trivial decoding filters.
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3.3 Modified Lifting Scheme

The original lifting scheme, as described in 2.3.4, is a powerful tool, but its original

formulation is not ideal for this spatial audio application. In the spatial audio

context, the A filter is the most important, as it defines the way we transition

from high spatial resolution (i.e. approximating continuous sphere) to low spatial

resolution (i.e. approximating our speaker layout). The nonlinearities of the original

Lifting Scheme make it poorly suited for constructing a more performant A filter, as

A depends on both S and T. Fortunately, a modification can be made to the lifting

Figure 9: The modified lifting scheme.

scheme so that the A filter’s linearity is prioritized. This will allow us to optimize

the A filter directly by way of the T̄ operator.

T̄j takes information from the details, and updates the coarse representation. This

is the behavior that we want to take advantage of in order to optimize A. Thus

in the modified lifting scheme, we apply the T̄j operator first, adding information

from the details (isolated by the initially trivial B) weighted by T̄j to A.

Like before, let’s start with the definition of our operators Aj, Bj, Pj, and Qj and

derive new filters Āj, B̄j, P̄j, and Q̄j by chasing the diagram in Figure 9.
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We have:

Ajf = c (3.1)

Bjf = d (3.2)

Pjc+Qjd = f (3.3)

(3.4)

Applying the steps from the diagram gives:

(Aj + T̄j ·Bj)f = c (3.5)

((1− S̄j · T̄j) ·Bj − S̄j ·Aj)f = d (3.6)

(Qj · S̄j +Pj · (1− T̄j · S̄j))c+ (Qj −Pj · T̄j)d = f (3.7)

(3.8)

Which implies that new filters Āj, B̄j, P̄j, and Q̄j are generated from the original

filters as follows:

P̄j = Qj · S̄j +Pj · (1− T̄j · S̄j) (3.9)

Q̄j = Qj −Pj · T̄j (3.10)

Āj = Aj + T̄j ·Bj (3.11)

B̄j = (1− S̄j · T̄j) ·Bj − S̄j ·Aj (3.12)

3.3.1 Constructing T̄j

T̄j takes information from the details, d, and sends it to the coarse vertices, c. For

a fixed point in the details we can define neighborhoods [8] of points in the coarse

mesh:
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• Def Let the k-th neighborhood of some vertex v in the fine mesh, be the set

of all vertices w in the coarse mesh connected to v such that the shortest path

connecting v and w in the fine mesh has length k.

Figure 10: The neighborhoods of a general point on a regular triangular lattice

Using this definition, we can parameterize the construction of T̄j and thus the

subsequent lifting of Aj through weights on these neighborhoods.

Let α be the weight on first neighbors, β be the weight on second neighbors, and

γ be the weight on third neighbors. As seen in Figure 10, we expect, in a regular

triangular lattice, any point in the fine mesh to have two first neighbors, two second

neighbors, and four third neighbors in the coarse mesh. Thus, to ensure no infor-

mation defined over the fine mesh is duplicated or lost due to the application of the

encoding filter, it is necessary that the neighborhood weights satisfy the relation:

2α,+2β + 4γ = 1 (3.13)

This however, is not always the case, as seen in Figure 11.

On the edge of a half open mesh (approximating a hemisphere), the edge points in

the fine mesh have only one second neighbor and two third neighbors. Hence it is
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Figure 11: The neighborhoods of an edge point

necessary that we define an adjusted α′, β′, γ′ for each vertex in the fine mesh as

follows:

α′(v) =


2α
s1

if s1 ̸= 0

0 if s1 = 0

(3.14)

β′(v) =


2β
s2

if s2 ̸= 0 and s3 ̸= 0

2β+4γ
s2

if s2 ̸= 0 and s3 = 0

0 if s2 = 0

(3.15)

γ′(v) =


4γ
s3

if s3 ̸= 0

0 if s3 = 0

(3.16)

Where s1, s2, s3 are the number of first, second, and third neighbors of the vertex

v. This ensures that, irregardless of the local topology of each point, the weight is

adjusted accordingly. Note that, there exist cases with no third neighbors, in which

the weight allotted to the third neighbors is absorbed by the second neighbors. It is

left to the reader as an exercise to determine why there are no cases without second

neighbors.

In practice, we can isolate these neighborhoods using the adjacency matrix. If M
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is the adjacency matrix of the directed or undirected graph G, then the matrix Mn

(i.e., the matrix product of n copies of M) has an interesting interpretation: the

element (i, j) gives the number of (directed or undirected) walks of length n from

vertex i to vertex j. If n is the smallest nonnegative integer, such that for some

i, j, the element (i, j) of Mn is positive, then n is the distance between vertex i and

vertex j.

3.4 Optimization and Evaluation Metrics

To evaluate the performance of a spatial audio format, it is necessary to be able to

describe the perceived location of phantom sources objectively. Several models exist

to predict phantom source perception. We use a vector model based on properties

of the sound field at the listening position. This model has the advantage that the

relevant psychoacoustical indicators can be calculated directly from the loudspeaker

positions and gains generated by a given spatial audio format, rather than having

to be measured like ILD and ITD. (although they could be measured with using

a coincident arrangement of a pressure microphone [omni-directional] and pressure

difference microphones [figure-of-eight] aligned with the axis of the vector space.)

[4] The relevant psychoacoustical indicators are defined below:

3.4.1 Total Acoustic Pressure

The total acoustic pressure p under the hypothesis of coherence at the listening

position is defined as:

p =
N∑
k=1

sk (3.17)

where N is the number of loudspeakers and sk is the signal on loudspeaker k.
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3.4.2 Total Energy

Similarly, the total energy e under the hypothesis of incoherence at the listening

position is defined as:

e =
N∑
k=1

|sk|2 (3.18)

3.4.3 Acoustic Velocity

The acoustic velocity vector for a phantom source is a normalized plane-wave de-

composition of 1st order. [4] A statistical estimator of the acoustic velocity under

the hypothesis of coherence is given by:

V =
N∑
k=1

skuk

p
(3.19)

where uk is the unit vector pointed in the direction of the loudspeaker k. The velocity

vector can be decomposed into two scalar components, namely the longitudinal and

transverse components for a phantom source with direction of arrival s.

Vl = V · s (3.20)

Vt = ||V × s|| (3.21)

such that, ||V|| =
√
Vt

2 + Vl
2 (3.22)

3.4.4 Sound Intensity

The sound intensity vector indicates the direction of the sound field at the listening

position for a phantom source. [4] A statistical estimator of the sound intensity

under the hypothesis of incoherence is given by:

I =
N∑
k=1

|sk|2uk

e
(3.23)
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Similar to velocity, the Intensity vector can be decomposed into its longitudinal and

transverse components.

Il = I · s (3.24)

It = ||I × s||such that, ||I|| =
√
It

2 + Il
2 (3.25)

3.5 Energy Normalization

By construction of the modified lifting scheme, SWF guarantees that the total acous-

tic pressure is conserved, i.e. for all possible phantom source locations, the sum of

the gains at the destination layout is equal to one. This is ideal assuming that we

have coherent sources at all loudspeakers, however many use cases for spatial audio

exist with incoherent sources. A better normalization exists for incoherent sources

which prioritizes unit total energy at all possible phantom source locations. We

derive new loudspeaker gains g′ as:

g′i =
gi√∑N
k=1 gk

2

(3.26)

3.6 Optimization

The psychoacoustic indicators we use for evaluation extend nicely as metrics for

optimization of the Aj via the modified lifting scheme by way of the parameterization

of T̄j. In particular, we want:

• the total acoustic pressure to be preserved by the encoding filter, which is guar-

anteed through the relation 2α,+2β + 4γ = 1, and the relevant adjustments

for the local topology of each vertex.

• Ideally, for a point source encoded to the coarse mesh from any vertex in the
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fine mesh: the transverse velocity, Vt should be as close to zero as possible,

and the longitudinal velocity, Vl should be as close to one as possible.

These statements combined give rise to a cost function:

Cost =
n∑

i=0

wl(Vli − 1)2 + wtV
2
ti

(3.27)

where n is the number of vertices in the fine mesh, wl, wt are weights for the longi-

tudinal and transverse components, respectively.

We have three parameters, α, β, γ and one constraint, 2α,+2β +4γ = 1, and a cost

function to minimize. This minimization can be computed with any optimization

library of choice, but in this implementation we use scipy.optimize.minimize.

3.7 Evaluation

The evaluation is based on a horizontal panning of a constant signal over a 7.1.4

layout computed with a virtual source on the unit circle at z = 0. At each sample

in the panning, we record all the channel gains and calculate the total acoustic

pressure, total energy, and longitudinal and transverse intensities for each of the

algorithms.

Ideally, the transverse intensity, which measures the proportion of energy that is

coming from directions other than the intended direction-of-arrival should be zero.

Similarly, in an ideal case, the longitudinal intensity, which measures the proportion

of energy that is coming from the intended direction-of-arrival should be one. It is

important to note that this ideal will never be realized with any finite speaker array.

All of the gains have been renormalized for unit energy as described in Section 3.5 for

every algorithm. This ensures that the performance of each algorithm is presented

on a consistent scale.
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Results

4.1 Objective Evaluations

In this section, we perform an objective comparison between SWF (defined on 7.0.4

base mesh subdivided to level 2 with the trivial decoding and optimization) and other

state of the art spatial audio algorithms. In the figures, SWF is always presented

on the left, and the other algorithm on the right.

4.1.1 VBAP

VBAP, as a generalization of the tangent law for amplitude panning, represents the

most directional panning possible for a given layout. In figure 13, we see issues with

L/R symmetry in VBAP in due to the triangulation of the irregular mesh. This is

especially evident for a virtual source around π radians. SWF, although generated

from the same base mesh, handles L/R symmetry in the horizontal plane through

the subdivision, as can be seen in figure 12.

The optimized filters of the SWF format generate negative gains, as can be seen in

figure 14. This is an issue because counterphase components can be heard outside of

the listening sweet spot, and can contribute to changes in timbre as a virtual source

moves. This explains the smaller peaks in the total acoustic pressure relative to

VBAP, but is generally not a desired result. The loudspeakers firing in counterphase

31
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Figure 12: A look at L/R symmetry in the base vs subdivided mesh – VBAP
computes trilinear interpolation over the base, SWF computes trilinear interpolation
over the subdivision and then scales down to the base via the filters described in
3.2.1

do contribute to a less jumpy panning experience when listening in the sweet spot

for SWF, but for applications with a large potential listening area this is not ideal.

Figure 13: Comparison of SWF 7.0.4 and VBAP psychoacoustic indicators
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Figure 14: Comparison of SWF 7.0.4 and VBAP gains
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4.1.2 3rd Order Ambisonics with various decodings

The horizontal panning encoded to 3rd Order Ambisonics is decoded using three

techniques: AllRAD basic [11], AllRAD with maxrE weights, and IDHOA [12]. As

can be seen in the figures, All of the Ambisonics-based pannings generate negative

gains, although those generated with maxrE weights are the least dramatic. No

Ambisonics-based panning handles L/R symmetry correctly. Ambisonic decoders

never pan entirely to a single channel, which contributes to very smooth-sounding

motion in the result, but without a very clear spatial resolution, often with the

virtual source completely dispersed through the room.

Figure 15: Comparison of SWF 7.0.4 and Ambisonics order 3 – AllRAD Basic
decoding psychoacoustic indicators
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Figure 16: Comparison of SWF 7.0.4 and Ambisonics order 3 – AllRAD Basic
decoding gains

Figure 17: Comparison of SWF 7.0.4 and Ambisonics order 3 – AllRAD maxrE
decoding psychoacoustic indicators
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Figure 18: Comparison of SWF 7.0.4 and Ambisonics order 3 – AllRAD maxrE
decoding gains

Figure 19: Comparison of SWF 7.0.4 and Ambisonics order 3 – IDHOA decoding
psychoacoustic indicators
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Figure 20: Comparison of SWF 7.0.4 and Ambisonics order 3 – IDHOA decoding
gains
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4.2 The Library

The major result of this work is an open-source python library implementing SWF

with the modified lifting scheme and psychoacoustic optimization. The library has

minimal dependencies; only numpy and scipy are required for the function of all

the core objects. Optionally, matploblib and plotly are used in visualization helper

functions, and python-osc for interfacing with the Max Patch. Michael Dawson-

Haggerty’s Trimesh[13] library provided many crucial building blocks for the python

implementation of SWF. More detailed documentation on the usage of the library,

as well as all the code can be found on GitHub. [14]

With this library we have built and tested various SWF formats which are available

as preset variables in the constants.py file. The SWF formats available are those

based on the regular octahedral mesh, a mesh approximating a 7.0.4 layout, a mesh

approximating a 3.0.1 layout, and an interesting transcoding mesh structure that

includes a subdivison mesh for the formats: 3.0.0, 5.0.0, 5.0.2, 7.0.4, 9.0.6, and 11.0.8

as explained in the next section.

4.3 Transcoding Mesh Structures

We use loop subdivision to uniformly increase the spatial resolution of a mesh, but

a subdivision step does not neccessarily have to be uniform, we can add just a few

vertices or focus our subdivision in a particular area of the mesh. This is useful

in that, SWF can be used to optimally transcode between different layouts. Let’s

consider speaker configurations using the Dolby Atmos channel notation standard:

a layout denoted n.l.k has n channels in the horizontal plane, k overhead channels,

and l LFE channels. For example, 7.1.4 is a layout with five horizontal channels,

four overhead and one subwoofer.

Using this notation, we construct a matrix of intersecting surround sound formats,

as seen in Figure 21. Moving down the vertical axis, we add horizontal channels

symmetrically, and moving right along the horizontal axis, we add overhead channels

symmetrically.
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Figure 21: the L/R symmetric subsets of 11.0.8

This model can be used to construct a transcoding SWF between any two (or more)

formats by fixing a particular path through the subdivisions, and using the relevant

meshes to generate appropriate A,B,P,Q filters, as seen in Figure 22. This high-

lighted path is the preset included in the library, but any other set of intersecting

formats could be used to construct a similar SWF. At any point, we can transition to

the loop subdivision scheme to generate subdivisions uniformly. This result allows

a user to downmix media produced for 7.0.4 to 3.0.0, for example. Or upmix media

produced for 5.0.2 for playback in a 9.0.6 system.

In this structure, we optimize for each format, moving from most dense to least

dense and fixing the parameters α, β, γ for each level. In the highlighted example,

we would first fix the parameters for transitioning through the loop subdivision to

the 11.0.8 format, then optimize new α, β, γ to transcode from 11.0.8 to 9.0.6 fixing

the generated A filters from the previous step. We continue this proccess until the

coarsest level has been reached.

The result is a SWF format with 6 levels that approximate different speaker layouts,

and that can be subdivided uniformly from the densest mesh to gain more spatial

resolution.
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Figure 22: a path of subsets of 11.0.8

4.4 Max Patches

The majority of the listening tests for this library took place in the 7.1.4 surround

studio at Dolby Laboratories in Barcelona. The Max patches I have designed are

preconfigured to work with this layout, but with some adjustment can easily be

adapted to other layouts. There are two patches, which can both be found in the

GitHub repository linked in the appendix.

The first patch can be used to do comparative listening tests of 5 different pre-

computed horizontal pannings over a 7.1.4 layout. The available options are SWF,

VBAP, or Ambisonics 3rd order decoded with IDHOA, AllRAD basic, or AllRAD

maxrE algorithms.

The second patch can be used to compute a SWF encoding of a virtual source in

realtime. The patch is quite minimal and designed for only one virtual source, but

could easily be extended to an arbitrary number of sources by overlaying an object-

based interface like the one included in the ICST Ambisonics toolkit for Max. The

patch queries python over OSC with the location of the virtual source and expects

to receive the interopolation over the finest level of mesh in return over OSC. The
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encoding from the finest to coarsest level happens in the max patch, but if there are

hardware limitations on the number of channels that can be transmitted I would

recommend computing the encoding of the interpolation result in python before

returning to Max.
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Figure 23: A patch for comparing precomputed horizontal pannings over 7.1.4 in
SWF,VBAP, and Ambisonics with three different decodings

Figure 24: the realtime panning interface for a single virtual source
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Discussion and Conclusions

5.1 Conclusion

In this work, we have been able to develop a version of SWF that implements a

method to build an arbitrary wavelet representation on an arbitrary mesh. We

make use of a modified lifting scheme to optimize the interpolating scaling functions

for optimal playback reproduction, and we have demonstrated its functionality and

competitiveness with state-of-the-art spatial audio algorithms on a 7.1.4 layout.

The python library is flexible enough to support any layout however, as has been

demonstrated with a Spherical Wavelet Format that naturally interpolates between

standard surround sound formats (11.1.8,9.1.6,7.1.4,etc.). The library is intended

to be used with the trivial decoding from the coarsest level of mesh, but can also

be decoded using other strategies from less coarse representations. This allows the

user to decide what bandwith they want to transmit at based on the limitations or

needs of their system.

5.2 Discussion

Ultimately, SWF offers advantages in that it is channel-based, like Ambisonics. De-

pending on the computing resources available, SWF can be transmitted at arbitrary

resolutions, from the finest level of detail (which can reach orders of 800 channels

43
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depending on the number of subdivisions), to any intermediate coarser level, to the

same number of channels as loudspeakers. This offers advantages in terms of flexi-

bility over object-based interfaces, while still being adaptable to any layout. Unlike

Ambisonics, this formulation of SWF does not require a decoding step (although it

can be used).

5.3 Future Work

Further work should be done to introduce penalties on negative gains in the cost

function used to optimize the encoding filter. This will limit out-of-phase compo-

nents especially when using SWF with multiple virtual sources.

Additionally, optimization should be carried out on the decoding filter, Pi, which

takes coarse information ci to the next finest level ci+1. This optimization should

be carried out discarding the details di to ensure the best possible reconstruction

without the use of the details.

It’s worth noting that the use of triangular meshes and trilinear interpolation is

for convenience. The mechanics of SWF are not tied to this triangularity. Future

work could include generalizing to meshes based on other polygons – or even mixed-

polygon meshes – with appropriate finite subdivision rules and interpolation at the

finest level via a generalized form of barycentric coordinates for irregular, convex

n-sided polygons. [15] This could let us define multiresolution formats that prioritize

multiple planes of symmetry, or symmetries much more complex than L/R.

We could even design meshes to fit spaces that don’t approximate the sphere, which

could be useful for spatial audio installations in architechtural spaces that were

not necessarily designed for acoustic listening like botanical gardens, art galleries,

classrooms, or other spaces where loudspeaker layouts wouldn’t necessarily have

spherical symmetry or a dedicated listening position.

Within the spherical context, subgraphs of the mesh and their subdivisions isomor-

phic to those presented in Figure 25, can create symmetry issues when a virtual

source is located directly in the middle of the figure, along the diagonal axis. The
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Figure 25: An alternative subdivision method that prioritizes L/R symmetry for
certain subgraphs oriented as notated.

SWF formulation presented in this report will always prefer a diagonal panning be-

tween two loudspeakers in this scenario, when a more symmetric-sounding result

would be a 4-way interpolation between all loudspeakers. An algorithm could be

developed to identify these subgraphs and compute a non-uniform subdivision step

to impute vertices that prioritize L/R (and thus ultimately binaural) symmetry.

5.4 Final Thoughts

Incredibly interesting problems in graph theory, geometry, computer graphics, and

acoustics arise in studying and developing SWF. I think any young researcher inter-

ested in spatial audio and applied mathematics would find here a rich selection of

directions to explore this work further. I hope that spatial audio practitioners and

industries will take interest in how SWF could serve their purposes. I am so grateful

to my advisors Daniel and Davide for shepherding me through their invention and

none of my work would have been possible without them.
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