Where does the energy go during the interstellar NH₃ formation on water ice? A computational study

Stefano Ferrero,¹ Stefano Pantaleone,² Cecilia Ceccarelli,³ Piero Ugliengo.² Mariona Sodupe^{*,1} and Albert Rimola^{*,1}

¹ Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain.

² Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, via P. Giuria 7, 10125 Torino, Italy

³ Université Grenoble-Alpes, CNRS, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), rue de la Piscine 414, 380008 Grenoble, France.

* Corresponding authors: <u>albert.rimola@uab.cat</u>, <u>mariona.sodupe@uab.cat</u>

Table S1. Computed reaction energies (ΔE_{rx}) and energy barriers (ΔE^{*}) for the sequential H-addition and H-abstraction reactions in the gas phase using different quantum chemical methods (PBE-D3(BJ), ω B97x-D3(BJ) and single points at CCSD(T)-F12) and different codes (CP2K and Orca). All the H-addition reactions have been found to be barrierless, namely, the products are spontaneously formed during the optimization process. Units are in kJ mol⁻¹.

		PBE-D3(BJ)	PBE-D3(BJ)	CCSD(T)-F12//PBE-D3(BJ)m	ωB97x-D3(BJ)m	CCSD(T)-F12//@B97x-D3(BJ)m
		CP2K	Orca	Orca	Orca	Orca
ΔE_{rx}	H-additions					
	$N + H \rightarrow NH$	-359.3	-367.2	-330.8	-351.5	-331.2
	$NH + H \rightarrow NH_2$	-406.5	-415.4	-399.7	-411.5	-399.9
	$NH_2 + H \rightarrow NH_3$	-463.6	-472.3	-466.2	-473.4	-466.0
	H-abstractions	_				
	$NH + H \rightarrow N(^4S) + H_2$	-81.5	-70.9	-99.4	-98.2	-99.2
	$\rm NH + \rm H \rightarrow \rm N(^2\rm D) + \rm H_2$	211.7	209.7	156.4	169.8	156.8
	$NH_2 + H \rightarrow NH(^{3}\Sigma^{-}) + H_2$	-34.3	-22.8	-29.9	-38.3	-30.3
	$NH_2 + H \rightarrow NH(^1\Delta) + H_2$	207.3	203.3	151.0	163.9	150.5
ΔE≠	H-additions	Barrierless	Barrierless	-	-	-
	H-abstractions	_				
	$NH + H \rightarrow N(^4S) + H_2$	Barrierless	Barrierless	-	11.5	10.2
	$NH_2 + H \rightarrow NH(^{3}\Sigma^{-}) + H_2$	1.1	2.9	28.9	26.4	29.6

Figure S1. Evolution over time (in fs) of the potential energy (blue line), kinetic energy (red line) and total energy (black line) for the $N + H \rightarrow NH$ reaction on the amorphous water ice surface model. Note that the total energy is conserved due to the NVE microcanonical conditions. Energy units are in Hartrees (a.u.).

Figure S2. Evolution over time (in fs) of the potential energy (blue line), kinetic energy (red line) and total energy (black line) for the NH + H \rightarrow NH₂ reaction on the amorphous water ice surface model. Note that the total energy is conserved due to the NVE microcanonical conditions. Energy units are in Hartrees (a.u.).

Figure S3. Evolution over time (in fs) of the potential energy (blue line), kinetic energy (red line) and total energy (black line) for the $NH_2+ H \rightarrow NH_3$ reaction from position Pos1 on the amorphous water ice surface model. Note that the total energy is conserved due to the NVE microcanonical conditions. Energy units are in Hartrees (a.u.).

Figure S4. Evolution over time (in fs) of the potential energy (blue line), kinetic energy (red line) and total energy (black line) for the NH₂+ H \rightarrow NH₃ reaction from position Pos2 on the amorphous water ice surface model. Note that the total energy is conserved due to the NVE microcanonical conditions. Energy units are in Hartrees (a.u.).

Figure S5. Evolution over time (in fs) of the potential energy (blue line), kinetic energy (red line) and total energy (black line) for the NH₂+ H \rightarrow NH₃ reaction from position Pos3 on the amorphous water ice surface model. Note that the total energy is conserved due to the NVE microcanonical conditions. Energy units are in Hartrees (a.u.).

Figure S6. Results of the NVE AIMD simulations for the thrid H-addition $NH_2 + H \rightarrow NH_3$ from position Pos2: A) initial structure of the simulation; B) evolution of the kinetic energy of NH; C): evolution of the N-H distance; D) evolution of the kinetic energy of the ice; and E) evolution of the temperature of the ice. Instantaneous and averaged values (in yellow) are reported.