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1. Parameterizing rotations

We choose to parameterize rotations with Rodrigues vectors as they are well suited for the description
of bone rotations with three rotational degrees of freedom [11]. A Rodrigues vector r is formed by
combining the axis of rotation ω ∈ R3 and the rotation angle θ ∈ R:

r = θω = θ(ω1, ω2, ω3)
T (1)

where ||ω|| = 1. To calculate the associated rotation matrix R from a given Rodrigues vector r we
can use the following function:

fr→R (r) = I + ω̂ sin (θ) + ω̂2 (1− cos (θ)) =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 = R (2)

where I ∈ R3×3 is the identity matrix and ω̂ ∈ R3×3 is given by:

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3)

2. Camera calibration

2.1. Pinhole camera model

To project an arbitrary three-dimensional joint or surface marker location m3D ∈ R3 onto a camera
sensor to obtain the corresponding two-dimensional data point m2D ∈ R2, we are using a pinhole
camera model [6], which gives the following relationship between the two:

f3D→2D

(
m3D, r̃, t̃, k̃, Ã

)
= Ã fdistort

(
fr→R (r̃)m3D + t̃, k̃

)
= m2D (4)

where r̃ ∈ R3 is the Rodrigues vector and t̃ ∈ R3 the translation vector of the respective camera, such
that the expression fr→R (r̃)m3D + t̃ maps m3D from the world coordinate system into the coordinate
system of the camera. Given the camera’s distortion vector k̃ ∈ R2, the function fdistort applies radial
distortions according to

fdistort

(
y, k̃
)
=


y1
y3

(
1 + k̃1c̃+ k̃2c̃

2
)

y2
y3

(
1 + k̃1c̃+ k̃2c̃

2
)

1

 (5)

with y = (y1, y2, y3)
T and c̃ =

(
y1
y3

)2
+
(
y2
y3

)2
. The final mapping onto the two-dimensional camera

sensor is done using the camera matrix Ã ∈ R2×3 given by

Ã =

(
Ã11 0 Ã13

0 Ã22 Ã23

)
(6)

where Ã11 and Ã22 are the focal lengths and Ã13 and Ã23 are the x- and y-location of the camera’s
optical center.

2.2. Calibration of multiple cameras

Given a multi-camera setup with several cameras and overlapping fields of view, we need to infer
the initially unknown location and camera parameters of every individual camera in the setup as this
allows us to predict where a three-dimensional point in space will be visible on each camera sensor.
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This can be achieved by generating a sequence of images showing an object whose physical struc-
ture and dimensions are known to us. Hereby, the images are taken synchronously in all cameras,
such that the spatial location and orientation of the shown object is identical for a given set of images
at a certain time point. For this purpose checkerboards are suited objects as edges of individual tiles
can be detected automatically in recorded image frames and the description of their spatial structure
requires only a single parameter, i.e. the length of a quadratic tile. Given a multi-camera setup with
ncam cameras and ntime time points at which we used each camera to record images, which show
a checkerboard that has a total of nedge detectable edges, we can calibrate the setup by minimiz-
ing a respective objective function via gradient decent optimization using the Trust Region Reflective
algorithm [2]:

argmin
r̃i,t̃i,k̃i,Ãi,r̂τ ,t̂τ
∀i∈{1,...,ncam}
∀τ∈{1,...,ntime}

ntime∑
τ=1

ncam∑
i=1

nedge∑
j=1

δτij

∣∣∣∣∣∣mτij − f3D→2D

(
fr→R (r̂τ ) m̂j + t̂τ , r̃i, t̃i, k̃i, Ãi

)∣∣∣∣∣∣2 (7)

where r̃i is the Rodrigues vector, t̃i is the translation vector, k̃i is the distortion vector and Ãi is
the camera matrix of camera i. The Rodrigues vector r̂τ and the translation vector t̂τ encode the
orientation and translation of the checkerboard at time point τ . Since the checkerboard is a planar
object each edge j is given by a three-dimensional point m̂j = ctile(xj , yj , 0)

T with the known length
of a single tile ctile and xj ∈ N as well as yj ∈ N. Furthermore, the two-dimensional edge j in camera
i at time point τ is denoted as mτij ∈ R2 and the delta function δτij indicates whether this edge is
detected successfully, i.e. δτij = 1, or not, i.e. δτij = 0.

3. Skeleton model

3.1. Modifying the skeleton model to obtain new poses

Given a three-dimensional skeleton model, we need to adjust joint locations by rotating each bone of
the model, such that resulting three-dimensional positions of rigidly attached surface markers match
the respective two-dimensional locations in our video data. Assuming our skeleton model has a total
of nbone bones and nmarker surface markers, we want to generate the three-dimensional locations of
the joints p ∈ Rnbone+1×3 and surface markers m ∈ Rnmarker×3, which can be obtained according to
Algorithm 1.

Algorithm 1
1: function fpose(t, r, l, v)
2: for j ∈ {1, ..., nbone} do
3: Rj ← I ▷ Initialize each bone rotation Rj

4: for i ∈ {1, ..., nbone} do
5: for j ∈ {1, ..., nbone} do
6: if j1 is child of i0 then ▷ Check if rotation of bone i affects end joint j1
7: Rj ← fr→R (ri)

TRj ▷ Update rotation of bone j

8: for j ∈ {1, ..., nbone} do
9: Rj ← Rj

T R̄j ▷ Apply bone rotation Rj to resting pose R̄j

10: p10 ← t ▷ Initialize root joint location p10
11: for j ∈ {1, ..., nbone} do
12: pj1 ← pj0 +

(
Rj13, Rj23, Rj33

)T
lj ▷ Calculate end joint location pj1 of bone j

13: for k ∈ {1, ..., nmarker} do
14: if j1 is connected to k then ▷ Check if end joint j1 is connected to marker k
15: mk ← pj1 +Rjvk ▷ Calculate absolute marker location mk

16: return m
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Here, it is assumed that the set {1, ..., nbone} is sorted, such that one iterates through the skeleton
graph beginning with the bone whose start joint is the root joint 10 and then proceed with the bones
further down the skeleton graph. Thus, it is always guaranteed that for j > i, the start joint i0 of bone
i is never a child of the start joint j0 of bone j. It is also assumed that the bone coordinate systems
of the skeleton model are constructed such that their z-directions encode the directions in which the
respective bones are pointing. Furthermore, the global translation vector t ∈ R3 corresponds to the
three-dimensional location of the skeleton’s root joint, the rows of the tensor r ∈ Rnbone×3 contain
Rodrigues vectors encoding the bone rotations, the vector l ∈ Rnbone contains the bone lengths and
the rows of the tensor v ∈ Rnmarker×3 contain the relative maker locations, i.e. the locations of the
markers when the position of the attached joints are assumed to be the origin. The resting pose
R̄ ∈ Rnbone×3×3 of the animal describes the orientation of the bones when no additional rotations are
applied, i.e. ri = (0, 0, 0)T ∀ i ∈ {1, ..., nbone}. Here, the frequent usage of the transpose operation
allows to first rotate bones, which are the closest to the leaf joints of the skeleton graph [4]. This has
the advantage that we can enforce constraints on bone rotations with reference to a global coordinate
system that corresponds to the three main axes of the animal’s body. Assume we only model a single
front limb where we only have rotations around the shoulder, elbow and wrist, i.e. Rshoulder, Relbow

and Rwrist, and would like to obtain the new orientation Rnew of the bone whose start joint is identical
to the animal’s wrist given its resting pose R̄wrist while iterating through the skeleton graph starting
from the root joint, i.e. the shoulder. Then we can obtain Rnew according to

Rnew =
(
Rwrist

TRelbow
TRshoulder

T
)T

R̄wrist = RshoulderRelbowRwristR̄wrist (8)

Thus, we can iterate through the skeleton graph from the root to the leaf joints but actually apply the
respective bone rotations in the reversed order.

3.2. Inferring bone lengths and surface marker positions

Reconstructing poses for ntime time points can be archived equivalently to the calibration of a multi-
camera setup as discussed in Section 2.2, i.e. we need to minimize a respective objective function
via gradient decent optimization using the L-BFGS-B algorithm [3]:

argmin
tτ ,rτ ,l,v

∀τ∈{1,...,ntime}

ntime∑
τ=1

ncam∑
i=1

nmarker∑
j=1

δτij ||mτij − m̂τij ||2 (9)

where mτij is the two-dimensional location of marker j in camera i at time point τ and δτij indicates
whether this marker location was successfully detected, i.e. δτij = 1, or not, i.e. δτij = 0. The
corresponding projected two-dimensional marker location m̂τij can be obtained by propagating the
absolute marker positions calculated via Algorithm 1 through the projection function f3D→2D:

m̂τij = f3D→2D

(
fpose (tτ , rτ , l, v)j , r̃i, t̃i, k̃i, Ãi

)
(10)

where tτ ∈ R3 and rτ ∈ Rnbone×3 denote the translation vector and the bone rotations at time point
τ . Note how there is a set of pose-encoding parameters tτ and rτ for each time point τ whereas
the bone lengths l and the relative surface marker positions v, which encode the animal’s skeletal
structure and configuration, are shared across all time points. Thus, if we provide enough time points
where the animal is visible in many different poses, which ideally cover the entire spectrum of the
animal’s behavioral space, we can not only reconstruct the pose of the animal for the given time
points but are also able to learn the structure of the animal’s skeleton, by inferring the unknown
parameters l and v.

3.3. Scaling of input and output variables

In general, we always scale the translation vector t and the bone rotations r as well as the resulting
two-dimensional marker locations m̂, such that all of them roughly lie within the same range, i.e.
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[−1, 1]. Particularly, we define the normalization constants ct = 50 cm and cr = π
2 rad as well as

c1 = 640 px and c2 = 512 px, which we use to normalize r and t as well as m̂. The choice for ct
was based on the dimensions of the largest arena we used in our experiments, where the maximum
distance to an arena’s edge from the origin of the world coordinate system, located at the center of
the arena, was around 50 cm. The choice for cr was based on the maximum bone rotation of the
naively constrained spine and tail joints in our skeleton model, which was equal to π

2 rad. The choice
for c1 and c2 were based on the sensor sizes of the cameras we used in our experiments, which were
all equal to 1280× 1024 px2. Using the normalization constants we obtain the normalized translation
vector t∗ = t

ct
and the normalized bone rotations r∗ = r

cr
as well as the normalized two-dimensional

marker locations

m̂∗ =

(
m̂∗

1

m̂∗
2

)
=

(
m̂1
c1
− 1

m̂2
c2
− 1

)
(11)

for a single two dimensional marker location m̂ ∈ R2, such that m̂1 represents its x- and m̂2 its y-
coordinate. These normalized variables were used instead of their non-normalized counterparts in
all depicted optimization and pose reconstruction steps.

3.4. Enforcing body symmetry

To improve the inference of bone lengths and surface marker positions we took advantage of the
symmetric properties of an animal’s body, i.e. for every left-sided limb there exists a corresponding
limb on the right side. Furthermore, we also placed the surface markers onto the animal’s fur, such
that the marker-pattern itself was symmetrical, e.g. for a marker that was placed to a position close
to the left hip joint there was a corresponding marker on the right side of the animal. By incorporating
this knowledge into Algorithm 1 we reduced the number of free parameters, i.e. we only optimized
the reduced bone lengths l∗ ∈ Rn∗

bone and relative marker positions v∗ ∈ Rn∗
marker×3, where n∗

bone is
the number of asymmetrical bones, i.e. bones along the head, spine and tail, plus the number of limb
bones on the animal’s left side and, equivalently, n∗

marker denotes the number of the asymmetrical
and left-sided markers. The excluded right-sided limb bones were then enforced to have the same
lengths as the corresponding limb bones on the left side. Additionally, we also applied this concept for
the relative marker locations by mirroring the x-component of the left-sided markers at the yz-plane
to obtain the relative marker locations of the markers on the right side. To implement this we defined
Algorithm 2, which maps the reduced bone lengths l∗ to the original parameter l.

Algorithm 2
1: function f l∗→l(l∗)
2: c← 1 ▷ Initialize counter c for right-sided bones
3: for i ∈ {1, ..., n∗

bone} do
4: li ← l∗i ▷ Set asymmetric/left-sided bone length li
5: if i is left-sided bone then ▷ Check if bone i is on the left side
6: ln∗

bone+c ← l∗i ▷ Set right-sided bone length ln∗
bone+c

7: c← c+ 1 ▷ Increase counter c for right-sided bones
8: return l

Equivalently, we also defined the corresponding Algorithm 3, which maps the reduced relative
marker positions v∗ to their original counterpart v.
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Algorithm 3
1: function fv∗→v(v∗)
2: c← 1 ▷ Initialize counter c for right-sided markers
3: for j ∈ {1, ..., n∗

marker} do
4: vj ← v∗j ▷ Set asymmetric/left-sided rel. marker position vj
5: if j is left-sided marker then ▷ Check if marker j is on the left side

6: vn∗
marker+c ←

(
−v∗j 1, v

∗
j 2
, v∗j 3

)T
▷ Set right-sided rel. marker position vn∗

marker+c

7: c← c+ 1 ▷ Increase counter c for right-sided markers
8: return v

To learn the underlying three-dimensional skeleton model while also enforcing body symmetry, we
then redefined m̂τij from equation 10 as follows:

m̂τij = f3D→2D

(
fpose (tτ , rτ , fl*→l (l

∗) , fv*→v (v
∗))j , r̃i, t̃i, k̃i, Ãi

)
(12)

and minimized equation 9 with respect to the parameters l∗ and v∗ instead of l and v.

4. Probabilistic pose estimation

4.1. Using a state space model to describe behavioral time series’

To allow for probabilistic pose reconstruction of entire behavioral sequences of length T , which en-
sures that poses of consecutive time points are similar to each other, we deploy a state space model,
given by a transition and an emission equation

zt = zt−1 + ϵz (13)
xt = g (zt) + ϵx (14)

where at time point t ∈ {1, ..., T} the state variable zt ∈ Rnz encodes the position of the animal as
well as the bone rotations and the measurement variable xt ∈ Rnx represents the two-dimensional
surface marker locations in all cameras given by a trained neural network. Thus, the state variable
zt contains the global translation vector t as well as the pose-encoding tensor r for time point t and
the measurement variable xt is a constant quantity given for all time points t. The function g, given
by Algorithm 4, computes the noise-free measurements of the two-dimensional surface marker loca-
tions x∗t given the state variable zt. At this point the bone lengths l and relative maker locations v
are already inferred and therefore given. The same applies to the Rodrigues vector r̃i, the translation
vector t̃i, the distortion vector k̃i and the camera matrix Ãi of camera i, which we obtained from
calibrating the multi-camera setup. The normalization constants ct, cr as well as c1 and c2 are the
same as in Section 3.3. The probabilistic nature of the model is given by incorporating the two nor-
mally distributed random variables ϵz ∼ N (0, Vz) and ϵx ∼ N (0, Vx), simulating small pose changes
over time and measurement noise, as well as the initial state z0 ∼ N (µ0, V0), which is also assumed
to be a normally distributed random variable. Thus, the state space model is entirely described by
the model parameters Θ = {µ0, V0, Vz, Vx}. This allows for inferring a set of expected state vari-
ables z = {z1, ..., zT } given our measurements x = {x1, ..., xT } in case we have a good estimate for
the model parameters Θ. Alternatively, we are also able to calculate a set of model parameters Θ,
which, given an estimate for the state variables z, maximizes a lower bound of the model’s evidence,
i.e. the evidence lower bound (ELBO). The former is equivalent to the expectation step (E-step) of
the expectation-maximization (EM) algorithm, which can be performed by applying the unscented
Rauch-Tung-Striebel (RTS) smoother, whereas the latter is identical to the algorithm’s maximiza-
tion step (M-step), in which new model parameters are calculated in closed form to maximize the
ELBO [8].
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Algorithm 4
1: function g(zt)
2: t← ct(zt1, zt2, zt3)

T ▷ Obtain global translation t
3: for i ∈ {1, .., nbone} do
4: ri ← cr(zt3i+1, zt3i+2, zt3i+3)

T ▷ Obtain bone rotation ri

5: m3D ← fpose (t, r, l, v) ▷ Obtain 3D marker locations given l and v
6: for i ∈ {1, .., ncam} do
7: for j ∈ {1, .., nmarker} do
8: m2D ← f3D→2D

(
m3Dj , r̃i, t̃i, k̃i, Ãi

)
▷ Obtain 2D marker locations given r̃, t̃, k̃ and Ã

9: m∗
nmarker(i−1)+j ←

(
m2D1
c1
− 1,

m2D2
c2
− 1
)T

▷ Normalize x- and y-coordinates

10: x∗t ← cat
(
m∗

1,m
∗
2, ...,m

∗
ncamnmarker

)
▷ Obtain noise-free x∗t via concatenation

11: return x∗t

4.2. Theory of the expectation-maximization algorithm

While the EM algorithm was first introduced by Dempster et al. [5], we follow the concepts and
notations stated by Bishop [1] and Murphy [10]. To derive a formulation of the ELBO we first note that
the model’s joint distribution p (x, z) is equal to the product of the model’s likelihood p (x|z) and prior
p (z):

p (x, z) = p (x|z) p (z) . (15)

Additionally, we also note that the mutual dependency of the model’s marginal likelihood p (x), pos-
terior p (z|x), likelihood p (x|z) and prior p (z) is given by Bayes’ theorem:

p (z|x) p (x) = p (x|z) p (z) . (16)

We now define an arbitrary probability density function q (z) over our state variables z, for which we
know the following statement is true by definition:∫

q (z) dz = 1. (17)

Multiplying equation 17 with an arbitrary constant c yields:

c

∫
q (z) dz =

∫
c q (z) dz = c. (18)

We can now replace the constant c with a function independent from the state variables z without loss
of generality. If we choose this function to be the model’s marginal log-likelihood ln p (x), we obtain:∫

q (z) ln p (x) dz = ln p (x) (19)

and note that, due to equation 17 and 18 respectively, the marginal log-likelihood ln p (x) is actually
independent of the probability density function q (z). Next, we can use equation 15 and 16 to de-
rive a relationship between the marginal log-likelihood ln p (x), the Kullback–Leibler (KL) divergence
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KL (q||p) and the ELBO L, starting from equation 19:

ln p (x) =

∫
q (z) ln p (x) dz (20)

=

∫
q (z) ln

p (z|x) p (x)
p (z|x)

dz (21)

=

∫
q (z) ln

p (x|z) p (z)
p (z|x)

dz (22)

=

∫
q (z) ln

p (x, z)

p (z|x)
dz (23)

=

∫
q (z) ln

p (x, z) q (z)

p (z|x) q (z)
dz (24)

=

∫
q (z)

(
ln

p (x, z)

q (z)
− ln

p (z|x)
q (z)

)
dz (25)

=

∫
q (z) ln

p (x, z)

q (z)
dz −

∫
q (z) ln

p (z|x)
q (z)

dz (26)

= L+KL (q||p) (27)

with L =
∫
q (z) ln p(x,z)

q(z) dz and KL (q||p) = −
∫
q (z) ln p(z|x)

q(z) dz. The KL divergence is a distance
measure between the probability density functions q and p and as such always larger or equal to
zero:

KL (q||p) ≥ 0 (28)

with equality KL (q||p) = 0 if q = p. When we add the ELBO L to equation 28 and combine the
result with the derived definition of ln p (x), it becomes clear that the ELBO L is a lower bound of the
marginal log-likelihood:

ln p (x) = L+KL (q||p) ≥ L. (29)

If we now acknowledge that we also require the model parameters Θ to compute the above quantities,
i.e.

ln p (x|Θ) = L (q,Θ) + KL (q||p) (30)

=

∫
q (z) ln

p (x, z|Θ)

q (z)
dz −

∫
q (z) ln

p (z|x,Θ)

q (z)
dz (31)

=

(∫
q (z) ln p (x|Θ) dz +

∫
q (z) ln

p (z|x,Θ)

q (z)
dz

)
−
∫

q (z) ln
p (z|x,Θ)

q (z)
dz (32)

≥ L (q,Θ) (33)

=

∫
q (z) ln p (x|Θ) dz −KL (q||p) , (34)

we can start building an understanding for how the EM algorithm works. In the E-step we are hold-
ing Θ constant and maximize L (q,Θ) with respect to q, i.e. given a current estimate for the model
parameters Θk we infer the probability density functions of our state variables p (z|x,Θk), such that
q (z) = p (z|x,Θk), making the KL divergence KL (q||p) become zero, i.e. KL (q||p) = KL (p||p) = 0,
and the marginal log-likelihood ln p (x|Θk) become equal to the ELBO L (q,Θ). Here, setting q (z) =
p (z|x,Θk) maximizes the ELBO L (q,Θ) due to the equality given by equation 34 and the previously
mentioned fact that the marginal log-likelihood ln p (x) is actually independent of the probability den-
sity function q (z). Subsequently, in the M-step we are holding q constant and maximize L (q,Θ) with
respect to Θ in order to obtain a new set of model parameters Θk+1, leading to an increased marginal
log-likelihood ln p (x|Θk+1), as the KL divergence becomes greater then zero again, i.e. KL (q||p) ≥ 0
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and L (q,Θk+1) ≥ L (q,Θk). Thus, the starting point in the M-step is the following:

ln p (x|Θ) ≥ L (q,Θ) (35)

=

∫
p (z|x,Θk) ln

p (x, z|Θ)

p (z|x,Θk)
dz (36)

=

∫
p (z|x,Θk) ln p (x, z|Θ) dz −

∫
p (z|x,Θk) ln p (z|x,Θk) dz (37)

= Q (Θ,Θk)−
∫

p (z|x,Θk) ln p (z|x,Θk) dz (38)

with Q (Θ,Θk) =
∫
p (z|x,Θk) ln p (x, z|Θ) dz. We note that the latter term is independent of Θ and

can be omitted since our goal is to optimize the ELBO L (q,Θ) with respect to Θ. Therefore, instead of
maximizing the ELBO L (q,Θ) directly, we can just maximize the function Q (Θ,Θk). We furthermore
notice that Q (Θ,Θk) has the form of an expectation value, i.e. we can obtain Q (Θ,Θk) by taking the
expectation of ln p (x, z|Θ) with respect to z:

Q (Θ,Θk) = E [ln p (x, z|Θ)] (39)

where E [ln p (x, z|Θ)] is conditioned on x and Θk, i.e. both quantities are given. With this we finally
arrive at the essence of what is done during the M-step, i.e. maximizing Q (Θ,Θk) with respect to Θ
to obtain new model parameters Θk+1:

Θk+1 = argmax
Θ

Q (Θ,Θk) (40)

4.3. The unscented transform

We are required to approximate expectation values to perform the E-step, i.e. when applying the
unscented Kalman filter and the unscented RTS smoother (Algorithm 7 and 9), as well as the M-step,
i.e. when maximizing Q (Θ,Θk) (equation 39), as we can not compute them analytically [8]. These
expectation values are of the form:

E [h (y)] =

∫
p (y) h (y) dy (41)

where h is an arbitrary function and y ∈ Rd an arbitrary normally distributed random variable, i.e.
y ∼ N (m,Σ). We can obtain such approximations using the unscented transform fut, which was first
introduced by Julier et al. [7] and is defined in Algorithm 5. Given the mean m and the covariance
Σ, the unscented transform fut generates so called sigma points Y ∈ R2d+1×d, whose locations are
systematically spread around the mean m based on the covariance Σ:

Algorithm 5
1: function fut(m,Σ)
2: L← fcholesky (Σ)
3: Y1 ← m
4: for i ∈ {2, ..., d+ 1} do
5: Yi ← m+

√
d+ λ LT

i

6: for i ∈ {d+ 2, ..., 2d+ 1} do
7: Yi ← m−

√
d+ λ LT

i

8: return Y

Here fcholesky (Σ) denotes the Cholesky decomposition of matrix Σ, which computes a lower trian-
gular matrix L such that LLT = Σ, and λ can be calculated as follows:

λ = α2 (d+ κ)− d (42)
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where we set the parameters α = 1 and κ = 0 [8], such that λ = 0. Using the sigma points Y, we can
approximate E [h (y)] as follows:

E [h (y)] ≈
2d+1∑
i=1

wi h (Yi) =
2d+1∑
i=1

wi h (fut (m,Σ)i) (43)

with the weights w:

w1 =
λ

d+ λ
(44)

wi =
1

2 (d+ λ)
∀i ∈ {2, ..., 2d+ 1}. (45)

which due to our choice of α and κ simplifies to:

w1 = 0 (46)

wi =
1

2d
∀i ∈ {2, ..., 2d+ 1}. (47)

4.4. Expectation step

In the E-step we need to infer the probability density function of the latent variable zt for all time
points t of a behavioral sequence, given the set of all measurements x and the model parameters Θ,
noted as p (zt|x,Θ). Since all random variables of the model are assumed to be normally distributed,
this property is maintained for the latent variable zt as well. Therefore, zt is drawn form a normal
distribution with mean µt and covariance Vt, i.e. zt ∼ N (µt, Vt). By using all measurements x of
the sequence for the inference of p (zt|x,Θ) at time point t, information of the past as well as of the
future is processed, which is what the unscented RTS smoother is used for. However, to derive the
equations of the smoother we first need to focus on the inference when only information of the past is
available, i.e. we want to infer p (zt|x1, ..., xt,Θ) where only measurements until time point t are given,
which can be achieved by utilizing the unscented Kalman filter. To avoid confusions, we denote mean
values and covariance matrices obtained from the unscented Kalman filter as µ̃t and Ṽt, whereas
those calculated via the unscented RTS smoother are denoted as µ̂t and V̂t.

4.4.1. The unscented Kalman filter

The unscented Kalman filter is an iterative algorithm, which calculates the filtered values for the mean
µ̃t and covariance Ṽt at a time point t, based on the filter output for these values µ̃t−1 and Ṽt−1 at
the previous time point t − 1 as well as the measurement variable xt for time point t. The inference
scheme for obtaining p (zt|x1, ..., xt−1,Θ) is given by Algorithm 6 and 7 [12,13]:
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Algorithm 6
1: function fukf0(µ̃t−1, Ṽt−1, Vz, Vx)
2: Z ← fut

(
µ̃t−1, Ṽt−1

)
▷ Form sigma points Z

3: z̄ ←
∑2nz+1

i=1 wiZi ▷ Compute predicted mean z̄

4: P ← Vz +
∑2nz+1

i=1 wi(Zi − z̄)(Zi − z̄)T ▷ Compute predicted covariance P
5: Z ← fut (z̄, P ) ▷ Form sigma points Z
6: X ← g (Z) ▷ Propagate sigma points through emission function g
7: x̄←

∑2nz+1
i=1 wiXi ▷ Compute predicted mean x̄

8: S ← Vx +
∑2nz+1

i=1 wi(Xi − x̄)(Xi − x̄)T ▷ Compute predicted covariance S
9: for i ∈ {1, ..., nx} do

10: if xti is missing measurement then
11: for j ∈ {1, ..., nx} do
12: Sij ← 0 ▷ Set rows of missing measurements to 0
13: Sji ← 0 ▷ Set columns of missing measurements to 0
14: Sii ← 1 ▷ Set diagonal entries to 1 to allow computing S−1

15: C ←
∑2nz+1

i=1 wi(Zi − z̄)(Xi − x̄)T ▷ Compute cross-covariance C
16: for i ∈ {1, ..., nx} do
17: if xti is missing measurement then
18: for j ∈ {1, ..., nz} do
19: Cji ← 0 ▷ Set columns of missing measurements to 0
20: K ← CS−1 ▷ Compute filter gain K
21: x̄← xt − x̄
22: for i ∈ {1, ..., nx} do
23: if xti is missing measurement then
24: x̄i ← 0 ▷ Set entries of missing measurements to 0
25: µ̃t ← z̄ +Kx̄ ▷ Compute filtered mean µ̃t

26: Ṽt ← P −KCT ▷ Compute filtered covariance Ṽt

27: return µ̃t, Ṽt

To obtain values for filtered means µ̃ = {µ̃0, ..., µ̃T } and covariances Ṽ = {Ṽ0, ..., ṼT } for all time
points one needs to iterate through the entire behavioral sequence:

Algorithm 7
1: function fukf (µ0, V0, Vz, Vx)
2: µ̃0 ← µ0

3: Ṽ0 ← V0

4: for t ∈ {1, ..., T} do
5: µ̃t, Ṽt ← fukf0

(
µ̃t−1, Ṽt−1, Vz, Vx

)
6: return µ̃, Ṽ

4.4.2. The unscented RTS smoother

The unscented RTS smoother is also an iterative algorithm, which calculates the smoothed values for
the mean µ̂t and covariance V̂t at a time point t, based on the smoother output for these values µ̂t+1

and V̂t+1 at the next time point t+ 1 as well as the corresponding output from the unscented Kalman
filter µ̃t and Ṽt for time point t. The inference scheme for obtaining p (zt|x,Θ) is given by Algorithm 8
and 9 [13]:
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Algorithm 8
1: function fuks0(µ̃t, Ṽt, µ̂t+1, V̂t+1, Vz)
2: Z ← fut

(
µ̃t, Ṽt

)
▷ Form sigma points Z

3: z̄ ←
∑2nz+1

i=1 wiZi ▷ Compute predicted mean z̄

4: P ← Vz +
∑2nz+1

i=1 wi(Zi − z̄)(Zi − z̄)T ▷ Compute predicted covariance P

5: D ←
∑2nz+1

i=1 wi(Zi − µ̃t)(Zi − z̄)T ▷ Compute cross-covariance D
6: Gt ← DP−1 ▷ Compute smoother gain Gt

7: µ̂t ← µ̃t +Gt (µ̂t+1 − z̄) ▷ Compute smoothed mean µ̂t

8: V̂t ← Ṽt +
(
GtV̂t+1 −D

)
Gt

T ▷ Compute smoothed covariance V̂t

9: return µ̂t, V̂t, Gt

To obtain values of the smoothed means µ̂ = {µ̂0, ..., µ̂T } and covariances V̂ = {V̂0, ..., V̂T } for all
time points one needs to run the forward filtering path and then iterate backwards through the entire
behavioral sequence:

Algorithm 9
1: function fuks(µ0, V0, Vz, Vx)
2: µ̃, Ṽ ← fukf (µ0, V0, Vz, Vx)
3: µ̂T ← µ̃T

4: V̂T ← ṼT

5: for t ∈ {T − 1, ..., 0} do
6: µ̂t, V̂t, Gt ← fuks0

(
µ̃t, Ṽt, µ̂t+1, V̂t+1, Vz

)
7: return µ̂, V̂ , G

Here, the set of all smoother gains G = {G0, ..., GT−1} is needed for performing the M-step later
on.

4.4.3. Enforcing anatomical constraints

The plain formulation of the unscented RTS smoother does not allow constraining the state variables.
However, in order to enforce joint angle limits we need to ensure that Rodrigues vectors encoding
bone rotations stay within specified limits. Therefore, we introduce a mapping function fz*→z, which
allows for mapping a redefined state variable z∗t ∈ Rnz onto the original one zt ∈ Rnz , while enforcing
that entries of zt corresponding to bone rotations stay within their respective lower and upper bounds.
The respective mapping function fz*→z is given by Algorithm 10.

Algorithm 10
1: function fz*→z(z

∗
t )

2: t∗ ← (z∗t 1, z
∗
t 2, z

∗
t 3)

T ▷ Obtain normalized global translation t∗

3: r∗1 ← (z∗t 4, z
∗
t 5, z

∗
t 6)

T ▷ Obtain normalized global rotation r∗1
4: for i ∈ {2, .., nbone} do
5: r∗∗i ←

(
z∗t 3i+1, z

∗
t 3i+2, z

∗
t 3i+3

)T
▷ Obtain redefined bone rotation r∗∗i

6: for j ∈ {1, .., 3} do
7: n← erf

(√
π
2 r∗∗ij

)
▷ Map r∗∗ij ∈ (− inf, inf) to n ∈ (−1, 1)

8: rij ← b0ij +
1
2

(
b1ij − b0ij

)
(1 + n) ▷ Compute rij ∈

(
b0ij , b1ij

)
9: r∗i ←

ri
cr

▷ Obtain normalized bone rotation r∗i

10: zt ←
(
t∗, r∗1, r

∗
2, ..., r

∗
nbone

)T
▷ Obtain zt via concatenation

11: return zt
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Here, b0ij and b1ij denote the lower and upper bound corresponding to entry j of the Rodrigues
vector ri, which encodes the rotation of bone i, and erf is a sigmoidal function, i.e. the error function
given by:

erf (y) =
2√
π

∫ y

0
exp

(
−t2
)
dt (48)

for y ∈ R. In order to enforce joint angle limits we just replace the original transmission and emission
equation in our state space model given by equations 13 and 14 with:

z∗t = z∗t−1 + ϵz (49)
xt = g (fz*→z (z

∗
t )) + ϵx. (50)

In the following we always refer to the state space model given by equations 49 and 50 and therefore
also to the redefined state variables z∗ but we drop ∗ in the notation.

4.5. Maximization step

In the M-step we find a new set of model parameters Θk+1 by maximizing the ELBO L, given the
smoothed means µ̂ and covariances V̂ as well as the smoother gains G, which we obtained in the
E-step using a current estimate of the model parameters Θk.

4.5.1. Obtaining new model parameters by maximizing the evidence lower bound

We can take advantage of the specific structure of the state space model when maximizing the ELBO
L [8]. In the state space model the state variables fulfill the Markov property, i.e. each state variable zt
only depends on the previous one zt−1. Based on this we can compute the model’s joint distribution:

p (x, z) = p (z0)
T∏
t=1

p (zt|zt−1) p (xt|zt) . (51)

When we now take the logarithm of the joint distribution and acknowledge that the model parameters
Θ are also required for computing the joint distribution we obtain:

ln p (x, z|Θ) = ln p (z0|µ0, V0) +

T∑
t=1

ln p (zt|zt−1, Vz) +

T∑
t=1

ln p (xt|zt, Vx) . (52)

However, to maximize Q (Θ,Θk) we actually need to consider the expectation value of ln p (x, z|Θ):

Q (Θ,Θk) = E [ln p (x, z|Θ)] (53)

= E [ln p (z0|µ0, V0)] +
T∑
t=1

E [ln p (zt|zt−1, Vz)] +

T∑
t=1

E [ln p (xt|zt, Vx)] (54)

= I0 + Iz + Ix (55)

with I0 = E [ln p (z0|µ0, V0)], Iz =
∑T

t=1 E [ln p (zt|zt−1, Vz)] and Ix =
∑T

t=1 E [ln p (xt|zt, Vx)]. If we
now acknowledge that all random variables in our state space model are normally distributed, i.e. zt ∼
N
(
µ̂t, V̂t

)
, it becomes clear that computingQ (Θ,Θk) only involves evaluating the expectation values

of log-transformed normal distributions (see Appendix A). Consequently, we can obtain simplified
terms for the individual components I0, Iz and Ix of Q (Θ,Θk) using the smoothed means µ̂ and
covariances V̂ as well as the smoother gains G. For I0 we get:

I0 = −
1

2
ln det (2πV0)−

1

2
tr
(
V0

−1E
[
(z0 − µ0) (z0 − µ0)

T
])

(56)

= −1

2
ln det (2πV0)−

1

2
tr
(
V0

−1
(
V̂0 + (µ̂0 − µ0) (µ̂0 − µ0)

T
))

. (57)
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To obtain a simplified expression for Iz we need to form pairwise sigma points Pt, as there are always
two random variables involved simultaneously, zt ∼ N

(
µ̂t, V̂t

)
and zt−1 ∼ N

(
µ̂t−1, V̂t−1

)
, when

evaluating the expectation values of the underlying log-transformed normal distributions in Iz. For
each of the T transition steps we generate the pairwise mean vector µ̌t ∈ R2nz :

µ̌t =

(
µ̂t

µ̂t−1

)
(58)

as well as the pairwise covariance matrix V̌t ∈ R2nz×2nz :

V̌t =

(
V̂t V̂tGt−1

T

Gt−1V̂t V̂t−1

)
(59)

and calculate the pairwise sigma points Pt as follows:

Pt =
(
Bt
At

)
= fut

(
µ̌t, V̌t

)
(60)

where concatenating the incomplete pairwise sigma points Bt ∈ R4nz+1×nz and At ∈ R4nz+1×nz gives
Pt ∈ R4nz+1×2nz . Consequently, the weights w̌ associated with the pairwise sigma points Pt are then
given in accordance with the concepts discussed in Section 4.3:

w̌1 = 0 (61)

w̌i =
1

4nz
∀i ∈ {2, ..., 4nz + 1} (62)

A simplified term for Iz is then given by:

Iz = −
T

2
ln det (2πVz)−

1

2

T∑
t=1

tr
(
Vz

−1E
[
(zt − zt−1) (zt − zt−1)

T
])

(63)

= −T

2
ln det (2πVz)−

T

2
tr

(
Vz

−1

(
1

T

T∑
t=1

E
[
(zt − zt−1) (zt − zt−1)

T
]))

(64)

≈ −T

2
ln det (2πVz)−

T

2

T∑
t=1

tr

(
Vz

−1

(
1

T

4nz+1∑
i=1

w̌i (Bti −Ati) (Bti −Ati)
T

))
. (65)

To evaluate the expectation value in Ix it is sufficient to just use the normal sigma points Zt =

fut

(
µ̂t, V̂t

)
and propagate them through our emission function g:

Ix = −T

2
ln det (2πVx)−

1

2

T∑
t=1

tr
(
Vx

−1E
[
(xt − g (zt)) (xt − g (zt))

T
])

(66)

= −T

2
ln det (2πVx)−

T

2
tr

(
Vx

−1

(
1

T

T∑
t=1

E
[
(xt − g (zt)) (xt − g (zt))

T
]))

(67)

≈ −T

2
ln det (2πVx)−

T

2

T∑
t=1

tr

(
Vx

−1

(
1

T

2nz+1∑
i=1

wi (xt − g (Zti)) (xt − g (Zti))
T

))
. (68)

To finally obtain new model parameters Θk+1 = {µ0,k+1, V0,k+1, Vz,k+1, Vx,k+1} we still need to differ-
entiateQ (Θ,Θk) with respect to µ0, V0, Vz and Vx, set the resulting derivatives to zero and solve them
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for µ0, V0, Vz and Vx respectively. The required derivatives have the following form (see Appendix B):

d

dµ0
Q (Θ,Θk) =

d

dµ0
I0 (69)

= V0
−1 (µ̂0 − µ0) (70)

d

dV0
Q (Θ,Θk) =

d

dV0
I0 (71)

= −1

2
V0

−1 +
1

2
V0

−1
(
V̂0 + (µ̂0 − µ0) (µ̂0 − µ0)

T
)
V0

−1 (72)

d

dVz
Q (Θ,Θk) =

d

dVz
Iz (73)

= −T

2
Vz

−1 +
T

2

T∑
t=1

Vz
−1

(
1

T

4nz+1∑
i=1

w̌i (Bti −Ati) (Bti −Ati)
T

)
Vz

−1 (74)

d

dVx
Q (Θ,Θk) =

d

dVx
Ix (75)

= −T

2
Vx

−1 +
T

2

T∑
t=1

Vx
−1

(
1

T

2nz+1∑
i=1

wi (xt − g (Zti)) (xt − g (Zti))
T

)
Vx

−1. (76)

Setting these derivatives to zero and solving for µ0, V0, Vz and Vx yields the following:

µ0 = µ̂0 (77)

V0 = V̂0 + (µ̂0 − µ0) (µ̂0 − µ0)
T (78)

Vz =
1

T

T∑
t=1

4nz+1∑
i=1

w̌i (Bti −Ati) (Bti −Ati)
T (79)

Vx =
1

T

T∑
t=1

2nz+1∑
i=1

wi (xt − g (Zti)) (xt − g (Zti))
T . (80)

The resulting values for µ0,k+1, Vz,k+1 and Vx,k+1 are then given by equations 77, 79 and 80. To
obtain V0,k+1 we need to substitute µ0,k+1 into equation 78, giving V0,k+1 = V̂0. Lastly, we still need to
adjust the solution for Vx,k+1 to also account for missing measurements. Besides that, we note that
it is sufficient to only compute the diagonal entries of Vx,k+1, since we enforce the covariance matrix
of the measurement noise Vx to be a diagonal matrix. Thus, the final solution for a diagonal entry
j ∈ {1, ..., nx} of Vx,k+1 is given by:

diag (Vx,k+1)j =
1

Tj

T∑
t=1

δtj

2nz+1∑
i=1

wi

(
xtj − g (Zti)j

)2
(81)

where the function diag gives the diagonal entries of the input matrix, δtj indicates if at time point
t the entry j of xt is associated with a missing measurement, i.e. δtj = 0, or not, i.e. δtj = 1, and
Tj is the total number of successful measurements for entry j in the entire behavioral sequence, i.e.
Tj =

∑T
t=1 δtj .

4.6. Convergence of the expectation-maximization algorithm

We calculate the changes in the model parameters Θ in each iteration k of the EM algorithm to
check for convergence [1]. Particularly, we are computing the vectors ∆µ0 ∈ Rnz , ∆diag (V0) ∈ Rnz ,
∆diag (Vz) ∈ Rnz and ∆diag (Vx) ∈ Rnx , which contain the relative changes of µ0, V0, Vz and Vx at
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iteration k:

∆µ0i = abs

(
µ0,ki − µ0,k−1i

µ0,k−1i

)
∀ i ∈ {1, ..., nz} (82)

∆diag (V0)i = abs

(
V0,kii − V0,k−1ii

V0,k−1ii

)
∀ i ∈ {1, ..., nz} (83)

∆diag (Vz)i = abs

(
Vz,kii − Vz,k−1ii

Vz,k−1ii

)
∀ i ∈ {1, ..., nz} (84)

∆diag (Vx)i = abs

(
Vx,kii − Vx,k−1ii

Vx,k−1ii

)
∀ i ∈ {1, ..., nx} (85)

where abs is a function returning the absolute value of its input argument and µ0,k, V0,k, Vz,k and
Vx,k are the model parameters at iteration k whereas µ0,k−1, V0,k−1, Vz,k−1 and Vx,k−1 are those at
iteration k− 1. We only focus on the diagonal entries of the covariances V0 and Vz since a fraction of
their off-diagonal entries is expected to be zero. Using these relative changes we construct a vector
∆v ∈ R3nz+nx containing all relative changes via concatenation:

∆v = (∆µ0,∆diag (V0) ,∆diag (Vz) ,∆diag (Vx))
T (86)

and assume convergence is reached when the mean ∆v̄ of ∆v falls below a threshold ϵtol:

∆v̄ =
1

3nz + nx

3nz+nx∑
i=1

∆vi < ϵtol (87)

where we set ϵtol = 0.05.

4.7. Implementation of the expectation-maximization algorithm

We initialize the mean of the state variables µ0 by minimizing the objective function given by equation
9 but keep the bone lengths l and the surface marker positions v constant and set ntime = 1, i.e.
we only include a single time point in the optimization, which is identical to the first time point of a
respective behavioral sequence. The covariances V0, Vx and Vz are initialized as matrices whose
diagonal elements all equal 0.001 and off-diagonal entries are set to zero. To learn new model pa-
rameters µ0, V0, Vx and Vz we run the EM algorithm, given by Algorithm 11, with the stated initial
values, i.e. V0,0, Vz,0 and Vx,0, using measurements x obtained from the behavioral sequence. Finally,
once the EM algorithm converged, we use the unscented RTS smoother with the resulting learned
model parameters to reconstruct poses of the behavioral sequence.

Algorithm 11
1: function fEM(µ0, V0, Vz, Vx)
2: k ← 0 ▷ Initialize iteration number k
3: ∆v̄ ← inf
4: while ∆v̄ ≥ ϵtol do
5: µ̂, V̂ , G← fuks (µ0,k, V0,k, Vz,k, Vx,k) ▷ Perform E-step
6: µ0,k+1, V0,k+1, Vz,k+1, Vx,k+1 ← fM

(
µ̂, V̂ , G

)
▷ Perform M-step

7: k ← k + 1 ▷ Increase iteration number k
8: ∆v̄ ← ftol (µ0,k−1, V0,k−1, Vz,k−1, Vx,k−1, µ0,k, V0,k, Vz,k, Vx,k) ▷ Compute change in Θ

9: return µ0,k, V0,k, Vz,k, Vx,k

Here, in accordance to the concepts stated in Section 4.5 and 4.6, function fM, given by Algorithm
12, performs the M-step and function ftol, given by Algorithm 13, computes the mean ∆v̄ of the
relative changes of the model parameters Θ.
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Algorithm 12
1: function fM(µ̂, V̂ , G)
2: for t ∈ {1, ..., T} do

3:

(
Bt
At

)
← fut

((
µ̂t

µ̂t−1

)
,

(
V̂t V̂tGt−1

T

Gt−1V̂t V̂t−1

))
4: Zt ← fut

(
µ̂t, V̂t

)
5: µ0,k+1 ← µ̂0

6: V0,k+1 ← V̂0

7: Vz,k+1 ← 1
T

∑T
t=1

∑4nz+1
i=1 w̌i (Bti −Ati) (Bti −Ati)

T

8: for j ∈ {1, ..., nx} do

9: Vx,k+1jj ←
1
Tj

∑T
t=1 δtj

∑2nz+1
i=1 wi

(
xtj − g (Zti)j

)2
10: return µ0,k+1, V0,k+1, Vz,k+1, Vx,k+1

Algorithm 13
1: function ftol(µ0,k−1, V0,k−1, Vz,k−1, Vx,k−1, µ0,k, V0,k, Vz,k, Vx,k)
2: for i ∈ {1, ..., nz} do
3: ∆µ0i ← abs

(
µ0,ki

−µ0,k−1i
µ0,k−1i

)
4: ∆diag (V0)i ← abs

(
V0,kii

−V0,k−1ii
V0,k−1ii

)
5: ∆diag (Vz)i ← abs

(
Vz,kii

−Vz,k−1ii
Vz,k−1ii

)
6: for i ∈ {1, ..., nx} do
7: ∆diag (Vx)i ← abs

(
Vx,kii

−Vx,k−1ii
Vx,k−1ii

)
8: ∆v ← (∆µ0,∆diag (V0) ,∆diag (Vz) ,∆diag (Vx))

T

9: ∆v̄ ← 1
3nz+nx

∑3nz+nx
i=1 ∆vi

10: return ∆v̄

5. Training deep neural networks to detect 2D locations of surface
markers

To automatically detect 2D locations of surface makers we used DeepLabCut [9]. For each rat or
mouse in each dataset an individual neural network was trained on manually labeled images obtained
from four different cameras. For training, each image was cropped to 600x600 px2 around a cen-
terpoint determined by background subtraction: For each training image, a background-subtracted
image was generated by subtracting the image acquired 200 ms prior to the frame of interest for the
FTIR and gap-crossing datasets and 125 ms prior for the gait dataset. Subsequently, approximate 2D
locations of the recorded animal on the background-subtracted images were obtained by calculating
the median indices of pixels above a threshold-value of 5 times the standard deviation of each pixel,
where the standard deviations were calculated from the first 100 images of each recorded video,
which were acquired with the arena or track empty and free of any moving objects. These 2D loca-
tions were then used as a center-point to crop the original images to 600x600 px2. To minimize the
influence of visible movements of the experimenters on this center-point detection in the recorded
FTIR data set, pixel values of pixels, which did not show the FTIR plate, were set to zero for the
recordings of animals #3 to #6. Resulting images that did not contain any manually annotated 2D
positions of surface markers due to the preprocessing steps not leading to correct cropping, were not
used during training.

For the rat FTIR datasets the networks were trained on 4068 images for animal #1, 3980 images for
animal #2, 752 images for animal #3, 1100 images for animal #4, 992 images for animal #5 and 1128
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images for animal #6. For the rat gait and gap-crossing datasets 2404 and 3608 images were used re-
spectively for each analyzed animal (animal #1 and #2). For the rat data with additional IMUs 904 and
2520 images were used for animal # 7 and #8 respectively. For the experiments with mice, 808 and
1364 images were used for mouse #1 and #2 respectively. We used DeepLabCut’s default settings,
with the only two exceptions being that we changed the network architectures to ResNet-152 and en-
abled mirroring of images for which we paired surface markers with a left/right correspondence78. For
the rat gait, gap-crossing and FTIR datasets, training was conducted via DeepLabCut 2.1.6.4 and (for
the rat IMU and mouse datasets) 2.1.10.4 (https://github.com/DeepLabCut/DeepLabCut/releases/).
Subsequently we used DLC to obtain 2D locations of surface markers in all frames of behavioral
sequences, to 0.9 and treated detected marker positions below this value as missing measure-
ments.discarding any detections with a confidence value below 0.9.
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6. Box constraints for surface marker positions based on body
symmetry

Box constraints for central and left-sided surface maker locations were defined in the coordinate
system of the associated edges and set as follows

marker attached joint x y z
head #1 spine #5 [0,0] [0,inf) (-inf,inf)
head #2 spine #5 [0,0] [0,inf) (-inf,inf)
head #3 head (leaf) [0,0] [0,0) [0,0]
spine #1 spine #2 [0,0] [0,inf) (-inf,inf)
spine #2 spine #2 [0,0] [0,inf) (-inf,inf)
spine #3 spine #3 [0,0] [0,inf) (-inf,inf)
spine #4 spine #3 [0,0] [0,inf) (-inf,inf)
spine #5 spine #4 [0,0] [0,inf) (-inf,inf)
spine #6 spine #5 [0,0] [0,inf) [0,0]
tail #1 tail #1 (leaf) [0,0] [0,0] [0,0]
tail #2 tail #2 [0,0] [0,inf) (-inf,inf)
tail #3 tail #3 [0,0] [0,inf) (-inf,inf)
tail #4 tail #4 [0,0] [0,inf) (-inf,inf)
tail #5 tail #5 [0,0] [0,inf) (-inf,inf)
tail #6 spine #1 [0,0] [0,inf) (-inf,inf)
shoulder shoulder [0,0] [0,inf) [0,inf)
elbow elbow (-inf,0] [0,0] [0,0]
wrist wrist [0,0] (-inf,0] [0,0]
finger #1 finger (leaf) (-inf,inf) [0,0] (-inf,inf)
finger #2 finger (leaf) [0,0] [0,0] [0,0]
finger #3 finger (leaf) (-inf,inf) [0,0] (-inf,inf)
side spine #3 (-inf,0] (-inf,inf) (-inf,inf)
hip hip [0,0] [0,inf) [0,inf)
knee knee (-inf,0] [0,0] [0,0]
ankle ankle (-inf,0] [0,0] [0,0]
metatarsophalangeal metatarsophalangeal [0,0] (-inf,0] [0,0]
toe #1 toe (leaf) (-inf,inf) [0,0] (-inf,inf)
toe #2 toe (leaf) [0,0] [0,0] [0,0]
toe #3 toe (leaf) (-inf,inf) [0,0] (-inf,inf)

Appendix

A. Evaluating expected values of log-transformed normal distributions

Given a d-dimensional normal distribution pnorm with mean µy ∈ Rd and covariance Vy ∈ Rd×d,
evaluating it for a normally distributed random variable y ∼ N (m,Σ) takes the following form:

pnorm (y|µy, Vy) = (2π)−
d
2det (Vy)

− 1
2 exp

(
−1

2
(y − µy)

TVy
−1 (y − µy)

)
(88)

where det (Vy) ∈ R denotes the determinant of matrix Vy. Applying a logarithmic transformation
yields:

ln pnorm (y|µy, Vy) = −
1

2
ln det (2πVy)−

1

2
tr
(
Vy

−1 (y − µy) (y − µy)
T
)

(89)
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where tr (Vy) ∈ R denotes the trace of matrix Vy. Noticing that E
[
yyT

]
= Σ +mmT [8], we can take

the expected value of equation 89 with respect to y and obtain:

E [ln pnorm (y|µy, Vy)] = −
1

2
ln det (2πVy)−

1

2
tr
(
Vy

−1E
[
(y − µy) (y − µy)

T
])

(90)

= −1

2
ln det (2πVy)−

1

2
tr
(
Vy

−1
(
Σ+ (m− µy) (m− µy)

T
))

(91)

B. Derivatives

Given a d-dimensional vector v ∈ Rd, two symmetric matrices M ∈ Rd×d and C ∈ Rd×d as well as a
scalar c ∈ R, we can obtain the following derivatives:

d

dv
tr
(
CvvT

)
= Cv + CT v = 2Cv (92)

d

dM
ln det (cM) = M−1 (93)

d

dM
tr
(
M−1C

)
= −

(
MT

)−1
CT
(
MT

)−1
= −M−1CM−1. (94)
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