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A framework for physics-driven generation
of feature data for strain-based damage
detection in aerospace sandwich structures
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Abstract
In recent years, structural health monitoring has been increasingly applied to composite sandwich structures, as typically
used in aerospace applications. In addition, machine learning approaches are increasingly popular for damage detection,
localization and size estimation, due to their great advantages in pattern recognition and anomaly detection. However, a
major disadvantage of machine learning techniques is that these algorithms generally require large amounts of realistic data.
In general, these data are expensive or even impossible to obtain within a feasible time. In order to overcome this
hindrance, this work introduces a computationally inexpensive framework for physics-driven feature generation of strain
data for the training of ML-based SHM methods using sub-structuring and the concept of reanalysis. First, the global FE
model is subdivided into a monitored part, i.e., a smaller submodel, and a global model. Second, the stiffness matrix of the
submodel is extracted from the finite element software. Then, static condensation is performed to further reduce the
computational effort. Afterwards, selected eigenvectors are derived in terms of displacements of master nodes and the
corresponding strains are calculated. Finally, a statistically varied linear combination between the different characteristic
eigenvector load cases is performed based on the superposition principle. This procedure enables the efficient generation
of a large number of different physics-driven determined strain solutions for a subsequent training of a ML algorithms. The
proposed framework is evaluated by means of a damage detection approach, based on an artificial neuronal network
classifier algorithm. The applied approach utilizes strain measurements from selected positions as physical quantity and is
demonstrated using a composite sandwich structure imitating an aircraft spoiler. The key principle of the damage detection
algorithm is based on the fact that a change in the relationship between sensors indicates the presence of damage.
Additionally, to the numerical healthy strains resulting from the framework, synthetically generated damage data are used
for training the neuronal network classifier. The synthetic data are obtained by statistical modifications of the healthy
strains, to avoid time-consuming and expensive damage simulations. The feature generation framework and health
monitoring approach are validated using experiments and numerical simulations of a glass fiber reinforced polymer
sandwich structure with a hole considered as damage. The presented numerical and the experimental results clearly show
the high potential for the efficient approach for damage detection in a sandwich structure.
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Introduction

Fiber-reinforced polymers (FRP) are increasingly utilized
for aerospace applications due to their beneficial strength-
to-weight and stiffness-to-weight ratios compared to metal
structures. However, besides their outstanding lightweight
potential, FRPs exhibit disadvantages, such as high initial
cost due to the expensive manufacturing of molds and the
complex failure mechanisms. The latter disadvantage re-
duces the lightweight potential due to the high safety factors

1Christian Doppler Laboratory for Structural Strength Control of
Lightweight Constructions, Johannes Kepler University Linz, Austria
2Institute of Structural Lightweight Design, Johannes Kepler University
Linz, Austria

Corresponding author:
Thomas Bergmayr, Christian Doppler Laboratory for Structural Strength
Control of Lightweight Constructions, Johannes Kepler University,
Altenberger Straße 69, Linz 4040, Austria.
Email: thomas.bergmayr@jku.at

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/00219983221118632
https://journals.sagepub.com/home/jcm
https://orcid.org/0000-0001-9107-7318
mailto:thomas.bergmayr@jku.at
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00219983221118632&domain=pdf&date_stamp=2022-09-17


that are required because failure prediction is not reliable so
far. Hence, structural health monitoring (SHM) is intro-
duced to ensure the integrity of composite structures during
operation and to increase the lightweight potential of FRP
materials. According to Rytter,2 SHM-systems can be di-
vided into four levels, namely:

1. Detection - Existence of damage
2. Location - Position of damage
3. Extent - Severity of damage
4. Prediction - Prognosis of damage

Another way to classify SHM systems is to divide them
into static and dynamic methods, depending on whether
static or dynamic physical effects are evaluated.2 The most
commonly utilized static methods are strain-based methods.
A popular example regarding aerospace industry and strain-
based methods is the developed structural health and usage
monitoring system of the aircraft Eurofighter Typhoon,
which uses strain gauge (SG) fatigue damage analysis,
presented by Hunt and Hebden.3 Another possible appli-
cation of SHM in the aerospace industry could be the health
monitoring of an aircraft spoiler, depicted in Figure 1. One
major task of this safety-related lightweight part is to control
the lift and drag during take-off and landing.

During the last decades, the possible applications of
strain measurements in the field of strain-based SHM have
increased significantly with the development of fiber optical
sensors (FOS). These sensors have great advantages
compared to commonly used SG, e.g., higher sensitivity,
immunity to electromagnetic interference, the potential to
be embedded in the structure and the ability to multiplex
sensors, which can be discrete or continuous.4–7 Distributed
FOS are one of the most commonly used types of FOS.
They have the ability to monitor changes in physical and
chemical parameters with spatial continuity along with the
fiber. Another commonly used type of FOS is the fiber
Bragg grating sensor. In comparison to distributed FOS, a
fiber Bragg grating sensor is not able to monitor strains with
spatial continuity. It monitors discrete strain values for
selected locations and directions, if multiple sensor ele-
ments are used. Fernandez-Lopez et al.8 presented a strain-
based SHM strategy that uses the differential strain of
closely connected sensors based on the assumption that
sensors far from damage exhibit a linear relationship with a
reference strain, whereas sensors closest to damage will
exhibit nonlinear behavior. Milanoski and Loutas6 pre-
sented a numerical study of the effect of debonds in the
strain-field of T-joint single-stiffener panels and propose
strain-based health indicators for damage detection. The
proposed health indicator is leveraging the anti-
symmetrically formed buckling mode of the structure.

Regardless of the physical effect considered for damage
detection, recent research in the field of SHM has focused

on ML algorithms to serve the purpose of classification,
anomaly detection and correlation or pattern search for
damage localization and size estimation. The most com-
monly utilized ML algorithms regarding SHM are tree-
based algorithms, e.g., the random forest (RF)9 or the
isolation forest (IF) algorithm,10,11 support vector machines
(SVM)12,13 and artificial neural networks (ANNs). The IF is
commonly utilized for level 1 SHM systems, to evaluate
whether the monitored structure is damaged or not. Chen
et al.,14 used an IF framework for anomaly detection in
different operating states of a wind turbine, and for iden-
tifying the critical behavioral attributes leading to these
anomalies. However, Malekloo et al.15 concluded, that an
unsupervised approach alone cannot effectively be used on
its own when dependence on external factors must be
considered for the ML-based health monitoring approach.
The ANNs are typically used for predicting damages in
terms of damage size and location estimation (level 1–3,
according to Rytter2). Chakraborty,16 used an ANN for the
prediction of embedded delaminations (size, shape and
location) in FRP laminates. As input parameters of the
ANN, only the natural frequencies are used. The database
for training the ANN was generated by simulations of finite
element (FE) models. Similar to ANNs, RFs can be also
used as regressor or as classifier.

Kesavan et al.17,18 proposes a ML-based health moni-
toring approach that uses discrete strain measurements as a
health indicator. The work deals with a novel data-oriented
methodology to detect debonding bymeans of an ANN. The
methodology relies on the examination of the strain dis-
tribution of the structure and uses an ANN to predict the
location and size of the disbond regardless of the magnitude
and angle of the load acting on the structure. Teimouri
et al.19 demonstrated in their work that an ANN trained by
dynamic signal-to-noise weighted data has higher damage
prediction accuracy than an ANN trained without signal-to-
noise weighted data. Unfortunately, the applicability of this
method was only shown using data from FE simulations. A
different very simple data-oriented method was presented
by Grassia et al.20 The proposed approach evaluates the
correlations between strain sensors from different locations

Figure 1. Composite sandwich spoiler of a civil aircraft.
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with ANNs in the healthy state. Deviations from the trained
relationship are indicating a damage.

However, there are major challenges in using ML-based
health monitoring methods as mature technology. Today,
whether supervised nor unsupervised learning are used.
Generally, in supervised learning, the ML algorithm is
trained using data that is ‘labeled’. This means the input
training data is already labeled with the correct prediction or
output. In contrast, in unsupervised learning, the data is not
labeled, thus, the correct prediction is not known during
training. Bao and Li21 concluded that the main challenge in
supervised learning is the problem of unbalanced data and
heavy dependence on sufficient data. SHM methods in-
tended to cover the first three SHM levels commonly have
to include damage data for the training of supervised ML-
based methods. These data are typically very expensive or
even impossible to obtain within feasible time by experi-
ments. In particular, if different variations of damage types,
sizes and quantities as well as different load cases are
considered. Nevertheless, even for level 1 SHM methods,
which typically use anomaly detection algorithms, a large
amount of data is required to obtain a robust model. In order
to minimize experimental effort, data acquisition can be
often done by a large number of numerical simulations.
However, data acquisition through FE simulations with
varying loading or structural conditions is time-consuming
and expensive due to the enormous computational effort.
Hence, there exist multiple methods for reducing the
computational effort in simulations of similar structures,
e.g., sub-structuring, reduced-order models and the re-
analysis technique.

The sub-structuring method,1,23,24 is based on the idea
that the numerical model of the entire structure can be
divided into smaller sub-structures. This method enables a
reduction in computational effort for both static and dy-
namic problems. In static studies, sub-structuring is often
referred to as submodeling. A typical application is the
partitioning of a computationally intensive simulation, for
example of a large composite structure. First, the global
model represented by a shell or a coarse mesh 3D model is
simulated. Subsequently, nodal displacements or forces are
applied to the edges of detailed model of a subregion, which
is called the local submodel. Zou et al.24 developed an
Abaqus/standard® plugin for efficient damage initiation
hotspot identification for large composite structures based
on the submodel technique. Akterskaia et al.1 utilized a two-
way procedure, in which the information exchange in both
ways, i. e, local-global and global-local. In the study a skin-
stringer debonding in composite panels was investigated.
Dynamic sub-structuring allows the dynamic behavior of
sub-structures to be analyzed separately and the entire
dynamics to be calculated later using coupling methods.23

The study presented by Tian et al.,25 used dynamic sub-
structuring for model updating of large nonlinear structures

by dividing the global structure into linear and nonlinear
sub-structures.

The objective of the reduced-order modeling is intended
to offer a numerical representation, which enables fast
computable and accurate approximations of complex nu-
merical models.26,27 The most commonly utilized reduced-
order models are based on the proper orthogonal decom-
position. This method constructs a reduced-order basis onto
which the governing equations of the complex numerical
model can be projected to obtain a low order
approximation.26

However, the procedures of data generation in terms of
numerical simulations usually require reanalysis of the
structural FE-model and repeated compilation of structural
system matrices during operation. A more efficient alter-
native is provided by reanalysis techniques. The virtual
distortion method is one of the fast structural reanalysis
methods and is used in both static and dynamic
methods.28,29 The principle of the method is to introduce a
virtual distortion to simulate structural damage or pa-
rameter changes in the mass, damping, and/or stiffness
matrices.

The main motivation of the present research is to sim-
plify the commonly time-consuming and computationally
expensive generation of large amount of data required for
machine learning methods. For this purpose, a novel effi-
cient framework for physics-driven feature generation of
strain data for the training of ML-based SHM methods is
developed, combining selected numerical and stochastic
techniques, i.e., sub-structuring of the global structure, the
concept of reanalysis, eigenvector decomposition and sta-
tistical variation. Since the focus of the paper lies on the
proposed feature generation framework, the validation of it
is done by means of a representative level 1 SHM approach.
The damage detection approach is done by a supervised
ANN classifier. On the one hand, the training is performed
using data considering a healthy structural configuration
obtained by the proposed feature generation framework. On
the other hand, the damage data required for training is
obtained synthetically by statistical modifications of the
healthy strain data. However, the applicability of this
method to detect damages in plate-like structures is dis-
cussed by an in-depth numerical and experimental study. A
composite sandwich structure that imitates an aircraft
spoiler is used as a case study. A hole in the face layer with
different sizes is considered as damage.

The article is divided into three sections, starting with a
description of the proposed feature generation framework
and the SHM approach. The second section describes the
investigated idealized spoiler model of the case study and its
loading. Particularly, the description of the experimental set-
up and the numerical model is presented. In the last section,
the application of the presented framework for feature
generation in combination with the SHM approach is
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presented and discussed by means of numerical and ex-
perimental results for the idealized spoiler model.

Methods

Feature generation framework

The aim of the proposed framework for advanced feature
generation is to enable fast and easy creation of a large
physics-driven dataset for the training of ML-algorithms,
schematically depicted in Figure 2. Initially, a realistic
load condition is assumed, referred to as the objective load
case. Then, this condition is varied within the framework
over a realistic range to generate a large amount of
physically based data for a ML approach. The consider-
ation of an objective load case enables the limitation of
the theoretically possible load cases that can occur. In this
study discrete strain values are used as features and fed
as input of the ML-based classifier. Hence, a large amount
of realistic training data is required. To accomplish this
task computationally efficiently, sub-structuring and static
condensation are employed. In addition, an eigenvector
decomposition is proposed with subsequent selection of
the best fitting eigenvector to reduce the number of FE
simulations. The underlying assumption is that by su-
perimposing these different best fitting eigenvector
load cases, the objective load case can be approximated.
This is feasible due to the assumption that the linear su-
perposition is valid. Since the computations take into
account a linear geometry due to the assumed small de-
formations. The last step involves the mathematically
efficient statistical variation of the linear combination of
eigenvector load cases.

Sub-structuring

First, a part of the structure that is susceptible to damage
needs to be identified. This can be done by structural risk
analysis. Next, the SHM sensor grid can be defined for this
part. In a subsequent step, sub-structuring of the numerical
model is performed, where the global FE model is divided
into a submodel (critical part) and the remaining part of the
structure. In general, the computation of a global and
complex sandwich structure is a time-consuming and
computationally intensive task. Thus, only the submodel is
considered for the generation of the training data in the
further steps. This step allows avoiding a repeated simu-
lation of the global model considering load variations.
However, large lightweight structures, like in our case the
investigated aircraft structure, are often loaded by aero-
dynamic forces. Assuming that the submodel is small
compared to the whole structure and no large local forces
occur, the local aerodynamic forces in the submodel are
neglected in its simulation.

There are two ways for sub-structuring or often called
sub-modelling a static FE model. In the first method, nodal
forces resulting from the global simulation are applied to the
boundary of the submodel. The second approach, applied
the nodal displacements instead of the nodal forces.24 In this
work, the displacement-based sub-structuring is chosen.
However, according to standard FE theory, the basic
equation is given by

KU ¼ F, (1)

where K is the local stiffness matrix of the submodel, F the
nodal force vector and U is the nodal displacement vector
according to the degree of freedoms (DOFs) defined as j = 1,
…, Nt, where Nt is the number of total DOFs. In this

Figure 2. Schematic process diagram of the proposed framework for physics-driven feature generation.
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submodel-technique, it is assumed that, no external forces
act on the submodel. Only the displacements of the driven
DOFs, referred to as master DOFs jm = 1,…, Nm, where Nm

is the number of master DOFs, are applied.

Static condensation

At this step only the derivation for the local submodel is
shown, since the separation between the local and the global
model is handled by commercial solvers, in our case
Abaqus/Standard®. The resulting displacement Um of the
master DOFs jm is a sub-vector of the total nodal dis-
placement vector U. The remaining DOFs of the submodel
referred to as slave DOFs js = 1, …, Ns form the dis-
placement vector Us. The number of slave DOFs is defined
as Ns, where Ns � Nm. Thus, the total nodal displacement
vector U can be split into

U ¼
�
Um

U s

�
(2)

It is assumed that no external forces are applied at the
structure. Hence, a static condensation of Equation 1 can be
performed to reduce the dimensionality of the system of
equations. Taking into account the splitting of the DOFs, the
Equation 1, can be rewritten to

�
Kmm Kms

K sm K ss

��
Um

U s

�
¼

�
Fm

0

�
(3)

whereKmm,Kms,Ksm andKss are submatrices of the stiffness
matrix of the submodel with respect to the master and slave
DOFs. Resolving Equation 3 for the displacement vectorUm

of the master DOFs jm leads to
�
Kmm � KmsK

�1
ss K sm

�
Um ¼ Fm: (4)

Afterwards the stiffness term can be substituted to a
reduced stiffness matrix, referred as Kred, according to

K red ¼ Kmm � KmsK
�1
ss K sm: (5)

resulting in

K redUm ¼ Fm: (6)

The displacement vector Us of the slave DOFs, for the
calculation of the displacement distribution over the entire
submodel, can be calculated by

U s ¼ �K�1
ss K smUm: (7)

The stiffness matrix of the slave DOFs Kss has the di-
mensions of Ns × Ns, whereas the reduced stiffness matrix
Kred has the dimensions of Nm × Nm. Thus, static con-
densation enables to significantly reduce the dimensionality
of the system of equations, since the number of master

DOFs Nm is small compared to the number of total DOFs Nt

= Ns + Nm.

Eigenvector decomposition

A major part of the proposed feature generation framework
is an eigenvector decomposition. Due to the assumption that
the displacements or loads can only be applied through the
boundary of the submodel, only the master DOFs jm are
considered for this step. Hence, the eigenvector decom-
position of the reduced stiffness matrix Kred is given as

K redUm, i ¼ λiUm, i (8)

whereUm,i are the eigenvectors and λi are the corresponding
eigenvalues. The index i = 1, …, Nm defines the different
derived eigenvalues. Thus, the eigenvectors Um,i of the
master DOFs, referred to as eigenvector displacement
vector, has a dimension of Nm × 1. The calculation of the
displacement of the slave DOFs Us,i, is derived by
substitutingUm byUm,i according to Equation 7, resulting in

U s, i ¼ �K�1
ss K smUm, i (9)

with the dimension of Ns × 1. Nevertheless, it should be
stated that the calculation of the displacement of the slave
DOFs Us,i is not necessary. Since for the linear superpo-
sition of the objective load case only the eigenvectors of the
master DOFs are considered.

Least-squares fitting

To generate a physics-driven strain data set for a ML-based
health monitoring approach in a realistic range, a realistic
training load case of the global model must be considered
for feature extraction. Hence, a reference load case, for
example, the most critical one, has to be defined and
simulated for the global model. The deformation of the
selected reference load case model is defined as the ob-
jective displacement vector UO. Based on this information,
an approximation, i.e., the least-squares (LS) fit, can be
performed to find the best linear combination of the ob-
jective displacement vectors UO

m of the master nodes by the
parameter vector x and the eigenvector deformations
Um,i. An exact solution can be calculated under the as-
sumption that all different eigenvector displacement vectors
are considered for a linear fit. This is feasible due to the valid
superposition principle. However, since it is assumed that
not all eigenvector displacements provide the same con-
tribution to the approximation of the objective displace-
ment, they can be ranked to reduce the number of
considered eigenvector displacement vectors. In order to
select the most important ones for the fit, a linear ap-
proximation is performed with each eigenvector displace-
ment vector Um,i, defined by

Bergmayr et al. 5



minkUO
m � Um, itik, (10)

where ti is a scalar scaling factor. Thus, the solution for each
parameter ti is known as

ti ¼
�
UT

m, iUm, i

��1

UT
m, iU

O
m (11)

Eigenvector selection

Then, for each of these approximations, the coefficient of
determination R2

i is calculated and the eigenvector dis-
placement vectors Um,i are ranked with descending value.
The eigenvector displacement vector with the highest co-
efficient of determination resembles best the objective
displacement. Subsequently, a linear combination is per-
formed with considering only the best fitting eigenvector
displacement vectors Um,i with i = 1, .., NB. The number
NB < Nm of used eigenvector displacement vectors Um,i are
discussed later and is depending on the complexity of the
objective load case. The linear combination for fitting the
objective load case is defined as

minkUO
m �

XNB

i¼1

Um, ixik: (12)

The solution for the parameter vector x considering the
best eigenvectors is derived by

x ¼
0
@ x0

«
xNB

1
A (13)

Strain calculation

The next step is to compute the strains corresponding to the
selected best fitting eigenvector displacements Um,i con-
sidering the submodel, which is performed in Abaqus/
Standard®. Executing this step in a commercial software
offers the advantage of utilizing the whole implemented
product functions, e. g, different FE definitions, a composite
ply-lay-up creator, etc. However, to compute the strains, the
different displacement eigenvectors Um,i are applied as
boundary conditions for each of jm DOFs in the numerical
simulation of the small submodel. This is done by writing in
a Python-based script automatically the input files for the
Abaqus/Standard® solver.

Statistical variation

The last step involves the generation of a huge feature
training database by combining strains. Realistic variations
are introduced by linear combination and variation, which is

computationally very inexpensive. The strain εHn, i of sensor n
of to the definition of the sensor grid, where i defines the
selected eigenvector and H indicates the healthy structure
configuration, are extracted from the strains of the top face
layer εSkini . Since the mechanical system is defined linear, the
superposition principle applies. Consequently, for the
considered objective load case, the strains of the sensors can
be approximated by a linear combination of the strains from
the eigenvector load cases. This is defined as

εOn ¼
XNB

i¼1

εHn, ixi: (14)

However, for the generation of training data, the parameter
vector x can be varied within a chosen statistical distribution. It
is assumed that varying with realistic parameter ranges gives
also realistic responses, i.e. strains. This step allows generating
physics-driven data without performing additional simula-
tions. Herein, a uniform distribution is selected for the vari-
ation of the parameter vector. The upper and lower bounds of
the uniform distribution are chosen by mechanical consider-
ations. The resulting parameter training vector is referenced as
xi,l, where i specifies the eigenvector and l specifies the
generated load case of the training data. While the linear
combination of the parameters xi leads to the same dis-
placement of the structure as the objective load case, a zero
vector as parameter vector corresponds to zero displacements,
i.e. no deformation of the structure. Thus, the lower limit for
the uniform distribution was set to zero, while the upper limit
can be set in any range, depending on how wide the desired
strain range should be. Hence, the univariate distribution of
each parameter xi,l for the training can be defined as,

xi, l ∼Uð0, uxiÞ, (15)

with the factor u for defining the range of considered strain.
Furthermore, sampling of the uniform distribution of the
parameter vector x enables the creation of training data,
which all lie within a realistic range. Hence, training data of
a healthy structural configuration and a fit to the best ei-
genvectors can be obtained. For a single load case the strain
εHn, l, of a sensor n can be derived by

εHn, l ¼
XNB

i¼1

εHn, ixi, l: (16)

with l = 1, …, Ng defining the load case and Ng the number
of generated load cases.

Structural health monitoring approach

In this work, the SHM of a plate-like structure is performed
by an ANN approach using discrete strain values as features.
The training data of the healthy structural configuration is
obtained from the proposed feature generation framework.
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Damage strain data are generated synthetically from the
physics-driven strain data of the healthy structure by means
of statistical modifications. The level 1 health monitoring
approach is thus divided into three steps: (i) sensor grid
definition, (ii) training data generation and (iii) classifier.

Sensor grid definition

The damage detection approach requires a grid of strain
sensors, e.g., fiber Bragg gratings with multiple sensor
elements or SGs, to monitor the strain distribution of the
structure’s surface. Hence, the first step of the proposed
SHM approach is to define a sensor array. The number of
applied strain sensors and their mesh size can be chosen
flexibly. However, this should be done considering a
structural risk analysis, e.g., damage tolerance or failure
risk, of the monitored structure.

For illustration purposes a 3 × 3 sensor grid is consid-
ered, giving a total of Nn = 9 sensors, as schematically
shown in Figure 3. In the case study presented later, the
same sensor grid is used. Thereby, only the strains in one
direction are considered, since it is assumed that it is in
principle possible to detect damages by evaluating only one
direction. In addition, measurements with fiber Bragg
grating grids usually monitor only one strain direction, since
a complicated installed rosette is commonly omitted.

Training data generation

For the training of the supervised ML-based classifier la-
beled strain data of a sufficient number of different load
cases are required. The strain data of the sensor array taking
into account a healthy structure is defined as εHn, l, sub-
scripted with the sensor definition n = 1,…, Nn and the load
case definition l = 1, …, Ng. These data for sufficiently
different load cases are obtained by the proposed feature
generation framework.

Nonetheless, due to the use of a supervised learning
algorithm, strain data of a damaged structure is required.
The damage data required for training is obtained syn-
thetically by statistical modifications of the healthy strain
data. In general, the generation of synthetic data is not
widely used, except in the field of image processing. Par-
ticularly, in the field of SHM, there is a lack of research on
these techniques. Nevertheless, there exists common
techniques for imitating damage data in experiments and
numerical simulations, especially in the field of vibration-
based SHM. For instance, Papatheou et al.,30 presents a
study where an multilayer perceptron is utilized for damage
detection and identification in a full-scale aircraft wing. The
author used pseudo faults for the generation of damage data
by adding masses to identify features suitable for the
training of supervised learning algorithms. Furthermore,
two separate cases of a dual-class classification problem,

representing two distinct locations, and a three-class
problem representing three distinct locations are used in
order to test the approach of adding masses. However, the
principle for generating synthetic damage data in the present
paper lies on the assumption that damage leads to a local
strain concentration, which can be observed by distributed
strain gauges. Since, both the varying load and the unknown
damage itself affect the magnitude of the local strain
concentration, this approach simply assumes that significant
changes of the measured strain, as a positive or negative
deviation, from the healthy strain data represents damage.

For a healthy structure with typical varying loading
conditions, the loads and associated strains are assumed to
be approximately normal distributed. Figure 4 shows the
normal distribution N schematically for a single strain
sensor and is defined as

εHn, l ∼N
�
μHn ,

�
σHn

�2�
: (17)

with the mean μHn and the associated standard deviation σHn .
However, for the synthetic generation of damage strain

data, a strain deviation following a uniform distribution U
is added to the data of the healthy structure εHn, l. The lower
limit of the uniform distributions is defined by multiplying
the standard deviation σHn considering the healthy struc-
tural configuration with a positive scalar shifting factor s.
The range of the uniform distribution is set by multiplying
the standard deviation xσHn with the positive scalar range
factor r. The strain concentrations εSCn, l follows a uniform
distribution defined with an lower and upper limit as
follows

εSCn, l ∼U�sσHn , sσH
n þ rσHn

�
: (18)

Figure 3. Schematically sketch of the monitored part,
i.e., submodel, and the applied sensor grid.
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Note that the thereby defined strain concentrations are
positive. The synthetic strain data of a damaged structural
configuration εDn, l, where the strain deviation can be positive
and negative, is defined as

εDn, l ¼ εHn, l ± ε
SC
n, l: (19)

Figure 4 shows the distribution of the synthetically
generated damage data εDn, l of a single sensor and two
different shifting factors. The relationship between the
shifting factor s and the sensitivity as well as the number of
false alarms is discussed in detail in the results section.

Classifier

For a level 1 SHM approach, unsupervised ML algorithms
could be used for anomaly detection, i.e., damage detection.
In such an unsupervised algorithm, healthy data alone
would basically be sufficient, such as those produced by the
developed framework. However, in this case, artificial
neural networks were used because these methods are more
easily extensible for further functions, e.g., damage location
and size estimation. In addition, anomaly detection is a
difficult task for unsupervised algorithms, especially in the
case of overlapping nominal clusters.31 Hence, a supervised
ANN-based classifier is utilized for the evaluation of the
structural state for varying loads.

An ANN represents a network of neurons inspired by the
biological neural networks and is applied for different tasks,
e.g., regression, classification, clustering and system
identification.32,33 Networks with multiple hidden layers are
commonly referred to as multilayer perceptrons (MLPs) and
are widely employed in the field of SHM and load moni-
toring. An indirect classification by means of MLPs could
be done as presented by.34 The classification is split into two
stages, whereas in the first one, an MLP is trained with
acceleration input data of a healthy structure. Based on the
acceleration at previous instants, the trained MLP is able to

predict future accelerations. In the second stage, the
structure is classified as healthy or damaged based on the
prediction error. Fekrmandi et al.,35 presents a study, where
the presence and the location of an applied load are clas-
sified by means of an MLP classifier. The approach was
evaluated for two composite plates and uses the principle of
the surface response-to-excitation method. Dworakowski
et al.36 utilizes an MLP classifier for evaluation of different
damage indices obtained by ultrasonic signals considering
the pitch-catch configuration.

However, in the present approach, the MLP classifier
learns the relationship between the strains measured on the
surface of the healthy and damaged structure. The basic
assumption is that damage affects the strain distribution
between these sensors, thus, a deviation to the healthy re-
lationship indicates damage. This is similar to the approach
presented by Grassia et al.20 For evaluating the performance
of the binary classifier (0=healthy, 1=damaged) receiver
operating characteristic (ROC) curves are utilized. A ROC
curve represents a powerful method for analyzing the false-
positive and false-negative errors of a classifier. It is a two-
dimensional graph (cf., applied in the case study Figure 15)
in which the true-positive rate is plotted with respect to the
false-positive rate.37

In order to increase the robustness of the classifier and to
reduce false alarms, majority voting of the MLP classifier
prediction is considered. Therefore, the majority of MLP
classifications, i.e., votes, considering randomly selected
load cases, determines whether the structure is classified as
healthy or damaged. The effect of the number of voters on
the accuracy of the classifier and its sensitivity is investi-
gated in the results section.

Application

The present approach is validated for damage detection in a
composite sandwich structure as typically used for aero-
space applications. Therefore, an idealized model of a
sandwich aircraft spoiler was built and investigated. Since
the method is evaluated by an experimentally validated
numerical model, the following section is divided into the
experimental set-up and the numerical modeling.

Experimental set-up

The investigated structure imitates an aircraft spoiler of a
large civil aircraft (cf. Figure 1) on the scale of 1:2. The
idealized spoiler is depicted in Figure 5 and has the di-
mensions 1000 × 380 × 16 mm3. It is composed of glass
fiber reinforced plastic (GFRP) face layers, a Nomex®

honeycomb core and adhesively bonded aluminum brackets
(center hinge fitting and edge fitting; for mounting to the test
rig). The GFRP face layer laminate is built up of four
prepreg fabric plies [0, 45,�45, 0], with a total thickness of

Figure 4. Schematic statistical distribution of the strain data of a
healthy structural state εHn, l and a synthetically generated
damaged structural states εDn, l for selected shifting factors s.
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0.5 mm. The Nomex® honeycomb core has a total thickness
of 15 mm. The material stiffness properties from material
data sheets are listed in Table 1. Nevertheless, the material
properties according to the material data sheet are not used
for the FE model, they only present the initial values for the
FE model updating. This step is used to derive the real
material data.

The experimental set-up, shown schematically in
Figure 5 and pictured in Figure 6, consists of the load in-
troduction mechanism, the structure under investigation, the
utilized sensors, and the corresponding test rig attachments.
The load introduction is done by a hydraulic cylinder and a
mechanism for the defined distribution of a force through
linkages, commonly referred to as whiffle tree. However, an
important and frequently repeated load case of an aircraft
spoiler is the application as air brake during landing (spoiler
is extended typically in an 35° angle from the wing), in
which the aircraft spoilers are mainly loaded by air pressure
(aerodynamic loads). The representative application of
distributed loads, e.g., air pressure loads, is a challenging
task in mechanical testing. Thus, the utilized test rig was
developed to approximate this important load case with
respect to deformation and strain at the pressurized spoiler
surface by only four local loads distributed via the whiffle
tree.38,39

As schematically depicted in Figure 5, Nn = 9 strain
gauges (HBM RY93-6/120) with a mesh size of 55 mm
were attached to the surface of the composite structure to
monitor the strain distribution over the monitored face layer
area (equivalent to the FE submodel). The measurement
signal acquisition is done by two HBM Quantum X
MX840 A.

In the experimental part of the investigation, a hole in the
top face layer at the trailing edge is considered. To find the
minimal detectable damage size, both the numerical sim-
ulations and the experimental strain measurements are
performed for two selected damage states, i.e., a single hole
with a diameter dDS1 = 12.5 mm and dDS2 = 19 mm,
respectively.

Numerical modeling

The experimental set-up is modeled and solved with the
commercial FE software Abaqus/Standard®. The face
layers of the sandwich structure of the global and the
submodel are modeled as one layer using quadrilateral
shell elements with reduced integration points (S4R) and
three integration points in the thickness direction. The
sandwich core and the brackets are modeled with linear
brick elements, with reduced integration (C3D8R). Nev-
ertheless, the numerical analysis of this study is divided
into three consecutive steps. First, the global model is
simulated. Second, a model updating is performed. Third,
the submodel is simulated in a healthy state and in selected
damage states.

Global model

As shown in previous studies by Winklberger et al.,38,39 the
deformation and strains of aircraft spoiler due to aerody-
namic forces can be well approximated by an idealized
model and a little number of optimized locally introduced
forces. It was shown that two symmetrically applied local
forces F1, F2 (i.e., four forces) are adequate to imitate the
landing load case of a real spoiler (the idealized model/
spoiler is assumed to be symmetrical). Location coordinates
x, y and amplitude f are found by using a linear FE shell
model and parametric optimization performed in Matlab
R2019a®41. However, the deformation resulting of the
imitated landing load case by the two symmetric applied
forces, represents the objective deformation of the model
UO. This objective deformation is considered for the feature
generation framework. To validate the proposed damage
detection approach, a large number of numerical simulation
data considering varied loading conditions are required. For
this purpose, the six parameters of the two symmetric forces
F1 (x1, y1, f1) and F2 (x2, y2, f2) of the experimental load are
varied within a Latin hypercube sampling procedure. This
procedure considering geometry limits (cf., Figure 8) and

Figure 5. The experimental set-up of the idealized spoiler test rig with the corresponding attachment via the center hinge fitting (fixed)
and the edge fittings (rotational degree of freedom around x-axis).
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amplitude limits results in 250 different validation load
cases.

Model updating

An essential component of numerical simulations in
structural engineering is the FE model updating step.40 This
step involves updating the material stiffness properties
initialized with the values from the material data sheet (cf.,
Table 1). The optimization objective is defined as the match
between numerical and experimental results. Hence, the
optimization uses the experimental strain values from the
strain sensors and the virtual strain measurements from the
numerical simulations considering a representative load
case. The exact setting of the total load and the ratios of the
load amplitudes, which is determined by the change of the
ratio between the lever arms of the whiffle tree is quite
difficult. Thus, a general scaling factor for the total load
level and the force ratio f1/f2 was implemented as a further
parameter in the optimization. The material parameters and
the two parameters resulting from uncertainties in the

experiments are updated using a Nelder-Mead optimization
procedure included in the scipy python package.41,42 To
avoid unrealistic material properties, limits of ±30% are
defined for all parameters. It should be noted that the up-
dated material parameters also contain uncertainties, for
example due to the not exactly modeled boundary condi-
tions. However, the obtained material properties of the
model updating are listed in Table 1. Figure 7(a) shows the
evolution of the fitness, i.e. the mean-squared error (MSE)
of the strain values experimental versus numerical. The
resulting strains are depicted in Figure 7(b).

Submodel

In order to reduce the computational demand, in particular
for the eigenvector decomposition step in the framework,
the monitored part of the sandwich structure should be
modeled as a submodel. The sandwich structure of the
submodel is modeled taking into account a finer mesh with a
mesh size of 8 mm compared to the global model with a
mesh size of 10 mm. Since it is assumed that the considered
damages affect the structure only locally, the same boundary
conditions given by the global load cases are taken into
account for both, the healthy and the damaged submodel. As
damage, a hole is modeled in the submodel by cutting a hole
into the face layer of the submodel. To investigate the
sensitivity of the introduced method, two damage sizes,
i.e., hole diameters dDS1 = 12.5 mm and dDS2 = 19 mm, are
considered.

Feature data generation

The first step of the framework consists of the definition of
the area of interest, which should be monitored. In the
present study, the part of interest, i.e., submodel, is defined
as an area of 192.5 × 220 mm2 located at the edge of the
idealized spoiler model (cf. Figure 8). The defined mesh
properties of the submodel results in a mesh with a total of
3,625 nodes. Due to the assumption that forces or dis-
placements can only be applied at the boundaries, a static

Table 1. Initial and updated material properties used for modeling the idealized spoiler.

Section

E11 E22 E33 ν12 ν13 ν23 G12 G13 G23

In GPa In GPa In GPa In GPa In GPa In GPa

GFRP fabric Initial 22.25 20.9 — 0.15 — — 4.5 3.5 3.5
Updated 29.31 27.17 — 0.11 — — 4.03 4.51 4.51

Nomex honeycomb Initial 0.001 0.001 0.5 — — — 0.001 0.066 0.034
Updated — — 0.36 — — — — 0.085 0.044

Aluminum Initial 70 — — 0.33 — — — — —

Updated 49.03 — — 0.40 — — — — —

Steel Initial 210 — — 0.3 — — — — —

Updated 272 — — 0.22 — — — — —

Figure 6. Image of the experimental set-up of the idealized
spoiler model.
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condensation is performed. This leads to a splitting of the
nodes into 3,240 slave nodes and into 385 master nodes,
which are located at the edges of the partial model. The
assembling of the local stiffness matrix of the submodel K is
done with Abaqus®. A further step in reducing the com-
putational effort is taken by Abaqus® itself by reducing the
DOFs. This reduction is done by considering the tie con-
straints between the sandwich core and the skin. Due to this
constraint, only one side of the tied nodes with their cor-
responding DOFs between sandwich core and skin is
considered. Afterward the local stiffness matrix K and the
coordinates of the nodes are extracted and loaded into a
Python 3.8® environment. The submodel has Nt = 10,
875 total DOFs, resulting in a stiffness matrix of the sub-
model with the dimension of 10, 875 × 10, 875. The amount
of DOFs of the master nodes jm is Nm = 1, 140 and the
amount of DOFs of the slave DOFs js is Ns = 9, 720. Thus,
the dimensions of the sub-matrix Kmm is 1,155 × 1,155,
whereas the dimension of the sub-matrix Kss is
9,720 × 9,720.

After separating the DOFs according to the static con-
densation the eigenvectors Um,i of the reduced stiffness
matrix Kred (cf., Equation 8) are calculated. Subsequently, a
reference load case is required to obtain a realistic dataset
for the upcoming training of the ML-based classification
algorithm. For the present study, the critical ‘landing load
case’ is chosen as the reference and objective load case. The
deformation results of this reference load case simulation
are defined as the objective displacement vector UO. The
displacement results with respect to the z-direction of the
objective load case UO

z is shown in Figure 10.
The next step is the selection of the most representative

eigenvectors. This step involves the computation of the
coefficient of determination R2 for each fit of the eigen-
vector deformation Um,i to the objective displacement
vector UO

m for a subsequent selection of the eigenvectors.
This is done by performing a linear regression for each

eigenvector displacement vector Um,i and calculating the R
2

using the Python 3.8® package scikit-learn. Afterwards the
eigenvectors are sorted in a descending order with respect to
R2, as depicted in Figure 9. The diagram clearly shows the
strongly varying importance of the eigenvectors for the
approximation of the objective displacements.

The best and the weakest fit of the eigenvector dis-
placement vector of the top skin with respect to the
z-direction, where the strain sensors are mounted, USkin

i are
depicted in Figures 11(a) and (b) respectively. It is visible
that the first one (cf. Figure 11(a)) fits the objective dis-
placement (cf. Figure 10) better than the eigenvector dis-
placement vector with the lowest R2, i.e., weakest fit (cf.
Figure 11(b)). This comparison between both eigenvector
displacement vector USkin

i justifies the results of Figure 9,
where the R2 with respect to the eigenvectors are plotted.
Nevertheless, after sorting the eigenvector displacement
vectors in descending order according to their R2 value, the
NB = 650 best fitting eigenvector displacement vectors (cf.
Figure9, marked with orange) are selected. For these NB

selected eigenvectors Um,i with dimension of 1,140 × 1, a
least-square optimization is performed to find the best linear
combination between these vectors to approximate the
objective displacement UO

m. If all 1,140 eigenvectors would
be taken into account, it would be possible to compute the
exact solution UO

m by a linear combination due to the su-
perposition principle. However, only the best fitting ei-
genvectors are used for approximation, which allows to
significantly reduce the computational effort in this
framework.

To illustrate the results of the reduction process of the
introduced framework shows Figure 12 representative re-
sults of the displacement fields in x-direction. Figure 12(a)
shows the objective displacement UO, Skin

x computed by
Abaqus®, whereas Figure 12(b) shows the displacement
field calculated by the combination of the best eigenvector
displacement vectors UB, Skin

x , defined as

Figure 7. Results of the model updating procedure. (a) Fitness with respect to the iterations. (b) Comparison of the experimental εexpn, 1
and the numerical, i. e, initial εnum, in

n, 1 and optimized εnum, op
n, 1 , strain values of a representative load case taken into account for the model

updating procedure. Sensor no. 0–8 are showing the strain values with respect to the y-direction, no. 9–17 with respect to the
x-direction and no. 18–26 are showing the strains at 45° with respect to the x-axis.
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UB, Skin
x ¼

XNB

i¼1
USkin

x, i xi (20)

The comparison shows that there is only a slight dif-
ference between Figures 12(a) and (b). The difference is
caused due to the fact that only the best eigenvector dis-
placement vectors Um,i are used for LS fitting. Figure 12(c)
shows the difference between the results of Abaqus® and the
LS approximation defined by

UErr, Skin
x ¼ UO, Skin

x � UB, Skin
x (21)

The slight difference is also shown in Figure 12(d),
where the MSE between the objective displacement field
UO,Skin and the eigenvector displacement vectors in all
directions is depicted with varying numbers of considered
eigenvectors.

However, for the best eigenvector displacement vectors
Um,i, the corresponding strains εm, i are calculated with
Abaqus®. This is done by setting the eigenvector displacement
vectors Um, i displacements of the master nodes jm as
boundary conditions to the submodel for the subsequent
Abaqus® simulations. In order to obtain the sensor strains εHn, i,
required for the training of the ML-based classifier, the strain
simulation results of the skin εSkini were first loaded into a
Python 3.8® environment. The experimental strain outputs
given by the strain gauges represent an averaged value over the
entire sensor. Thus, the strain values of the FE-data are also
averaged at the sensor positions over the sensor dimension.

Figure 8. Symmetric global FEmodel with the fixed support, i.e., center hinge fitting, the kinematic coupling representing the edge fitting
and the submodel. The rectangles marked with the dashed lines represents the area where the load introduction points are varied for
the validation data set.

Figure 9. Coefficient of determination R2 with respect to the
eigenvectors. The eigenvectors marked in orange are selected
to approximate the objective load case.

Figure 10. Displacement results with respect to the z-direction
of the objective load case UO

z .
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In the last step of the framework, a statistical variation is
performed to generate physics-driven training data. Hence,
the parameter vector x is varied within a statistical distri-
bution according to Equation 3. A ranging factor of r = 5 is

selected for the definition of the upper bound for the uniform
distribution. This step gives a parameter vector xi, l, where i
specifies the eigenvector and lt = 1, …, Ngl the generated
load case. According to Equation 16, the training data εHn, l

Figure 11. Displacement results with respect to the z-direction of the (a) best eigenvector displacement vectors and (b) the worst,
i.e., lowest R2, eigenvector displacement vector.

Figure 12. Displacement results with respect to the x-direction of the objective load case: (a) solved by Abaqus® UO, Skin
x and (b) LS-fit of

the best eigenvectors UB, Skin
x . (c) Error matrix UErr, Skin

x between the result of Abaqus® and the LS approximation considering only the
best eigenvectors. (d) MSE of the different displacements and strains with respect to the number of used sorted eigenvectors employed
for the LS approximation.
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can be computed considering a healthy structural config-
urationH

°
, the different sensors n and the different generated

load cases l.
However, for illustration purposes, the strain distribu-

tions of the approximation of the entire submodel skin are
also computed. This is done by multiplying the strains εSkiniB
with the xi parameter resulting in a strain distribution
εB,Skin depicted in Figure 13. The strain results εO, Skinxx in x
and εO, Skinyy y -direction for the objective load case calcu-
lated with Abaqus® are shown in Figure 13(a) and
Figure 13(c), respectively. The strain distribution results by
the LS fit of the best eigenvectors in both directions, εB, Skinxx
and εB, Skinyy , depicted in Figures 13(b) and (d), respectively,
show clearly the strong similarity and good approximation
by the reduced number of used sorted eigenvectors.
Figure 12(d) shows the MSE of the strains of the face layer
plotted over the considered eigenvectors. Similar to the
displacement results, the error decreases significantly with
an increasing number of eigenvectors used.

To achieve an damage detection accuracy of about 95.5%
of the ML based algorithms (cf. Figure 14) a training data
set of about 35,000 load cases are required. This calculated
prediction accuracy considers the healthy strain data ob-
tained from feature generation and the synthetically

generated damage data. This result impressively demon-
strates the benefit of the new approach for efficient training
data generation. Since the classical way of training data
generation by varying the loads within certain limits to
generate the 35,000 load cases is very time-consuming and
computationally expensive. As it requires the repeated
simulation of each load case of the global model followed
by the simulation of the fine-meshed submodel. In contrast,
for the considered case example the proposed framework
requires only a single simulation of the global model fol-
lowed by 650 simulations of the selected eigenvector load
cases. This comparison clearly shows the great advantage of
the framework from a computational efficiency point
of view.

Structural health monitoring application

The first step of the presented SHM approach involves the
definition of the sensor array. In this study, a 3 × 3 sensor
array resulting in Nn = 9 strain sensors orientated in the
y-direction, is utilized. For the SHM approach, only one
direction is considered because it is assumed that one di-
rection is sufficient to correctly estimate the health state of

Figure 13. Comparison of strains for the selected objective load case. Strains computed using Abaqus: (a) x-direction and (b)
y-direction. Strain estimates obtained by LS-fitting of the best eigenvectors: (c) x-direction and (d) y-direction.
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the structure. The sensors are uniformly distributed, with a
constant mesh size of 55 mm, see Figures 3 and 5.

The second step involves the feature data generation for
the ML-based health monitoring approach. Initially, the
healthy strain data obtained by the feature generation
framework is split into two equally sized datasets. After-
wards the damage data is synthetically generated from one
of these two datasets. This is done by adding strain con-
centrations (cf. Equation 19) uniformly distributed among
the individual sensor strain values. This procedure was
utilized to generate strain data for Ng = 105 different load
cases, taking into account both a healthy and a damaged
structure. Subsequently, this data is divided into a training
(70%), validation (15%) and test (15%) dataset. Since only
the relationship between these sensors is evaluated and not
the absolute values, all data sets were standardized with
respect to the healthy strain data εHiB .

In the last step, the training of the MLP classifier is
performed, which is done in Python 3.8® using the Python
package scikit-learn.43 To find an optimal neural network
architecture, a grid search was performed using the function
gridsearchCV, included in scikit-learn, to tune selected
hyperparameters, i.e., number of neurons, activation
function and the regularization term. To avoid overfitting of
the model early stopping was utilized. This function stops
the training if only the prediction accuracy of the training
dataset increases and not the accuracy of the validation
dataset. Furthermore, it should be taken into account that in
the present case the synthetically generated damage data
included in the training data can be varied by the shifting
factor s (cf. Equation 18). The hyperparameter tuning was
only performed with a shifting factor of s = 0.2 to keep the
computational effort low. Hence, it cannot be excluded that
there might be a better network architecture for the other
training data.

Nevertheless, the grid search revealed an optimal net-
work with five hidden layers of 50 neurons each and

hyperbolic tangent as activation function. Within this op-
timized architecture, different MLP classifiers were trained
with different training data sizes. Figure 14 shows the effect
of training data size on the prediction accuracy of the MLP
classifier, for the training and validation dataset. The result
clearly shows that a training data size of almost 35,000 is
required to achieve a model accuracy of almost 95.5% for
both the training and validation datasets.

Damage detection results

This section demonstrates the applicability of the proposed
strain-based SHM approach for damage detection. The
section is structured as follows. First, the results of the
numerical validation of the SHM method is presented
considering the different validation load cases and the
different structural states. An implemented hole in the
surface layer with different damage size is considered as
damage, i.e., damage state 1 (DS1) dDS1 = 12.5 mm and
damage state 2 (DS2) dDS2 = 18 mm. Second, the exper-
imental results are discussed and compared with the nu-
merical ones by means of arbitrarily selected representative
load cases.

Numerical validation

For the evaluation of the presented strain-based approach a
hole in the face layer of the sandwich structure with two
different diameters is considered as damage. For better il-
lustration, a representative load case, which is also used in
the model updating step, is initially selected from the test
data set. Subsequently, the strain matrices εHyy of the healthy
and damaged εDS1yy submodel simulations are extracted, fitted
and afterwards subtracted. The results of the strain differ-
ence matrix εDiffyy are shown in Figure 16. The numerical
results clearly show that the presence of a hole in the face
layer of the monitored sandwich structure strongly affects
the strain distribution in the vicinity of the damage.

However, the performance of the SHM approach de-
pends on the number of voters considered by the majority
voting and the shifting factor s, which is used for syn-
thetically generating the damage data. To investigate the
effect of the shifting factor s on the prediction accuracy of
the damage detection approach, the MLP classifier was
trained by with datasets generated by different shifting
factors. Furthermore, in order to determine the optimal
number of voters, i.e., MLP classifications, a comparison
was made with different numbers of voters (1,3,5).
Figure 17 shows the detection rate with respect to the
shifting factor s, the different structural states, i.e., H,
DS1 and DS2, and the different numbers of voters. Gen-
erally, the detection rate is defined as the ratio between
damage classified load cases to the total considered load
cases in percent. The results considering the FE-based

Figure 14. Model accuracy with respect to the training data size
considering the training and the validation data set.
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validation data set, with the 250 FE simulations, clearly
show the strong influence of the shifting factor s and the
number of voters on the detection rate. In general, it can be
observed that as the shifting factor s increases, the detection
rate is decreasing. This seems logical, since, with increasing
shifting factor, the strain deviation of the synthetically
generated damage data increases, and thus, the sensitivity
decreases. Furthermore, the results show that the detection
rate of DS2 with the larger hole diameter is higher compared
DS1. This can be attributed to the higher induced strain
concentration of DS2. A further reason for the higher de-
tection rate is the smaller distance between the edge of the
damage and the strain sensor n = 8.

Since the detection rate considering a shifting factor of
s = 0.2 represents a good compromise between false alarms
and sensitivity, the model with this parameter was chosen
for the analysis of the ROC curve, shown in Figure 15. The
results considering the numerical validation dataset show a
significantly worse performance than the training and

validation dataset. A reason for this is that in many cases the
damage cannot be detected in the first damage state DS1,
which is already visible in the results shown in Figure 17.

Experimental validation

To evaluate the strain-based SHM approach experimentally,
five load cases from the validation data set were randomly
selected and replicated using the test rig. Figure 18 shows
the number of damage votes for the shifting factor s and the
three different structural states. Due to the small number of
the experiments, the majority decision is ignored in the
experimental results of the MLP classifier detection algo-
rithm. Nevertheless, the results show that the ML-based
classifier can differentiate between a healthy and damaged
structure regardless of the chosen shifting factor s. In this
context, it should be emphasized that due to the small
sample size, no reliable statement can be made about a
suitable shifting factor s. For this purpose, the FE-based
validation dataset is much more suitable due to the large
number of load cases. For the ROC curves analysis, the
same shifting factor s = 0.2 was defined as in the FE-based
validation data set. As a result of the accurate prediction, the
ROC curve (cf., Figure 15) of the experimental data exhibits
the perfect classifier. However, it should be stated that all
these load cases have a rather high load amplitude and thus
cause a large strain concentration in the vicinity of the
damage.

Figure 15. ROC-curve of the MLP classifier considering the
training, validation, FE-based validation and experimental data
set.

Figure 16. Strain difference εDiff
yy considering the first damage

state DS1 with respect to the y-direction.

Figure 17. Detection rate with respect to the shifting factor s and
the structural states, i.e., H, DS1 andDS2, and different numbers
of voters for the majority voting.
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In summary, both the experimental and numerical results
demonstrate the high potential of the presented MLP-
classifier. Furthermore, it was successfully shown that it
is possible to significantly reduce time expensive and ex-
hausting computational costs by utilizing the proposed
framework for generating healthy training data and syn-
thetically generated damage data.

Conclusion and outlook

In this paper, a physics-driven feature data generation
framework for the training of a ML based damage detection
approach is presented that significantly reduces the simu-
lation effort compared to today’s repeated simulation of the
global FE model with varying loading conditions. The
present approach is demonstrated by a composite sandwich
structure that imitates the structural behavior of a real air-
carft spoiler. This novel feature generation framework uses
sub-structuring, static condensation, eigenvector decom-
position and statistical variation. The applicability of the
framework was discussed by means of generating strain
data for the healthy structure. The results showed that the
presented framework represents a fast and efficient solution.
In particular, the comparison made with the conventional
method, which requires the global and submodels to be
simulated sequentially with different loading conditions,
shows the high efficiency of the framework. Since a rela-
tively small number of simulations of the submodel and a
single global simulation were sufficient in employing the
physics-driven framework. An MLP classifier for damage
detection was used to validate the proposed framework. The
SHM method is demonstrated on an aerospace sandwich
structure, where a hole in the face layer is considered as
damage with two damage states, i.e., single position but
varying diameter of the hole. It was shown that the pre-
sented framework significantly reduces the computational
cost for generating strain data considering a healthy
structural configuration. The damage data were generated
synthetically by statistical modifications of the healthy data.

Numerical simulations with different damage states were
used to validate the presented damage detection method. In
addition, physical experiments of representative load cases
considering the different structural states were performed
for validation. The numerical and experimental results
clearly show the high potential of the presented approach for
damage detection over a wide range of different loadings.

Future research will explore the possible extension of
neural networks to the determination of damage size and
localization. Finally, it will be worthwhile to extend the
feature generation framework to the task of generating
physics-driven damage data and to consider different
characteristic load cases.
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Appendix I

List of abbreviations

ANN Artificial neuronal network
DOF Degree of freedom
FE Finite element

FOS Fiber optical sensor

FRP Fiber-reinforced polymers
GFRP Glass fiber reinforced polymer

IF Isolation forest
SG Strain gauge

SHM Structural health monitoring
SVM Support vector machines
RF Random forest

ROC Receiver operating characteristic
ML Machine learning

MLP Multilayer perceptrons

Notation

d diameter of the hole
j DOF index
K stiffness matrix of the submodel
U displacement vector of the submodel
F force vector of the submodel
r range factor
s shifting factor
t scalar scaling factor
u parameter factor
x parameter vector
λ eigenvalue

Subscripts

i eigenvector
l Load case
g Generated load case
n Sensor
m Referencing to the master DOFs
s Referencing to the slave DOFs

red Reduced

Superscripts

B selected eigenvectors
D Damage state

DS1 Damage state 1
DS2 Damage state 2
Err Error
H Healthy state
O Objective load case

SC Strain concentration
Skin Skin, i.e., top face layer, of the FE model

T Transpose
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